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Abstract

The extraordinary capabilities of large language models (LLMs) such as ChatGPT and
GPT-4 are in part unleashed by aligning them with reward models that are trained on
human preferences represented as rankings of responses to prompts. In this paper, we doc-
ument the phenomenon of reward collapse, an empirical observation where the prevailing
ranking-based approach results in an identical reward distribution for diverse prompts dur-
ing the terminal phase of training. This outcome is undesirable as open-ended prompts like
“write a short story about your best friend” should yield a continuous range of rewards
for their completions, while specific prompts like “what is the capital city of New Zealand”
should generate either high or low rewards. Our theoretical investigation reveals that reward
collapse is primarily due to the insufficiency of the ranking-based objective function to in-
corporate prompt-related information during optimization. This insight allows us to derive
closed-form expressions for the reward distribution associated with a set of utility functions
in an asymptotic setting. To overcome reward collapse, we introduce a prompt-aware opti-
mization scheme that provably admits a prompt-dependent reward distribution within the
interpolating regime. Our experimental results suggest that our proposed prompt-aware
utility functions significantly alleviate reward collapse during the training of reward models.

1 Introduction

A cornerstone of the recent remarkable advancements in the capabilities of large language models (LLMs)
like ChatGPT and GPT-4 is the integration of human feedback (Ouyang et al. (2022); OpenAI (2023)). The
approach to leveraging human feedback often begins with the training of a reward model that encapsulates
human preferences, values, and ethical considerations (Christiano et al. (2017); Ibarz et al. (2018); Bahdanau
et al. (2018); Ziegler et al. (2019); Ganguli et al. (2022)). This is followed by the fine-tuning of the LLMs using
reinforcement learning, guided by the reward model. This process, often referred to as reinforcement learning
from human feedback (RLHF), has proven effective in aligning LLMs with human intent, substantially
enriching the quality of human interaction.

However, developing an effective reward model based on human preferences is challenging (Bai et al. (2022b);
Liu et al. (2023); Sun et al. (2023)). A notable difficulty arises when a human labeler struggles to give a
quantitative score to a response/completion for a specific prompt. Instead, it is much easier for humans to
make pairwise comparisons between completions in terms of their quality, which is indeed employed in the
development of InstructGPT (Ouyang et al. (2022)). Explicitly, a human labeler is presented with several
completions generated by the LLMs for the same prompt and arranges the responses from the highest to
lowest perceived quality.1 A neural network is then trained to obtain a reward model that assigns rewards
to the responses in an attempt to align as closely as possible with human preferences in the form of rankings.

Despite some benefits, such as eliminating calibration issues, rankings fall short in reflecting the varied reward
distributions of different prompts. This is due to the fact that ranking one completion higher than another
does not indicate how much superior the former is compared to the latter. This concern is especially pertinent
in RLHF as some prompts are open-ended or, in other words, are dependent on the users’ backgrounds,
allowing the reward distribution to span a continuous range. Conversely, some prompts are closed-ended,

1In slightly more detail, Ouyang et al. (2022) required human labelers to utilize a drag-and-drop interface to construct
consistent rankings from pairwise comparisons.
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resulting in a response that should be either highly or lowly scored, thus generating a roughly two-point mass
distribution for the reward distribution. Instances of the first type of prompts include write a short story
about how AI will look like in 100 years and what is the best cuisine in the world, while examples of the second
type are prove the Pythagorean theorem and is chicken a dinosaur. An ideal reward model would assign a
reward of either low or high to close-ended prompts, ensuring that the completion accurately aligns with the
correct direction. Conversely, for open-ended prompts, the reward should avoid being either low or high to
encourage diverse responses. If the reward model cannot distinguish between open-ended and close-ended
prompts, it fails to assist language models in determining uncertainty when providing completions, whether
with high variability or low variability (Padmakumar & He (2023)). As a result, the reward model may
struggle to aid LLMs in accurately calibrating uncertainty without accounting for the nuances of different
prompts. 2

Figure 1: Reward distribution of the five responses throughout the training process. The x-axis represents
the response index, sorted by reward from smallest to largest. The solid curve illustrates the mean across
several prompts, while the shadowed area represents the standard deviation. A clear observation from the
figure reveals the progressive convergence of the distribution towards a single value, thereby evidencing the
reward collapse phenomenon. Experiment details are elaborated in Section 5.

As our first main contribution, this paper documents a surprising phenomenon through a series of experi-
ments, demonstrating that training a reward model on preference rankings could result in the same reward
distribution regardless of the prompts. We call this phenomenon reward collapse, which occurs during the
terminal phase of training Papyan et al. (2020). Intriguingly, our theoretical analysis first predicted this
phenomenon prior to its experimental confirmation. Indeed, we show that the collapsed reward distribution
can be numerically deduced from a simple optimization program or, even simpler, admits a closed-form ex-
pression. As demonstrated in Figure 1, our prediction of reward collapse is in agreement with the empirical
results.

Reward collapse is clearly undesirable as it overlooks the subtle differences among various prompts, po-
tentially leading to the miscalibration of human preference during the training of LLMs via reinforcement
learning with the reward model. A rudimentary strategy to bypass this issue is to early stop the training of

2For instance, we suspect that this is partly accountable for the poor calibration of GPT-4 after RLHF (see page 12 of
OpenAI (2023)) and mode collapse (Casper et al. (2023a;b)).
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the reward model Ouyang et al. (2022), which, however, fails to address the fundamental limitation of using
a single utility function across all prompts.

In our second main contribution, we introduce a principled approach to alleviating reward collapse, leveraging
insights derived from the same optimization program that was instrumental in predicting this phenomenon.
In essence, we propose to use distinct utility functions depending on prompts in training the reward model,
such that the resulting reward distribution can be either widely dispersed or tightly concentrated, contingent
on whether the prompt is open-ended or closed-ended. A notable advantage of this prompt-aware strategy is
that our analysis is analytical, enabling full control over the shape of the reward distribution as required. Our
experiments show that reward collapse can be substantially mitigated using this prompt-aware methodology.

2 What Is Reward Collapse

2.1 Reward modeling

We use x and y to denote prompts and completions. And we use R(x, y) to denote a reward model. In this
paper, we assume R(x, y) ∈ [0, 1]. For a given prompt and n completions that are i.i.d. draws from an LLM,
a human labeler ranks the n responses from the most preferred to the least preferred, and the ranking is
denoted as πx. The dataset is given by3

D = {(x, y1, · · · , yn) : x is a prompt,
y1, · · · , yn are its completions from the most prefered to the least prefered}

The reward model is expected to score each completion that is consistent with the human-provided ranking
πx as much as possible. To this end, we train a neural network that maximizes the following overall utility:∑

(x,y1,··· ,yn)∈D

∑
1≤i<j≤n

U (Rθ(x, yi) − Rθ(x, yj)) , (1)

where U is an (increasing) utility function, θ is the weights of the reward neural network. Typically, U is set to
U(z) = log sigmoid(cz) ≡ log ecz

ecz+1 , which is an increasing concave function (Ouyang et al. (2022); Rafailov
et al. (2024)). While maximizing Eq. 1, the reward model learns to not only align with the human-provided
ranking but also distinguish the rewards as much as possible.

2.2 Reward collapse

To illustrate what is reward collapse, we start with the overall utility (1). Let

S(r1, · · · , rn) =
∑

1≤i<j≤n

U (ri − rj) (2)

then Eq.1 can be further written as ∑
(x,y1,··· ,yn)∈D

S(Rθ(x, y1), · · · , Rθ(x, yn)).

Consequently, if the maximum of S(r1, · · · , rn) is M , overall utility (1) is upper bound by |D|M . Further-
more, if r̂1, · · · , r̂n is the unique maximizer of S(r1, · · · , rn) with r1 ≥ · · · ≥ rn, then overall utility can reach
|D|M if and only if

Rθ(x, yi) = r̂i, i = 1, · · · , n. (3)

In fact, for any reward model that sufficiently optimize the overall utility, the reward Rθ(x, yi) is close to r̂i

for all prompts. We call this phenomenon Reward Collapse. (equation 3). Formally, we have the following
theorem:

3Here, we assume that each prompt has the same number of completions. However, our theory can be readily generalized
to cases where each prompt has a different number of completions.
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Theorem 1 (Reward collapse). Assume U is strongly concave with parameter µ > 0 and strictly increasing,
then S defined in (2) has some maximum M obtained uniquely at r̂1, · · · , r̂n. For any neural network
parameterized by θ, such that

∑
(x,y1,··· ,yn)∈D

∑
1≤i<j≤n

U (Rθ(x, yi) − Rθ(x, yj)) ≥ |D|M − µnϵ2

2 ,

we have
max

i
|Rθ(x, yi) − r̂i − c(x)| ≤ ϵ

for all (x, y1, · · · , yn) ∈ D and some constant c(x) depending on x.

That is, the empirical distribution of the rewards is approximately independent of the prompt itself in the
interpolating regime, thereby leading to reward collapse. The proof of this theorem can be found in Appendix
B

To further illustrate which neural network maximizes overall utility, consider the case where reward function
is parameterized as Rθ(x, y) = σ(⟨θ, ϕ(x, y)⟩), where σ is the sigmoid function, θ ∈ Rd represents the weights,
and ϕ(x, y) : X × Y → Rd is a known and fixed feature function. Such a reward parameterization is usually
derived by removing the last layer of the pre-trained model. A similar parametrization is also used in Zhu
et al. (2023). Note that we include a sigmoid function to ensure that the reward is in [0, 1]. Then if S defined
in (2) attains its maximum M uniquely at r̂1, · · · , r̂n and d ≥ |D|n, there exist a θ∗, such that

Rθ∗(x, yi) = r̂i, i = 1, · · · , n.

Consequently, when training an over-parameterized neural network maximizing the overall utility, it is likely
to observe reward collapse. We validate this theoretical result through experiments on large language models,
as detailed in Section 5.

In practice, reward collapse is not what we want to observe in the reward model. Consider the following case
where two prompts are given: one open-ended, such as “write a short story about your best friend,” and one
close-ended, such as “what is the capital city of New Zealand.” We expect the rewards for different responses
to the open-ended prompt to be continuously distributed within [0, 1]. However, for the close-ended prompt,
the rewards for different responses should be either 0 or 1. The reward model needs to provide different
reward distributions for different kinds of prompts.

3 Prompt-aware optimization

To avoid having the same reward distribution, one simple strategy is early stopping. While reward collapse
can be avoided via early stopping, early stopping might make the model neglect other important features.
A more principled approach is to change the objective. Our proposal is to let the utility function U now
depend on the prompt. That is, now we consider training a neural network that maximizes∑

(x,y1,··· ,yn)∈D

∑
1≤i<j≤n

Ux (Rθ(x, yi) − Rθ(x, yj)) , (4)

where Ux is a utility function that depends on the prompt x. Note that this reward modeling approach
is similar to traditional reward modeling in that it also aims to maximize the difference in rewards while
incorporating ranking information. However, the key difference here is that we allow for different utility
functions for different prompts x, making the reward model more sensitive to variations in prompts and,
hence, more accurately indicating the effect of different prompts.

In general, the choice of Ux should reflect the open-endedness of the prompt x. Given the high flexibility in
choosing Ux, it is generally recommended to let the practitioners choose these functions to meet their needs.
Nonetheless, below we introduce a family of such functions.
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For a strictly increasing utility function U , it can be easily demonstrated that the maximum can only be
attained when r1 ≥ · · · ≥ rn (see Lemma C.1 in the Appendix). As a result, we consider the problem

max
0≤rn≤...≤r1≤1

∑
1≤i<j≤n

U (ri − rj) . (5)

We use the term “reward distribution” to refer to the empirical distribution of solutions to (5).

Class 1. Let U(z) = zγ , z ∈ [0, 1] for some 0 < γ < 1. This utility function encourages the reward to
take values either near 0 or 1 as γ tends to be large. Some plots showing the reward distribution is given in
Figure 2(a) and 2(b).

Class 2. Let U(z) = −zγ , z ∈ (0, 1] for 0 < γ ≤ 1.We also define U(0) = ∞ for 0 ≤ γ ≤ 1. In this case, the
reward distribution of Eq. 5 becomes more even as γ increases from 0 to 1. Some plots are shown in Figure
2(c) and 2(d).

Class 3. Let U(z) = log sigmoid(z/σ), z ∈ [0, 1] for σ > 0. The reward distribution becomes more spread
between 0 and 1 as σ becomes smaller. Some plots are shown in Figure 2(e) and 2(f).
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(a) U(z) = z0.8

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0.4 0.405 0.41 0.415 0.42

0.44

0.445

0.45

0.455

0.46

(b) U(z) = z0.2
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(c) U(z) = log z
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(d) U(z) = −z−1
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(e) U(z) = log sigmoid(z)
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(f) U(z) = log sigmoid(4z)

Figure 2: Empirical cumulative distribution function (e.c.d.f.) of rewards for different utility functions. As
the number of responses n increases, the e.c.d.f. converges to a limiting distribution.

3.1 Asymptotics

In general, we can explicitly evaluate the reward distribution for any n by solving the optimization (5).
Nevertheless, it is helpful to get a handle on the empirical distribution of the solution to this optimization
program in the limit n → ∞. The next result gives a closed-form expression of the reward distribution in
the case of a large number of completions.
Theorem 2. Let U(z) = zγ , z ∈ [0, 1] for some γ ∈ (0, 1). Then the reward distribution of (5) converges to
Beta

( 1−γ
2 , 1−γ

2
)

as n → ∞, which has probability density x− 1+γ
2 (1 − x)− 1+γ

2 on (0, 1).
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Theorem 3. For U(z) = −z−γ , z ∈ (0, 1] for 0 < γ ≤ 1, the reward distribution of (5) converges in
distribution to Beta( 1+γ

2 , 1+γ
2 ). For U(z) = log z, z ∈ (0, 1], the reward distribution of (5) converges in

distribution to Beta( 1
2 , 1

2 )

The proof of Theorem 3 can be found in Martinez-Finkelshtein et al. (2004); Landkof & Landkof (1972). In
the limit γ → 1 in Theorem 3, the Beta distribution tends to Beta(1, 1), which is the uniform distribution on
[0, 1]. This is indeed an example of the one-dimensional Thomson problem (Bowick et al. (2002)), which asks
the configuration of n electrons constrained to a line that repel each other with a force given by Coulomb’s
law. This problem was first considered by Maxwell. Indeed, Martinez-Finkelshtein et al. (2004); Hardin et al.
(2004); Amore & Jacobo (2019) prove that the reward distribution will converge to the uniform distribution
for U(z) = −z−γ with γ ≥ 1.

For the above two classes, the limiting distribution does not admit a probability mass. However, probability
mass can emerge in the case of a scaled log-sigmoid function.
Theorem 4. If U is strictly increasing and concave, the derivative of the utility function satisfies U ′(0) <
∞, U ′(1) > 0, then the reward distribution of (5) converges in distribution to a probability measure µ∗ that
satisfies

µ∗({0}) = µ∗({1}) ≥ U ′(1)
U ′(0)+U ′(1) > 0.

In general, the reward distribution can be characterized from a variational perspective. This gives the
following theorem.
Theorem 5. If U is bounded, strongly concave, and increasing. There exists a probability measure µ∗

such that the reward distribution of (5) converges in distribution to µ∗, which is uniquely determined by the
following two properties:

(a) µ∗ maximizes
E

X,X′iid∼ µ
U(|X − X ′|)

over all probability measures µ on [0, 1], and

(b) it is symmetric with respect to 1
2 in the sense that, for any measurable set A ∈ [0, 1] and 1 − A =

{x : 1 − x ∈ A}, µ∗(A) = µ∗(1 − A).

3.2 Prompt-aware optimization based on open-endedness

Based on the asymptotic properties discussed, we propose a prompt-aware optimization approach that lever-
ages the concept of open-endedness.

For a given prompt x, if it is close-ended (e.g., “What is the capital city of New Zealand?”), the reward for a
response R(x, y) should be either high or low, indicating a clear right or wrong answer. In such cases, we set
Ux(z) = z, as its limiting reward distribution follows a Bernoulli distribution. Conversely, for an open-ended
prompt (e.g., “Write a short story about your best friend”), the reward should span a continuous range,
reflecting the diversity of possible responses. Here, we choose Ux(z) = −z−1 to capture this variability.
Mixed-type prompts, such as “What is the capital city of New Zealand? Tell me some interesting stories
about it,” require a response that addresses both factual accuracy and creative content. For these prompts,
a natural choice is the log-sigmoid function, as its limiting distribution approximates a mixture of Bernoulli
and uniform distributions, effectively balancing the different types of responses required.

4 Proofs

In this section, we will briefly present the proofs of results in Section 2. However, we will deviate from the
previous order and start by proving Theorem 5. We also put the proof of Theorem 4 into Appendix D.3 due
to the length constraint. Let

S(r1, · · · , rn) :=
∑

1≤i<j≤n

U(ri − rj) and r̂ ≡ (r̂1, . . . , r̂n) := arg max
0≤r1,··· ,rn≤1

S(r1, · · · , rn).

6
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In addition, for any vector (u1, · · · , un) ∈ Rn, we employ boldface notation u to represent the entire vector.
THis allows us to write S(r).

4.1 Proof of Theorem 5

First, when U is concave and strictly increasing, r̂ exhibits the following properties:
Lemma 4.1. If U is strictly concave and strictly increasing, the function S(r) is concave. Therefore, the
optimization problem uniquely determines r̂n. Additionally, the following properties hold: (1) r̂1 ≥ · · · ≥ r̂n,
and (2) 1 − r̂i = r̂n−i+1 for any 1 ≤ i ≤ n.

The proof of Lemma 4.1 is straightforward and is provided in Appendix C.1. Upon further examination of
the function S(r), we discover that if U is strongly concave with parameter µ > 0, then S also exhibits some
kind of strongly concavity, except in the direction (1, 1, · · · , 1). This property is formulated in the following
lemma.
Lemma 4.2. If U is strongly concave with parameter µ > 0, and we consider another vector u = (u1, . . . , un),
the following inequality holds:

S(u) − S(r̂) ≤ −nµ

2 ∥ ProjVn
(u − r̂)∥2.

Here, Vn ⊂ Rn is the subspace orthogonal to (1, · · · , 1), and ∥ · ∥ represents the Euclidean norm.

The proof of this lemma can be found in Appendix C.2. Our next lemma quantifies the difference between
two symmetric probability measures.
Lemma 4.3. For two different symmetric probability measure µ1 and µ2 on [0, 1], let r

(j)
i = 1

2 inf{t :
µj([0, t]) ≥ n−i

n−1 } + 1
2 sup{t : µj([0, t)) < n−i

n−1 }}), i = 1, 2, · · · , n; j = 1, 2. Then there exists positive constant
c0 such that for all n,

∥ ProjVn
(r(1) − r(2))∥2

2 ≥ c0n.

The proof of Lemma 4.3 is also provided in Appendix C.3. Now, we are ready to prove the uniqueness part
of Theorem 5. Due to the length constraint, we will present it as a separate lemma and defer the proof to
Appendix C.4. In short, we use Lemma 4.2 and 4.3 to demonstrate that for two distinct symmetric measures,
their distance is sufficiently large such that at least one of them is not optimal.
Lemma 4.4. If µ1 and µ2 are two symmetric probability measure which both maximize

E
X,X′iid∼ µ

U(|X − X ′|)

over all probability measures µ on [0, 1]. Then we have µ1 = µ2.

Now we are ready to prove the convergence part of Theorem 5.

Proof of Theorem 5. Let P̂n := 1
n

∑n
i=1 δr̂n

denote the empirical distribution of r̂n. Note that {P̂n} are
probability measures defined on [0, 1], so they are tight. By Prohorov’s theorem, there exists a sub-sequence
{k(n)}n≥1 such that P̂k(n)

d→ µ̂. Let Xn, X ′
n

iid∼ P̂n and X̂, X̂ ′ iid∼ µ̂. By continuous mapping theorem, we
also have |Xn − X ′

n| d→ |X̂ − X̂ ′|. Moreover, because U is bounded and continuous, Portmanteau theorem
gives

E
X,X′iid∼ P̂k(n)

U(|X − X ′|) → E
X,X′iid∼ µ̂

U(|X − X ′|).

Let µ be another probability measure on [0, 1]. Let Q̂n = 1
n

∑n
i=1 δqn,i such that Q̂n

d→ µ. By the same
argument before, we also have E

X,X′iid∼ Q̂k(n)
U(|X − X ′|) → E

X,X′iid∼ µ
U(|X − X ′|). Then by the optimal

assumption of r̂n ,

E
X,X′iid∼ µ̂

U(|X − X ′|) = lim
n→∞

E
X,X′iid∼ P̂k(n)

U(|X − X ′|)

≥ lim
n→∞

E
X,X′iid∼ Q̂k(n)

U(|X − X ′|) = E
X,X′iid∼ µ

U(|X − X ′|).

7



Under review as submission to TMLR

This means µ̂ maximize E
X,X′iid∼ µ

U(|X − X ′|) over all probability measure µ on [0, 1]. From Lemma 4.1, we

know that 1 − r̂i = r̂n−i+1, so µ̂ is symmetric. If there is another sub-sequence m(n) such that P̂m(n)
d→ ν̂.

By the same argument before, ν̂ is also optimal and symmetric. From Lemma 4.4, µ̂ = ν̂. Thus for every
converging sub-sequence of {P̂n}, the limit distribution must be the same. By the tightness of {P̂n}, we have
P̂n

d→ µ∗.

4.2 Proof of Theorem 2

For the utility function U(z) = zγ , having established Theorem 5, our objective is to identify a symmetric
probability measure µ∗ that maximizes E

X,X′iid∼µ
U(|X − X ′|). By employing the variational principle, we

can derive a condition that is necessary for optimality. Notably, this condition also suffices for optimality.
Lemma 4.5. Let U(z) = zγ for some γ ∈ (0, 1). A probability measure µ on [0, 1] will maximize
E

X,X′iid∼ µ
U(|X − X ′|) if it satisfies the condition that EX∼µ U(|X − c|) is independent of c ∈ [0, 1].

The proof of Lemma 4.5 is provided in Appendix D.1. Therefore, proving Theorem 2 is reduced to verifying
the condition stated in Lemma 4.5. This verification process is tedious and will be deferred to Appendix D.2
for brevity.

5 Experiments

In this section, we conduct experiments to investigate the phenomenon of reward collapse and demonstrate
that prompt-aware training can prevent reward collapse.

5.1 Evidence of reward collapse in Large language model

We start our investigation by conducting experiments utilizing a LLM, specifically GPT-Neo-1.3B (Black
et al. (2021)). Guided by the methodologies outlined in the StackLlama project (Beeching et al. (2023)), we
trained the model on the StackExchange preference dataset (Lambert et al. (2023)), a robust resource that
provides rankings of responses for individual prompts.

Constrained by computational resources, we focused our training on a carefully selected subset of the dataset
containing only the prompts accompanied by exactly five responses. Our experimental setup comprised 128
distinct prompts, each of which contributed 10 pairs to the reward modeling process. By adopting the
codebase from StackLlama (Beeching et al. (2023)), and setting the learning rate to 3 × 10−5 along with a
batch size of 20 pairs, we carried out the training over 10 epochs.

As demonstrated in Figure 1, our results highlight the emergence of the reward collapse phenomenon under
these realistic conditions. The evidence of this effect can be observed as the distribution becomes increasingly
concentrated over the course of the training.

5.2 Setup of our second experiment

The open-source datasets currently available for RLHF are rather limited. Most of these datasets (Nakano
et al. (2021); Bai et al. (2022a)) typically include only a handful of candidate responses (usually a single
pair) for each corresponding prompt question. Moreover, the ranking signals in those datasets are usually
noisy, either because they are sourced from the Internet (Ethayarajh et al. (2023)) or because of the inherent
subjectivity of the ranking process.

In order to conduct a carefully controlled experiment, we curated our own dataset, focusing on a single,
simplified feature – the length of the response, measured in terms of word count as the ground truth reward.
A subset of questions was selected from the LongForm dataset (Köksal et al. (2023)), a question-answer
dataset characterized by its lengthy answers. To simulate scenarios with open-ended and concrete problems,
we truncated the original answer according to two distinct length distributions, thereby generating eight
responses for each prompt: the first distribution is nearly uniform, ranging from 10 to 80 words, while the
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Figure 3: Reward collapse on the test set. The x-axis represents the response index, sorted by reward
from smallest to largest, consistent with the following figure. The reward distributions exhibit similar collapse
phenomena on the test set, and employing a prompt-aware loss function can mitigate this collapse.

(a) log sigmoid as utility function (b) Prompt-aware utility function

Figure 4: (Left) The reward distribution of different prompts gradually converges into a single distribution
during training. (Right) When using the prompt-aware loss function, the reward distributions of the two
different prompts can be gradually separated during training.

second is a polarized distribution with response lengths primarily clustered around either 30 or 60 words.
Each question was randomly assigned as either open-ended or concrete. 4 Additionally, the phrases "Write
the answer in an open-ended way." and "Write either a short answer or a long answer." were added to the
open-ended and concrete questions, respectively, to distinguish the question type. Following this process, we
constructed a dataset comprising 8192 training questions and 16 test questions.

In our experiments, we focus on the following U functions: z, log z, −1/z, as well as log sigmoid(z), which
is employed in Ouyang et al. (2022) and the prompt-aware U , which adaptively selects U from z and −1/z.
Given that the U function operates on z in the range [−1, 1], we adjust some U functions with suitable
continuous extensions or scaling. We then train a DeBERTa V3 (He et al. (2021)) as the reward model. The
training details can be found in Appendix A.1.

5.3 Experimental results

Fixed loss function leads to reward collapse. As depicted in Figure 4(a), reward distributions corre-
sponding to different prompts gradually converge towards a single, prompt-independent distribution through-
out the training process. Specifically, in the context of Figure 4(a), where the U function is represented by
LogSigmoid, the reward distribution exhibits positive probability mass at reward scores of 0 and 1 (illus-

4In practice, such assignments can be done by various methods. See Appendix A.2 for a short discussion.
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trated by the flat segments corresponding to the first two and last two scores). This observation validates
the prediction encapsulated in Theorem 4. Examining other U functions, Figures 3 collectively indicates
the occurrence of loss collapse on the test datasets. Specifically, employing z as the U function results in a
polarized reward distribution, whereas utilizing −1/z as the U function yields a uniform reward distribution.

Prompt-aware training avoids reward collapse. Figures 3 shows the reward distribution at the end
of training with varying utility functions. The results along with Figure 4(b) reveal that using a prompt-
aware U function effectively prevents reward collapse across both training and test datasets. This strategy
yields a more uniform reward distribution for open-ended prompts while promoting a more polarized reward
distribution for concrete prompts.

6 Discussion

In this paper, we have introduced an empirical phenomenon known as reward collapse that arises during
reward model training for aligning LLMs using human preference rankings. This phenomenon results in the
same reward distribution regardless of the prompt type. The occurrence of reward collapse stems from neural
network interpolation during the final training phase. Although techniques that mitigate overfitting, such
as early stopping or regularization, can be employed to mitigate reward collapse, we propose a new method
that consider the nature of prompts. We provided an analytical framework that evaluates reward distribu-
tion, yielding closed-form reward expressions. Synthetic experiments substantiate our findings, presenting a
method superior to early stopping to tackle reward collapse.

While our experiments provide valuable insights, it is important to acknowledge their limitations, primarily
stemming from the constrained computational resources available. Given abundant resources, future re-
search can explore the use of a more diverse range of prompts, varying in terms of their open-endedness.
Additionally, it would be interesting to investigate the extent to which the trained reward model enhances
the capabilities of large language models, such as their ability to self-calibrate uncertainty (Lin et al. (2022);
Kadavath et al. (2022)). Theoretical investigations could focus on finding increasing, concave functions that
precisely match a given discrete reward distribution. On the practical side, developing a method to choose
a utility function based on prompts, perhaps using a parameter such as γ in Section 3, poses an intriguing
avenue for further exploration (more discussion on choosing utility function is in Appendix A.2). Further-
more, exploring the potential benefits of truncated ranking by requiring human labelers to provide partial
rankings of acceptable completions and ignore unacceptable completions could offer valuable insights into
improving the training of reward models.
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A Details about experiments

A.1 Training Details

We use the following extension of the utility functions during our training.

• log z: U(z) =
{

log(z + ϵ) for z > 0
z + log(ϵ) for z ≤ 0

, where ϵ is set to 0.1.

• −1/z: U(z) =
{

−1/(z + ϵ) for z > 0
z − 1/ϵ for z ≤ 0

, where ϵ is also set to 0.1.

• log sigmoid(z): U(z) = log sigmoid(4z). Here, the scaling factor of 4 ensures the output of
log sigmoid spans a sufficient range.

To train the reward model, we adopted the approach used in the OpenAssistant project, which utilizes the
DeBERTaV3 Base model He et al. (2021). To constrain the reward output between 0 and 1, a σ function
was appended before the final output. The reward model was trained with a batch size of 224 (comprising
eight questions per batch, each with 28 pairs) for a total of 1000 steps, approximately equivalent to 1 epoch.
The maximum learning rate was configured to 1e-5, utilizing the Adam optimizer and a linear learning rate
schedule, inclusive of 10% warmup steps. The reward model was trained on a single A6000 GPU, with the
entire training process concluding in roughly 1 hour.

A.2 Discussion on assigning the prompt type

Determining the prompt type is a crucial aspect of our prompt-aware approach. In our experiments, we ran-
domly assigned prompts as either open-ended or close-ended. This sufficed to demonstrate the effectiveness
of our prompt-aware approach in shaping the reward distribution for different types of prompts. However,
in practice, there are various viable methods to accomplish this. While our primary focus is not on detailing
how to identify the prompt type, we intend to present some straightforward yet effective approaches.

One straightforward method is manually deciding the prompt type, similar to how human feedback is col-
lected in Instructgpt (Ouyang et al. (2022)), where preference rankings are collected from human labelers.
Typically, these labelers are asked to rank different responses. Moreover, we can ask them to evaluate the
extent of open-endedness in the prompt, using a scale that ranges from -1 to 1.

Automated annotation processes are also possible. For example, one could assess the diversity of responses to
a given prompt. If the responses exhibit significant diversity, the prompt could be categorized as open-ended.
Conversely, if the responses show limited diversity, the prompt might be classified as close-ended.

Determining the prompt type is indeed a complex and intriguing task, and it offers an interesting avenue for
future research.

B Proofs of Theorem 1

Proof. When U is µ-strong concave, by Lemma 4.2 and Lemma 4.4, S defined in (1) has a unique maximizer
r̂1, · · · , r̂n. Moreover, for any u1, · · · , un,

S(u1, · · · , un) ≤ S(r̂1, · · · , r̂n) − nµ

2 ∥ ProjVn
(u − r̂)∥2.

Here, Vn ⊂ Rn is the subspace orthogonal to (1, · · · , 1), and ∥ · ∥ represents the Euclidean norm. Back to
the Theorem 1, if a neural network Rθ satisfies∑

(x,y1,··· ,yn)∈D

S(Rθ(x, y1), · · · , Rθ(x, yn)) ≥ |D|M − µnϵ2

2 ,

13
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then for all (x, y1, · · · , yn) ∈ D, S(Rθ(x, y1), · · · , Rθ(x, yn)) ≥ M − µnϵ2

2 because the maximum of S is M .
As a result, letting µ = ((Rθ(x, y1), · · · , Rθ(x, yn))),

M − µnϵ2

2 ≤ S(Rθ(x, y1), · · · , Rθ(x, yn)) ≤ M − nµ

2 ∥ ProjVn
(u − r̂)∥2.

This gives an upper bound ϵ2 on ∥ ProjVn
(u − r̂)∥2. Finally, by the definition of ProjVn

, there exists a
constant c(x), such that ProjVn

(u − r̂) = u − r̂ + c(x) · 1. For this constant c(x),

max
i

|Rθ(x, yi) − r̂i − c(x)| ≤
√

∥ ProjVn
(u − r̂)∥2 ≤ ϵ.

This finishes the proof.

C Missing Proofs in Section 2 and 4

C.1 Proof of Lemma 4.1

We break the proof of Lemma 4.1 into two different lemma.
Lemma C.1. If the utility function U(x) is strictly increasing, let r̂ be the solution of optimization problem:

max
0≤r1,...,rn≤1

∑
1≤i<j≤n

U (ri − rj)

Then r̂ satisfies: r̂1 ≥ · · · ≥ r̂n.

Proof. Let S(r) =
∑

1≤i<j≤n U(ri − rj). Suppose the conclusion is not true, then there exists a k ≥ 0, such
that r̂1 ≥ · · · ≥ r̂k and r̂k < r̂k+1. Let us define

r̃i =


r̂i if i ̸= k, k + 1;
r̂k+1 if i = k;
r̂k if i = k + 1.

Then ∑
1≤i<j≤n

U(r̂i − r̂j) −
∑

1≤i<j≤n

U(r̃i − r̃j) = U(r̂k − r̂k+1) − U(r̂k+1 − r̂k) < 0

because U is strictly increasing and r̂k − r̂k+1 < 0. This contracts with the fact that r̂ is the solution of the
optimization problem, and thus the conclusion holds.

Lemma C.2. If the utility function U(x) is strictly increasing and strictly concave, then the function S(r) =∑
1≤i<j≤n U(ri − rj) is concave. Moreover, the solution of optimization problem

max
0≤r1,...,rn≤1

∑
1≤i<j≤n

U (ri − rj)

is unique and satisfies: 1 − r̂i = r̂n−i+1 for i = 1, 2, · · · , n.

Proof. The concavity of S follows directly from definition:

S(r) + S(r′) =
∑

1≤i<j≤n

U(ri − rj) + U(r′
i − r′

j)

≤
∑

1≤i<j≤n

2U(
ri + r′

i − rj − r′
j

2 ) = 2S(r + r′

2 ).

14
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The above inequality is an equality if and only if ri − rj = r′
i − r′

j for all 1 ≤ i < j ≤ n when U(x) is
strictly concave. When U is increasing, the solution r̂ of the optimization problem satisfies r̂1 = 1. Thus
the solution of the optimization problem max1≤r1,··· ,rn≤1 S(r) is unique, otherwise the vector r1+r2

2 makes
S larger where r1 and r2 are two different solutions.

Finally, let r̂ be the unique solution of the optimization problem. Let us define r̃i = 1 − r̂n−i+1 for all
i = 1, 2, · · · , n. It follows that r̃i − r̃j = r̂n−j+1 − r̂n−i+1, and we have S(r̂) = S(r̃). Consequently, the
uniqueness of the solution implies r̂ = r̃. This means that r̂i = 1 − r̂n−i+1 for i = 1, · · · , n.

C.2 Proof of Lemma 4.2

Proof of Lemma 4.2. The definition of S(r) is

S(r) =
∑

1≤i<j≤n

U(ri − rj).

The value of S does not change if we increase all ri by the same constant. Thus the value of S(r) only
depends on ProjVn

(r) where Vn ⊂ Rn denotes the subspace orthogonal to (1, 1, · · · , 1). We can define a new
function on Vn by letting

F (ProjVn
(r)) = S(r).

The domain of F is A = {v ∈ Vn|∃r ∈ Rn such that 0 ≤ ri ≤ 1 and v = ProjVn
(r)}. First, we can show

that F is nµ-strongly concave.

Because U is µ-strongly concave, U(x) + µ
2 x2 is concave. It follows that

S(r) + µ

2
∑

1≤i<j≤n

(ri − rj)2

is also concave. We can write
∑

1≤i<j≤n(ri − rj)2 as

∑
1≤i<j≤n

(ri − rj)2 = n

n∑
i=1

r2
i − (

n∑
i=1

ri)2

by Lagrange identity. Then note that Vn is the subspace orthogonal to (1, 1, · · · , 1). The projection onto Vn

is given by

ProjVn
(r) = (r1 − 1

n

n∑
i=1

ri, · · · , rn − 1
n

n∑
i=1

ri).

As a result,

∥ ProjVn
(r)∥2 =

n∑
i=1

ri − 1
n

n∑
j=1

rj

2

=
n∑

i=1
r2

i − 1
n

(
n∑

i=1
ri)2 = 1

n

∑
1≤i<j≤n

(ri − rj)2.

From this equation and the concavity of S(r) + µ
2
∑

1≤i<j≤n(ri − rj)2, we know that

S(r) + nµ

2 ∥ ProjVn
(r)∥2

is also concave. Consequently, F (ProjVn
(r))+ nµ

2 ∥ ProjVn
(r)∥2 is concave, which lead to the strong concavity

of F because

F (v) + nµ

2 ∥v∥2
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is concave. Let v̂ be the optimal vector that maximizes F (v), strong concavity implies (See e.g. Section
9.1.2 in Boyd & Vandenberghe (2004))

F (v) − F (v̂) ≤ −nµ

2 ∥v − v̂∥2.

Therefore, by the definition of F (ProjVn
(r)) = S(r), we have

S(u) − S(r̂) ≤ −nµ

2 ∥ ProjVn
(u − r̂)∥2.

C.3 Proof of Lemma 4.3

Proof of Lemma 4.3. Because µj , j = 1, 2 are symmetric, we have

r
(j)
n,n−i+1 = 1

2 inf{t : µj([0, t]) ≥ i − 1
n − 1} + 1

2 sup{t : µj([0, t)) <
i − 1
n − 1}})

= 1
2(1 − sup{t : µj([t, 1]) ≥ i − 1

n − 1}) + 1
2(1 − inf{t : µj((t, 1]) <

i − 1
n − 1})

= 1
2(1 − sup{t : µj([0, t)) <

n − i

n − 1}) + 1
2(1 − inf{t : µj([0, t]) ≥ n − i

n − 1}

= 1 − r
(j)
n,i.

So we have
∑n

i=1(r(1)
n,i − r

(2))
n,i ) = 0. Note that Vn ⊂ Rn is the subspace which is orthogonal to (1, 1, · · · , 1),

the projection of x = (x1, · · · , xn) onto Vn is given by

ProjVn
(x) = (x1 − 1

n

n∑
i=1

xi, · · · , xn − 1
n

n∑
i=1

xi).

Consequently,

∥ ProjVn
(r(1)

n − r(2)
n )∥2

2 =
n∑

i=1
(r(1)

n,i − r
(2)
n,i)2.

If µ1 and µ2 are two different symmetric probability measure on [0, 1], we can assume that there exists
q1 < q2 ∈ [0, 1] and δ ≥ 0, such that µ1([0, q2]) < µ2([0, q1]) − δ. So when i−1

n−1 ∈ (µ1([0, q2]), µ2([0, q1]) − δ),
we have r

(1)
n,n−i+1 ≥ q2 because µ1([0, q2]) < i−1

n−1 . We also have r
(2)
n,n−i+1 ≤ q1 because µ2([0, q1]) > i−1

n−1 . As
a result, r

(1)
n,n−i+1 − r

(2)
n,n−i+1 ≥ q2 − q1 whenever (i − 1)/(n − 1) ∈ (µ1([0, q2]), µ2([0, q1]) − δ). Because the

length of the interval is positive, the number of such i is larger than c1n where c1 is a constant independent
of n. Then we conclude that

∥ ProjVn
(r(1)

n − r(2)
n )∥2

2 =
n∑

i=1
(r(1)

n,i − r
(2)
n,i)2

≥ c1n(q1 − q2)2.

Choosing c0 = c1(q1 − q2)2 gives the inequality

∥ ProjVn
(r(1)

n − r(2)
n )∥2

2 ≥ c0n.
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C.4 Proof of Lemma 4.4

Proof of Lemma 4.4. Suppose there exist two different symmetric probability measure µ1 and µ2, they both
maximize E

X,X′iid∼ µ
U(|X − X ′|). Let M = E

X,X′iid∼ µj

U(|X − X ′|), j = 1, 2. Now let r
(j)
n,i = 1

2 inf{t :
µj([0, t]) ≥ i−1

n−1 } + 1
2 sup{t : µj([0, t)) < i−1

n−1 }}), i = 1, 2, · · · , n; j = 1, 2 as defined in Lemma 4.3. Accord-
ingly, let P(j)

n = 1
n

∑n
i=1 δ

r
(j)
n,i

. Then we have

P(j)
n

d→ µj , j = 1, 2.

This can be proved easily by considering the definition of convergence in distribution. Since G is bounded,
this lead to E

X,X′iid∼ P(j)
n

U(|X − X ′|) → M, j = 1, 2 as n → ∞.

The expectation E
X,X′iid∼ P(j)

n

U(|X − X ′|) can be written more precisely as

E
X,X′iid∼ P(j)

n

U(|X − X ′|) = 1
n2

∑
1≤i,i′≤n

U(|r(j)
n,i − r

(j)
n,i′ |).

By Lemma 4.2, we can bound the difference

1
n2

∑
1≤i,i′≤n

U(|r(j)
n,i − r

(j)
n,i′ |) − 1

n2

∑
1≤i≤i′≤n

U(|r̂n,i − r̂n,i′ |)

= 2(
n
2
) ∑

1≤i<i′≤n

U(r(j)
n,i − r

(j)
n,i′) − 2(

n
2
) ∑

1≤i<i′≤n

U(r̂n,i − r̂n,i′)

≤ − 2µ

n − 1∥ ProjVn
(r(j)

n − r̂n)∥2
2.

Then apply Lemma 4.3, there exist c0 ≥ 0 such that

2∥ ProjVn
(r(1)

n − r̂n)∥2 + 2∥ ProjVn
(r(2)

n − r̂n)∥2 ≥ ∥ ProjVn
(r(1)

n − r(2)
n )∥2.

Here, we uses 2∥x∥2
2 + 2∥y∥2

2 ≥ ∥x − y∥2
2. So

min
j=1,2

1
n2

 ∑
1≤i,i′≤n

U(|r(j)
n,i − r

(j)
n,i′ |) − U(|r̂n,i − r̂n,i′ |)


= − 2µ

n − 1 max
j=1,2

∥ ProjVn
(r(j)

n − r̂n)∥2
2

≤ − 2µ

n − 1
∥ ProjVn

(r(1)
n − r(2)

n )∥2

4
≤ − µc0n

2n − 2 ≤ −c0µ

2 .

Since M = maxE
X,X′iid∼ µ

U(|X − X ′|), we know 1
n2

∑
1≤i,i′≤n U(|r̂n,i − r̂n,i′ |) ≤ M . As a result,

min
j=1,2

E
X,X′iid∼ P(j)

n

U(|X − X ′|) ≤ 1
n2

∑
1≤i≤i′≤n

U(|r̂n,i − r̂n,i′ |) − µc0/2 ≤ M − µc0/2.

This contradicts the assumption that E
X,X′iid∼ P(j)

n

U(|X − X ′|) → M, j = 1, 2, n → ∞.
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D Proof of Theorem 2

Given Theorem 5, we only need to find a symmetric probability measure on [0, 1], which maximizes

E
X,X′iid∼ µ

U(|X − X ′|).

The following proof in this section is adapted from (https://math.stackexchange.com/users/9340/sangchul
lee). Let M(B([0, 1])) denote the sets of all finite signed measure on the Borel sigma algebra B([0, 1]).
Apparently, P (B([0, 1])) ⊂ M(B([0, 1])). Then we define the following “inner product” in M(B([0, 1])):

⟨µ, ν⟩ = EX∼µ,X′∼ν,independent U(|X − X ′|) =
∫

[0,1]2
U(|x − y|)µ(dx)ν(dy).

We also define I(µ) as I(µ) := ⟨µ, µ⟩. With these notations, the problem becomes

max
µ∈P (B([0,1]))

I(µ).

Lemma D.1. For U(x) = xγ with γ ∈ (0, 1). If µ is a signed measure satisfying µ([0, 1]) = 0, then we have
I(µ) ≤ 0. Moreover, I(µ) = 0 if and only if µ(E) = 0 for all E ⊂ [0, 1].

Proof. f(t) = 1−cos(xt)
t1+γ is integrable on (0, ∞). As a result, using change of variables, we have

|x|γ = C

∫ ∞

0

1 − cos(xt)
t1+γ

dt

for come constant C > 0. Then by Fubini’s theorem, we have

⟨µ, µ⟩ =
∫

[0,1]2
|x − y|γµ(dx)µ(dy)

= C

∫
[0,1]2

∫ ∞

0

1 − cos((x − y)t)
t1+γ

dtµ(dx)µ(dy)

= C

∫ ∞

0

(∫
[0,1]2

1 − cos((x − y)t)
t1+γ

µ(dx)µ(dy)
)

dt.

Note that cos((x − y)t) = ℜ(eixt−iyt), we have∫
[0,1]2

1 − cos((x − y)t)
t1+γ

µ(dx)µ(dy)

= − ℜ

(∫
[0,1]2

eixte−iyt

t1+γ
µ(dx)µ(dy)

)
= − ℜ

(
|µ̂(t)|2

)
,

where µ̂(t) =
∫

[0,1] eitxµ(dx) is the Fourier transform of µ. Then

I(µ) = −C

∫ ∞

0

|µ̂(t)|2
t1+γ

dt ≤ 0.

Moreover, I(µ) = 0 if and only if µ̂(t) = 0 for all t ∈ [0, ∞) if and only if µ(E) = 0 for all E ∈ B([0, 1]).

D.1 Proof of Lemma 4.5

We first restate the lemma.
Lemma D.2. Let U(x) = xγ for some γ ∈ (0, 1). If a probability measure µ on [0, 1] maximize
E

X,X′iid∼ µ
U(|X − X ′|) if it satisfies that EX∼µ U(|X − c|) does not depend on c ∈ [0, 1].

18
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Proof of Lemma 4.5. For two probability measure µ and ν on [0, 1], (µ − ν)([0, 1]) = 0. Suppose µ satisfies
EX∼µ U(|X − c|) = K does not depend on c ∈ [0, 1]. Note that

⟨ν − µ, µ⟩ =
∫

[0,1]

(∫
[0,1]

|x − y|γµ(dx)
)

(ν − µ)(dy) =
∫

[0,1]
K(ν − µ)(dy) = 0.

And by lemma D.1, ⟨ν − µ, ν − µ⟩ ≤ 0. Therefore,
⟨ν, ν⟩ = ⟨µ, µ⟩ + 2 ⟨ν − µ, µ⟩ + ⟨ν − µ, ν − µ⟩ ≤ ⟨µ, µ⟩ .

This means that µ maximize E
X,X′iid∼ µ

U(|X − X ′|).

D.2 Proof of Theorem 2

Proof of Theorem 2. Let µ be the probability measure induced by Beta( 1−γ
2 , 1−γ

2 ). It has probability density
function

fγ(x) = 1
B( 1−γ

2 , 1−γ
2 )

x− 1+γ
2 (1 − x)− 1+γ

2 .

For any c ∈ [0, 1], EX∼µ U(|X − c|) can be expressed as

EX∼µ U(|X − c|) = 1
B( 1−γ

2 , 1−γ
2 )

∫ 1

0
|x − c|γx− 1+γ

2 (1 − x)− 1+γ
2 dx

= 1
B( 1−γ

2 , 1−γ
2 )

∫ π
2

0
| sin2 θ − c|γ(sin θ)−1−γ(cos θ)−1−γd sin2 θ

= 2
B( 1−γ

2 , 1−γ
2 )

∫ π
2

0

∣∣∣∣ sin2 θ − c

sin θ cos θ

∣∣∣∣γ dθ

= 2
B( 1−γ

2 , 1−γ
2 )

∫ ∞

0

(∫ π/2

0
1
{∣∣∣∣ sin2 θ − c

sin θ cos θ

∣∣∣∣γ ≥ t

}
dθ

)
dt.

Because∫ π/2

0
1
{∣∣∣∣ sin2 θ − c

sin θ cos θ

∣∣∣∣γ ≥ t

}
dθ = 1

2

∫ π

0
1
{∣∣∣∣cos θ + 2c − 1

sin θ

∣∣∣∣γ ≥ t

}
dθ

= π

2 − 1
2

∫ π

0
1
{

− cos θ − t1/γ sin θ ≤ 2c − 1 ≤ − cos θ + t1/γ sin θ
}

dθ

= π

2 − 1
2

∫ π

0
1
{

− cos(θ − ϕ) ≤ 2c − 1√
1 + t2/γ

≤ − cos(θ + ϕ)
}

dθ

= π

2 − ϕ,

where tan ϕ = t1/γ and ϕ ∈ [0, π/2], and the last equation use the fact that c ∈ [0, 1]. As a result,
EX∼µ U(|X − c|) does not depend on c.

Note that Beta distribution is also symmetric. It follows from Theorem 5 that the reward distribution
converges to Beta

( 1−γ
2 , 1−γ

2
)
.

D.3 Proof of Theorem 4

Theorem 4 can be intuitively understood as follows: If the function U satisfies U ′(0) < ∞ and U ′(1) > 0,
we can show, by analyzing the first-order optimality condition, that a positive fraction of r̂ is equal to 1.

Proof of Theorem 4. The derivative of −
∑

i<j U(ri − rj) with respect to rk is given by

−
∂
∑

i<j
U(ri−rj)

∂rk

∣∣∣∣
r̂1,··· ,r̂n

=
k−1∑
i=1

U ′(r̂i − r̂k) −
N∑

i=k+1
U ′(r̂k − r̂j) ≤ (k − 1)U ′(0) − (n − k)U ′(1).

19



Under review as submission to TMLR

The inequality follows from the convexity of U . Let κ = U ′(0)
U ′(1) . If k ≤ n/(κ + 1), we have (k − 1)U ′(0) − (n −

k)U ′(1) ≤ 0. Hence, we can get r̂k = 1. Otherwise, we could increase r̂k to make
∑

i<j U(r̂i − r̂j) larger. As
a result, r̂1 = · · · = r̂[n/(κ+1)] = 1. This gives P̂n({1}) ≥ [ n

κ+1 ]/n. By Theorem 5, we know that there exists
a limiting distribution µ∗ such that P̂ d→ µ∗ and µ∗({1}) ≥ 1/(κ + 1). Due to symmetry proved in Lemma
4.1, we also have µ∗({0}) ≥ 1/(κ + 1).
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