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Abstract

A Bloom filter is a memory-efficient data structure for approximate membership
queries used in numerous fields of computer science. Recently, learned Bloom
filters that achieve better memory efficiency using machine learning models have
attracted attention. One such filter, the partitioned learned Bloom filter (PLBF),
achieves excellent memory efficiency. However, PLBF requires a O(N3k) time
complexity to construct the data structure, where N and k are the hyperparameters
of PLBF. One can improve memory efficiency by increasing N , but the construction
time becomes extremely long. Thus, we propose two methods that can reduce the
construction time while maintaining the memory efficiency of PLBF. First, we
propose fast PLBF, which can construct the same data structure as PLBF with a
smaller time complexity O(N2k). Second, we propose fast PLBF++, which can
construct the data structure with even smaller time complexityO(Nk logN+Nk2).
Fast PLBF++ does not necessarily construct the same data structure as PLBF. Still,
it is almost as memory efficient as PLBF, and it is proved that fast PLBF++ has
the same data structure as PLBF when the distribution satisfies a certain constraint.
Our experimental results from real-world datasets show that (i) fast PLBF and
fast PLBF++ can construct the data structure up to 233 and 761 times faster than
PLBF, (ii) fast PLBF can achieve the same memory efficiency as PLBF, and (iii)
fast PLBF++ can achieve almost the same memory efficiency as PLBF. The codes
are available at https://github.com/atsukisato/FastPLBF.

1 Introduction

Membership query is a problem of determining whether a given query q is contained within a set
S. Membership query is widely used in numerous areas, including networks and databases. One
can correctly answer the membership query by keeping the set S and checking whether it contains q.
However, this approach is memory intensive because we need to maintain S.

A Bloom filter [1] is a memory-efficient data structure that answers approximate membership queries.
A Bloom filter uses hash functions to compress the set into a bitstring and then answers the queries
using the bitstring. When a Bloom filter answers q ∈ S, it can be wrong (false positives can
arise); when it answers q /∈ S, it is always correct (no false negatives arise). A Bloom filter
has been incorporated into numerous systems, such as networks [2, 3, 4], databases [5, 6, 7], and
cryptocurrencies [8, 9].

A traditional Bloom filter does not care about the distribution of the set or the queries. Therefore, even
if the distribution has a characteristic structure, a Bloom filter cannot take advantage of it. Kraska et
al. proposed learned Bloom filters (LBFs), which utilize the distribution structure using a machine
learning model [10]. LBF achieves a better trade-off between memory usage and false positive rate
(FPR) than the original Bloom filter. Since then, several studies have been conducted on various
LBFs [11, 12, 13].
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Figure 1: PLBF partitions the score
space into k regions and assigns
backup Bloom filters with different
FPRs to each region.
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Figure 2: PLBF divides the score space into N segments
and then clusters the N segments into k regions. PLBF
uses dynamic programming to find the optimal way to
cluster segments into regions.

Partitioned learned Bloom filter (PLBF) [14] is a variant of the LBF. PLBF effectively uses the
distribution and is currently one of the most memory-efficient LBFs. To construct PLBF, a machine
learning model is trained to predict whether the input is included in the set. For a given element x,
the machine learning model outputs a score s(x) ∈ [0, 1], indicating the probability that S includes
x. PLBF divides the score space [0, 1] into N equal segments and then appropriately clusters the
N segments into k(< N) regions using dynamic programming (DP). Then, k backup Bloom filters
with different FPRs are assigned to each region. We can obtain a better (closer to optimal) data
structure with a larger N . However, PLBF builds DP tables O(N) times, and each DP table requires
O(N2k) time complexity to build, so the total time complexity amounts to O(N3k). Therefore, the
construction time increases rapidly as N increases.

We propose fast PLBF, which is constructed much faster than PLBF. Fast PLBF constructs the same
data structure as PLBF but with O(N2k) time complexity by omitting the redundant construction of
DP tables. Furthermore, we propose fast PLBF++, which can be constructed faster than fast PLBF,
with a time complexity of O(Nk logN +Nk2). Fast PLBF++ accelerates DP table construction by
taking advantage of a characteristic that DP tables often have. We proved that fast PLBF++ constructs
the same data structure as PLBF when the probability of x ∈ S and the score s(x) are ideally well
correlated. Our contributions can be summarized as follows.

• We propose fast PLBF, which can construct the same data structure as PLBF with less time
complexity.

• We propose fast PLBF++, which can construct the data structure with even less time
complexity than fast PLBF. Fast PLBF++ constructs the same data structure as PLBF when
the probability of x ∈ S and the score s(x) are ideally well correlated.

• Experimental results show that fast PLBF can construct the data structure up to 233 times
faster than PLBF and achieves the same memory efficiency as PLBF.

• Experimental results show that fast PLBF++ can construct the data structure up to 761 times
faster than PLBF and achieves almost the same memory efficiency as PLBF.

2 Preliminaries: PLBF

First, we define terms to describe PLBF [14]. Let S be a set of elements for which the Bloom filter is
to be built, and let Q be the set of elements not included in S that is used when constructing PLBF
(S ∩Q = ∅). The elements included in S are called keys, and those not included are called non-keys.
To build PLBF, a machine learning model is trained to predict whether a given element x is included
in the set S or Q. For a given element x, the machine learning model outputs a score s(x) ∈ [0, 1].
The score s(x) indicates “how likely is x to be included in the set S.”

Next, we explain the design of PLBF. PLBF partitions the score space [0, 1] into k regions and assigns
backup Bloom filters with different FPRs to each region (Figure 1). Given a target overall FPR,
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F ∈ (0, 1), we optimize t ∈ Rk+1 and f ∈ Rk to minimize the total memory usage. Here, t is a
vector of thresholds for partitioning the score space into k regions, and f is a vector of FPRs for each
region, satisfying t0 = 0 < t1 < · · · < tk = 1 and 0 < fi ≤ 1 (i = 1 . . . k).

Next, we explain how PLBF finds the optimal t and f . PLBF divides the score space [0, 1] into N(>
k) segments and then finds the optimal t and f using DP. Deciding how to cluster N segments into k
consecutive regions corresponds to determining the threshold t (Figure 2). We denote the probabilities
that the key and non-key scores are contained in the i-th segment by gi and hi, respectively. After
we cluster the segments (i.e., determine the thresholds t), we denote the probabilities that the key and
non-key scores are contained in the i-th region by Gi and Hi, respectively (e.g., g1 + g2 + g3 = G1

in Figure 2).

We can find the thresholds t that minimize memory usage by solving the following problem for each
j = k . . . N (see the appendix for details); we find a way to cluster the 1st to (j − 1)-th segments
into k − 1 regions while maximizing

k−1∑
i=1

Gi log2

(
Gi

Hi

)
. (1)

PLBF solves this problem by building a j×k DP table DPj
KL[p][q] (p = 0 . . . j−1 and q = 0 . . . k−1)

for each j. DPj
KL[p][q] denotes the maximum value of

∑q
i=1 Gi log2

(
Gi

Hi

)
one can get when you

cluster the 1st to p-th segments into q regions. To construct PLBF, one must find a clustering method
that achieves DPj

KL[j − 1][k − 1]. DPj
KL can be computed recursively as follows:

DPj
KL[p][q] =


0 (p = 0 ∧ q = 0)

−∞ ((p = 0 ∧ q > 0) ∨ (p > 0 ∧ q = 0))

max
i=1...p

(
DPj

KL[i− 1][q − 1] + dKL(i, p)
)

(else),

(2)
where the function dKL(il, ir) is the following function defined for integers il and ir satisfying
1 ≤ il ≤ ir ≤ N :

dKL(il, ir) =

(
ir∑

i=il

gi

)
log2

(∑ir
i=il

gi∑ir
i=il

hi

)
. (3)

The time complexity to construct this DP table is O(j2k). Then, by tracing the recorded transitions
backward from DPj

KL[j−1][k−1], we obtain the best clustering with a time complexity ofO(k). As
the DP table is constructed for each j = k . . . N , the overall complexity isO(N3k). The pseudo-code
for PLBF construction is provided in the appendix.

We can divide the score space more finely with a larger N and thus obtain a near-optimal t. However,
the time complexity increases rapidly with increasing N .

3 Fast PLBF

We propose fast PLBF, which constructs the same data structure as PLBF more quickly than PLBF
by omitting the redundant construction of DP tables. Fast PLBF uses the same design as PLBF and
finds the best clustering (i.e., t) and FPRs (i.e., f ) to minimize memory usage.

PLBF constructs a DP table for each j = k . . . N . We found that this computation is redundant and
that we can also use the last DP table DPN

KL for j = k . . . N − 1. This is because the maximum
value of

∑k−1
i=1 Gi log2

(
Gi

Hi

)
when clustering the 1st to (j − 1)-th segments into k − 1 regions is

equal to DPN
KL[j − 1][k − 1]. We can obtain the best clustering by tracing the transitions backward

from DPN
KL[j − 1][k − 1]. The time complexity of tracing the transitions is O(k), which is faster

than constructing the DP table.

This is a simple method, but it is a method that only becomes apparent after some organization on the
optimization problem of PLBF. PLBF solves N − k + 1 optimization problems separately, i.e., for
each of j = k, . . . , N , the problem of “finding the optimal t and f when the k-th region consists of
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Figure 3: The cases (a) where there is no “crossing” of the recorded transitions when computing
DPKL[p][q] (p = 1 . . . N − 1) from DPKL[p][q − 1] (p = 0 . . . N − 2) and (b) where there is. The
arrows indicate which transition took the maximum value. Empirically, the probability of “crossing”
is small.
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Figure 4: Computing DPKL[p][q] (p = 1 . . . N −1) from
DPKL[p][q − 1] (p = 0 . . . N − 2) via the matrix A. The
computation is the same as solving the matrix problem
for matrix A. When the score distribution is ideal, A is a
monotone matrix.
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Figure 5: Example of a matrix prob-
lem for a 4×5 monotone matrix. The
position of the maximum value in
each row (filled in gray) is moved to
the “lower right”.

the j, . . . , N th segments” is solved separately. Fast PLBF, on the other hand, solves the problems for
j = k, . . . , N − 1 faster by reusing the computations in the problem for j = N . The reorganization
of the problem in the appendix makes it clear that this reuse does not change the answer.

The pseudo-code for fast PLBF construction is provided in the appendix. The time complexity of
building DPN

KL is O(N2k), and the worst-case complexity of subsequent computations is O(Nk2).
Because N > k, the total complexity is O(N2k), which is faster than O(N3k) for PLBF, although
fast PLBF constructs the same data structure as PLBF.

Fast PLBF extends the usability of PLBF. In any application of PLBF, fast PLBF can be used instead
of PLBF because fast PLBF can be constructed quickly without losing the accuracy of PLBF. Fast
PLBF has applications in a wide range of computing areas [15, 5], and is significantly superior
in applications where construction is frequently performed. Fast PLBF also has the advantage of
simplifying hyperparameter settings. When using PLBF, the hyperparameters N and k must be
carefully determined, considering the trade-off between accuracy and construction speed. With
fast PLBF, on the other hand, it is easy to determine the appropriate hyperparameters because the
construction time is short enough, even if N and k are set somewhat large.

4 Fast PLBF++

We propose fast PLBF++, which can be constructed even faster than fast PLBF. Fast PLBF++
accelerates the construction of the DP table DPN

KL by taking advantage of a characteristic that DP
tables often have. When the transitions recorded in computing DPN

KL[p][q] (p = 1 . . . N − 1) from
DPN

KL[p][q − 1] (p = 0 . . . N − 2) are represented by arrows, as in Figure 3, we find that the arrows
rarely “cross” (at locations other than endpoints). In other words, the transitions tend to have few
intersections (Figure 3(a)) rather than many (Figure 3(b)). Fast PLBF++ takes advantage of this
characteristic to construct the DP table with less complexityO(Nk logN), thereby reducing the total
construction complexity to O(Nk logN +Nk2).
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Figure 6: A divide-and-conquer algorithm for
solving a matrix problem for a monotone ma-
trix: (a) An exhaustive search is performed on
the middle row, and (b) the result is used to nar-
row down the search area. (c) This is repeated
recursively.
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Figure 7: When the number of regions is fixed at
q and the number of segments is increased by 1,
the optimal tq−1 remains unchanged or increases
if A is a monotone matrix (a). When A is not
a monotone matrix (b), the optimal tq−1 may
decrease.

First, we define the terms to describe fast PLBF++. For simplicity, DPN
KL is denoted as DPKL in this

section. The (N − 1)× (N − 1) matrix A is defined as follows:

Api =

{−∞ (i = p+ 1, p+ 2, . . . , N − 1)

DPKL[i− 1][q − 1] + dKL(i, p) (else).
(4)

Then, from the definition of DPKL,
DPKL[p][q] = max

i=1...N−1
Api. (5)

The matrix A represents the intermediate calculations involved in determining DPKL[p][q] from
DPKL[p][q − 1] (Figure 4).

Following Aggarwal et al. [16], we define the monotone matrix and matrix problem as follows.
Definition 4.1. Let B be an n×m real matrix, and we define a function J : {1 . . . n} → {1 . . .m},
where J(i) is the j ∈ {1 . . .m} such that Bij is the maximum value of the i-th row of B. If
there is more than one such j, let J(i) be the smallest. A matrix B is called a monotone matrix if
J(i1) ≤ J(i2) for any i1 and i2 that satisfy 1 ≤ i1 < i2 ≤ n. Finding the maximum value of each
row of a matrix is called a matrix problem.

An example of a matrix problem for a monotone matrix is shown in Figure 5. Solving the matrix
problem for a general n×m matrix requires O(nm) time complexity because all matrix values must
be checked. Meanwhile, if the matrix is known to be a monotone matrix, the matrix problem for
this matrix can be solved with a time complexity of O(n+m log n) using the divide-and-conquer
algorithm [16]. Here, the exhaustive search for the middle row and the refinement of the search range
are repeated recursively (Figure 6).

We also define an ideal score distribution as follows.
Definition 4.2. A score distribution is ideal if the following holds:

g1
h1
≤ g2

h2
≤ · · · ≤ gN

hN
. (6)

An ideal score distribution implies that the probability of x ∈ S and the score s(x) are ideally well
correlated. In other words, an ideal score distribution means that the machine learning model learns
the distribution ideally.

“Few crossing transitions” in Figure 3 indicates that A is a monotone matrix or is close to it. It is
somewhat intuitive that A is a monotone matrix or is close to it. This is because the fact that A is
a monotone matrix implies that the optimal tq−1 does not decrease when the number of regions is
fixed at q and the number of segments increases by 1 (Figure 7). It is intuitively more likely that tq−1

remains unchanged or increases, as in Figure 7(a), than that tq−1 decreases, as in Figure 7(b). Fast
PLBF++ takes advantage of this insight to rapidly construct DP tables.

From Equation (5), determining DPKL[p][q] (p = 1 . . . N−1) from DPKL[p][q−1] (p = 0 . . . N−2)
is equivalent to solving the matrix problem of matrix A. When A is a monotone matrix, the divide-and-
conquer algorithm can solve this problem with O(N logN) time complexity. (The same algorithm
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Figure 8: Histograms of the score distributions of keys and non-keys.
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Figure 9: Ratio of keys to non-keys.

can obtain a not necessarily correct solution even if A is not a monotone matrix.) By computing
DPKL[p][q] with this algorithm sequentially for q = 1 . . . k − 1, we can construct a DP table with
a time complexity of O(Nk logN). The worst-case complexity of the subsequent calculations is
O(Nk2), so the total complexity is O(Nk logN + Nk2). This is the fast PLBF++ construction
algorithm, and this is faster than fast PLBF, which requires O(N2k) computations.

Fast PLBF++ does not necessarily have the same data structure as PLBF because A is not necessarily
a monotone matrix. However, as the following theorem shows, we can prove that A is a monotone
matrix under certain conditions.

Theorem 4.3. If the score distribution is ideal, A is a monotone matrix.

The proof is given in the appendix. When the distribution is not ideal, matrix A is not necessarily
a monotone matrix, but as mentioned above, it is somewhat intuitive that A is close to a monotone
matrix. In addition, as will be shown in the next section, experiment results from real-world datasets
whose distribution is not ideal show that fast PLBF++ is almost as memory efficient as PLBF.

5 Experiments

This section evaluates the experimental performance of fast PLBF and fast PLBF++. We compared
the performances of fast PLBF and fast PLBF++ with four baselines: Bloom filter [1], Ada-BF [11],
sandwiched learned Bloom filter (sandwiched LBF) [12], and PLBF [14]. Similar to PLBF, Ada-BF
is an LBF that partitions the score space into several regions and assigns different FPRs to each
region. However, Ada-BF relies heavily on heuristics for clustering and assigning FPRs. Sandwiched
LBF is an LBF that “sandwiches” a machine learning model with two Bloom filters. This achieves
better memory efficiency than the original LBF by optimizing the size of two Bloom filters.

To facilitate the comparison of different methods or hyperparameters results, we have slightly modified
the original PLBF framework. The original PLBF was designed to minimize memory usage under
the condition of a given false positive rate. However, this approach makes it difficult to compare
the results of different methods or hyperparameters. This is because both the false positive rate at
test time and the memory usage vary depending on the method and hyperparameters, which often
makes it difficult to determine the superiority of the results. Therefore, in our experiments, we used a
framework where the expected false positive rate is minimized under the condition of memory usage.
This approach makes it easy to obtain two results with the same memory usage and compare them by
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Figure 10: Construction time.

the false positive rate at test time. See the appendix for more information on how this framework
modification will change the construction method of PLBFs.

Datasets: We evaluated the algorithms using the following two datasets.

• Malicious URLs Dataset: As in previous papers [11, 14], we used Malicious URLs Dataset
[17]. The URLs dataset comprises 223,088 malicious and 428,118 benign URLs. We
extracted 20 lexical features such as URL length, use of shortening, number of special
characters, etc. We used all malicious URLs and 342,482 (80%) benign URLs as the training
set, and the remaining benign URLs as the test set.

• EMBER Dataset: We used the EMBER dataset [18] as in the PLBF research. The dataset
consists of 300,000 malicious and 400,000 benign files, along with the features of each file.
We used all malicious files and 300,000 (75%) benign files as the train set and the remaining
benign files as the test set.

While any model can be used for the classifier, we used LightGBM [19] because of its speed in
training and inference, as well as its memory efficiency and accuracy. The sizes of the machine
learning model for the URLs and EMBER datasets are 312 Kb and 1.19 Mb, respectively. The training
time of the machine learning model for the URLs and EMBER datasets is 1.09 and 2.71 seconds,
respectively. The memory usage of LBF is the total memory usage of the backup Bloom filters and
the machine learning model. Figure 8 shows a histogram of each dataset’s score distributions of keys
and non-keys. We can see that the frequency of keys increases and that of non-keys decreases as the
score increases. In addition, Figure 9 plots gi/hi (i = 1 . . . N) when N = 1, 000. We can see that
gi/hi tends to increase as i increases, but the increase is not monotonic (i.e., the score distribution is
not ideal).

5.1 Construction time

We compared the construction times of fast PLBF and fast PLBF++ with those of existing methods.
Following the experiments in the PLBF paper, hyperparameters for PLBF, fast PLBF, and fast PLBF++
were set to N = 1, 000 and k = 5.

Figure 10 shows the construction time for each method. The construction time for learned Bloom
filters includes not only the time to insert keys into the Bloom filters but also the time to train the
machine learning model and the time to compute the optimal parameters (t and f in the case of
PLBF).

Ada-BF and sandwiched LBF use heuristics to find the optimal parameters, so they have shorter
construction times than PLBF but have worse accuracy. PLBF has better accuracy but takes more
than 3 minutes to find the optimal t and f . On the other hand, our fast PLBF and fast PLBF++ take
less than 2 seconds. As a result, Fast PLBF constructs 50.8 and 34.3 times faster than PLBF, and
fast PLBF++ constructs 63.1 and 39.3 times faster than PLBF for the URLs and EMBER datasets,
respectively. This is about the same construction time as sandwiched LBF, which relies heavily on
heuristics and, as we will see in the next section, is much less accurate than PLBF.
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Figure 11: Trade-off between memory usage and FPR.
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Figure 12: Ablation study for hyper-parameter N .

5.2 Memory Usage and FPR

We compared the trade-off between memory usage and FPR for fast PLBF and fast PLBF++ with
Bloom filter, Ada-BF, sandwiched LBF, and PLBF. Following the experiments in the PLBF paper,
hyperparameters for PLBF, fast PLBF, and fast PLBF++ were always set to N = 1, 000 and k = 5.

Figure 11 shows each method’s trade-off between memory usage and FPR. PLBF, fast PLBF, and fast
PLBF++ have better Pareto curves than the other methods for all datasets. Fast PLBF constructs the
same data structure as PLBF in all cases, so it has exactly the same accuracy as PLBF. Fast PLBF++
achieves almost the same accuracy as PLBF. Fast PLBF++ has up to 1.0019 and 1.000083 times
higher false positive rates than PLBF for the URLs and EMBER datasets, respectively.

5.3 Ablation study for hyper-parameters

The parameters of the PLBFs are memory size, N , and k. The memory size is specified by the user,
and N and k are hyperparameters that are determined by balancing construction time and accuracy.
In the previous sections, we set N to 1,000 and k to 5, following the original paper on PLBF. In this
section, we perform ablation studies for these hyperparameters to confirm that our proposed methods
can construct accurate data structures quickly, no matter what hyperparameter settings are used. We
also confirm that the accuracy tends to be better and the construction time increases as N and k are
increased, and that the construction time of the proposed methods increases much slower than PLBF.

Figure 12 shows the construction time and false positive rate with various N while the memory usage
of the backup Bloom filters is fixed at 500 Kb and k is fixed at 5. For all three PLBFs, the false
positive rate tends to decrease as N increases. (Note that this is the false positive rate on test data,
so it does not necessarily decrease monotonically. The appendix shows that the expected value of
the false positive rate calculated using training data decreases monotonically as N increases.) Also,
as N increases, the PLBF construction time increases rapidly, but the fast PLBF construction time
increases much more slowly than that, and for fast PLBF++, the construction time changes little. This
is because the construction time of PLBF is asymptotically proportional to N3, while that of fast
PLBF and fast PLBF++ is proportional to N2 and N logN , respectively. The experimental results
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Figure 13: Ablation study for hyper-parameter k.

show that the two proposed methods can achieve high accuracy without significantly changing the
construction time with large N .

Figure 13 shows the construction time and false positive rate with various k while the backup bloom
filter memory usage is fixed at 500 Kb and N is fixed at 1,000. For all three PLBFs, the false positive
rate tends to decrease as k increases. For the EMBER dataset, the false positive rate stops decreasing
at about k = 20, while for the URLs dataset, it continues to decrease even at about k = 500. (Just as
in the case of experiments with varying N , this decrease is not necessarily monotonic.) In addition,
the construction times of all three PLBFs increase proportionally to k, but fast PLBF has a much
shorter construction time than PLBF, and fast PLBF++ has an even shorter construction time than fast
PLBF. When k = 50, fast PLBF constructs 233 and 199 times faster than PLBF, and fast PLBF++
constructs 761 and 500 times faster than PLBF for the URLs and EMBER datasets, respectively.
The experimental results indicate that by increasing k, the two proposed methods can achieve high
accuracy without significantly affecting the construction time.

6 Related Work

Approximate membership query is a query that asks whether the query q is contained in the set S
while allowing for false positives with a small probability ε. One can prove that at least |S| log2

(
1
ε

)
bits of memory must be used to answer the approximate membership query if the elements in the set
or queries are selected with equal probability from the universal set [20].

A Bloom filter [1] is one of the most basic data structures for approximate membership queries. It
compresses the set S into a bit string using hash functions. This bit string and the hash functions are
then used to answer the queries. To achieve an FPR of ε, a Bloom filter requires |S| log2

(
1
ε

)
log2 e

bits of memory. This is log2 e times the theoretical lower bound.

Various derivatives have been proposed that achieve better memory efficiency than the original Bloom
filter. The cuckoo filter [21] is more memory efficient than the original Bloom filter and supports
dynamic addition and removal of elements. Pagh et al. [22] proposed a replacement for Bloom filter
that achieves a theoretical lower bound. Various other memory-efficient filters exist, including the
vacuum filter [23], xor filter [24], and ribbon filter [25]. However, these derivatives do not consider
the structure of the distribution and thus cannot take advantage of it.

Kraska et al.[10] proposed using a machine learning model as a prefilter of a backup Bloom filter. Ada-
BF [11] extended this design and proposed to exploit the scores output by the machine learning model.
PLBF [14] uses a design similar to that of Ada-BF but introduces fewer heuristics for optimization
than Ada-BF. Mitzenmacher [12] proposed an LBF that “sandwiches” a machine learning model with
two Bloom filters. This achieves better memory efficiency than the original LBF but can actually be
interpreted as a special case of PLBF.

7 Limitation and Future Work

As explained in Section 4, it is somewhat intuitive that A is a monotone matrix or close to it, so it is
also intuitive that fast PLBF++ achieves accuracy close to PLBF. Experimental results on the URLs
and EMBER datasets also suggest that fast PLBF++ achieves almost the same accuracy as PLBF,
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even when the score distribution is not ideal. This experimental rule is further supported by the
results of the artificial data experiments described in the appendix. However, there is no theoretical
support for the accuracy of fast PLBF++. Theoretical support for how fast PLBF++ accuracy may
degrade relative to PLBF is a future issue.

Besides, it is possible to consider faster methods by making stronger assumptions than fast PLBF++.
Fast PLBF++ assumes the monotonicity of matrix A. We adopted this assumption because matrix
A is proved to be monotone under intuitive assumptions about the data distribution. However, by
assuming stronger assumptions about matrix A, the computational complexity of the construction
could be further reduced. For example, if matrix A is totally monotone, the matrix problem for matrix
A can be solved in O(N) using algorithms such as [16, 26]. Using such existing DP algorithms is a
promising direction toward even faster or more accurate methods, and is a future work.

8 Conclusion

PLBF is an outstanding LBF that can effectively utilize the distribution of the set and queries captured
by a machine learning model. However, PLBF is computationally expensive to construct. We
proposed fast PLBF and fast PLBF++ to solve this problem. Fast PLBF is superior to PLBF because
fast PLBF constructs exactly the same data structure as PLBF but does so faster. Fast PLBF++ is
even faster than fast PLBF and achieves almost the same accuracy as PLBF and fast PLBF. These
proposed methods have greatly expanded the range of applications of PLBF.
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Appendices

Appendix A details the optimization problem designed in the original PLBF paper [14] and its solution.
It includes a comprehensive analysis of the optimization problem and a detailed description of how
PLBF’s method leads (under certain assumptions) to a solution to the optimization problem, which
are not provided in [14]. Appendix B presents details of PLBF and the fast PLBF algorithm along
with pseudo-code. Appendix C gives the proof of Theorem 4.3, a theorem about the accuracy of fast
PLBF++. In Appendix D, we explain the trivial modifications to the PLBF framework that we made
for the experiments. Appendix E describes a detailed ablation study of the PLBFs hyperparameters,
N and k. Appendix F describes the experiments on the simplified solution method presented in the
PLBF paper. Appendix G describes experiments with artificial datasets to evaluate the experimental
performance of fast PLBF++ in detail.

Appendix A Solution of the optimization problems

In the original PLBF paper [14], the analysis with mathematical expressions was conducted only for
the relaxed problem, while no analysis utilizing mathematical expressions was performed for the
general problem. Consequently, it was unclear which calculations were redundant, leading to the
repetition of constructing similar DP tables. Hence, this appendix provides a comprehensive analysis
of the general problem. It presents the optimal solution and the corresponding value of the objective
function using mathematical expressions. This analysis uncovers redundant calculations, enabling
the derivation of fast PLBF.

The optimization problem designed by PLBF [14] can be written as follows:

minimize
f ,t

k∑
i=1

c|S|Gi log2

(
1

fi

)

subject to
k∑

i=1

Hifi ≤ F

t0 = 0 < t1 < t2 < · · · < tk = 1

fi ≤ 1 (i = 1 . . . k).

(7)

The objective function represents the total memory usage of the backup Bloom filters. The first
constraint equation represents the condition that the expected overall FPR is below F . c ≥ 1 is a
constant determined by the type of backup Bloom filters. G and H are determined by t. Once t is
fixed, we can solve this optimization problem to find the optimal f and the minimum value of the
objective function. In the original PLBF paper [14], the condition fi ≤ 1 (i = 1 . . . k) was relaxed;
however, here we conduct the analysis without relaxation. We assume Gi > 0, Hi > 0 (i = 1 . . . k)
and |S| > 0.

The Lagrange function is defined using the Lagrange multipliers µ ∈ Rk and ν ∈ R, as follows:

L(f ,µ, ν) =

k∑
i=1

c|S|Gi log2

(
1

fi

)
+

k∑
i=1

µi(fi − 1) + ν

(
k∑

i=1

Hifi − F

)
. (8)

From the KKT condition, there exist µ̄ and ν̄ in the local optimal solution f̄ of this optimization
problem, and the following holds:

∂L

∂fi
(f̄ , µ̄, ν̄) = 0 (i = 1 . . . k) (9)

f̄i − 1 ≤ 0, µ̄i ≥ 0, µ̄i(f̄i − 1) = 0 (i = 1 . . . k) (10)
k∑

i=1

Hif̄i − F ≤ 0, ν̄ ≥ 0, ν̄

(
k∑

i=1

Hif̄i − F

)
= 0. (11)

We define If=1 and If<1 as If=1 = {i | f̄i = 1} and If<1 = {i | f̄i < 1}. If=1∪If<1 = {1 . . . k}
and If=1 ∩ If<1 = ∅ are satisfied. Furthermore, we assume that If<1 ̸= ∅. This means that there
is at least one region that uses a backup Bloom filter with an FPR smaller than 1.
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By introducing If=1 and If<1, Equations (9, 10, 11) can be organized as follows:

c|S|Gi = µ̄i + ν̄Hi, µ̄i ≥ 0, f̄i = 1 (i ∈ If=1) (12)

c|S|Gi = f̄iν̄Hi, µ̄i = 0, f̄i < 1 (i ∈ If<1) (13)∑
i∈If=1

Hi +
∑

i∈If<1

Hif̄i − F ≤ 0, ν̄ ≥ 0, ν̄

 ∑
i∈If=1

Hi +
∑

i∈If<1

Hif̄i − F

 = 0. (14)

Here, we get ν̄ > 0. This is because if we assume ν̄ = 0, Equation (13) implies that Gi = 0 for
i ∈ If<1( ̸= ∅), which contradicts the assumption that Gi > 0. From ν̄ > 0 and Equation (13),

f̄i =
c|S|
ν̄

Gi

Hi
(i ∈ If<1). (15)

From Equations (14, 15) and ν̄ > 0,∑
i∈If=1

Hi +
∑

i∈If<1

Hi
c|S|
ν̄

Gi

Hi
− F = 0 (16)

c|S|
ν̄

=
F −

∑
i∈If=1

Hi∑
i∈If<1

Gi
. (17)

Substituting Equations (15, 17) into the objective function of the optimization problem (7), we obtain

k∑
i=1

c|S|Gi log2

(
1

f̄i

)
=

∑
i∈If<1

−c|S|Gi log2

(
F −

∑
j∈If=1

Hj∑
j∈If<1

Gj

Gi

Hi

)
(18)

= c|S|(1−Gf=1) log2

(
1−Gf=1

F −Hf=1

)
− c|S|

∑
i∈If<1

Gi log2

(
Gi

Hi

)
.

(19)

We define Gf=1 and Hf=1 as Gf=1 =
∑

i∈If=1
Gi and Hf=1 =

∑
i∈If=1

Hi, respectively.

PLBF makes the following assumption:
Assumption A.1. For optimal t and f , If=1 = ∅ or If=1 = {k}.

In other words, PLBF assumes that there is at most one region for which f = 1, and if there is one, it
is the region with the highest score. PLBF then tries all possible thresholds tk−1 (under the division
of the score space).

In the following, we discuss the optimal f and t under the assumption that the j-th to N -th segments
are clustered as the k-th region (j ∈ {k . . . N}).
In the case of If=1 = ∅, because Gf=1 = Hf=1 = 0, Equation (19) becomes

c|S| log2
(
1

F

)
− c|S|Gk log2

(
Gk

Hk

)
− c|S|

k−1∑
i=1

Gi log2

(
Gi

Hi

)
. (20)

Meanwhile, in the case of If=1 = {k}, Equation (19) becomes

c|S|(1−Gk) log2

(
1−Gk

F −Hk

)
− c|S|

k−1∑
i=1

Gi log2

(
Gi

Hi

)
. (21)

In both cases, the terms other than the last one are constants under the assumption that the j-th to N -th
segments are clustered as the k-th region. Therefore, the value of the objective function is minimized
when the 1st to (j−1)-th segments are clustered in a way that maximizes

∑k−1
i=1 Gi log2

(
Gi

Hi

)
. Thus,

the problem of finding t that minimizes memory usage can be reduced to the following problem: for
each j = k . . . N , we find a way to cluster the 1st to (j − 1)-th segments into k − 1 regions that
maximizes

∑k−1
i=1 Gi log2

(
Gi

Hi

)
.
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Algorithm 1 PLBF [14]
Input:
g ∈ RN : probabilities that the keys are contained in each segment
h ∈ RN : probabilities that the non-keys are contained in each segment
F ∈ (0, 1) : target overall FPR
k ∈ N : number of regions

Output:
t ∈ Rk+1 : threshold boundaries of each region
f ∈ Rk : FPRs of each region

Algorithm:
THRESMAXDIVDP(g,h, j, k) :

constructs DPj
KL and calculates the optimal thresholds by tracing the transitions backward

from DPj
KL[j − 1][k − 1]

OPTIMALFPR(g,h, t, F, k) :
returns the optimal FPRs for each region under the given thresholds

SPACEUSED(g,h, t,f) :
returns the space size used by the backup Bloom filters for the given thresholds and FPRs

MinSpaceUsed←∞
tbest ← None
fbest ← None
for j = k . . . N

t← THRESMAXDIVDP(g,h, j, k)
f ← OPTIMALFPR(g,h, t, F, k)
if MinSpaceUsed > SPACEUSED(g,h, t,f) then

MinSpaceUsed← SPACEUSED(g,h, t,f)
tbest ← t
fbest ← f

return tbest,fbest

Appendix B Algorithm details

In this appendix, we explain the algorithms for PLBF and the proposed method using pseudo-code in
detail. This will help to clarify how each method differs from the others.

First, we show the PLBF algorithm in Algorithm 1. For details of OPTIMALFPR and SPACEUSED,
please refer to Appendix B and Equation (2) in the original PLBF paper [14], respectively. The
worst case time complexities of OPTIMALFPR and SPACEUSED are O(k2) and O(k), respectively.
As the DP table is constructed with a time complexity of O(j2k) for each j = k . . . N , the overall
complexity is O(N3k).

Next, we show the fast PLBF algorithm in Algorithm 2. The time complexity of building DPN
KL is

O(N2k), and the worst-case complexity of subsequent computations isO(Nk2). Because N > k, the
total complexity is O(N2k), which is faster than O(N3k) for PLBF, although fast PLBF constructs
the same data structure as PLBF.

Finally, we describe the fast PLBF++ algorithm. The fast PLBF++ algorithm is nearly identical to
fast PLBF, but it calculates approximated DPN

KL with a computational complexity of O(Nk logN).
Since the remaining calculations are unchanged from fast PLBF, the overall computational complexity
is O(Nk logN +Nk2).

Appendix C Proof of Theorem 4.3

In this appendix, we present a proof of Theorem 4.3. It demonstrates that fast PLBF++ can attain the
same accuracy as PLBF and fast PLBF under certain conditions.

The following lemma holds.
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Algorithm 2 Fast PLBF
Algorithm:

MAXDIVDP(g,h, N, k) :
constructs DPN

KL

THRESMAXDIV(DPN
KL, j, k) :

calculates the optimal thresholds by tracing the transitions backward from DPN
KL[j−1][k−1]

MinSpaceUsed←∞
tbest ← None
fbest ← None
DPN

KL ← MAXDIVDP(g,h, N, k)
for j = k . . . N

t← THRESMAXDIV(DPN
KL, j, k)

f ← OPTIMALFPR(g,h, t, F, k)
if MinSpaceUsed > SPACEUSED(g,h, t,f) then

MinSpaceUsed← SPACEUSED(g,h, t,f)
tbest ← t
fbest ← f

return tbest,fbest

Lemma C.1. Let u1, u2, v1, and v2 be real numbers satisfying

0 < u1 < u2 (22)
0 < v1 < v2 (23)
u1

v1
≥ u2

v2
. (24)

Furthermore, we define the function D(x, y) for real numbers x > 0 and y > 0 as follows:

D(x, y) =

{
(u1 + x) log2

(
u1 + x

v1 + y

)
− u1 log2

(
u1

v1

)}
−
{
(u2 + x) log2

(
u2 + x

v2 + y

)
− u2 log2

(
u2

v2

)}
.

(25)
If x

y ≥
u1

v1
holds, then D(x, y) ≥ 0.

Proof.

∂D

∂x
= log2

(
u1 + x

v1 + y

)
− log2

(
u2 + x

v2 + y

)
(26)

∂D

∂y
= −u1 + x

v1 + y
+

u2 + x

v2 + y
. (27)

From Equations (22, 23, 24), when 0 < x, 0 < y, and x
y ≥

u1

v1
, we obtain

u1 + x

v1 + y
≥ u2 + x

v2 + y
. (28)

Therefore,

∂D

∂x
≥ 0 (29)

∂D

∂y
≤ 0. (30)
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Thus,
inf

0<x,0<y, xy≥u1
v1

D(x, y) ≥ inf
0<x,0<y, xy=

u1
v1

D(x, y) (31)

= inf
z>0

D(zu1, zv1) (32)

= inf
z>0

{
zu1 log2

(
zu1

zv1

)
+ u2 log2

(
u2

v2

)
− (zu1 + u2) log2

(
zu1 + u1

zv1 + v1

)}
(33)

≥ 0. (34)
The transformation to Equation (34) is due to Jensen’s inequality [27]. This shows that if x

y ≥
u1

v1
,

then D(x, y) ≥ 0.

Proof. We prove Theorem 4.3 by contradiction.

Assume that the (N − 1) × (N − 1) matrix A is not a monotone matrix. That is, we assume that
there exists p (1 ≤ p ≤ N − 2) such that J(p) > J(p+ 1). Let J(i) be the smallest j such that Aij

equals the maximum of the i-th row of A. We define a := J(p) and a′ := J(p+ 1) (a > a′ from the
assumption for contradiction).

From the definitions of A and J(i), we obtain the following:
DPKL[p][q] = DPKL[a− 1][q − 1] + dKL(a, p) (35)

DPKL[p+ 1][q] = DPKL[a
′ − 1][q − 1] + dKL(a

′, p+ 1) (36)

DPKL[p][q] > DPKL[a
′ − 1][q − 1] + dKL(a

′, p) (37)
DPKL[p+ 1][q] ≥ DPKL[a− 1][q − 1] + dKL(a, p+ 1). (38)

Using Equations (35, 36, 38), we evaluate the right side of Equation (37) minus the left side of
Equation (37).

DPKL[a
′ − 1][q − 1] + dKL(a

′, p)−DPKL[p][q] (39)

= {DPKL[p+ 1][q]− dKL(a
′, p+ 1)}+ dKL(a

′, p)− {DPKL[a− 1][q − 1] + dKL(a, p)} (40)

= {DPKL[p+ 1][q]−DPKL[a− 1][q − 1]}+ dKL(a
′, p)− dKL(a

′, p+ 1)− dKL(a, p) (41)

≥ dKL(a, p+ 1) + dKL(a
′, p)− dKL(a

′, p+ 1)− dKL(a, p) (42)

= {dKL(a, p+ 1)− dKL(a, p)} − {dKL(a
′, p+ 1)− dKL(a

′, p)} . (43)
Equations (35, 36) are used for the transformation to Equation (40), and Equation (42) is used for the
transformation to Equation (38).

We define u1, u2, v1, v2, x, and y as follows:

u1 :=

p∑
i=a

gi, u2 :=

p∑
i=a′

gi, x := gp+1,

v1 :=

p∑
i=a

hi, v2 :=

p∑
i=a′

hi, y := hp+1.

(44)

From the conditions of ideal score distribution and a′ < a, the followings hold:
0 < u1 < u2 (45)
0 < v1 < v2 (46)
x

y
≥ u1

v1
≥ u2

v2
(47)

0 < x, y. (48)
Therefore, from Lemma C.1,{

(u1 + x) log2

(
u1 + x

v1 + y

)
− u1 log2

(
u1

v1

)}
−
{
(u2 + x) log2

(
u2 + x

v2 + y

)
− u2 log2

(
u2

v2

)}
(49)

= {dKL(a, p+ 1)− dKL(a, p)} − {dKL(a
′, p+ 1)− dKL(a

′, p)} (50)
≥ 0. (51)
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Algorithm 3 OptimalFPR_F (Algorithm 1 in [14])
Input:
G ∈ RN : probabilities that the keys are contained in each region
H ∈ RN : probabilities that the non-keys are contained in each region
F ∈ (0, 1) : target overall FPR
k ∈ N : number of regions

Output:
f ∈ Rk : FPRs of each region

for i = 1 . . . k
fi ← Gi·F

Hi

while ∃ i : fi > 1
for i = 1 . . . k

if fi > 1 then
fi ← 1

Gsum ← 0
Hsum ← 0
for i = 1 . . . k

if fi = 1 then
Gsum ← Gsum +Gi

Hsum ← Hsum +Hi

for i = 1 . . . k
if fi < 1 then

fi ← Gi·(F−Hsum)
Hi·(1−Gsum)

return f

Then, from Equations (39 . . . 43), we obtain

DPKL[a
′ − 1][q − 1] + dKL(a

′, p)−DPKL[p][q] ≥ 0. (52)

However, this contradicts Equation (37). Hence, Theorem 4.3 is proved.

Appendix D Modification of the PLBF framework

In this appendix, we describe the framework modifications we made to PLBF in our experiments.
In the original PLBF paper [14], the optimization problem was designed to minimize the amount of
memory usage under a given target false positive rate (Equation (7)). However, this framework makes
it difficult to compare the results of different methods and hyperparameters. Therefore, we designed
the following optimization problem, which minimizes the expected false positive rate under a given
memory usage condition:

minimize
f ,t

k∑
i=1

Hifi

subject to
k∑

i=1

c|S|Gi log2

(
1

fi

)
≤M

t0 = 0 < t1 < t2 < · · · < tk = 1

fi ≤ 1 (i = 1 . . . k),

(53)

where M is a parameter that is set by the user to determine the upper bound of memory usage and is
set by the user.

Analyzing as in Appendix A, we find that in order to find the optimal thresholds t, we need to find a
way to cluster the 1st to (j − 1)-th segments into k − 1 regions that maximizes

∑k−1
i=1 Gi log2

(
Gi

Hi

)
for each j = k . . . N . We can compute this using the same DP algorithm as in the original framework.
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Algorithm 4 OptimalFPR_M
Input:
G ∈ RN : probabilities that the keys are contained in each region
H ∈ RN : probabilities that the non-keys are contained in each region
M ∈ R : upper bound of the total memory usage of backup Bloom filters
k ∈ N : number of regions

Output:
f ∈ Rk : FPRs of each region

Ksum ← 0
for i = 1 . . . k

Ksum ← Ksum +Gi log2

(
Gi

Hi

)
β ← M+c|S|Ksum

c|S|
for i = 1 . . . k

fi ← 2−β Gi

Hi

while ∃ i : fi > 1
for i = 1 . . . k

if fi > 1 then
fi ← 1

Gsum ← 0
Hsum ← 0
Ksum ← 0
for i = 1 . . . k

if fi = 1 then
Gsum ← Gsum +Gi

Hsum ← Hsum +Hi

else
Ksum ← Ksum +Gi log2

(
Gi

Hi

)
β ← M+c|S|Ksum

c|S|(1−Gsum)

for i = 1 . . . k
if fi < 1 then

fi ← 2−β Gi

Hi

return f

Also similar to Appendix A, introducing If=1 and If<1 for analysis, it follows that the optimal false
positive rates f̄ is

f̄i = 2−β Gi

Hi
(i ∈ If<1), (54)

where

β =
M + c|S|

∑
i∈If<1

Gi log2

(
Gi

Hi

)
c|S| (1−Gf=1)

. (55)

In the original framework, the sets If=1 and If<1 are obtained by repeatedly solving the relaxed
problem and setting fi to 1 for regions where fi > 1 (for details of this algorithm, please refer to
the Section 3.3.3 in the original PLBF paper [14]). In our framework, we can find the sets If=1 and
If<1 in the same way.

The pseudo-code for OPTIMALFPR_F in the original PLBF paper [14] and OPTIMALFPR_M, which
is conditioned on the memory usage M , is shown in Algorithm 3 and Algorithm 4. For both functions,
the best-case complexity is O(k), and the worst-case complexity is O(k2).
Also, the fast PLBF algorithm for the case conditioned by memory usage is shown in Algorithm 5.
It is basically the same as the original PLBF Algorithm 2, but instead of using the SPACEUSED
function, the EXPECTEDFPR function is used here. Then, the algorithm selects the case when the
expected overall false positive rate calculated using the training data is minimized.
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Algorithm 5 Fast PLBF conditioned by memory usage
Algorithm:

MAXDIVDP(g,h, N, k) :
constructs DPN

KL

THRESMAXDIV(DPN
KL, j, k) :

calculates the optimal thresholds by tracing the transitions backward from DPN
KL[j−1][k−1]

OPTIMALFPR_M(g,h, t,M, k) :
returns the optimal FPRs for each region under the given thresholds and the memory usage

EXPECTEDFPR(g,h, t,f) :
returns the expected overall false positive rate for the given thresholds and FPRs

MinExpectedFPR←∞
tbest ← None
fbest ← None
DPN

KL ← MAXDIVDP(g,h, N, k)
for j = k . . . N

t← THRESMAXDIV(DPN
KL, j, k)

f ← OPTIMALFPR_M(g,h, t,M, k)
if MinExpectedFPR > EXPECTEDFPR(g,h, t,f) then

MinExpectedFPR← EXPECTEDFPR(g,h, t,f)
tbest ← t
fbest ← f

return tbest,fbest

Appendix E Additional ablation study for hyperparameters

This appendix details the ablation studies for the hyperparameters N and k. In this appendix,
we discuss the results of the ablation studies that were not presented in Section 5.3. The results
confirm that the expected false positive rate decreases monotonically as the hyperparameters N and k
increase. We also confirm that the proposed methods are superior to PLBF in terms of hyperparameter
determination.

First, we confirm that the expected false positive rate decreases monotonically as N or k increases.
The expected false positive rate is computed using training data (objective function in Equation (53)).
Figure 14 shows the expected false positive rate at various N and k. The ablation study for N is done
with k fixed to 5. The ablation study for k is done with N fixed to 1,000.

The expected false positive rate decreases monotonically as N or k increases for all datasets and
methods. However, as observed in Section 5.3, the false positive rate at test time does not necessarily
decrease monotonically as N or k increases. Also, the construction time increases as N or k increases.
Therefore, it is necessary to set appropriate N and k when practically using PLBFs.

Therefore, we next performed a comprehensive experiment at various N and k. Figure 15 shows
the construction time and false positive rate for each method when the memory usage of the backup
bloom filter is fixed at 500 Kb, N is set to 8, 16, . . . , 1024, and k is set to 3, 5, 10, and 20. The curves
connect the same k and different N results.

The results show that the proposed methods are superior to PLBF because it is easier to set hyper-
parameters to construct accurate data structures in a shorter time. PLBF can achieve the same level
of accuracy with the same construction time as fast PLBF and fast PLBF++ if the hyperparameters
N and k are set well. However, it is not apparent how N and k should be set when applying the
algorithm to unseen data. If N or k is set too large, the construction time will be very long, and if N
or k is set too small, the false positive rate will be large. The proposed methods can construct the
data structure quickly even if the hyperparameters N and k are too large. Therefore, by using the
proposed methods instead of PLBF and setting N and k relatively large, it is possible to quickly and
reliably construct a data structure with reasonable accuracy.

Furthermore, we performed an ablation study using fast PLBF to obtain guidelines for set-
ting the hyperparameters N and k (Figure 16). We observed false positive rates for N =

19



PLBF Fast PLBF (Proposed) Fast PLBF++ (Proposed)

(a) Malicious URLs Dataset.

(b) EMBER Dataset.

Figure 14: Expected false positive rate computed with training data at various N or k. The memory
usage of the backup bloom filter is 500 Kb. The ablation studies for N are done with k fixed to 5 (left
figures). The ablation studies for k are done with N fixed to 1,000 (right figures).

20, 50, 100, 200, 300, . . . , 1500 and k = 50, 100, 200, 300, . . . , 1400 with k < N . For the Mali-
cious URLs Dataset, the false positive rate was lowest when N = 1300 and k = 700 (in this case,
the fast PLBF construction is 333 times faster than PLBF). And for the Ember dataset, the false
positive rate was lowest when N = 500 and k = 50 (in this case, the fast PLBF construction is
45 times faster than PLBF). The Malicious URLs Dataset showed an almost monotonous decrease
in the false positive rate as N and k increased, while the Ember Dataset showed almost no such
trend. This is thought to be due to a kind of overlearning that occurs as N and k are increased in
the Ember Dataset. Although a method for determining the appropriate N and k has not yet been
established, we suggest setting N ∼ 1000 and k ∼ 100. This is because the false positive rate is
considered to be small enough at this level, and the proposed method can be constructed in a few tens
of seconds. In any case, the proposed method is useful because it is faster than the original PLBF for
any hyperparameters N and k.

Appendix F Experiments on PLBF solution to relaxed problem

The PLBF paper [14] proposes two methods: a simple method and a complete method. In this
appendix, we conducted experiments on the simple method and evaluated the difference in accuracy
compared to the complete method. The results revealed that, in certain cases, this method exhibited
significantly lower accuracy than the complete method. It was then confirmed that fast PLBF and fast
PLBF++ are superior to the simple method in terms of the trade-off between construction time and
accuracy.

The simpler method, described in section 3.3.3 of [14], does not consider the condition that fi ≤
1 (i = 1 . . . k) when finding the optimal t. In other words, this method solves the relaxed problem
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Figure 15: Construction time and FPR for various N and k. The curves connect the same k and
different N results. The memory usage of the backup bloom filter is 500 Kb.

that does not consider the condition fi ≤ 1 (i = 1 . . . k). The complete method uses the first
method repeatedly as a subroutine to solve the general problem and find the optimal t. Here, the time
complexity of the method for the relaxed problem is O(N2k), and that of the method for the general
problem is O(N3k).

We experimented with the simpler method. Figure 17 shows the construction time (the hyperpa-
rameters for PLBFs were set to N = 1, 000 and k = 5). The PLBF for the relaxed problem has
about the same construction time as our proposed fast PLBF. This is because the time complexity for
constructing the two methods is O(N2k) for both. Figure 18 shows the trade-off between memory
usage and FPR. On the URL dataset, the method for the relaxed problem is almost as accurate as
the method for the general problem. At most, it has a false positive rate of only 1.06 times greater.
On the other hand, on the EMBER dataset, the method for the relaxed problem is significantly less
accurate than the method for the general problem, especially when memory usage is small. It has up
to 1.48 times higher false positive rate than the complete method.

In summary, the method for the relaxed problem can construct the data structure faster than the
method for the general problem, but the accuracy can be significantly worse, especially when memory
usage is small. Our proposed fast PLBF has the same accuracy as the complete PLBF in almost the
same construction time as the method for the relaxed problem. Our fast PLBF++ can construct the
data structure in even less time than the method for the relaxed problem, and the accuracy degradation
is relatively small.
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(a) Malicious URLs Dataset
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(b) EMBER Dataset

Figure 16: FPR for N = 50, 100, 200, 300, . . . , 1400 and k = 20, 50, 100, 200, 300, . . . , 1500 with
k < N .

Appendix G Experiments with artificial datasets

We experimented with artificial datasets. Fast PLBF++ is faster to construct than fast PLBF. However,
fast PLBF++ is not theoretically guaranteed to be as accurate as PLBF, except when the score
distribution is “ideally monotonic.” Therefore, we evaluated the accuracy of fast PLBF++ by creating
a variety of datasets, ranging from data with monotonicity to data with little monotonicity. The results
show that the smaller the monotonicity of the score distribution, the larger the difference in accuracy
between fast PLBF++ and PLBF. We also observed that in most cases, the false positive rate for fast
PLBF++ is within 1.1 times that of PLBF, but in cases where there is little monotonicity in the score
distribution, the false positive rate of PLBF++ can be up to 1.85 times that of PLBF.

Here, we explain the process of creating an artificial dataset, which consists of two steps. First,
as in the original PLBF paper [14], the key and non-key score distribution is generated using the
Zipfian distribution. Figure 19(a) shows a histogram of the distribution of key and non-key scores at
this time, and Figure 20(a) shows gi/hi (i = 1 . . . N) when N = 1, 000. This score distribution is
ideally monotonic. Next, we perform swaps to add non-monotonicity to the score distribution. Swap
refers to changing the scores of the elements in the two adjacent segments so that the number of
keys and non-keys in the two segments are swapped. Namely, an integer i is randomly selected from
{1, 2, . . . , N−1}, and the scores of elements in the i-th segment are changed so that they are included
in the (i+1)-th segment, and the scores of elements in the (i+1)-th segment are changed to include
them in the i-th segment. Figures 19(b) to 19(i) and Figures 20(b) to 20(i) show the histograms of the
score distribution and gi/hi (i = 1 . . . N) for 10, 102, . . . , 108 swaps, respectively. It can be seen
that as the number of swaps increases, the score distribution becomes more non-monotonic. For each
case of the number of swaps, 10 different datasets were created using 10 different seeds.

Figure 21 shows the accuracy of each method for each number of swaps, with the seed set to 0.
Hyperparameters for PLBFs are set to N = 1, 000 and k = 5. It can be seen that fast PLBF and fast
PLBF++ achieve better Pareto curves than the other methods for all datasets. It can also be seen that
the higher the number of swaps, the more often there is a difference between the accuracy of fast
PLBF++ and fast PLBF.

Figure 22 shows the difference in accuracy between fast PLBF++ and fast PLBF for each swap count.
Here, the “relative false positive rate” is the false positive rate of fast PLBF++ divided by that of
PLBF constructed with the same hyperparameters and conditions (note that fast PLBF constructs the
same data structure as PLBF, so the false positive rate of fast PLBF is the same as that of PLBF). We
created 10 different datasets for each swap count and conducted 6 experiments for each dataset and
method with a memory usage of 0.25Mb, 0.5Mb, 0.75Mb, 1.0Mb, 1.25Mb, and 1.5Mb. Namely, we
compared the false positive rates of fast PLBF and fast PLBF++ under 60 conditions for each swap
count. The result shows that fast PLBF++ consistently achieves the same accuracy as PLBF in a total
of 240 experiments where the number of swaps is 103 or less. It also shows that in the experiments
where the number of swaps is 107 or less, the false positive rate of fast PLBF++ is less than 1.1 times
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Figure 17: Construction time. The memory usage of the backup bloom filter is 500 Kb, and the
hyperparameters for PLBFs are N = 1, 000 and k = 5.

that for PLBF, except for 14 cases. However, in the cases of 108 swap counts (where there is almost
no monotonicity in the score distribution), the false positive rate for fast PLBF++ is up to 1.85 times
that for PLBF.
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(b) EMBER Dataset

Figure 18: Trade-off between memory usage and FPR. The hyperparameters for PLBFs are N =
1, 000 and k = 5.
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Figure 19: Score distribution histograms of artificial datasets. All figures are with the seed set to 0.
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Figure 20: Ratio of key to non-key of artificial datasets. All figures are with the seed set to 0.
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(a) 0 swaps (score distribution is ideally monotonic)
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Figure 21: Trade-off between memory usage and FPR for artificial datasets. All figures are with the
seed set to 0. The hyperparameters for PLBFs are N = 1, 000 and k = 5.
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Figure 22: Distribution of the “relative false positive rate” of fast PLBF++ for each swap count.
The “relative false positive rate” is the false positive rate of fast PLBF++ divided by that of PLBF
constructed with the same hyperparameters and conditions.
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