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Abstract

The pioneering work of Oono & Suzuki [ICLR, 2020] and Cai & Wang1

[arXiv:2006.13318] analyze the smoothness of graph convolutional network (GCN)2

features. Their results reveal an intricate empirical correlation between node clas-3

sification accuracy and the ratio of smooth to non-smooth feature components.4

However, the optimal ratio that favors node classification is unknown, and the5

non-smooth features of deep GCN with ReLU or leaky ReLU activation function6

diminish. In this paper, we propose a new strategy to let GCN learn node features7

with a desired smoothness to enhance node classification. Our approach has three8

key steps: (1) We establish a geometric relationship between the input and output9

of ReLU or leaky ReLU. (2) Building on our geometric insights, we augment the10

message-passing process of graph convolutional layers (GCLs) with a learnable11

term to modulate the smoothness of node features with computational efficiency.12

(3) We investigate the achievable ratio between smooth and non-smooth feature13

components for GCNs with the augmented message passing scheme. Our extensive14

numerical results show that the augmented message passing remarkably improves15

node classification for GCN and some related models.16

1 Introduction17

Let G = (V,E) be an undirected graph with V = {vi}ni=1 and E be the set of nodes and edges, resp.18

Let A ∈ Rn×n be the adjacency matrix of the graph with Aij = 1(i,j)∈E , where 1 is the indicator19

function. Furthermore, let G be the following (augmented) normalized adjacency matrix20

G := (D + I)−
1
2 (I +A)(D + I)−

1
2 = D̃− 1

2 ÃD̃− 1
2 , (1)

where I is the identity matrix, D is the degree matrix with Dii =
∑n

j=1 Aij , and Ã := A+ I and21

D̃ := D + I . Starting from the initial node features H0 := [(h0
1)

⊤, . . . , (h0
n)

⊤]⊤ ∈ Rd×n with22

h0
i ∈ Rd being the ith node feature vector, the graph convolutional network (GCN) [20] learns node23

representations using the following graph convolutional layer (GCL) transformation24

H l = σ(W lH l−1G), (2)

where σ is the activation function, e.g. ReLU [25], and W l ∈ Rd×d is learnable. GCL smooths25

feature vectors of the neighboring nodes. The smoothness of features helps node classification; see26

e.g. [22, 31, 5], resonating with the idea of classical semi-supervised learning approaches [41, 38].27

Accurate node classification requires a balance between smooth and non-smooth components of GCN28

features [27]. Besides graph convolutional networks (GCNs) stacking GCLs, many other graph neural29

networks (GNNs) have been developed using different mechanisms, including spectral methods [3, 9],30

spatial methods [12, 30], sampling methods [13, 36], and the attention mechanism [30]. Many other31

GNN models can be found in recent surveys or monographs; see, e.g. [15, 1, 33, 39, 14].32

Deep neural networks usually outperform shallow architectures, and a remarkable example is convo-33

lutional neural networks [21, 16]. However, this does not carry to GCNs; deep GCNs tend to perform34
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significantly worse than shallow models [5]. In particular, the node feature vectors learned by deep35

GCNs tend to be identical over each connected component of the graph; this phenomenon is referred36

to as over-smoothing [22, 26, 27, 4, 5, 32], which not only occurs for GCN but also for many other37

GNNs, e.g., GraphSage [13] and MPNN [12]. Intuitively, each GCL smooths neighboring node38

features, benefiting node classification [22, 31, 5]. However, stacking these smoothing layers will in-39

evitably homogenize node features. Algorithms have been developed to alleviate the over-smoothing40

issue of GNNs, including decoupling prediction and message passing [11], skip connection and batch41

normalization [18, 7, 6], graph sparsification [29], jumping knowledge [34], scattering transform42

[24], PairNorm [37], and controlling the Dirichlet energy of node features [40].43

From a theoretical perspective, it is proved that deep GCNs using ReLU or leaky ReLU activation44

function learn homogeneous node features [27, 4]. In particular, [27] shows that the distance of45

node features to the eigenspace M – corresponding to the largest eigenvalue 1 of matrix G in (1)46

– goes to zero when the depth of GCN with ReLU goes to infinity. Meanwhile, [27] empirically47

studies the intricate correlation between node classification accuracy and the ratio between smooth48

and non-smooth components of GCN node features, i.e., projections of node features onto eigenspace49

M and its orthogonal complement M⊥, resp. The empirical results of [27] indicate that both smooth50

and non-smooth components of node features are crucial for accurate node classification, while51

the ratio between smooth and non-smooth components to achieve optimal accuracy is unknown and52

task-dependent. Furthermore, [4] proves that the Dirichlet energy – another smoothness measure for53

node features – goes to zero when the depth of GCN with ReLU or leaky ReLU goes to infinity.54

A crucial step in the proofs of [27, 4] is that ReLU and leaky ReLU reduce the distance of feature55

vectors to M and their Dirichlet energy. However, [4] points out that over-smoothing – characterized56

by the distance of features to eigenspace M or the Dirichlet energy – is a misnomer; the real57

smoothness should be characterized by a normalized smoothness, e.g., normalizing the Dirichlet58

energy by the magnitude of the features. The ratio between smooth and non-smooth components59

of node features – studied in [27] – is closely related to the normalized smoothness. Nevertheless,60

analyzing the normalized smoothness of node features learned by GCN with ReLU or leaky ReLU61

remains an open problem [4]. Moreover, it is interesting to ask if analyzing the normalized smoothness62

can result in any new understanding of GCN features and algorithms to improve GCN’s performance.63

1.1 Our contribution64

We aim to (1) establish a new geometric understanding of how GCL smooths GCN features and65

(2) develop an efficient algorithm to let GCN and related models learn node features with a desired66

normalized smoothness to improve node classification. We summarize our main contributions towards67

achieving our goal as follows:68

• We prove that there is a high-dimensional sphere underlying the input and output vectors of ReLU69

or leaky ReLU. This geometric characterization not only implies theories in [27, 4] but also informs70

that adjusting the projection of input onto eigenspace M can alter the smoothness of the output71

vectors. See Section 3 for details.72

• We show that both ReLU and leaky ReLU reduce the distance of node features to eigenspace M,73

i.e., ReLU and leaky ReLU smooth their input vectors without considering their magnitude. In74

contrast, when taking the magnitude into account, ReLU and leaky ReLU can increase, decrease, or75

preserve the normalized smoothness of each dimension of the input vectors; see Sections 3 and 4.76

• Inspired by our established geometric relationship between the input and output of ReLU or leaky77

ReLU, we study how adjusting the projection of input onto eigenspace M affects both normalized78

and unnormalized smoothness of the output vectors. We show that the distance of the output to79

eigenspace M is no greater than that of the original input – no matter how we adjust the input by80

changing its projection onto M. In contrast, adjusting the projection of input vectors onto M can81

change the normalized smoothness of output to any desired value; see details in Section 4.82

• Based on our theory, we propose a computationally efficient smoothness control term (SCT)83

to let GCN and related models learn node features with a desired (normalized) smoothness to84

improve node classification. We comprehensively validate the benefits of our proposed SCT in85

improving node classification – for both homophilic and heterophilic graphs – using a few of the86

most representative GCN-style models. See Sections 5 and 6 for details.87

As far as we know, our work is the first thorough study of how ReLU and leaky ReLU affect the88

smoothness of node features both with and without considering their magnitude.89
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1.2 Additional related works90

Controlling the smoothness of node features to improve the performance of GCNs is another line of91

related work. For instance, [37] designs a normalization layer to prevent node features from becoming92

too similar to each other, and [40] constrains the Dirichlet energy to control the smoothness of node93

features without considering the effects of nonlinear activation functions. While there has been effort94

in understanding and alleviating the over-smoothing of GCNs and controlling the smoothness of95

node features, there is a shortage of theoretical examination of how activation functions affect the96

smoothness of node features, specifically accounting for the magnitude of features.97

1.3 Notation and Organization98

Notation. We denote the ℓ2-norm of a vector u as ∥u∥. For vectors u and v, we use ⟨u,v⟩, u⊙ v,99

and u ⊗ v to denote their inner, Hadamard, and Kronecker product, resp. For a matrix A, we100

denote its (i, j)th entry, transpose, and inverse as Aij , A⊤, and A−1, resp. We denote the trace of101

A ∈ Rn×n as Trace(A) =
∑n

i=1 Aii. For two matrices A and B, we denote the Frobenius inner102

product as ⟨A,B⟩F := Trace(AB⊤) and the Frobenius norm of A as ∥A∥F :=
√

⟨A,A⟩.103

Organization. We provide preliminaries in Section 2. In Section 3, we establish a geometric104

characterization of how ReLU and leaky ReLU affect the smoothness of their input vectors. We study105

the smoothness of each dimension of node features and take their magnitude into account in Section 4.106

Our proposed SCT is presented in Section 5. We comprehensively verify the efficacy of the proposed107

SCT in Section 6. Technical proofs and more experimental results are provided in the appendix.108

2 Preliminaries and Existing Results109

From the spectral graph theory [8], we can sort eigenvalues of matrix G in (1) as 1 = λ1 = . . . =110

λm > λm+1 ≥ . . . ≥ λn > −1, where m is the number of connected components of the graph. We111

decompose V = {vk}nk=1 into m connected components V1, . . . , Vm. Let ui = (1{vk∈Vi})1≤k≤n be112

the indicator vector of Vi, i.e., the kth coordinate of ui is one if the kth node vk lies in the connected113

component Vi; zero otherwise. Moreover, let ei be the eigenvector associated with λi, then {ei}ni=1114

forms an orthonormal basis of Rn. Notice that {ei}mi=1 spans the eigenspace M – corresponding to115

eigenvalue 1 of matrix G, and {ei}ni=m+1 spans the orthogonal complement of M, denoted by M⊥.116

The paper [27] connects the indicator vectors uis with the space M. In particular, we have117

Proposition 2.1 ([27]). All eigenvalues of matrix G lie in the interval (−1, 1]. Furthermore, the118

nonnegative vectors {D̃ 1
2ui/∥D̃

1
2ui∥}1≤i≤m form an orthonormal basis of M.119

For any matrix H := [h1, . . . ,hn] ∈ Rd×n, we have the decomposition H = HM + HM⊥120

with HM =
∑m

i=1 Heie
⊤
i and HM⊥ =

∑n
i=m+1 Heie

⊤
i such that ⟨HM,HM⊥⟩F =121

Trace
(∑m

i=1 Heie
⊤
i (
∑n

j=m+1 Heje
⊤
j )

⊤) = 0, implying that ∥H∥2F = ∥HM∥2F + ∥HM⊥∥2F .122

2.1 Existing smoothness notions of node features123

Distance to the eigenspace M. Oono et al. [27] study the smoothness of features H := [h1, . . . ,hn]124

using their distance to the eigenspace M as an unnormalized smoothness notion.125

Definition 2.2 ([27]). Let Rd ⊗M be the subspace of Rd×n consisting of the sum
∑m

i=1 wi ⊗ ei,
where wi ∈ Rd and {ei}mi=1 is an orthonormal basis of the eigenspace M. Then we define ∥H∥M⊥

– the distance of node features H to the eigenspace M – as follows:

∥H∥M⊥ := inf
Y ∈Rd⊗M

∥H − Y ∥F =
∥∥H −

m∑
i=1

Heie
⊤
i

∥∥
F
.

With the decomposition H = HM +HM⊥ , ∥ · ∥M⊥ can be related to ∥ · ∥F as follows:126

∥H∥M⊥ = ∥H −HM∥F = ∥HM⊥∥F . (3)

Dirichlet energy. The paper [4] studies the unnormalized smoothness of node features using Dirichlet127

energy, which is defined as follows:128

Definition 2.3 ([4]). Let ∆̃ = I −G be the (augmented) normalized Laplacian, then the Dirichlet129

energy ∥H∥E of node features H is defined by ∥H∥2E := Trace(H∆̃H⊤).130
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Normalized Dirichlet energy. [4] points out that the real smoothness of node features H should be131

measured by the normalized Dirichlet energy Trace(H∆̃H⊤)/∥H∥2F . This normalized measurement132

is essential because data often originates from various sources with diverse measurement units or133

scales. By normalization, we can mitigate biases resulting from these different scales.134

2.2 Two existing theories of over-smoothing135

Let λ = max{|λi| | λi < 1} be the second largest magnitude of G’s eigenvalues, and sl be the largest136

singular value of weight matrix W l. [27] shows that ∥H l∥M⊥ ≤ slλ∥H l−1∥M⊥ under GCL when137

σ is ReLU. Therefore, ∥H l∥M⊥ → 0 as l → ∞ if slλ < 1, indicating node features converge to M138

and results in over-smoothing. A crucial step in the analysis in [27] is that ∥σ(Z)∥M⊥ ≤ ∥Z∥M⊥ , for139

any matrix Z when σ is ReLU, i.e., ReLU reduces the distance to M. [27] points out that it is hard140

to extend the above result to other activation functions even leaky ReLU.141

Instead of considering ∥H∥M⊥ , [4] shows that ∥H l∥E ≤ slλ∥H l−1∥E under GCL when σ is142

ReLU or leaky ReLU. Hence, ∥H l∥E → 0 as l → ∞, implying over-smoothing of GCNs. Note that143

∥H∥M⊥ = 0 or ∥H l∥E = 0 indicates homogeneous node features. The proof in [4] applies to GCN144

with both ReLU and leaky ReLU by establishing the inequality ∥σ(Z)∥E ≤ ∥Z∥E for any matrix Z.145

3 Effects of Activation Functions: A Geometric Characterization146

In this section, we present a geometric relationship between the input and output vectors of ReLU or147

leaky ReLU. We use ∥H∥M⊥ as the unnormalized smoothness notion for all subsequent analyses148

since we observe that ∥H∥M⊥ and ∥H∥E are equivalent as seminorms. In particular, we have149

Proposition 3.1. ∥H∥M⊥ and ∥H∥E are two equivalent seminorms, i.e., there exist two constants150

α, β > 0 s.t. α∥H∥M⊥ ≤ ∥H∥E ≤ β∥H∥M⊥ , for any H ∈ Rd×n.151

3.1 ReLU152

Let σ(x) = max{x, 0} be ReLU. The first main result of this paper is that there is a high-dimensional153

sphere underlying the input and output of ReLU; more precisely, we have154

Proposition 3.2 (ReLU). For any Z = ZM + ZM⊥ ∈ Rd×n, let H = σ(Z) = HM + HM⊥ .
Then HM⊥ lies on the high-dimensional sphere centered at ZM⊥/2 with radius

r :=
(
∥ZM⊥/2∥2F − ⟨HM,HM −ZM⟩F

)1/2
.

In particular, HM⊥ lies inside the ball centered at ZM⊥/2 with radius ∥ZM⊥/2∥F and hence we155

have ∥H∥M⊥ ≤ ∥Z∥M⊥ .156

3.2 Leaky ReLU157

Now we consider leaky ReLU σa(x) = max{x, ax}, where 0 < a < 1 is a positive scalar. Similar158

to ReLU, we have the following result for leaky ReLU159

Proposition 3.3 (Leaky ReLU). For any Z = ZM + ZM⊥ ∈ Rd×n, let H = σa(Z) = HM +
HM⊥ . Then HM⊥ lies on the high-dimensional sphere centered at (1 + a)ZM⊥/2 with radius

ra :=
(
∥(1− a)ZM⊥/2∥2F − ⟨HM −ZM,HM − aZM⟩F

)1/2
.

In particular, HM⊥ lies inside the ball centered at (1 + a)ZM⊥/2 with radius ∥(1− a)ZM⊥/2∥F160

and hence we see that a∥Z∥M⊥ ≤ ∥H∥M⊥ ≤ ∥Z∥M⊥ .161

3.3 Implications of the above geometric characterizations162

Propositions 3.2 and 3.3 imply that the precise location of HM⊥ (or ∥HM⊥∥F = ∥H∥M⊥ ) depends163

on the center and the radius r or ra. Given a fixed ZM⊥ , the center of the spheres remains unchanged,164

and r and ra are only affected by changes in ZM. This observation motivates us to investigate how165

changes in ZM impact ∥H∥M⊥ , i.e., the unnormalized smoothness of node features.166

Propositions 3.2 and 3.3 imply both ReLU and leaky ReLU reduce the distance of node features to167

eigenspace M, i.e. ∥H∥M⊥ ≤ ∥Z∥M⊥ . Moreover, this inequality is independent of ZM; consider168

Z,Z ′ ∈ Rd×n s.t. ZM⊥ = Z ′
M⊥ but ZM ̸= Z ′

M. Let H and H ′ be the output of Z and Z ′ via169

ReLU or leaky ReLU, resp. Then we have ∥H∥M⊥ ≤ ∥Z∥M⊥ and ∥H ′∥M⊥ ≤ ∥Z ′∥M⊥ . Since170

ZM⊥ = Z ′
M⊥ , we deduce that ∥H ′∥M⊥ ≤ ∥Z∥M⊥ . In other words, when ZM⊥ = Z ′

M⊥ is fixed,171

changing ZM to Z ′
M can change the unnormalized smoothness of the output features but cannot172

change the fact that ReLU and leaky ReLU smooth node features; we demonstrate this result in173
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Fig. 1a) in Section 4.1. Notice that without considering the nonlinear activation function, changing174

ZM does not affect the unnormalized smoothness of node features measured by ∥H∥M⊥ .175

In contrast to the unnormalized smoothness, if one considers the normalized smoothness, we find176

that adjusting ZM can result in a less smooth output; we will discuss this in Section 4.1.177

4 How Adjusting ZM Affects the Smoothness of the Output178

Throughout this section, we let Z and H be the input and output of ReLU or leaky ReLU. The179

smoothness notions based on the distance of feature to M or their Dirichlet energy do not account180

for the magnitude of each dimension of the features; [4] points out that analyzing the normalized181

smoothness of features Z, given by ∥Z∥E/∥Z∥F , is an open problem. However, these two smooth-182

ness notions aggregate the smoothness of node features across all dimensions; when the magnitude183

of some dimensions is much larger than others, the smoothness will be dominated by them.184

Motivated by the discussion in Section 3.3, we study the disparate effects of adjusting ZM on the185

normalized and unnormalized smoothness in this section. For the sake of simplicity, we assume186

the graph is connected (m = 1); all the following results can be extended to graphs with multiple187

connected components easily. Due to the equivalence between seminorms ∥ · ∥M and ∥ · ∥E , we188

introduce the following definition of the dimension-wise normalized smoothness of node features.189

Definition 4.1. Let Z ∈ Rd×n be the features over n nodes with z(i) ∈ Rn being its ith row, i.e., the
ith dimension of the features over all nodes. We define the normalized smoothness of z(i) as follows:

s(z(i)) := ∥z(i)
M∥/∥z(i)∥,

where we set s(z(i)) = 1 when z(i) = 0.190

Remark 4.2. Notice that the normalized smoothness s(z(i)) = ∥z(i)
M∥/∥z(i)∥ is closely related to the191

ratio between the smooth and non-smooth components of node features ∥z(i)
M∥/∥z(i)

M⊥∥.192

The graph is connected implies that z(i)
M = ⟨z(i), e1⟩e1 and ∥z(i)

M∥ = |⟨z(i), e1⟩|. Without ambiguity,193

we write z for z(i) and e for e1 – the eigenvector of G associated with the eigenvalue 1. Moreover,194

we have195

s(z) =
∥zM∥
∥z∥ =

|⟨z, e⟩|
∥z∥ =

|⟨z, e⟩|
∥z∥ · ∥e∥ ⇒ 0 ≤ s(z) ≤ 1, (4)

It is evident that the larger s(z) is, the smoother the node feature z is1. In fact, we have

s(z)2 +
(∥z∥M⊥

∥z∥

)2

=
∥zM∥2

∥z∥2 +
∥zM⊥∥2

∥z∥2 = 1,

where ∥z∥M⊥/∥z∥ decreases as s(z) increases.196

1.0 0.5 0.0 0.5 1.0
Parameter ( )

0

5

10

Sm
oo

th
ne

ss
 (s

)

||z||
|| (z )||
|| a(z )||

1.0 0.5 0.0 0.5 1.0 1.5 2.0
Parameter ( )

0.0

0.5

1.0

Sm
oo

th
ne

ss
 (s

)

s(z)
s( (z ))
s( a(z ))

a) Smoothness b) Normalized smoothness
Figure 1: Contrasting the effects of varying parame-
ter α on the smoothness and normalized smoothness
of output features σ(zα) and σa(zα). The disconti-
nuity of s(σ(zα)) in b) comes from the definition of
normalized smoothness. Note that s(z) = 1 if z = 0,
and σ(zα) can become 0 when α is large enough.

To discuss how the smoothness s(h) = s(σ(z))
or s(σa(z)) can be adjusted by changing zM, we
consider the function

z(α) = z − αe.

It is clear that

z(α)M⊥ = zM⊥ and z(α)M = zM − αe,

where we see that α only alters zM while pre-197

serves zM⊥ . Moreover, it is evident that198

s(z(α)) =

√
1− ∥z(α)M⊥∥2

∥z(α)∥2 =

√
1− ∥zM⊥∥2

∥z(α)∥2 .

It follows that s(z(α)) = 1 if and only if zM⊥ = 0 (include the case z = 0), showing that when199

zM⊥ = 0, the vector z is the smoothest one.200

4.1 The disparate effects of α on ∥ · ∥M⊥ and s(·): Empirical results201

Let us empirically study possible values that the unnormalized smoothness ∥σ(z(α))∥M⊥ ,202

∥σa(z(α))∥M⊥ and the normalized smoothness s(σ(z(α))), s(σa(z(α))) can take when α varies.203

1Here, z ∈ Rn is a vector whose ith entry is the 1D feature associated with node i.
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We denote zα := z(α) = z−αe. We consider a connected synthetic graph with 100 nodes, and each204

node is assigned a random degree between 2 to 10. Then we assign an initial node feature z ∈ R100,205

sampled uniformly on the interval [−1.5, 1.5], to the graph with each node feature being a scalar.206

Also, we compute e by the formula e = D̃
1
2u/∥D̃ 1

2u∥ from Proposition 2.1, where u ∈ R100 is207

the vector whose entries are all ones and D̃ is the (augmented) degree matrix. We examine two208

different smoothness notions for the input z and the output σ(zα) and σa(zα), where the smoothness209

is measured for various values of the smoothness control parameter α ∈ [−1.5, 1.5]. In Fig. 1a), we210

study the unnormalized smoothness measured by ∥·∥M⊥ ; we see that ∥σ(zα)∥M⊥ and ∥σa(zα)∥M⊥211

are always no greater than ∥z∥M⊥ . This coincides with the discussion in Section 3.3; adjusting212

the projection of z onto the eigenspace M can not change the fact that ∥σ(zα)∥M⊥ ≤ ∥z∥M⊥213

and ∥σa(zα)∥M⊥ ≤ ∥z∥M⊥ . Nevertheless, an interesting result is that altering the eigenspace214

projection can adjust the unnormalized smoothness of the output: notice that altering the eigenspace215

projection does not change its distance to M, i.e., the smoothness of the input is unchanged, but the216

smoothness of the output after activation function can be changed.217

In contrast, when studying the normalized smoothness s(·) in Fig. 1b), we find that s(σ(z(α)))218

and s(σa(z(α))) can be adjusted by α to values smaller than s(z). More precisely, we see that by219

adjusting α, s(σ(z(α))) and s(σa(z(α))) can achieve most of the values in [0, 1]. In other words,220

both smoother and less smooth features can be obtained by adjusting α.221

4.2 Theoretical results on the smooth effects of ReLU and leaky ReLU222

In this subsection, we build theoretical understandings of the above empirical findings on the223

achievable smoothness shown in Fig. 1. Notice that if zM⊥ = 0, the inequalities presented in224

Propositions 3.2 and 3.3 indicate that ∥σ(z(α))∥M⊥ and ∥σa(z(α))∥M⊥ vanish. So we have225

s(σ(z(α))) = 1 for any α when zM⊥ = 0. Then we may assume zM⊥ ̸= 0 for the following study.226

Proposition 4.3 (ReLU). Suppose zM⊥ ̸= 0. Let h(α) = σ(z(α)) with σ being ReLU, then227

min
α

s(h(α)) =

√∑
xi=maxx di∑n

j=1 dj
and max

α
s(h(α)) = 1,

where x := D̃− 1
2 z, maxx = max1≤i≤n xi, and D̃ is the augmented degree matrix with diagonals228

d1, d2, . . . , dn. In particular, the normalized smoothness s(h(α)) is monotone increasing as α229

decreases whenever α < ∥D̃ 1
2un∥maxx and it has range [minα s(h(α)), 1].230

Proposition 4.4 (Leaky ReLU). Suppose zM⊥ ̸= 0. Let h(α) = σa(z(α)) with σa being leaky231

ReLU, then (1) minα s(h(α)) = 0, and (2) supα s(h(α)) = 1 and s(h(α)) has range [0, 1).232

Proposition 4.4 also holds for other variants of ReLU, e.g., ELU2 and SELU3.; see Appendix C. We233

summarize Propositions 3.2, 3.3, 4.3, and 4.4 in the following corollary, which qualitatively explains234

the empirical results in Fig. 1.235

Corollary 4.5. Suppose zM⊥ ̸= 0. Let h(α) = σ(z(α)) or σa(z(α)) with σ being ReLU and σa236

being leaky ReLU. Then we have ∥z∥M⊥ ≥ ∥h(α)∥M⊥ for any α ∈ R; however, s(h(α)) can be237

smaller than, larger than, or equal to s(z) for different values of α.238

Propositions 4.3 and 4.4, and Corollary 4.5, provide a theoretical basis for the empirical results in239

Fig. 1. Moreover, our results indicate that for any given vector z, altering zM can change both the240

unnormalized and the normalized smoothness of the output vector h = σ(z) or σa(z). In particular,241

the normalized smoothness of h = σ(z) or σa(z) can be adjusted to any value in the range shown242

in Propositions 4.3 and 4.4. This provides us with insights to control the smoothness of features to243

improve the performance of GCN and we will discuss this in the next section.244

5 Controlling Smoothness of Node Features245

We do not know how smooth features are ideal for a given node classification task. Nevertheless, our246

theory indicates that both normalized and unnormalized smoothness of the output of each GCL can247

be adjusted by altering the input’s projection onto M. As such, we propose the following learnable248

smoothness control term to modulate the smoothness of each dimension of the learned node features249

Bl
α =

m∑
i=1

αl
ie

⊤
i , (5)

2The ELU function is defined by f(x) = max(x, 0) + min(0, a · (ex − 1)) where a > 0.
3The SELU function is defined by f(x) = c(max(x, 0) + min(0, a · (ex − 1))) where a, c > 0.
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where l is the layer index, {ei}mi=1 is the orthonormal basis of the eigenspace M, and αl := {αl
i}mi=1250

is a collection of learnable vectors with αl
i ∈ Rd being approximated by a multi-layer perceptron251

(MLP). The detailed configuration of αl
i will be specified in each experiment later. One can see that252

Bl
α always lies in Rd ⊗M. We integrate SCT into GCL, resulting in253

H l = σ(W lH l−1G+Bl
α). (6)

We call the corresponding model GCN-SCT. Again, the idea is that we alter the component in254

eigenspace to control the smoothness of features. Each dimension of H l can be smoother, less255

smooth, or the same as H l−1 in normalized smoothness, though H l gets closer to M than H l−1.256

To design SCT, we introduce a learnable matrix Al ∈ Rd×m for layer l, whose columns are αl
i, where257

m is the dimension of the eigenspace M and d is the dimension of the features. We observe in our258

experiments that the SCT performs best when informed by degree pooling over the subcomponents of259

the graph. The matrix of the orthogonal basis vectors, denoted by Q := [e1, . . . , em] ∈ Rn×m, is used260

to perform pooling H lQ for input H l. In particular, we let Al = W ⊙ (H lQ), where W ∈ Rd×m261

is learnable and performs pooling over H l using the eigenvectors Q. The second architecture uses262

a residual connection with hyperparameter βl = log(θ/l + 1) and learnable matrices W0,W1 ∈263

Rd×d and the softmax function ϕ. Resulting in Al = ϕ(H lQ)⊙ (βlW0H
0Q+ (1− βl)W1H

lQ). In264

Section 6, we use the first architecture for GCN-SCT as GCN uses only H l information at each265

layer. We use the second architecture for GCNII-SCT and EGNN-SCT which use both H0 and H l266

information at each layer. There are two particular advantages of the above design of SCT: (1) it can267

effectively change the normalized smoothness of the learned features, and (2) it is computationally268

efficient since we only use the eigenvectors corresponding to the eigenvalue 1 of matrix G, which is269

determined based on the connectivity of the graph.270

5.1 Integrating SCT into other GCN-style models271

In this subsection, we present other usages of the proposed SCT. Due to the page limit, we carefully272

select two other most representative models. The first example is GCNII [6], GCNII extends GCN273

to express an arbitrary polynomial filter rather than the Laplacian polynomial filter and achieves274

state-of-the-art (SOTA) performance among GCN-style models on various tasks [6, 23], and we275

aim to show that SCT can even improve the accuracy of the GCN-style model that achieves SOTA276

performance on many node classification tasks. The second example is energetic GNN (EGNN) [40],277

which controls the smoothness of node features by constraining the lower and upper bounds of the278

Dirichlet energy of features and assuming the activation function is linear. In this case, we aim to279

show that our new theoretical understanding of the role of activation functions and the proposed SCT280

can boost the performance of EGNN with considering nonlinear activation functions.281

GCNII. Each GCNII layer uses a skip connection to the initial layer H0 and given as follows:282

H l = σ
(
((1− αl)H

l−1G+ αlH
0)((1− βl)I + βlW

l)
)
,

where αl, βl ∈ (0, 1) are learnable scalars. We integrate SCT Bl
α into GCNII, resulting in the283

following GCNII-SCT layers284

H l = σ
(
((1− αl)H

l−1G+ αlH
0)((1− βl)I + βlW

l) +Bl
α

)
,

where the residual connection and identity mapping are consistent with GCNII.285

EGNN. Each EGNN layer can be written as follows:286

H l = σ
(
W l(c1H

0 + c2H
l−1 + (1− cmin)H

l−1G)
)
, (7)

where c1, c2 are learnable weights that satisfy c1 + c2 = cmin with cmin being a hyperparameter. To
constrain Dirichlet energy, EGNN initializes trainable weights W l as a diagonal matrix with explicit
singular values and regularizes them to keep the orthogonality during the model training. Ignoring
the activation function σ, H l – node features at layer l of EGNN satisfies

cmin∥H0∥E ≤ ∥H l∥E ≤ cmax∥H0∥E ,

where cmax is the square of the maximal singular value of the initialization of W 1. Similarly, we287

modify EGNN to result in the following EGNN-SCT layer288

H l = σ
(
W l((1− cmin)H

l−1G+ c1H
0 + c2H

l−1) +Bl
α

)
,

where everything remains the same as the EGNN layer except that we add our proposed SCT Bl
α.289
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6 Experiments290

In this section, we comprehensively demonstrate the effects of SCT – in the three most representative291

GCN-style models discussed in Section 5 – using various node classification benchmarks. The292

purpose of all experiments in this section is to verify the efficacy of the proposed SCT – motivated293

by our theoretical results – for GCN-style models. We consider the citation datasets (Cora, Citeseer,294

PubMed, Coauthor-Physics, Ogbn-arxiv), web knowledge-base datasets (Cornell, Texas, Wisconsin),295

and Wikipedia network datasets (Chameleon, Squirrel). We provide additional dataset details in296

Appendix D.1. We implement baseline GCN [20] and GCNII [6] (without weight sharing) using PyG297

(Pytorch Geometric) [10]. Baseline EGNN [40] is implemented using the public code4.298

6.1 Node feature trajectory299

a) α = −0.25 b) α = 0.0 c) α = 1.0

Figure 2: Node feature trajectories, with colorized
magnitude, for varying smoothness control param-
eter α. For classical GCN b), the node features
converge to the eigenspace M (red dashed line).

We visualize the trajectory of the node features, fol-300

lowing [27], for a graph with two nodes connected301

by an edge and 1D node feature. In this case, (6)302

becomes h1 = σ(wh0G+ bα), where w = 1.2 in303

our experiment, h0,h1, bα ∈ R2, and G ∈ R2×2.304

We use a matrix G = [0.592, 0.194; 0.194, 0.908]305

whose largest eigenvalue is 1. Twenty initial node306

feature vectors h0 are sampled evenly in the domain307

[−1, 1] × [−1, 1]. Fig. 2 shows the trajectories in308

relation to the eigenspace M (red dashed line). In Fig 2a), one can see that some trajectories do not309

directly converge to M. In Fig. 2b) when α = 0.0, GCL is recovered and all trajectories converge to310

M. In Fig. 2c), large values of α enable the features to significantly deviate from M initially. We311

observe that the parameter α can effectively change the trajectory of features.312

Layers 2 4 16 32
Cora

GCN/GCN-SCT 81.1/82.9 80.4/82.8 64.9/71.4 60.3/67.2
GCNII/GCNII-SCT 82.2/83.8 82.6/84.3 84.6/84.8 85.4/85.5
EGNN/EGNN-SCT 83.2/84.1 84.2/84.5 85.4/83.3 85.3/82.0

Citeseer
GCN/GCN-SCT 70.3/69.9 67.6/67.7 18.3/55.4 25.0/51.0

GCNII/GCNII-SCT 68.2/72.8 68.9/72.8 72.9/73.8 73.4/73.4
EGNN/EGNN-SCT 72.0/73.1 71.9/72.0 72.4/72.6 72.3/72.9

PubMed
GCN/GCN-SCT 79.0/79.8 76.5/78.4 40.9/76.1 22.4/77.0

GCNII/GCNII-SCT 78.2/79.7 78.8/80.1 80.2/80.7 79.8/80.7
EGNN/EGNN-SCT 79.2/79.8 79.5/80.4 80.1/80.3 80.0/80.4

Coauthor-Physics
GCN/GCN-SCT 92.4/92.6 ± 1.6 92.1/92.5 ± 5.9 13.5/50.9 ± 15.0 13.1/43.6 ± 16.0

GCNII/GCNII-SCT 92.5/94.4 ± 0.4 92.9/94.2 ± 0.3 92.9/93.7 ± 0.7 92.9/94.1 ± 0.3
EGNN/EGNN-SCT 92.6/93.9 ± 0.7 92.9/94.1 ± 0.4 93.1/94.0 ± 0.7 93.3/93.8 ± 1.3

Ogbn-arxiv
GCN/GCN-SCT 70.4/72.1 ± 0.3 71.7/72.7 ± 0.3 70.6/72.3 ± 0.2 68.5/72.3 ± 0.3

GCNII/GCNII-SCT 70.1/72.0 ± 0.3 71.4/72.2 ± 0.2 71.5/72.4 ± 0.3 70.5/72.1 ± 0.3
EGNN/EGNN-SCT 68.4/68.5 ± 0.6 71.1/71.3 ± 0.5 72.7/72.8 ± 0.5 72.7/72.3 ± 0.5

Table 1: Accuracy for models of varying depth. We note vanishing gradients occur but not over-smoothing for
the accuracy drop using GCN-SCT with 16 or 32 layers. For Cora, Citeseer, and PubMed, we use a fixed split
with a single forward pass following [6]; only test accuracy is available in these experiments. For Coauthor-
Physics and Ogbn-arxiv, we use the splits from [40]; both test accuracy and standard deviation are reported. The
baseline results are copied from [6, 40] where the standard deviation was not reported. (Unit:%)

6.2 Baseline comparisons for node classification313

Citation networks. We compare the three representative models discussed in Section 5, of different314

depths, with and without SCT in Table 1. This task uses the citation datasets with fixed splits from315

[35] for Cora, Citeseer, and Pubmed and splits from [40] for Coauthor-Physics and Ogbn-arxiv; a316

detailed description of these datasets and splits are provided in Appendix D. Following [6], we use a317

single training pass to minimize the negative log-likelihood loss using the Adam optimizer [19], with318

1500 maximum epochs, and 100 epochs of patience. A grid search for possible hyperparameters is319

listed in Table 5 in Appendix D. We accelerate the hyperparameter search by applying a Bayesian320

meta-learning algorithm [2] which minimizes the validation loss, and we run the search for 200321

iterations per model. In particular, Table 1 presents the best test accuracy between ReLU and leaky322

ReLU for GCN, GCNII, and all three models with SCT5. For the baseline EGNN, we follow [40]323

using SReLU, a particular activation used for EGNN in [40]. These results show that SCT can boost324

4https://github.com/Kaixiong-Zhou/EGNN
5A comparison of the results using ReLU and leaky ReLU is presented in Appendix D.
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the classification accuracy of baseline models; in particular, the improvement can be remarkable for325

GCN and GCNII. However, EGNN-SCT (using ReLU or leaky ReLU) performs occasionally worse326

than EGNN (using SReLU), and this is because of the choice of activation functions. In Appendix D.3,327

we report the results of EGNN-SCT using SReLU, showing that EGNN-SCT outperforms EGNN in328

all tasks. In fact, SReLU is a shifted version of ReLU, and our theory for ReLU applies to SReLU as329

well. The model size and computational time are reported in Table 4 in the appendix.330

Table 1 also shows that even with SCT, the accuracy of GCN drops when the depth is 16 or 32. This331

motivates us to investigate the smoothness of the node features learned by GCN and GCN-SCT. Fig. 3332

plots the heatmap of the normalized smoothness of each dimension of the learned node features333

learned by GCN and GCN-SCT with 32 layers for Citeseer node classification. In these plots, the334

horizontal and vertical dimensions denote the feature dimension and the layer of the model, resp.335

We notice that the normalized smoothness of each dimension of the features – from layers 14 to 32336

learned by GCN – closes to 1, confirming that deep GCN learns homogeneous features. In contrast,337

the features learned by GCN-SCT are inhomogeneous, as shown in Fig. 3b). Therefore, we believe the338

performance degradation of deep GCN-SCT is due to other factors. Compared to GCNII/GCNII-SCT339

and EGNN/EGNN-SCT, GCN-SCT does not use skip connections, which is known to help avoid340

vanishing gradients in training deep neural networks [16, 17]. In Appendix D.3, we show that training341

GCN and GCN-SCT do suffer from the vanishing gradient issue; however, the other models do not.342

Besides Citeseer, we notice similar behavior occurs for training GCN and GCN-SCT for Cora and343

Coauthor-Physics node classification tasks.344

1 8 16
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32
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a) GCN b) GCN-SCT
Figure 3: The normalized smoothness – of
each dimension of the feature vectors at a
given layer – for a) GCN and b) GCN-SCT
on the Citeseer dataset with 32 layers and
16 hidden dimensions. GCN features be-
come entirely smooth since layer 14, while
GCN-SCT controls the smoothness for each
feature at any depth. Horizontal and verti-
cal axes represent the index of the feature
dimension and the intermediate layer, resp.

Other datasets. We further compare different models345

trained on different datasets using 10-fold cross-validation346

and fixed 48/32/20% splits following [28]. Table 2 com-347

pares GCN and GCNII with and without SCT, using leaky348

ReLU, for classifying five heterophilic node classification349

datasets. We exclude EGNN as these heterophilic datasets350

are not considered in [40]. We report the average accu-351

racy of GCN and GCNII from [6]. We tune all other352

models using a Bayesian meta-learning algorithm to max-353

imize the mean validation accuracy. We report the best354

test accuracy for each model of depth searched over the set355

{2, 4, 8, 16, 32}. SCT can significantly improve the clas-356

sification accuracy of the baseline models. Table 2 also357

contrasts the computational time (on Tesla T4 GPUs from358

Google Colab) per epoch of models that achieve the best359

test accuracy; the models using SCT can even save compu-360

tational time to achieve the best accuracy which is because361

the best accuracy is achieved at a moderate depth (Table 8 in Appendix D.4 lists the mean and362

standard deviation for the test accuracies on all five datasets. Table 9 in Appendix D.4 lists the363

computational time per epoch for each model of depth 8, showing that using SCT only takes a small364

amount of computational overhead.
Cornell Texas Wisconsin Chameleon Squirrel

52.70/55.95 (0.7/1.8) 52.16/62.16 (0.7/0.8) 45.88/54.71 (0.7/0.8) 28.18/38.44 (0.6/0.7) 23.96/35.31 (1.6/4.0)
74.86/75.41 (2.0/2.0) 69.46/83.34 (3.1/2.0) 74.12/86.08 (2.0/1.5) 60.61/64.52 (1.5/1.3) 38.47/47.51 (5.5/3.7)

Table 2: Mean test accuracy and average computational time per epoch (in the parenthesis) for the We-
bKB and WikipediaNetwork datasets with fixed 48/32/20% splits. First row: GCN/GCN-SCT. Second row:
GCNII/GCNII-SCT. (Unit:% for accuracy and ×10−2 second for computational time.)365

7 Concluding Remarks366

In this paper, we establish a geometric characterization of how ReLU and leaky ReLU affect the367

smoothness of the GCN features. We further study the dimension-wise normalized smoothness of the368

learned node features, showing that activation functions not only smooth node features but also can369

reduce or preserve the normalized smoothness of the features. Our theoretical findings inform the370

design of a simple yet effective SCT for GCN. The proposed SCT can change the smoothness, in371

terms of both normalized and unnormalized smoothness, of the learned node features by GCN.372

Limitations: Our proposed SCT provides provable guarantees for controlling the smoothness of373

features learned by GCN and related models. A key aspect to establish our theoretical results is374

demonstrating that, without SCT, the features of the vanilla model tend to be overly smooth; without375

this condition, SCT cannot ensure performance guarantees.376
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8 Broader Impacts377

Our paper focuses on developing new theoretical understandings of the smoothness of node features378

learned by graph convolutional networks. The paper is mainly theoretical. We do not see any potential379

ethical issues in our research; all experiments are carried out using existing benchmark settings and380

datasets.381

Our paper brings new insights into building new graph neural networks with improved performance382

over existing models, which is crucial for many applications. In particular, for applications where383

graph neural network is the method of choice. We expect our approach to play a role in material384

science and biophysics applications.385
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Appendix for “Learning to Control the Smoothness of GCN497

Features"498

A Details of Notations499

For two vectors u = (u1, u2, . . . , ud) and v = (v1, v2, . . . , vd), their inner product is defined as

⟨u,v⟩ =
d∑

i=1

uivi,

their Hadamard product is defined as

u⊙ v = (u1v1, u2v2, . . . , udvd),

and their Kronecker product is defined as

u⊗ v = uv⊤ =


u1v1 u1v2 . . . u1vd
u2v1 u2v2 . . . u2vd

...
...

. . .
...

udv1 udv2 . . . udvd

 .

The Kronecker product can be defined for two vectors of different lengths in a similar manner as500

above.501

B Proofs in Section 3502

First, we prove that the two smoothness notions used in [27, 4] are two equivalent seminorms, i.e.,503

we prove Proposition 3.1 below.504

Proof of Proposition 3.1. The matrix H can be decomposed as H =
∑n

i=1 Heie
⊤
i , where each ei

is the eigenvector of G associated with eigenvalue λi. This indicates that

H∆̃ = H(I −G)

=

n∑
i=1

Heie
⊤
i (I −G)

=

n∑
i=1

(Heie
⊤
i −Heie

⊤
i G)

=

n∑
i=1

(Heie
⊤
i −Hei(λiei)

⊤)

=

n∑
i=1

(1− λi)Heie
⊤
i

=

n∑
i=m+1

(1− λi)Heie
⊤
i .
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Then using the fact that 1− λi ≥ 0 for each i, we obtain

∥H∥2E = Trace(H∆̃H⊤)

= Trace
( n∑

i=m+1

(1− λi)Heie
⊤
i (

n∑
j=1

Heje
⊤
j )

⊤
)

= Trace
( n∑

i=m+1

n∑
j=1

(1− λi)Heie
⊤
i eje

⊤
j H

⊤
)

= Trace
( n∑

i=m+1

(1− λi)Heie
⊤
i eie

⊤
i H

⊤
)

= Trace
( n∑

i=m+1

√
1− λiHeie

⊤
i eie

⊤
i H

⊤
√
1− λi

)
= Trace

( n∑
i=m+1

√
1− λiHeie

⊤
i (

n∑
j=m+1

√
1− λjHeje

⊤
j )

⊤
)

=
∥∥∥ n∑

i=m+1

√
1− λiHeie

⊤
i

∥∥∥2
F
.

That is,

∥H∥E =
∥∥∥ n∑

i=m+1

√
1− λiHeie

⊤
i

∥∥∥
F
.

On the other hand, (3) implies

∥H∥M⊥ = ∥HM⊥∥F =
∥∥∥ n∑

i=m+1

Heie
⊤
i

∥∥∥
F
.

We first show that both ∥H∥M⊥ and ∥H∥E are seminorms. Since ∥cH∥F = |c| · ∥H∥F for any
c ∈ R, we have ∥cH∥M⊥ = |c| · ∥H∥M⊥ and ∥cH∥E = |c| · ∥H∥E . Moreover, for any two
matrices H1 and H2 s.t. H = H1 +H2, we have

n∑
i=m+1

H1eie
⊤
i +

n∑
i=m+1

H2eie
⊤
i =

n∑
i=m+1

Heie
⊤
i ,

n∑
i=m+1

√
1− λiH

1eie
⊤
i +

n∑
i=m+1

√
1− λiH

2eie
⊤
i =

n∑
i=m+1

√
1− λiHeie

⊤
i .

Then the triangle inequality of ∥ · ∥F implies that of ∥H∥M⊥ and ∥H∥E , respectively.505

Now since 0 < 1− λm+1 ≤ 1− λi ≤ 2 for any i = m+ 1, . . . , n, we may take α =
√

1− λm+1

and β =
√
2. Then

α∥H∥M⊥ =
∥∥∥α n∑

i=m+1

Heie
⊤
i

∥∥∥
F
≤
∥∥∥ n∑

i=m+1

√
1− λiHeie

⊤
i

∥∥∥
F

≤
∥∥∥β n∑

i=m+1

Heie
⊤
i

∥∥∥
F

= β∥H∥M⊥ .

The result thus follows from ∥H∥E =
∥∥∥∑n

i=m+1

√
1− λiHeie

⊤
i

∥∥∥
F

.506

B.1 ReLU507

We present a crucial tool to characterize how ReLU affects its input.508
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Lemma B.1. Let Z ∈ Rd×n, and let Z+ = max(Z, 0) and Z− = max(−Z, 0) be the positive and509

negative parts of Z. Then (1) Z+,Z− are (component-wise) nonnegative and Z = Z+ −Z− and510

(2) ⟨Z+,Z−⟩F = 0.511

Proof of Lemma B.1. Notice that for any a ∈ R, we have

max(a, 0) =

{
a if a ≥ 0

0 otherwise
and max(−a, 0) =

{
0 if a ≥ 0

−a otherwise
.

This implies that a = max(a, 0)−max(−a, 0) and max(a, 0) ·max(−a, 0) = 0.512

Let Zij be the (i, j)th entry of Z. Then Z = Z+ − Z− follows from Zij = max(Zij , 0) −
max(−Zij , 0). Also, one can deduce that

⟨Z+,Z−⟩F = Trace((Z+)⊤Z−) =

d∑
i=1

j∑
j=1

max(Zij , 0)max(−Zij , 0) = 0.

513

Before proving Proposition 3.2, we notice the following relation between Z and H .514

Lemma B.2. Given Z ∈ Rd×n, let H = σ(Z) with σ being ReLU, then H lies on the high-515

dimensional sphere, in ∥ · ∥F norm, that is centered at Z/2 and with radius ∥Z/2∥F . That is, H516

and Z satisfy the following equation517 ∥∥∥H − Z

2

∥∥∥2
F
=
∥∥∥Z
2

∥∥∥2
F
. (8)

Proof of Lemma B.2. We observe that H = σ(Z) = max(Z, 0) = Z+ is the positive part of Z.
Then

⟨H,Z⟩F = ⟨H,Z+ −Z−⟩F = ⟨H,Z+⟩F − ⟨H,Z−⟩F = ⟨H,H⟩F ,
where we have used Z = Z+ −Z− and ⟨H,Z−⟩F = ⟨Z+,Z−⟩F = 0 from Lemma B.1.518

Therefore, one can deduce the desired result as follows

⟨H,H⟩F − ⟨H,Z⟩F = 0 ⇒∥H∥2F − 2
〈
H,

Z

2

〉
F
+
∥∥∥Z
2

∥∥∥2
F
=
∥∥∥Z
2

∥∥∥2
F

⇒
∥∥∥H − Z

2

∥∥∥2
F
=
∥∥∥Z
2

∥∥∥2
F
.

519

Applying ∥H∥2F = ∥HM +HM⊥∥2F = ∥HM∥2F + ∥HM⊥∥2F , to both Z
2 and H − Z

2 , we obtain∥∥∥Z
2

∥∥∥2
F
=
∥∥∥ZM⊥

2

∥∥∥2
F
+
∥∥∥ZM

2

∥∥∥2
F
,

and ∥∥∥H − Z

2

∥∥∥2
F
=
∥∥∥HM⊥ − ZM⊥

2

∥∥∥2
F
+
∥∥∥HM − ZM

2

∥∥∥2
F
.

Then (8) becomes520 ∥∥∥ZM⊥

2

∥∥∥2
F
−
∥∥∥HM⊥ − ZM⊥

2

∥∥∥2
F
=
∥∥∥HM − ZM

2

∥∥∥2
F
−
∥∥∥ZM

2

∥∥∥2
F

(9)

By direct calculation, we have521 ∥∥∥HM − ZM

2

∥∥∥2
F
−
∥∥∥ZM

2

∥∥∥2
F
= ⟨HM,HM⟩F − 2

〈
HM,

ZM

2

〉
F

= ⟨HM,HM −ZM⟩F .
(10)

Combining (9) and (10), we obtain the following result522
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Lemma B.3. For any Z = ZM +ZM⊥ , let H = σ(Z) = HM +HM⊥ , then523 ∥∥∥ZM⊥

2

∥∥∥2
F
−
∥∥∥HM⊥ − ZM⊥

2

∥∥∥2
F
= ⟨Z+

M,Z−
M⟩F .

where Z+
M =

∑m
i=1 Z

+eie
⊤
i ,Z

−
M =

∑m
i=1 Z

−eie
⊤
i .524

Proof of Lemma B.3. Recall that H = σ(Z) = max(Z, 0) = Z+. Also, Z = Z+ − Z− implies
ZM = Z+

M −Z−
M = H+

M −Z−
M. Therefore, we see that

⟨HM,HM −ZM⟩F = ⟨Z+
M,Z−

M⟩F .

525

By using the fact that ⟨Z+
M,Z−

M⟩F ≥ 0 in Lemma B.3, we reveal a geometric relation between Z526

and H mentioned in Proposition 3.2.527

Proof of Proposition 3.2. Since Z+,Z− ≥ 0 are nonnegative and all the eigenvectors ei are also
nonnegative, we see that Z+

M =
∑m

i=1 Z
+eie

⊤
i and Z−

M =
∑m

i=1 Z
−eie

⊤
i are nonnegative. This

indicates that
⟨Z+

M,Z−
M⟩F = Trace

(
Z+

M(Z−
M)⊤

)
≥ 0.

Then according to Lemma B.3, we obtain∥∥∥ZM⊥

2

∥∥∥2
F
−
∥∥∥HM⊥ − ZM⊥

2

∥∥∥2
F
= ⟨Z+

M,Z−
M⟩F ≥ 0.

So we have ∥∥∥HM⊥ − ZM⊥

2

∥∥∥
F
=

√∥∥∥ZM⊥

2

∥∥∥2
F
− ⟨Z+

M,Z−
M⟩F

=

√∥∥∥ZM⊥

2

∥∥∥2
F
− ⟨HM,HM −ZM⟩F ,

which shows that HM⊥ lies on the high-dimensional sphere that we have claimed. Furthermore, we528

conclude that529

0 ≤
∥∥∥HM⊥ − ZM⊥

2

∥∥∥
F
≤
∥∥∥ZM⊥

2

∥∥∥
F
. (11)

This demonstrates that HM⊥ lies on the high-dimensional sphere we have stated.530

Since the sphere
∥∥∥HM⊥ − ZM⊥

2

∥∥∥2
F

=
∥∥∥ZM⊥

2

∥∥∥2
F

passes through the origin, the distance of any

HM⊥ to the origin must be no greater than the diameter of this sphere, i.e., ∥HM⊥∥F ≤ ∥ZM⊥∥F .
Also, this can be derived from

∥HM⊥∥F −
∥∥∥ZM⊥

2

∥∥∥
F
≤
∥∥∥HM⊥ − ZM⊥

2

∥∥∥
F
≤
∥∥∥ZM⊥

2

∥∥∥
F
.

One can see that the maximal smoothness ∥HM⊥∥F = ∥ZM⊥∥F is attained when HM⊥ = ZM⊥ ,531

the intersection of the surface and the line passing through the center and the origin.532

After all, we complete the proof by using the fact that ∥ZM⊥∥F = ∥Z∥M⊥ for any matrix Z, which533

implies ∥H∥M⊥ = ∥HM⊥∥F ≤ ∥ZM⊥∥F = ∥Z∥M⊥ .534

535

B.2 Leaky ReLU536

For the leaky ReLU activation function, we have537

Lemma B.4. If H = σa(Z) with σa being leaky ReLU, then H lies on the high-dimensional sphere538

centered at (1 + a)Z/2 with radius ∥(1− a)Z/2∥F .539
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Proof of Lemma B.4. Notice that

H = σa(Z) = Z+ − aZ−.

Then H −Z = (1− a)Z− and H − aZ = (1− a)Z+. Using ⟨Z−,Z+⟩F = 0, we have540

⟨H −Z,H − aZ⟩F = 0 ⇒∥H∥2F − 2
〈
H,

(1 + a)Z

2

〉
F
+ a∥Z∥2F = 0

⇒∥H∥2F − 2
〈
H,

(1 + a)Z

2

〉
F
= −a∥Z∥2F

⇒
∥∥∥H − (1 + a)

2
Z
∥∥∥2
F
=
∥∥∥ (1 + a)

2
Z
∥∥∥2
F
− a∥Z∥2F =

∥∥∥ (1− a)

2
Z
∥∥∥2
F
.

541

Moreover, we notice that542

Lemma B.5. For any Z = ZM +ZM⊥ , let H = σa(Z) = HM +HM⊥ , then543 ∥∥∥ (1− a)

2
ZM⊥

∥∥∥2
F
−
∥∥∥HM⊥ − (1 + a)

2
ZM⊥

∥∥∥2
F
= (1− a)2⟨Z+

M,Z−
M⟩F

Proof of Lemma B.5. Similar to the proof of Lemma B.3, the orthogonal decomposition implies that∥∥∥ (1− a)

2
ZM⊥

∥∥∥2
F
−
∥∥∥HM⊥ − (1 + a)

2
ZM⊥

∥∥∥2
F
=
∥∥∥HM − (1 + a)

2
ZM

∥∥∥2
F
−
∥∥∥ (1− a)

2
ZM

∥∥∥2
F

=⟨HM −ZM,HM − aZM⟩F
=⟨(1− a)Z−

M, (1− a)Z+
M⟩F

=(1− a)2⟨Z−
M,Z+

M⟩F .

544

Proof of Proposition 3.3. Similar to the proof of Proposition 3.2, we apply ⟨Z−
M,Z+

M⟩F ≥ 0 to
Lemma B.5 and hence obtain the geometric condition as follows∥∥∥HM⊥ − (1 + a)

2
ZM⊥

∥∥∥
F
=

√∥∥∥ (1− a)

2
ZM⊥

∥∥∥2
F
− ⟨HM −ZM,HM − aZM⟩F .

Then we have the following inequality

0 ≤
∥∥∥HM⊥ − (1 + a)

2
ZM⊥

∥∥∥
F
≤
∥∥∥ (1− a)

2
ZM⊥

∥∥∥
F
.

Moreover, we deduce that∣∣∣∣∣∥HM⊥∥F −
∥∥∥ (1 + a)

2
ZM⊥

∥∥∥
F

∣∣∣∣∣ ≤ ∥∥∥HM⊥ − (1 + a)

2
ZM⊥

∥∥∥
F
≤
∥∥∥ (1− a)

2
ZM⊥

∥∥∥
F
.

and hence

−
∥∥∥ (1− a)

2
ZM⊥

∥∥∥
F
≤ ∥HM⊥∥F −

∥∥∥ (1 + a)

2
ZM⊥

∥∥∥
F
≤
∥∥∥ (1− a)

2
ZM⊥

∥∥∥
F
.

Therefore, we obtain a∥ZM⊥∥F ≤ ∥HM⊥∥F ≤ ∥ZM⊥∥F . (Remark that HM⊥ achieves its545

maximal norm when it is equal to ZM⊥ , the intersection of the surface and the line passing through546

the center and the origin. )547

By using the fact that ∥ZM⊥∥F = ∥Z∥M⊥ for any matrix Z, we conclude that a∥Z∥M⊥ ≤548

∥H∥M⊥ ≤ ∥Z∥M⊥ .549
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C Proofs in Section 4550

Throughout this section, we assume that zM⊥ ̸= 0.551

Proof of Proposition 4.3. Recall that e = D̃
1
2un/c has only positive entries where D̃ is the aug-552

mented degree matrix and un = [1, . . . , 1]⊤ ∈ Rn and c = ∥D̃ 1
2un∥. Let di be the ith diagonal553

entry of D̃. Then we have e = [
√
d1/c,

√
d2/c, . . . ,

√
dn/c]

⊤ and c =
√∑n

i=1 di.554

Note that z(α) = z − αe = z − α
c D̃

1
2un = D̃

1
2 (D̃− 1

2 z − α
cun) = D̃

1
2 (x − α

cun), where we
assume x := D̃− 1

2 z. Then we observe that when σ is the ReLU activation function,

h(α) = σ(z(α)) = σ
(
D̃

1
2 (x− α

c
un)

)
= D̃

1
2σ
(
x− α

c
un

)
,

and hence
⟨h(α), e⟩ =

〈
D̃

1
2σ
(
x− α

c
un

)
, e
〉

=
〈
σ
(
x− α

c
un

)
, D̃

1
2 e
〉
=
〈
σ
(
x− α

c
un

)
, D̃un

〉
.

We may now assume x = [x1, . . . , xn]
⊤ is well-ordered s.t. x1 ≥ x2 ≥ . . . ≥ xn. Indeed, there is a

collection of indices {k1, ..., kl} s.t.

x1 = . . . , xk1
and xk1

> xk1+1,

xkj−1+1 = . . . = xkj
and xkj

> xkj+1 for any j = 2, . . . , l − 1,

xkl−1+1 = . . . = xkl
and kl = n.

That is, x1 = x2 = . . . = xk1 > xk1+1 = . . . = xk2 > xk2+1 = . . . = xk3 > xk3+1 . . .555

We first restrict the domain of α s.t. h(α) ̸= 0. Note that we have

h(α) = 0 ⇔σ
(
x− α

c
un

)
= 0

⇔xi −
α

c
≤ 0 for i = 1, . . . , n

⇔x1 −
α

c
≤ 0

⇔α ≥ cx1.

So we will study the smoothness s(h(α)) when α < cx1.556

Let ϵ > 0 and consider α = c(x1 − ϵ). When ϵ ≤ x1 − xk1+1 = x1 − xk2 , we see that

x− α

c
un = [ϵ, . . . , ϵ, ϵ− (x1 − xk1+1), . . . , ϵ− (x1 − xn)]

⊤,

where only the first k1 entries are positive since x1 − xi ≥ ϵ for any i ≥ k1 + 1. Therefore,

h(α) = D̃
1
2σ
(
x− α

c
un

)
= D̃

1
2 [ϵ, . . . , ϵ, 0, . . . , 0]⊤

= [ϵ
√
d1, . . . , ϵ

√
dk1

, 0, . . . , 0]⊤.

and hence we can compute that ∥h(α)∥ = ϵ

√√√√ k1∑
i=1

di. Also, we have

∥h(α)∥M = |⟨h(α), e⟩| = [ϵ
√
d1, . . . , ϵ

√
dk1 , 0, . . . , 0]

⊤[
√
d1/c,

√
d2/c, . . . ,

√
dn/c]

=
ϵ

c

k1∑
i=1

di.

Then we obtain the smoothness s(h(α)) as follows

s(h(α)) =
∥h(α)∥M
∥h(α)∥

=
ϵ
c

∑k1

i=1 di

ϵ
√∑k1

i=1 di

=

√∑k1

i=1 di

c
=

K1

c
< 1,

18



where K1 :=
√∑k1

i=1 di. Similarly, we may denote
√∑kj

i=kj−1+1 di by Kj for j = 2, . . . , l.557

Now we are going to show that the smoothness s(h(α)) is increasing as α gets smaller whenever α <558

cx1, implying K1

c is the minimum of the smoothness s(h(α)). Remember that we are considering559

α = c(x1 − ϵ) and we have studied the case when 0 < ϵ ≤ x1 − xk1+1 = x1 − xk2
.560

Let δj := x1 − xkj for 1 ≤ j ≤ l. Clearly, we have δ1 = 0 and δj < δj+1 for 1 ≤ j ≤ l − 1. Fix a
j′ ∈ {2, . . . , l − 1}, we see that when δj′ < ϵ ≤ x1 − xkj′+1,

x− α

c
un

=
[
ϵ− δ1, . . . , ϵ− δ1, ϵ− δ2, . . . , ϵ− δ2, ϵ− δ3, . . . , ϵ− δj′ , ϵ− (x1 − xkj′+1), . . . , ϵ− (x1 − xn)

]⊤
,

where we have ϵ− δj > 0 for 2 ≤ j ≤ j′ and ϵ− (x1 − xi) ≤ 0 for any i ≥ kj′ + 1. Consequently,

h(α) = D̃
1
2σ(x− α

c
un) = [(ϵ− δ1)

√
d1, . . . , (ϵ− δ1)

√
dk1

, (ϵ− δ2)
√

dk1+1, . . . , (ϵ− δ2)
√
dk2

,

(ϵ− δ3)
√

dk2+1, . . . , (ϵ− δj′)
√
dkj′ , 0, . . . , 0]

⊤.

Then we can compute

∥h(α)∥ =

√√√√√ j′∑
j=1

kj∑
i=kj−1+1

di(ϵ− δj)2 =

√√√√ j′∑
j=1

K2
j (ϵ− δj)2,

where we set k0 := 0 for simplicity and Kj =
√∑kj

i=kj−1+1 di for j = 1, . . . , j′. Also, we have

∥h(α)∥M = |⟨h(α), e⟩| =
j′∑

j=1

kj∑
i=kj−1+1

di(ϵ− δj)

c
=

1

c

j′∑
j=1

K2
j (ϵ− δj).

A careful calculation shows that ∂
∂ϵs(h(α)) > 0 whenever δj′ < ϵ ≤ x1 − xkj′+1 which implies that

s(h(α)) is increasing as ϵ increases. Indeed, we have

∂

∂ϵ
s(h(α))

=
∂

∂ϵ

( ∑j′

j=1 K
2
j (ϵ− δj)

c
√∑j′

j=1 K
2
j (ϵ− δj)2

)

=

(
∂
∂ϵ

∑j′

j=1 K
2
j (ϵ− δj)

)√∑j′

j=1 K
2
j (ϵ− δj)2 −

∑j′

j=1 K
2
j (ϵ− δj)

(
∂
∂ϵ

√∑j′

j=1 K
2
j (ϵ− δj)2

)
c
∑j′

j=1 K
2
j (ϵ− δj)2

=

(∑j′

j=1 K
2
j

)√∑j′

j=1 K
2
j (ϵ− δj)2 −

∑j′

j=1 K
2
j (ϵ− δj)

( ∂
∂ϵ

∑j′
j=1 K2

j (ϵ−δj)
2

2
√∑j′

j=1 K2
j (ϵ−δj)2

)
c
∑j′

j=1 K
2
j (ϵ− δj)2

=

(∑j′

j=1 K
2
j

)∑j′

j=1 K
2
j (ϵ− δj)

2 −
∑j′

j=1 K
2
j (ϵ− δj)

(∑j′

j=1 K
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)
c
∑j′

j=1 K
2
j (ϵ− δj)2

√∑j′

j=1 K
2
j (ϵ− δj)2

.

Then to show that ∂
∂ϵs(h(α)) > 0, it suffices to show that the numerator is positive, i.e.

( j′∑
j=1

K2
j

) j′∑
j=1

K2
j (ϵ− δj)

2 −
( j′∑

j=1

K2
j (ϵ− δj)

)2
> 0,
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since the denominator c
∑j′

j=1 K
2
j (ϵ− δj)

2
√∑j′

j=1 K
2
j (ϵ− δj)2 > 0 is always positive. In fact, this

follows from the Cauchy inequality ∥v∥∥u∥ ≥ ⟨v,u⟩, where we set

v := [K1,K2, . . . ,KJ′ ]⊤, u := [K1(ϵ− δ1),K2(ϵ− δ2), . . . ,Kj′(ϵ− δj′)]
⊤.

Moreover, equality happens only when v is parallel to u. This is, however, impossible since561

ϵ− δj > ϵ− δj+1 for any j = 1, . . . , j′ − 1 and each Kj is positive.562

So we see that s(h(α)) is increasing as ϵ increases whenever 0 < ϵ, and hence the smoothness563

s(h(α)) is increasing as α decreases whenever cxn ≤ α < cx1.564

For the case j′ = l where δl = x1−xn < ϵ, we have xn−α/c = xn−(x1−ϵ) = ϵ−(x1−xn) > 0,
implying α < cxn and h(α) = z(α). We have shown that the smoothness is increasing as α is going
far from ⟨z, e⟩; in particular, when α < ⟨z, e⟩ and α is decreasing. One can check that

cxn =

∑n
i=1 dixn

c
=

〈
xnun,

D̃un

c

〉
≤
〈
x,

D̃un

c

〉
=

〈
D̃

1
2x,

D̃
1
2un

c

〉
= ⟨z, e⟩,

which means the smoothness is increasing as α decreases whenever α < cxn.565

We conclude that the smoothness increases as α decreases provided α < cx1. Also, we have566

supα<cx1
s(h(α)) = 1 as the case in the proof of Proposition C.1. One can check that s(h(α)) is a567

continuous function for α < cx1 and thus it has range [K1/c, 1) by the mean value theorem.568

Finally, we can establish the result: K1/c =

√∑
xi=maxx di∑n

j=1 dj
is the minimum of s(h(α)) and 1 is the569

maximum of s(h(α)) occurring whenever α ≥ cx1 =
√∑n

j=1 dj maxi xi. Moreover, s(h(α)) has570

a monotone property when α <
√∑n

j=1 dj maxi xi and has range
[√∑

xi=maxx di∑n
j=1 dj

, 1
]
.571

It is clear that the assumption on the ordering of the entries of x will not affect this result.572

To prove Proposition 4.4, we first prove an analogous result for the identity function, that is, h =573

σ(z) = z.574

Proposition C.1. Suppose zM⊥ ̸= 0, then s(z(α)) achieves its minimum 0 if α = ⟨z, e⟩. Moreover,575

supα s(z(α)) = 1 where s(z(α)) is close to 1 when α is far away from ⟨z, e⟩.576

Notice that Proposition C.1 does not consider the activation function.577

Proof of Proposition C.1. We know that 0 ≤ s(z(α)) ≤ 1 and

s(z(α)) =

√
1− ∥zM⊥∥2

∥z(α)∥2
=

√
1− ∥zM⊥∥2

∥zM⊥∥2 + ∥z(α)M∥2

=

√
1− ∥zM⊥∥2

∥zM⊥∥2 + ∥zM − αe∥2
.

Suppose s(z(α)) = 1. Then we have ∥zM⊥∥2

∥zM⊥∥2+∥zM−αe∥2 = 0 which forces ∥zM⊥∥ = 0. However,578

this contradicts the hypothesis zM⊥ ̸= 0. So s(z(α)) cannot attain its maximum.579

But for any 0 ≤ t < 1, one can see that s(z(α)) = t if and only if√
1− ∥zM⊥∥2

∥zM⊥∥2 + ∥zM − αe∥2
= t ⇔ ∥zM⊥∥2

∥zM⊥∥2 + ∥zM − αe∥2
= 1− t2

⇔ ∥zM⊥∥2 = (1− t2)
(
∥zM⊥∥2 + ∥zM − αe∥2

)
⇔ t2∥zM⊥∥2 = (1− t2)∥zM − αe∥2

⇔ ∥zM − αe∥ =

√
t2

1− t2
· ∥zM⊥∥
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This implies that supα s(z(α)) = 1 and s(z(α)) achieves its minimum 0 if and only if α = ⟨z, e⟩.580

It is clear that s(z(α)) get closer to 1 when α is going far away from ⟨z, e⟩. i.e., |α − ⟨z, e⟩| =581

∥zM − αe∥ is increasing.582

Proof of Proposition 4.4. First, we notice that leaky ReLU has the following two properties583

1. σa(x) > 0 for x ≫ 0 and σa(x) < 0 for x ≪ 0.584

2. σa is a non-trivial linear map for x ≫ 0.585

We will use Property 1 to show that minα s(h(α)) = 0 and Property 2 to show that supα s(h(α)) = 1.586

Notice that σa(x) < 0 for x ≪ 0 implies that there exists a sufficient small α2 < 0 s.t. all of the587

entries of h(α2) are negative and hence |⟨h(α2), e⟩| < 0. Similarly, σa(x) > 0 for x ≫ 0 implies588

that there exists a sufficient large α1 > 0 s.t. all of the entries of h(α1) are positive and hence589

|⟨h(α1), e⟩| > 0. Since |⟨h(α), e⟩| is a continuous function of α on [α1, α2], the Intermediate590

Value Theorem follows that there exists an α ∈ (α1, α2) s.t. |⟨h(α), e⟩| = 0. Thus by definition591

s(h(α)) = |⟨h(α), e⟩|/∥h(α)∥, we see that minα s(h(α)) = 0.592

On the other hand, since σa is a non-trivial linear map for x ≫ 0, we may assume σa(x) = cx for
x > x0 where c ̸= 0 is some non-zero constant and x0 > 0 is some positive constant. Then we
can choose an α0 > ⟨z, e⟩ s.t. for any α ≥ α0, all of the entries of z(α) are greater than x0. Then
whenever α ≥ α0, we have h(α) = σa(z(α)) = cz(α). This implies

s(h(α)) =
|⟨h(α), e⟩|
∥h(α)∥

=
|⟨cz(α), e⟩|
∥cz(α)∥

=
|⟨z(α), e⟩|
∥z(α)∥

= s(z(α)).

Thus supα s(h(α)) = 1 follows from the Proof of Proposition C.1 where we see that supα s(z(α)) =593

1 since s(z(α)) gets closer to 1 as α increases.594

595

Remark C.2. Indeed, it holds for any continuous function f : R → R satisfying the following596

1. f(x) > 0 for x ≫ 0, f(x) < 0 for x ≪ 0 or f(x) < 0 for x ≫ 0, f(x) > 0 for x ≪ 0,597

2. f is a non-trivial linear map for x ≫ 0 or x ≪ 0.598

One can check the proof above only depends on these two properties. It is worth mentioning that599

most activation functions, e.g. leaky LU, SiLU, tanh, satisfy condition 1.600

Proof of Corollary 4.5. For any α, we notice that ∥z∥M⊥ = ∥zM⊥∥F = ∥z(α)∥M⊥ since α601

only changes the component of z in the eigenspace M. Also, Propositions 3.2 and 3.3 show602

that ∥z(α)∥M⊥ ≥ ∥h(α)∥M⊥ whenever h(α) = σ(z(α)) or σa(z(α)). Therefore, we see that603

∥z∥M⊥ ≥ ∥h(α)∥M⊥ holds for any α. Since zM⊥ ̸= 0, s(z) must lie in [0, 1).604

605

D Experimental Details606

This part includes the missing details about experimental configurations and additional experimental607

results for Section 6. All tasks we run using Nvidia RTX 3090, GV100, and Tesla T4 GPUs. All608

computational performance metrics, including timing procedures, are run using Tesla T4 GPUs from609

Google Colab.610

D.1 Dataset details611

In this section, we briefly describe the benchmark datasets used. Table 3 provides additional details612

about the underlying graph representation.613

Citation Datasets: The five citation datasets considered are Cora, Citeseer PubMed, Coauthor-614

Physics, and Ogbn-arxiv. Each dataset is represented by a graph with nodes representing academic615

publications, features encoding a bag-of-words description, labels classifying the publication type,616

and edges representing citations.617
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Web Knowledge-Base Datasets: The three web knowledge-base datasets are Cornell, Texas, and618

Wisconsin. Each dataset is represented by a graph with nodes representing CS department webpages,619

features encoding a bag-of-words description, edges representing hyper-link connections, and labels620

classifying the webpage type.621

Wikipedia Network Datasets: The two Wikipedia network datasets are Chameleon and Squirrel.622

Each dataset is represented by a graph with nodes representing CS department webpages, features en-623

coding a bag-of-words description, edges representing hyper-link connections, and labels classifying624

the webpage type.625

# Nodes # Edges # Features # Classes Splits (Train/Val/Test)
Cornell 183 295 1, 703 5 48/32/20%
Texas 181 309 1, 703 5 48/32/20%

Wisconsin 251 499 1, 703 5 48/32/20%
Chameleon 2, 277 36, 101 2, 325 5 48/32/20%

Squirrel 5, 201 217, 073 2, 089 5 48/32/20%
Citeseer 3, 727 4, 732 3, 703 6 120/500/1000

Cora 2, 708 5, 429 1, 433 7 140/500/1000
PubMed 19, 717 44, 338 500 3 60/500/1000

Coauthor-Physics 34,493 247,962 8415 5 100/150/34,243
Ogbn-arxiv 169,343 1,166,243 128 40 90,941/29,799/48,603

Table 3: Graph statistics.

D.2 Model size and computational time for citation datasets626

Table 4 compares the model size and computational time for experiments on citation datasets in627

Section 6.2.628

# Parameters Training Time (s) Inference Time (ms)
Cora

GCN 100,423 8.4 1.6
GCNII 110,535 10.0 2.1
GCNII 708,743 57.6 12.3

GCNII-SCT 1,237,127 110.3 29.6
EGNN 712,839 65.6 14.4

EGNN-SCT 316,551 24.8 4.5
Citeseer

GCN 245,638 8.3 1.5
GCN-SCT 301,830 15.5 4.0

GCNII 999,174 57.6 12.3
GCNII-SCT 1,001,222 65.9 15.7

EGNN 739,078 39.6 7.2
EGNN-SCT 540,934 24.0 5.8

PubMed
GCN 40,451 9.0 1.8

GCN-SCT 40,707 11.1 2.2
GCNII 326,659 98.2 12.8

GCNII-SCT 590,851 71.7 17.4
EGNN 592,899 93.7 2.5

EGNN-SCT 130,563 16.0 3.1
Coauthor-Physics

GCN 547,141 35.2 8.0
GCN-SCT 547,397 33.9 8.3

GCNII 555,333 49.1 10.3
GCNII-SCT 555,461 67.0 9.5

EGNN 672,069 176.4 47.9
EGNN-SCT 572,229 51.7 14.8

Ogbn-arxiv
GCN 27,240 50.4 21.1

GCN-SCT 28,392 62.6 24.4
GCNII 76,392 205.4 94.8

GCNII-SCT 80,616 253.0 108.9
EGNN 77,416 206.8 98.0

EGNN-SCT 81,640 254.0 112.3

Table 4: Number of model parameters for varying numbers of layers using the optimal model hyperparameters.
The SCT is added at each layer and the size of the additional parameters scales with the number of eigenvectors
with an eigenvalue of one for matrix G in (2).
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D.3 Additional Section 6.2 details for citation datasets629

Table 5 lists the hyperparameters used in the grid search in generating the results in Table 1. Also,630

Table 7 reports the classification accuracy of different models with different depths using either ReLU631

or leaky ReLU.

Parameter Values
Learning Rate {1e-4, 1e-3, 1e-2}

Weight Decay (FC) {0, 1e-4, 5e-4, 1e-3, 5e-3, 1e-2}
Weight Decay (Conv) {0, 1e-4, 5e-4, 1e-3, 5e-3, 1e-2}

Dropout {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}
Hidden Channels {16, 32, 64, 128}

GCNII-α {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}
GCNII-θ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}

EGNN-cmax {0.5, 1.0, 1.5, 2.0}
EGNN-α {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}
EGNN-θ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}

Table 5: Hyperparameter grid search for Table 1.

632

Layers 2 4 16 32
Cora

EGNN/EGNN-SCT 83.2/83.4 84.2/84.3 85.4/85.5 85.3/85.5
Citeseer

EGNN/EGNN-SCT 72.0/72.1 71.9/72.3 72.4/72.6 72.3/72.8
PubMed

EGNN/EGNN-SCT 79.2/79.4 79.5/79.8 80.1/80.1 80.0/80.2
Coauthor-Physics

EGNN/EGNN-SCT 92.6/92.8 92.9/93.0 93.1/93.3 93.3/93.3
Ogbn-arxiv

EGNN/EGNN-SCT 68.4/68.5 71.1/71.3 72.7/73.0 72.7/72.9

Table 6: Test accuracy for EGNN and EGNN-SCT using SReLU activation function of varying depth on citation
networks with the split discussed in Section 6.2. (Unit:%)

D.3.1 Vanishing gradients633

Figure 4 shows the vanishing gradient problem for training deep GCN – with or without SCT – in634

comparison to models like GCNII and EGNN. This figure plots ||∂Hout/∂H l|| for layers l ∈ [0, 32]635

as the training epochs run from 0 to 100. Figures 4 (a) and (b) illustrate the vanishing gradient issue636

for GCN and that it persists for GCN-SCT. Figures 4 (c) and (e) illustrate that GCNII and EGNN637

do not suffer from vanishing gradients, and furthermore, because these models connect H0 to every638

layer, the gradient with respect to the weights in the first layer is nonzero. What is interesting about639

the addition of SCT to both EGNN and GCNII is that the intermediate gradients become large as the640

training epochs progress shown in Figure 4 (d) and (f).641

D.4 Additional Section 6.2 details for other datasets642

Table 8 reports the mean test accuracy and standard deviation over ten folds of the WebKB and643

WikipediaNetwork datasets using SCT-based models.644

Table 9 lists the average computational time for each epoch for different models of the same depth645

– 8 layers. These results show that integrating SCT into GNNs only results in a small amount of646

computational overhead.647
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Figure 4: Training gradients for ||∂Hout/∂H l|| for l ∈ [0, 32] layers and 100 training epochs on the Citeseer
dataset. Here, all models have 32 layers and 16 hidden dimensions for each layer. We observe that (a) GCN
suffers from vanishing gradients. By contrast (c) GCNII and (e) EGNN do not suffer from vanishing gradients,
and we can observe their skip connection to H0. Because these models (GCNII/GCNII-SCT and EGNN/EGNN-
SCT) connect H0 to every layer, the gradient at the first layer is nonzero. We notice that while SCT does
not overcome vanishing gradients for (b) GCN-SCT, it is able to increase the norm of the gradients for the
intermediate layers in (d) GCNII-SCT and (f) EGNN-SCT.

Cora
ReLU leaky ReLU

Layers 2 4 16 32 2 4 16 32
GCN-SCT 81.2 80.3 71.4 67.2 82.9 82.8 68.0 65.5

GCNII-SCT 83.5 83.8 82.7 83.3 83.8 84.8 84.8 85.5
EGNN-SCT 84.1 83.8 82.3 80.8 83.7 84.5 83.3 82.0

Citeseer
ReLU leaky ReLU

Layers 2 4 16 32 2 4 16 32
GCN-SCT 69.0 67.3 51.5 50.3 69.9 67.7 55.4 51.0

GCNII-SCT 72.8 72.8 72.8 73.3 72.8 72.9 73.8 72.7
EGNN-SCT 72.5 72.0 70.2 71.8 73.1 71.7 72.6 72.9

PubMed
ReLU leaky ReLU

Layers 2 4 16 32 2 4 16 32
GCN-SCT 79.4 78.2 75.9 77.0 79.8 78.4 76.1 76.9

GCNII-SCT 79.7 80.1 80.7 80.7 79.6 80.0 80.3 80.7
EGNN-SCT 79.7 80.1 80.0 80.4 79.8 80.4 80.3 80.2

Coauthor-Physics
ReLU leaky ReLU

Layers 2 4 16 32 2 4 16 32
GCN-SCT 91.8 ± 1.6 91.6 ± 3.0 44.5 ± 13.0 42.6 ± 17.0 92.6 ± 1.6 92.5 ± 5.9 50.9 ± 15.0 43.6 ± 16.0

GCNII-SCT 94.4 ± 0.4 93.5 ± 1.2 93.7 ± 0.7 93.8 ± 0.6 94.0 ± 0.4 94.2 ± 0.3 93.3 ± 0.7 94.1 ± 0.3
EGNN-SCT 93.6 ± 0.7 94.1 ± 0.4 93.4 ± 0.8 93.8 ± 1.3 93.9 ± 0.7 94.0 ± 0.7 94.0 ± 0.7 93.3 ± 0.9

Ogbn-arxiv
ReLU leaky ReLU

Layers 2 4 16 32 2 4 16 32
GCN-SCT 71.7 ± 0.3 72.6 ± 0.3 71.4 ± 0.2 71.9 ± 0.3 72.1 ± 0.3 72.7 ± 0.3 72.3 ± 0.2 72.3 ± 0.3

GCNII-SCT 71.4 ± 0.3 72.1 ± 0.3 72.2 ± 0.2 71.8 ± 0.2 72.0 ± 0.3 72.2 ± 0.2 72.4 ± 0.3 72.1 ± 0.3
EGNN-SCT 68.5 ± 0.6 71.0 ± 0.5 72.8 ± 0.5 72.1 ± 0.6 67.7 ± 0.5 71.3 ± 0.5 72.3 ± 0.5 72.3 ± 0.5

Table 7: Test accuracy results for models of varying depth with ReLU or leaky ReLU activation function on the
citation network datasets using the split discussed in Section 6.2.

Cornell Texas Wisconsin Chameleon Squirrel
GCN-SCT 55.95 ± 8.5 62.16 ± 5.7 54.71 ± 4.4 38.44 ± 4.3 35.31 ± 1.9

GCNII-SCT 75.41 ± 2.2 83.34 ± 4.5 86.08 ± 3.8 64.52 ± 2.2 47.51 ± 1.4

Table 8: Test mean ± standard deviation accuracy from 10 fold cross validation on five heterophilic datasets
with fixed 48/32/20% splits. The depth of each model is 8 layers with 16 hidden channels. (Unit: second)

Cornell Texas Wisconsin Chameleon Squirrel
GCN [20] 0.011 0.013 0.012 0.011 0.022
GCNII [6] 0.017 0.018 0.017 0.013 0.022
GCN-SCT 0.015 0.017 0.015 0.011 0.023

GCNII-SCT 0.017 0.018 0.017 0.020 0.025

Table 9: Average computational time per epoch for five heterophilic datasets with fixed 48/32/20% splits. The
depth of each model is 8 layers with 16 hidden channels. (Unit: second)
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NeurIPS Paper Checklist648

The checklist is designed to encourage best practices for responsible machine learning research,649

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove650

the checklist: The papers not including the checklist will be desk rejected. The checklist should651

follow the references and precede the (optional) supplemental material. The checklist does NOT652

count towards the page limit.653

Please read the checklist guidelines carefully for information on how to answer these questions. For654

each question in the checklist:655

• You should answer [Yes] , [No] , or [NA] .656

• [NA] means either that the question is Not Applicable for that particular paper or the657

relevant information is Not Available.658

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).659

The checklist answers are an integral part of your paper submission. They are visible to the660

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it661

(after eventual revisions) with the final version of your paper, and its final version will be published662

with the paper.663

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.664

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a665

proper justification is given (e.g., "error bars are not reported because it would be too computationally666

expensive" or "we were unable to find the license for the dataset we used"). In general, answering667

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we668

acknowledge that the true answer is often more nuanced, so please just use your best judgment and669

write a justification to elaborate. All supporting evidence can appear either in the main paper or the670

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification671

please point to the section(s) where related material for the question can be found.672

IMPORTANT, please:673

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",674

• Keep the checklist subsection headings, questions/answers and guidelines below.675

• Do not modify the questions and only use the provided macros for your answers.676

1. Claims677

Question: Do the main claims made in the abstract and introduction accurately reflect the678

paper’s contributions and scope?679

Answer: [Yes]680

Justification: See details in Sections 3, 4, 5, and 6.681

Guidelines:682

• The answer NA means that the abstract and introduction do not include the claims683

made in the paper.684

• The abstract and/or introduction should clearly state the claims made, including the685

contributions made in the paper and important assumptions and limitations. A No or686

NA answer to this question will not be perceived well by the reviewers.687

• The claims made should match theoretical and experimental results, and reflect how688

much the results can be expected to generalize to other settings.689

• It is fine to include aspirational goals as motivation as long as it is clear that these goals690

are not attained by the paper.691

2. Limitations692

Question: Does the paper discuss the limitations of the work performed by the authors?693

Answer: [Yes]694

Justification: See Section 7.695

25



Guidelines:696

• The answer NA means that the paper has no limitation while the answer No means that697

the paper has limitations, but those are not discussed in the paper.698

• The authors are encouraged to create a separate "Limitations" section in their paper.699

• The paper should point out any strong assumptions and how robust the results are to700

violations of these assumptions (e.g., independence assumptions, noiseless settings,701

model well-specification, asymptotic approximations only holding locally). The authors702

should reflect on how these assumptions might be violated in practice and what the703

implications would be.704

• The authors should reflect on the scope of the claims made, e.g., if the approach was705

only tested on a few datasets or with a few runs. In general, empirical results often706

depend on implicit assumptions, which should be articulated.707

• The authors should reflect on the factors that influence the performance of the approach.708

For example, a facial recognition algorithm may perform poorly when image resolution709

is low or images are taken in low lighting. Or a speech-to-text system might not be710

used reliably to provide closed captions for online lectures because it fails to handle711

technical jargon.712

• The authors should discuss the computational efficiency of the proposed algorithms713

and how they scale with dataset size.714

• If applicable, the authors should discuss possible limitations of their approach to715

address problems of privacy and fairness.716

• While the authors might fear that complete honesty about limitations might be used by717

reviewers as grounds for rejection, a worse outcome might be that reviewers discover718

limitations that aren’t acknowledged in the paper. The authors should use their best719

judgment and recognize that individual actions in favor of transparency play an impor-720

tant role in developing norms that preserve the integrity of the community. Reviewers721

will be specifically instructed to not penalize honesty concerning limitations.722

3. Theory Assumptions and Proofs723

Question: For each theoretical result, does the paper provide the full set of assumptions and724

a complete (and correct) proof?725

Answer: [Yes]726

Justification: See Sections 3 and 4 for details.727

Guidelines:728

• The answer NA means that the paper does not include theoretical results.729

• All the theorems, formulas, and proofs in the paper should be numbered and cross-730

referenced.731

• All assumptions should be clearly stated or referenced in the statement of any theorems.732

• The proofs can either appear in the main paper or the supplemental material, but if733

they appear in the supplemental material, the authors are encouraged to provide a short734

proof sketch to provide intuition.735

• Inversely, any informal proof provided in the core of the paper should be complemented736

by formal proofs provided in appendix or supplemental material.737

• Theorems and Lemmas that the proof relies upon should be properly referenced.738

4. Experimental Result Reproducibility739

Question: Does the paper fully disclose all the information needed to reproduce the main ex-740

perimental results of the paper to the extent that it affects the main claims and/or conclusions741

of the paper (regardless of whether the code and data are provided or not)?742

Answer: [Yes]743

Justification: See Section 6 and supplementary materials for details.744

Guidelines:745

• The answer NA means that the paper does not include experiments.746
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• If the paper includes experiments, a No answer to this question will not be perceived747

well by the reviewers: Making the paper reproducible is important, regardless of748

whether the code and data are provided or not.749

• If the contribution is a dataset and/or model, the authors should describe the steps taken750

to make their results reproducible or verifiable.751

• Depending on the contribution, reproducibility can be accomplished in various ways.752

For example, if the contribution is a novel architecture, describing the architecture fully753

might suffice, or if the contribution is a specific model and empirical evaluation, it may754

be necessary to either make it possible for others to replicate the model with the same755

dataset, or provide access to the model. In general. releasing code and data is often756

one good way to accomplish this, but reproducibility can also be provided via detailed757

instructions for how to replicate the results, access to a hosted model (e.g., in the case758

of a large language model), releasing of a model checkpoint, or other means that are759

appropriate to the research performed.760

• While NeurIPS does not require releasing code, the conference does require all submis-761

sions to provide some reasonable avenue for reproducibility, which may depend on the762

nature of the contribution. For example763

(a) If the contribution is primarily a new algorithm, the paper should make it clear how764

to reproduce that algorithm.765

(b) If the contribution is primarily a new model architecture, the paper should describe766

the architecture clearly and fully.767

(c) If the contribution is a new model (e.g., a large language model), then there should768

either be a way to access this model for reproducing the results or a way to reproduce769

the model (e.g., with an open-source dataset or instructions for how to construct770

the dataset).771

(d) We recognize that reproducibility may be tricky in some cases, in which case772

authors are welcome to describe the particular way they provide for reproducibility.773

In the case of closed-source models, it may be that access to the model is limited in774

some way (e.g., to registered users), but it should be possible for other researchers775

to have some path to reproducing or verifying the results.776

5. Open access to data and code777

Question: Does the paper provide open access to the data and code, with sufficient instruc-778

tions to faithfully reproduce the main experimental results, as described in supplemental779

material?780

Answer: [Yes]781

Justification: See supplementary materials for details.782

Guidelines:783

• The answer NA means that paper does not include experiments requiring code.784

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/785

public/guides/CodeSubmissionPolicy) for more details.786

• While we encourage the release of code and data, we understand that this might not be787

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not788

including code, unless this is central to the contribution (e.g., for a new open-source789

benchmark).790

• The instructions should contain the exact command and environment needed to run to791

reproduce the results. See the NeurIPS code and data submission guidelines (https:792

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.793

• The authors should provide instructions on data access and preparation, including how794

to access the raw data, preprocessed data, intermediate data, and generated data, etc.795

• The authors should provide scripts to reproduce all experimental results for the new796

proposed method and baselines. If only a subset of experiments are reproducible, they797

should state which ones are omitted from the script and why.798

• At submission time, to preserve anonymity, the authors should release anonymized799

versions (if applicable).800
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• Providing as much information as possible in supplemental material (appended to the801

paper) is recommended, but including URLs to data and code is permitted.802

6. Experimental Setting/Details803

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-804

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the805

results?806

Answer: [Yes]807

Justification: See Section 6 for details.808

Guidelines:809

• The answer NA means that the paper does not include experiments.810

• The experimental setting should be presented in the core of the paper to a level of detail811

that is necessary to appreciate the results and make sense of them.812

• The full details can be provided either with the code, in appendix, or as supplemental813

material.814

7. Experiment Statistical Significance815

Question: Does the paper report error bars suitably and correctly defined or other appropriate816

information about the statistical significance of the experiments?817

Answer: [Yes]818

Justification: See Section 6 for details.819

Guidelines:820

• The answer NA means that the paper does not include experiments.821

• The authors should answer "Yes" if the results are accompanied by error bars, confi-822

dence intervals, or statistical significance tests, at least for the experiments that support823

the main claims of the paper.824

• The factors of variability that the error bars are capturing should be clearly stated (for825

example, train/test split, initialization, random drawing of some parameter, or overall826

run with given experimental conditions).827

• The method for calculating the error bars should be explained (closed form formula,828

call to a library function, bootstrap, etc.)829

• The assumptions made should be given (e.g., Normally distributed errors).830

• It should be clear whether the error bar is the standard deviation or the standard error831

of the mean.832

• It is OK to report 1-sigma error bars, but one should state it. The authors should833

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis834

of Normality of errors is not verified.835

• For asymmetric distributions, the authors should be careful not to show in tables or836

figures symmetric error bars that would yield results that are out of range (e.g. negative837

error rates).838

• If error bars are reported in tables or plots, The authors should explain in the text how839

they were calculated and reference the corresponding figures or tables in the text.840

8. Experiments Compute Resources841

Question: For each experiment, does the paper provide sufficient information on the com-842

puter resources (type of compute workers, memory, time of execution) needed to reproduce843

the experiments?844

Answer: [Yes]845

Justification: See Section 6 for details.846

Guidelines:847

• The answer NA means that the paper does not include experiments.848

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,849

or cloud provider, including relevant memory and storage.850

28



• The paper should provide the amount of compute required for each of the individual851

experimental runs as well as estimate the total compute.852

• The paper should disclose whether the full research project required more compute853

than the experiments reported in the paper (e.g., preliminary or failed experiments that854

didn’t make it into the paper).855

9. Code Of Ethics856

Question: Does the research conducted in the paper conform, in every respect, with the857

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?858

Answer: [Yes]859

Justification: We have fully complied with the NeurIPS Code of Ethics.860

Guidelines:861

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.862

• If the authors answer No, they should explain the special circumstances that require a863

deviation from the Code of Ethics.864

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-865

eration due to laws or regulations in their jurisdiction).866

10. Broader Impacts867

Question: Does the paper discuss both potential positive societal impacts and negative868

societal impacts of the work performed?869

Answer: [Yes]870

Justification: See Section 8 for details.871

Guidelines:872

• The answer NA means that there is no societal impact of the work performed.873

• If the authors answer NA or No, they should explain why their work has no societal874

impact or why the paper does not address societal impact.875

• Examples of negative societal impacts include potential malicious or unintended uses876

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations877

(e.g., deployment of technologies that could make decisions that unfairly impact specific878

groups), privacy considerations, and security considerations.879

• The conference expects that many papers will be foundational research and not tied880

to particular applications, let alone deployments. However, if there is a direct path to881

any negative applications, the authors should point it out. For example, it is legitimate882

to point out that an improvement in the quality of generative models could be used to883

generate deepfakes for disinformation. On the other hand, it is not needed to point out884

that a generic algorithm for optimizing neural networks could enable people to train885

models that generate Deepfakes faster.886

• The authors should consider possible harms that could arise when the technology is887

being used as intended and functioning correctly, harms that could arise when the888

technology is being used as intended but gives incorrect results, and harms following889

from (intentional or unintentional) misuse of the technology.890

• If there are negative societal impacts, the authors could also discuss possible mitigation891

strategies (e.g., gated release of models, providing defenses in addition to attacks,892

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from893

feedback over time, improving the efficiency and accessibility of ML).894

11. Safeguards895

Question: Does the paper describe safeguards that have been put in place for responsible896

release of data or models that have a high risk for misuse (e.g., pretrained language models,897

image generators, or scraped datasets)?898

Answer: [Yes]899

Justification: The data used in this paper are all benchmark tasks established by the commu-900

nity.901

Guidelines:902
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• The answer NA means that the paper poses no such risks.903

• Released models that have a high risk for misuse or dual-use should be released with904

necessary safeguards to allow for controlled use of the model, for example by requiring905

that users adhere to usage guidelines or restrictions to access the model or implementing906

safety filters.907

• Datasets that have been scraped from the Internet could pose safety risks. The authors908

should describe how they avoided releasing unsafe images.909

• We recognize that providing effective safeguards is challenging, and many papers do910

not require this, but we encourage authors to take this into account and make a best911

faith effort.912

12. Licenses for existing assets913

Question: Are the creators or original owners of assets (e.g., code, data, models), used in914

the paper, properly credited and are the license and terms of use explicitly mentioned and915

properly respected?916

Answer: [Yes]917

Justification: We have fully acknowledged baseline models, codes, and data in our paper.918

Guidelines:919

• The answer NA means that the paper does not use existing assets.920

• The authors should cite the original paper that produced the code package or dataset.921

• The authors should state which version of the asset is used and, if possible, include a922

URL.923

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.924

• For scraped data from a particular source (e.g., website), the copyright and terms of925

service of that source should be provided.926

• If assets are released, the license, copyright information, and terms of use in the927

package should be provided. For popular datasets, paperswithcode.com/datasets928

has curated licenses for some datasets. Their licensing guide can help determine the929

license of a dataset.930

• For existing datasets that are re-packaged, both the original license and the license of931

the derived asset (if it has changed) should be provided.932

• If this information is not available online, the authors are encouraged to reach out to933

the asset’s creators.934

13. New Assets935

Question: Are new assets introduced in the paper well documented and is the documentation936

provided alongside the assets?937

Answer: [Yes]938

Justification: We have provided details documents for the codes.939

Guidelines:940

• The answer NA means that the paper does not release new assets.941

• Researchers should communicate the details of the dataset/code/model as part of their942

submissions via structured templates. This includes details about training, license,943

limitations, etc.944

• The paper should discuss whether and how consent was obtained from people whose945

asset is used.946

• At submission time, remember to anonymize your assets (if applicable). You can either947

create an anonymized URL or include an anonymized zip file.948

14. Crowdsourcing and Research with Human Subjects949

Question: For crowdsourcing experiments and research with human subjects, does the paper950

include the full text of instructions given to participants and screenshots, if applicable, as951

well as details about compensation (if any)?952

Answer: [NA]953
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Justification: The paper does not involve crowdsourcing nor research with human subjects.954

Guidelines:955

• The answer NA means that the paper does not involve crowdsourcing nor research with956

human subjects.957

• Including this information in the supplemental material is fine, but if the main contribu-958

tion of the paper involves human subjects, then as much detail as possible should be959

included in the main paper.960

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,961

or other labor should be paid at least the minimum wage in the country of the data962

collector.963

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human964

Subjects965

Question: Does the paper describe potential risks incurred by study participants, whether966

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)967

approvals (or an equivalent approval/review based on the requirements of your country or968

institution) were obtained?969

Answer: [NA]970

Justification: The paper does not involve crowdsourcing nor research with human subjects.971

Guidelines:972

• The answer NA means that the paper does not involve crowdsourcing nor research with973

human subjects.974

• Depending on the country in which research is conducted, IRB approval (or equivalent)975

may be required for any human subjects research. If you obtained IRB approval, you976

should clearly state this in the paper.977

• We recognize that the procedures for this may vary significantly between institutions978

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the979

guidelines for their institution.980

• For initial submissions, do not include any information that would break anonymity (if981

applicable), such as the institution conducting the review.982
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