CharSS: Character-Level Transformer Model for Sanskrit Word
Segmentation

Anonymous ACL submission

Abstract

Subword tokens in Indian languages inherently
carry meaning, and isolating them can enhance
NLP tasks, making sub-word segmentation a
crucial process. Segmenting Sanskrit and other
Indian languages into subtokens is not straight-
forward, as it may include sandhi, which may
lead to changes in the word boundaries. We pro-
pose a new approach of utilizing a (Character-
level Transformer model for Sanskrit Word
Segmentation (CharSS). We perform experi-
ments on three benchmark datasets to com-
pare the performance of our method against
existing methods. On the UoH+SandhiKosh
dataset, our method outperforms the current
state-of-the-art system by an absolute gain of
6.72 points in split prediction accuracy. On
the hackathon dataset our method achieves a
gain of 2.27 points over the current SOTA sys-
tem in terms of perfect match metric. We also
propose a use-case of Sanskrit-based segments
for a linguistically informed translation of tech-
nical terms to lexically similar low-resource
Indian languages. In two separate experimental
settings for this task, we achieve an average
improvement of 8.46 and 6.79 chrF++ scores,
respectively.

1 Introduction

Compound words are formed by combining two
or more meaningful subwords. In Indian lan-
guages, compounds may be formed either through
simple concatenation without boundary changes
or by following sandhi rules, resulting in bound-
ary modifications. The process of decompound-
ing a compound Sanskrit word involves segment-
ing it into smaller, meaningful lexical units. Ex-
isting methods used for the Sanskrit Word Seg-
mentation (SWS)' task can be roughly classified
into two categories: tackling the broader task
of SWS and sandhi splitting-specific techniques.

'We use the term segmentation for the task of splitting a
compound word into its meaningful constituents.

The former includes works like Sanskrit Heritage
Reader (SHR) (Gérard, 2003; Sriram et al., 2023),
which is a lexicon-driven shallow parser. Hell-
wig and Nehrdich (2018a) processes compound
sandhi words at the character level using recurrent
and convolutional neural networks. Sandhan et al.
(2022) presents TransLIST, integrating a module
that appends additional latent information from
SHR to the input sequence. It also employs a soft
masked attention mechanism to prioritize relevant
subword candidates and incorporates a path rank-
ing algorithm to mitigate erroneous predictions.
Alternately, Aralikatte et al. (2018) proposes a dual-
decoder approach where the first decoder identifies
the location for the sandhi split (sandhivicchéda)?,
and the second decoder predicts the segmented out-
put. Similarly, Dave et al. (2021) applies an RNN
encoder-decoder-based two-stage methodology to
predict the location and final splits.

In this work, we explore the efficacy of
byte/character-level Transformer models for the
task of sandhi splitting. To the best of our
knowledge, we are the first to explore an entirely
character-level encoder-decoder model based on
the Transformer architecture for this task. Byte-
and character-level models are known for their ro-
bustness in tasks sensitive to variations in spelling
and pronunciation. We believe this modeling frame-
work to be particularly well-suited to a task such
as sandhi splitting.

We also propose a use case of Sanskrit-based
segmented morphemes for a linguistically in-
formed translation of technical dictionary terms.
Kunchukuttan and Bhattacharyya (2016) shows the
importance of subword segmentation and lexical
similarity of languages in the translation task. In
this paper, we introduce a use case of Sanskrit-
based sub-word level segmentation in word and

2We follow ISO-15919 script to mention Roman transla-
tions of Indian language text for better readability.

phrase-level translation of academic/technical ter-
minologies to leverage the large overlap of vocabu-
lary among Indian languages.

Our main contributions are:

* We present the utilization of a character-based
Transformer model for the segmentation of com-
pound words (including sandhivicchéda) in San-
skrit (Section 2.1).

* We propose a Sanskrit-based input augmenta-
tion method using relatively resource-rich Hindi
translations to generate linguistically informed
technical lexicons for lexically similar, low-
resource languages (Section 2.2).

* Through comprehensive experiments we show
the efficacy of our proposed methodologies. We
test our methodology on three benchmark datasets
viz., UoH+SandhiKosh, SIGHUM, and Hackthon
Datasets for SWS. Similarly, we test and compare
our technical term translation method for multiple
low-resource languages (Section 3).

2 Methodology

2.1 Sanskrit Word Segmentation

Figure 1 illustrates the proposed methodology for
SWS. We formulate the task of sandhi splitting
and Sanskrit Word Segmentation as a standalone
sequence-to-sequence transformation problem. For
this purpose, we propose to utilize a character-level
Transformer model such as ByT5.

Compound word Segmented word
(Fftmoossiy: | (FRmosomais]

))

Script Conversion Module : [

&nimittakAraRasya+uddeSaH$

Devanagari to SLP1
Transformer Model

Byte/Character Level ‘

!

(T
&nimittakAraRasya+uddeSaH$ | / nimittakAraRasyoddeSaH

Figure 1: Illustration of the proposed methodology for
SWS task.

ByTS. The ByT5 (Byte-Level Text-to-Text Trans-
fer Transformer) model (Xue et al., 2022) processes
text as sequences of bytes, bypassing the need for
language-specific tokenization. This approach en-
ables it to handle diverse languages and scripts
effectively, including rare words and complex or-
thographies. ByT5 is built on the T5 (Raffel et al.,
2020) framework. It poses all tasks as text-to-text
problems, enhancing its versatility. ByT5 demon-
strates strong performance on multilingual and

code-mixed tasks, making it particularly suitable
for low-resource languages and domain-specific
vocabularies. The input to the model is a single
Sanskrit word (unigram), and the output consists
of the segmented sub-tokens of the word, which
are concatenated using a "+" symbol to indicate
the split. We prepend the target split with an "&"
symbol to denote the start and append a "$" symbol
to mark the end of the target split as shown in fig-
ure 1 to allow for precise delineation of morpheme
boundaries.

2.2 Technical Term Translation

In this paper, we propose a linguistically informed
method to translate technical terms in English to
low-resource Indian languages. This process en-
tails a crucial input augmentation phase prior to
the modeling and training stages to enhance the in-
put for model training. The raw dataset comprises
technical terms for English and translation to Hindi.
We prepare supplementary data for augmentation
using the methodology described below.

Sanskrit-based augmented input

There is a significant vocabulary overlap among
Indian languages, especially with Sanskrit. In this
work, we attempt to leverage this overlap by us-
ing available dictionaries in the resource-rich Hindi
language to generate the corresponding terms in
other Indian languages. Figure 2 shows the steps to
obtain the proposed augmented input. For a given
technical term, we first normalize the correspond-
ing term in Hindi as explained in Appendix A.1.
We then remove the Hindi-specific affixes from the
words to get the lemma. Finally, we perform seg-
mentation of the normalized lemma and pass them
as additional input to the translation model to aid
the generation of technical terms in low-resource
Indian languages.

Motivation to use Hindi data to generate
Sanskrit-based segments: There is a significant
under-representation of digital resources for all
other Indian languages compared to Hindi. Ap-
pendix A shows details of this digital data di-
vide. English-Hindi human-translated data is read-
ily available for the domains we considered in this
work. We obtained Sanskrit-based sub-word tokens
from the available Hindi data for over 76% of train-
ing and test instances. Furthermore, a word in one
language may have several different translations
in another language, depending on the context of
usage. Providing the augmented input helps dis-

O, e, g

For each subword, Lookup Sanskrit dictionary

Apply Subword
Segmentation

Sanskrit
dictionary

O, T, FEH Valid
VES = Sanskrit

Subword

Add to the
Sanskrit-based
input list

Invalid - Do not
add the segment
to the input

T the
D> splits to the

uffixes
A
Normalization
A
Hindi Word/Phrase

corresponding to
English Input

Final Input - to be provided to the
dictionary generation model : English

revaluation: term + split1 + split2 + .. splitn

revaluation <sep> i <sep> 100 <sep> woss

Figure 2: The process of generating Sanskrit-based aug-
mented input for the English term ’revaluation’, for
translation model

ambiguate the domain of the word. We provide a
detailed analysis to support this argument in Ap-
pendix A.4.

3 Experiments and Results

3.1 Data and Metrics

For the SWS task, following Dave et al. (2021)
and Sandhan et al. (2022), we use three publicly
available benchmark datasets, UoH corpus® com-
bined with the SandhiKosh dataset (Bhardwaj et al.,
2018), SIGHUM dataset (Krishna et al., 2017),
and hackathon dataset (Krishnan et al., 2020).
These datasets are carefully curated subsets of a
larger corpus DCS (Hellwig, 2010). The UoH cor-
pus+SandhiKosh dataset has 62273 and 15569 in-
stances as train and test sets. For this dataset, we
apply the pruning technique mentioned in (Dave
et al., 2021) to filter out invalid instances. The
size of the training, validation, and test sets for
the SIGHUM dataset are 97000, 3000, and 4200,
respectively, and for the hackathon dataset, it is
90000, 10332, and 9963, respectively. Contem-
porary deep-learning methodologies have demon-
strated enhanced performance when utilizing the
SLP1 script for Sanskrit. Consequently, we have
prepared all datasets in the SLP1 script to leverage
these performance improvements. We use word-
level accuracy as the evaluation metric for the SWS
task. To compare against (Sandhan et al., 2022),
we also calculate sentence level perfect match (PM)
for SIGHUM and hackathon datasets.

For the technical term translation task, we uti-
lize the technical bilingual dictionary datasets pro-
vided by NJ et al. (2024) which is a dataset curated

3https://sanskrit.uchyd.ac.in/Corpus/

Model LPA SPA
INU - 8.1

UoH - 47.2
INRIA - 59.9
DD-RNN 95.0 79.5
Sandhi Prakarana 92.3 86.8
ByT5 97.2 93.5

Table 1: Location prediction accuracies (LPA) and split
prediction accuracies (SPA) for different methods on
the UoH+SandhiKosh dataset.

Model | SIGHUM | Hackathon
| P R F PM | P R F PM
rcNN-SS | 96.86 96.83 96.84 87.08 | 96.40 95.15 95.77 77.62

TransLIST ‘ 98.80 98.93 98.86 93.97 ‘ 97.78 97.44 97.61 8547

TransLIST | 86.10 |

ByT5 ‘98‘68 98.42 98.53 93.78‘97.58 97711 97.63 87.7

Table 2: Word-level Precision, Recall, F1 and sentence-
level Perfect Match (PM) scores on SIGHUM and
hackathon.

from CSTT # dictionaries. The dataset consists of
word-level translations from English to 6 Indian
languages across 3 domains, viz., administrative,
biotechnology, and chemistry, and has 9094 terms
in the training data and 1285 in the test data for all
domains combined. We obtained Sanskrit-based in-
puts for all data instances by applying our approach
of generating Sanskrit-based additional inputs. We
use chrF++ (Popovié, 2017) as the evaluation met-
ric for all the experiments under this task.

3.2 Experiments on the SWS Task

We utilize the pre-trained checkpoint of the base
variant of the ByT5 model available via Hugging-
face ° and fine-tune it over the UoH+SandhiKosh,
SIGHUM dataset, and hackathon datasets as three
separate experiments.

Baselines. For the experiments performed over
the UoH+SandhiKosh dataset, we compare our
method against Sandhi Prakarana (Dave et al.,
2021), DD-RNN (Aralikatte et al., 2018), and 3
sandhi spitter tools viz (i) JNU Splitter (Sachin,
2007), (ii) UoH Splitter (Kumar et al., 2010), and
(iii) INRIA Sanskrit Heritage Reader (Huet, 2003;
Goyal and Huet, 2013). We reproduce and report
the scores reported by Dave et al. (2021). For DD-
RNN and the 3 sandhi tools, we report the scores

*https://cstt.education.gov.in/en
Shitps://huggingface.co/google/byt5-base

Test Dataset Model Hindi Marathi Gujarati Kannada Tamil Odia Average
Administrati NLLB 50.23 4542 43.35 45.68 4413 4322 4533
TSNS NLLB + Sanskrit 5474 46.07 4582 4725 4407 4445 4707
Biotechnolo NLLB 53.52 5191 3.79 12.38 18.46 17.16 26.20
€Y NLLB + Sanskrit 60.63 60.73 13.09 29.20 37.89 3582 39.56
Chemistr NLLB 4896 50.64 8.19 1659 17.43 2031 27.02
d NLLB + Sanskrit 54.36 55.35 1741 29.51 33.04 34.07 37.29

Table 3: chrF++ scores on the administrative, biotechnology, and chemistry domains for models with and without

additional Sanskrit-based input.

reported in (Aralikatte et al., 2018) and (Dave et al.,
2021). For the experiments performed over the
SIGHUM and hackathon datasets, we compare our
method against TransLIST (Sandhan et al., 2022)
and rcNN-SS (Hellwig and Nehrdich, 2018b).

Results. Tables 1 and 2 report the performance
of our methodology compared with the baselines
over the respective datasets. Table 1 shows that
our methodology outperforms all other baselines in
terms of both Location Prediction Accuracy (LPA)
and Split Prediction Accuracy (SPA) with abso-
lute gains of 4.86 and 6.72, respectively, on the
UoH+SandhiKosh dataset. TransLIST Sandhan
et al. (2022) utilizes a set of potential split can-
didates from SHR (referred to as LIST in their
paper), which provides additional linguistic infor-
mation for segmentation. Our model is not lin-
guistically informed like this as we feed only the
compound word to the model. Hence, our method
is not strictly comparable with the results shown in
row 2 of Table 2. Nevertheless, our method outper-
forms all other models on three out of four evalua-
tion metrics when tested on hackathon dataset. On
SIGHUM dataset, our method achieves competitive
scores. Sandhan et al. (2022) also reported the per-
formance of their model without the LIST module,
as shown in row 3 (TransLIST). The model with-
out the LIST step is more comparable to our setting
and we outperform this result as well, while failing
to outperform the scores in row 2. As a separate
experiment, we provide SHR input to our model
for SIGHUM data which outperforms TransLIST
on PM metric achieving a PM score of 94.31.

3.3 Experiments on the Technical Term
Translation Task

For this task, we have two experimental settings,
both formulated as text-to-text translation. In the
first setting, we train and test the NMT model
NLLB (Costa-jussa et al., 2022) over all 6 lan-
guage pairs across 3 domains. As a separate study,

in the second setting, we train the model on Hindi,
Gujarati, and Tamil across 3 domains, and test it
over the Marathi, Kannada, and Odia across the
same domains. This setting is considered to test
the model’s performance in a zero-shot setting. In
the baseline configuration for this task, the model
is fed with English input only. In the configura-
tion corresponding to the proposed method, the En-
glish input is augmented with additional Sanskrit-
based input prepared as discussed in 2.2. We utilize
the pre-trained 1.3B parameter checkpoint of the
NLLB model available via Huggingface® and fine-
tune it over the technical domain dictionary data
for both experimental settings.

Results. Table 3 reports the comparison of
chrF++ scores obtained by finetuning the NMT
model with English-only input (NLLB) and with
augmented input (NLLB+Sanskrit) under the first
experimental setting. In Appendix A.3 we analyze
the performance of the model with and without ad-
ditional input in a zero-shot setting. Across experi-
ments, there’s a consistent performance gain with
the lexically informed input. Our method archives
an average improvement of 8.46 chrF++ scores.
We also provide a detailed post-hoc analysis of the
predictions in Appendix A.4

4 Conclusion

In this work, we addressed the task of Sanskrit
Word Segmentation (SWS) with a character-level
Transformer model, achieving superior segmenta-
tion performance on two benchmark datasets and
competitive performance on another benchmark
dataset.. Furthermore, we propose to leverage the
significant vocabulary overlap among Indian lan-
guages, utilizing data from the relatively resource-
rich Hindi language which highlights the potential
of cross-linguistic resource sharing to boost perfor-
mance in low-resource language tasks.

®https://huggingface.co/facebook/nl1b-200-1.3B

Limitations

To generate Sanskrit-based input, we rely on the
available Hindi data. Though the availability of
Hindi resources is much higher than that of other
Indian languages, its digital data richness is consid-
erably lower than that of English.

References

Rahul Aralikatte, Neelamadhav Gantayat, Naveen Pan-
war, Anush Sankaran, and Senthil Mani. 2018. San-
skrit sandhi splitting using seq2 (seq)” 2. arXiv
preprint arXiv:1801.00428.

Shubham Bhardwaj, Neelamadhav Gantayat, Nikhil
Chaturvedi, Rahul Garg, and Sumeet Agarwal. 2018.
Sandhikosh: A benchmark corpus for evaluating san-
skrit sandhi tools. In Proceedings of the Eleventh
International Conference on Language Resources
and Evaluation (LREC 2018).

Marta R Costa-jussa, James Cross, Onur Celebi, Maha
Elbayad, Kenneth Heafield, Kevin Heffernan, Elahe
Kalbassi, Janice Lam, Daniel Licht, Jean Maillard,
et al. 2022. No language left behind: Scaling
human-centered machine translation. arXiv preprint
arXiv:2207.04672.

Sushant Dave, Arun Kumar Singh, Dr Prathosh AP, and
Prof Brejesh Lall. 2021. Neural compound-word
(sandhi) generation and splitting in sanskrit language.
In Proceedings of the 3rd ACM India Joint Interna-
tional Conference on Data Science & Management
of Data (8th ACM IKDD CODS & 26th COMAD),
pages 171-177.

Huet Gérard. 2003. Lexicon-directed segmentation and
tagging of sanskrit. In XIIth World Sanskrit Confer-
ence, Helsinki, Finland, Aug, pages 307-325. Cite-
seer.

Pawan Goyal and Gérard Huet. 2013. Completeness
analysis of a sanskrit reader. In Proceedings, 5th
International Symposium on Sanskrit Computational
Linguistics. DK Printworld (P) Ltd, pages 130—171.
Citeseer.

Oliver Hellwig. 2010. Dcs-the digital corpus
of sanskrit. heidelberg (2010-2021). URL
http://www.sanskritlinguistics.org/dcs/index.php.

Oliver Hellwig and Sebastian Nehrdich. 2018a. Sanskrit
word segmentation using character-level recurrent
and convolutional neural networks. In Proceedings of
the 2018 conference on empirical methods in natural
language processing, pages 2754-2763.

Oliver Hellwig and Sebastian Nehrdich. 2018b. San-
skrit word segmentation using character-level recur-
rent and convolutional neural networks. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 2754-2763,
Brussels, Belgium. Association for Computational
Linguistics.

Gérard Huet. 2003. Towards computational processing
of sanskrit. In International Conference on Natural
Language Processing (ICON), pages 40—48.

Amrith Krishna, Pavankumar Satuluri, and Pawan
Goyal. 2017. A dataset for sanskrit word segmenta-
tion. In Proceedings of the Joint SIGHUM Workshop
on Computational Linguistics for Cultural Heritage,
Social Sciences, Humanities and Literature, pages
105-114.

Sriram Krishnan, Amba Kulkarni, and Gérard Huet.
2020. Validation and normalization of dcs corpus
using sanskrit heritage tools to build a tagged gold
corpus. arXiv preprint arXiv:2005.06545.

Anil Kumar, Vipul Mittal, and Amba Kulkarni. 2010.
Sanskrit compound processor. In Sanskrit Compu-
tational Linguistics: 4th International Symposium,
New Delhi, India, December 10-12, 2010. Proceed-
ings, pages 57-69. Springer.

Anoop Kunchukuttan and Pushpak Bhattacharyya. 2016.
Faster decoding for subword level phrase-based

smt between related languages. arXiv preprint
arXiv:1611.00354.

Thuat Nguyen, Chien Van Nguyen, Viet Dac Lai,
Hieu Man, Nghia Trung Ngo, Franck Dernoncourt,
Ryan A. Rossi, and Thien Huu Nguyen. 2024. Cul-
turaX: A cleaned, enormous, and multilingual dataset
for large language models in 167 languages. In Pro-
ceedings of the 2024 Joint International Conference
on Computational Linguistics, Language Resources
and Evaluation (LREC-COLING 2024), pages 4226~
4237, Torino, Italia. ELRA and ICCL.

Karthika NJ, Ayush Maheshwari, Atul Kumar Singh,
Preethi Jyothi, Ganesh Ramakrishnan, and Kr-
ishnakant Bhatt. 2024. Lexgen: Domain-aware
multilingual lexicon generation. arXiv preprint
arXiv:2405.11200.

Maja Popovi€. 2017. chrf++: words helping character
n-grams. In Proceedings of the second conference on
machine translation, pages 612—618.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of machine learning research,
21(140):1-67.

Kumar Sachin. 2007. Sandhi splitter and analyzer for
sanskrit (with reference to ac sandhi). Mphil degree
at SCSS, JNU (submitted, 2007).

Jivnesh Sandhan, Rathin Singha, Narein Rao, Suvendu
Samanta, Laxmidhar Behera, and Pawan Goyal.
2022. Translist: A transformer-based linguisti-
cally informed sanskrit tokenizer. arXiv preprint
arXiv:2210.11753.

https://doi.org/10.18653/v1/D18-1295
https://doi.org/10.18653/v1/D18-1295
https://doi.org/10.18653/v1/D18-1295
https://doi.org/10.18653/v1/D18-1295
https://doi.org/10.18653/v1/D18-1295
https://aclanthology.org/2024.lrec-main.377
https://aclanthology.org/2024.lrec-main.377
https://aclanthology.org/2024.lrec-main.377
https://aclanthology.org/2024.lrec-main.377
https://aclanthology.org/2024.lrec-main.377

Krishnan Sriram, Amba Kulkarni, and Gérard Huet.
2023. Validation and normalization of DCS corpus
and development of the Sanskrit heritage engine’s
segmenter. In Proceedings of the Computational
Sanskrit & Digital Humanities: Selected papers pre-
sented at the 18th World Sanskrit Conference, pages
38-58, Canberra, Australia (Online mode). Associa-
tion for Computational Linguistics.

Linting Xue, Aditya Barua, Noah Constant, Rami Al-
Rfou, Sharan Narang, Mihir Kale, Adam Roberts,
and Colin Raffel. 2022. Byt5: Towards a token-free
future with pre-trained byte-to-byte models. Transac-
tions of the Association for Computational Linguis-
tics, 10:291-306.

A Appendix

A.1 Normalisation

anusvara (m), is a symbol used in all Indian
language scripts to denote a type of nasal sound.
According to Sanskrit grammatical rules, when
this symbol precedes one of the first 4 characters
in each of the consonant group called vargas
(ka/ca/ta/ta/pa), it needs to be converted to the
respective fifth characters (paficamaksara) of the
vargas (n/fi/n/n/m). This rule may not be followed
in other Indian languages. Since our sub-word
segmentation model is trained on Sanskrit, and
applied on Hindi data for the translation task, we
normalise all the data by converting all occurences
of anusvara to the corresponding paficamaksara,
before passing it to our model for segmentation.

A.2 sandhi

Sanskrit and other Indian languages have common
usage of compound words, which are formed from
multiple subwords. When two words are combined,
the language expects certain rules to be followed
at the word boundaries. Such a change in the word
boundary forming a compound word, is termed as
sandhi (the word has a meaning of junction. In
Sanskrit, there are specific rules for the joining of
subwords to form a compound, depending on the
ending character of the first and the beginning char-
acter of the second word. We specify these rules as
the sandhi rules in this paper. Similarly, splitting of
the sandhi will also need to follow the reverse pro-
cess, which is not as straightforward as sub-word
joining. In the paper, we specify the process of
sandhi splitting as sandhivicchéda. Following are
some examples of sandhivicchéda (1) tatrapi = tatra
+ api; (2)naréndra = nara + indrah

A.3 Zero-Shot Translation

Table 4 shows the performance of the transla-
tion model without Sanskrit input (NLLB) and
with Sanskrit input (NLLB+Sanskrit) when trained
on Hindi, Gujarati, and Tamil, and evaluated on
Marathi, Kannada, and Odia across 3 domains
viz., Administration, Biotechnology, and Chem-
istry. Performance in terms of chrF++ scores shows
that the translation with the Sanskrit augmented
input consistently provides better translations as
compared to the English-only input across different
languages and domains. This proves the efficacy

https://aclanthology.org/2023.wsc-csdh.3
https://aclanthology.org/2023.wsc-csdh.3
https://aclanthology.org/2023.wsc-csdh.3
https://aclanthology.org/2023.wsc-csdh.3
https://aclanthology.org/2023.wsc-csdh.3

of Sanskrit-based additional input for capturing
multilingual nuances.

Test Dataset Model Marathi Kannada Odia Average
Administrati NLLB 4142 4403 4057 4201
MMSHAUYE NLLB + Sanskrit 4326 4571 42.02 43.66
Biotechnol NLLB 4442 2783 2937 3387
101eChnOIOLY NLLB + Sanskrit 5379 4032 3776 43.96
Chemist NLLB 4162 2841 2699 3234
CMISTY NLLB + Sanskrit 4971 39.11 34.13 40.98

Table 4: chrF++ scores on administrative, biotechnol-
ogy, and chemistry for unseen languages, namely, Kan-
nada, Marathi, and Odia for zero-shot setting.

A.4 Post hoc analysis

In this section, we present our detailed analysis of a
subset of the results of the lexicon translation task.
Unlike a regular translation task, which includes
a complete sentence and paragraphs, we deal with
a single word or phrase here. Such a short input
may have many different possible translations in
the target language, either the translations that can
be used interchangeably or those that may be var-
ied with the context of its usage. The evaluation
metrics like BLEU and chrF may not effectively
capture the quality of translation as it is obtained
by comparison of the predictions with the available
ground truth data. The ground truth data may have
a single or limited number of meaningful transla-
tions, and as a result, a different but correct predic-
tion may be penalised.

We make a detailed analysis of technical terms’
translation results by a comparative study of the
outputs in both the input settings, i.e., with and
without the Sanskrit-based augmented output.
Table 5 shows some qualitative, post hoc analysis
of the prediction results. The analysis shows that
the augmented input

* Assists the model to disambiguate between
multiple possible outputs (synonyms) and ob-
tain the contextually apt term.

— Examples 1 and 2 in table 5 are from the
Administration domain, with Kannada as
the required target language. The trans-
lations generated by the model with only
the English input are meaningful but in
different contexts. The word mass is con-
sidered by the model, in the meaning of
the amount of matter in an object , while
the expected meaning is mass as used in
population

— Similarly, the word composition is ex-
pected to take the meaning of composing
music or poetry, while the meaning taken
by the model is the process of combin-
ing parts of something to whole. Exam-
ple 4 shows a similar trend in Marathi in
Biotechnology domain.

For the above examples, our model is
able to disambiguate the intended mean-
ing and generate the expected output.

» Examples 3 is a sample where the output gen-
erated with English-only input is incorrect,
while the augmented input generates correct
output.

Considering the commonly used multilingual
training datasets, and benchmark datasets that in-
clude Indian languages, we often see the Hindi data
to be at least more than 3 x of any other Indian lan-
guages present in the dataset, as shown in Table 6

We notice that, the performance difference with
and without augmented input is less in the admin-
istrative domain when compared to other domains.
With the observations from the predictions, we ar-
rive at the following reasonings. The words in this
domain are very frequently used by people in all
languages. The model predictions with augmented
input results in many archaic words, which are cur-
rently not in use, or the usage is highly infrequent.
A word can have a large number of synonyms, and
the number of words in the reference list of the
ground truth, is limited, which mostly do not in-
clude the archaic words. Because of these reasons,
we do not see a large jump in the performance
with augmented input in this domain. This observa-
tion is especially true with languages like Tamil, in
which there is a significant number of non-Sanskrit
originated words, which may be more commonly
in use. In both experimental settings, we observe
that the gain is more in case of the biotechnology
and chemistry domains as compared to the admin-
istrative domain. This behavior can be attributed
to the pre-training of the NLLB model on mas-
sive generic domain data which has considerable
overlap with the administrative domain data.

Technical term (English) Domain; Language Augmented input 7 Prediction with
English only input ~ Sanskrit-based augmented input

L Y I S

mass Administration; Kannada mass <SEP> jana <isep> samiiha dravyamana jana-samiiha
composition Administration; Kannada composition <SEP> racana samyojane racana
brood Biotechnology; Marathi brood <SEP> bhriina prajanana bhriina
transformation Biotechnology; Marathi transformation <SEP> riipa <isep> antarana parivartana rupantara
injection Biotechnology; Marathi injection <SEP> antah <isep> ks€pana injeksana antah-ksépana

Table 5: Post hoc Qualitative Analysis of Technical term translation results

Dataset ‘Hindi Gujarati Kannada Tamil Marathi Odiya

IndicCorp v2 (#tokens in Millions) 6107 901 875 476 795 122
CulturaX (Nguyen et al., 2024) (in %) | 027 <0.05 <0.05 0.07 <0.05 <0.05

Table 6: Caption

	Introduction
	Methodology
	Sanskrit Word Segmentation
	Technical Term Translation

	Experiments and Results
	Data and Metrics
	Experiments on the SWS Task
	Experiments on the Technical Term Translation Task

	Conclusion
	Appendix
	Normalisation
	sandhi
	Zero-Shot Translation
	Post hoc analysis

