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ABSTRACT

With the growing adoption of large language model (LLM) agents in persistent,
real-world roles, they naturally encounter continuous streams of tasks and
interactions. A key limitation, however, is their failure to learn from the
accumulated experiences, forcing them to discard valuable insights and repeat
past errors. Unlike prior works that primarily store raw experience or successful
routines, we propose REASONINGBANK, a novel memory framework that allows
an agent to self-curate generalizable reasoning strategies from both its successful
and failed experiences for future use. This mechanism enables agents to
generalize across tasks and become more capable over time. To accelerate and
diversify this test-time learning process, we further propose memory-aware test-
time scaling (MATTS), which leverages a powerful synergy between memory
and test-time scaling. On one hand, relevant memory from REASONINGBANK
guides the scaling process toward more effective exploration and improved
reliability. On the other, scaling — in both parallel and sequential settings —
generates abundant, diverse experiences that provide rich contrastive signals for
synthesizing higher-quality memory. Experiments on web browsing and software
engineering benchmarks show that REASONINGBANK consistently outperforms
existing memory mechanisms in both effectiveness and efficiency, with MATTS
further amplifying the gains. These findings position memory-driven experience
as a new dimension of test-time scaling, where emergent behaviors naturally arise
and agents acquire self-evolving capabilities.

1 INTRODUCTION

The rapid advancement of large language models (LLMs) has significantly accelerated the
development of interactive LLM agents (Wang et al., 2024; Liu et al., 2025a), which are crucial
in tackling complex real-world tasks that require multi-turn interactions with environments. These
agents have demonstrated great potential across diverse scenarios, including web browsing (Gur
et al., 2024), computer use (Yang et al., 2024; Xie et al., 2024), and scientific discovery (Ghafarollahi
& Buehler, 2025). As these agents are increasingly deployed in persistent, long-running roles, they
naturally encounter a continuous stream of tasks and interactions. However, a critical limitation
persists: they largely fail to learn from this accumulated experience. By approaching each new task
in isolation, they are doomed to (i) repeat similar errors observed in the past (Yin et al., 2025),
(ii) discard valuable insights gained from related problems, and, most importantly, (iii) lack self-
evolving capabilities that make the agent system more capable over time (Gao et al., 2025). This
phenomenon highlights the necessity of building memory-aware agent systems that could learn from
their past experiences (Zhang et al., 2024b).

Recent efforts on agent memory have primarily focused on storing past interactions for reuse (Zhao
et al., 2024; Tang et al., 2025b; Chen et al., 2025; Sun et al., 2025). While useful, these approaches
are often limited to leveraging raw trajectories (Zheng et al., 2024; Kagaya et al., 2024; Kong et al.,
2025) or common, successful routines (i.e., workflows, procedures) (Wang et al., 2025d; Fang et al.,
2025). These approaches suffer from two fundamental drawbacks. First, they lack the ability
to distill higher-level, transferable reasoning patterns. Second, by over-emphasizing successful
experiences, it leaves the valuable lessons from an agent’s own failures largely underexplored (Zhang
et al., 2024a). Consequently, existing memory designs often remain limited to passive record-
keeping rather than providing actionable, generalizable guidance for future decisions.
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<action> click('188') </action>  

<think> I have successfully navigated to 
the 'My Account' page. The user wants 
to know the date of their first purchase. 
On this page, I see a "Recent Orders" 
section. To ensure I find the *first* 
purchase, I need to view the complete 
order history, not just the recent ones. 
There is a "View All" link next to 
"Recent Orders" which should take me 
to the full order history. </think> 
<action> click('1530') </action>  

<think> I am on the "My Orders" page. 
The user wants to know the date of 
their first purchase. The orders are 
currently displayed from most recent to 
oldest. …</think> 
 <action> click('1614') </action>

Earliest order 
for customer

Workflow: Retrieve Information from 
Specific Page Section  
<think> This workflow is designed to 
access a specific section … </think>  
<action> click(‘section_or_tab_id') </
action> <action> 
send_msg_to_user('extracted_info_m
essage') </action>

## Title Navigation Strategy 
## Description When searching for 
specific information within history … 
## Content … 1. Detect pagination 
mode and examine all items in relevant 
orders, …; 2. Avoid infinite scrolls, use 
fallbacks if primary mode fails, …; 3. 
Cross-reference with common …

Solution: ReasoningBank
We get rich task insights from expensive test-time exploration / scaling.  

We store them in a ReasoningBank.  

When a new task comes, we incorporate the relevant insights to aid decision making.

9

ReasoningBank

No Memory

Figure 1: REASONINGBANK induces reusable reasoning strategies, making memory items more
transferrable for future use. This enables agents to continuously evolve and achieve higher
accumulative success rates than the “No Memory” baseline on the WebArena-Admin subset.

Motivated by this, we propose REASONINGBANK, a novel memory framework for agent
systems that distills and organizes memory items from both successful and failed experiences.
REASONINGBANK focuses on capturing high-level reasoning insights, enabling agents to generalize
across tasks and adapt to dynamic environments more effectively as shown in Figure 1. When facing
a new query, the agent retrieves relevant memory items from REASONINGBANK and integrates them
into its inference process; after execution, new experiences are distilled and consolidated back into
REASONINGBANK. This closed-loop design continuously enables the agent to evolve and discover
new strategies for unseen tasks.

As a strong experience learner, REASONINGBANK naturally benefits more from diverse experiences,
making scaling a principled way to unlock greater gains. To this end, we introduce memory-aware
test-time scaling (MATTS) in both parallel and sequential settings, where scaling supplies diverse
contrastive experiences that enrich the quality and generality of REASONINGBANK’s memory.
Moreover, we reveal a synergy between memory and test-time scaling: while REASONINGBANK
provides guidance that steers scaling towards sampling more promising trajectories (termed as
“rollouts”), and the diverse rollouts generated during scaling in turn provide abundant experience
sources with valuable contrastive signals for memory curation. This forms a positive feedback
loop and positions memory-driven experience as a new dimension of test-time scaling where agents
acquire self-evolving capabilities.

Our contributions are threefold: (1) We propose REASONINGBANK, a novel memory framework
that distills generalizable reasoning strategies from both successful and failed experiences, beyond
prior work that primarily stores raw trajectories or success-only routines. (2) We introduce MATTS
that establishes a powerful, bidirectional synergy between memory and test-time scaling, with
memory-driven experience as a new scaling dimension. (3) We conduct extensive experiments on
web browsing (WebArena, Mind2Web) and software engineering (SWE-Bench-Verified) tasks. We
demonstrate that our approaches not only outperform existing methods in effectiveness (up to 24.1%
relative improvement) and efficiency (18.0% less interactions), but also uniquely learn from failures
and enable agents to develop increasingly complex, emergent reasoning strategies over time.

2 RELATED WORK

Memory for LLM Agents. Memory has emerged as an essential module in modern agent
systems (Zhang et al., 2024b), with prior efforts primarily emphasizing personalization and
long-context management (Xu et al., 2022; Maharana et al., 2024; Wu et al., 2025; Hu et al.,
2025). Memory representations have been organized in various forms, including latent knowledge
embeddings (Wang et al., 2025b) and structured graphs (Xu et al., 2025; Chhikara et al., 2025;
Packer et al., 2023). Beyond memory content, reflective mechanisms such as RMM (Tan et al.,
2025) develop both backward- and forward-looking strategies, while MemoryBank (Zhong et al.,
2024) introduces a novel updating mechanism. More recently, with the growing integration
of reinforcement learning (RL) in LLM agents, memory has also been leveraged for managing
contextual information across interactions (Yu et al., 2025a; Zhou et al., 2025). This paper
falls in the research line of learning from past experiences as memory. Different from previous
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works that emphasize reusing successful trajectories (Zheng et al., 2024; Tang et al., 2025a) or
procedural workflows (Wang et al., 2025d; Qian et al., 2024; Fang et al., 2025; Liu et al., 2025b),
REASONINGBANK stores high-level strategies and reasoning hints. By abstracting experiences into
reusable reasoning units, REASONINGBANK enables agents to generalize not only from successful
cases but also by learning from failures, thereby providing richer guidance for test-time learning.
Additionally, we are the first to explore memory-aware test-time scaling, where REASONINGBANK
synergistically work with diverse signals from abundant exploration trajectories.

Agent Test-Time Scaling. Test-time scaling (TTS) (Snell et al., 2025) has demonstrated strong
effectiveness and has become a widely adopted practice in end-to-end problem-solving such as
coding (Li et al., 2025; Yu et al., 2025c) and math reasoning (Muennighoff et al., 2025), where
methods including best-of-N (Chow et al., 2025), beam search (Wu et al., 2024b), and leveraging
verifiers (Setlur et al., 2025) are commonly employed. However, its application to multi-turn
interactive scenarios, particularly agentic tasks, remains underexplored. Existing works mainly
adapt the lesson learned from reasoning tasks (Zhu et al., 2025b) and scale different dimensions of
agentic systems, including the search space for each action (Yu et al., 2025b), the number of agents
in multi-agent systems (Jin et al., 2025), and the number of interactions with the environment (Shen
et al., 2025). We found that none of these efforts considers the role of agent memory in scaling,
where an agent can learn from past experiences to guide future decisions. Our work extends this
line of research by introducing memory-aware test-time scaling (MATTS). As we will show in our
empirical results (§4.3 and §4.4), memory offers benefits beyond mere computational scaling, where
memory and scaling synergistically work towards better performance.

3 METHODOLOGY

In this section, we introduce the problem setup (§3.1), and present our proposed REASONINGBANK
(§3.2), based on which we further develop memory-aware test-time scaling (MATTS) (§3.3).

3.1 PROBLEM FORMULATION

Agent Configuration. The scope of this work focuses on language model (LM)-based agents.
The agent policy πL(·|M,A) is parameterized by the backbone LLM L, conditioned on a memory
module M, and the action space A, denoted as πL for short. The agent needs to perform a task
via interacting with the environment, which can be viewed as a sequential decision-making process.
Formally, the transition function of the environment is defined as T (st+1|st, at) where st is the state
and at is the action selected by πL at time t. We focus on web browsing and software engineering
(SWE) tasks. A is a set of web navigation operations for web browsing and bash commands for
SWE, M is REASONINGBANK and initialized as empty. For each given task, the agent generates a
trajectory of (o0:t, a0:t) for t steps, where observation ot is from the current state st. Observations are
text-based accessibility tree of web pages1 for web browsing tasks and code snippets for SWE. The
agent needs to generate an action at+1 ∈ A via πL(o0:t, a0:t;M,A) → at+1. For implementation,
the memory module M contributes relevant memories as additional system instruction for πL.

Test-Time Learning. We focus on the test-time learning paradigm (Wu et al., 2024a; Wang et al.,
2025c) where a sequence of task queries Q = {q1, q2, ..., qN} arrives in a streaming fashion, i.e.,
each query is revealed and must be completed sequentially without access to future ones. In this
setting, no ground truth is available during test-time, so the agent must continually evolve by only
leveraging its own past trajectories and any self-verification without relying on external labels. This
streaming setting highlights two key challenges: (i) how to extract and preserve useful memory
from past trajectories, and (ii) how to effectively leverage such memory for future queries to avoid
redundantly re-discovering already successful strategies or repeating past mistakes.

3.2 REASONINGBANK

Past raw trajectories (or experiences), while being comprehensive and original, are often too
lengthy and noisy to be directly applied to the current user query. As illustrated in Figure 2,

1We use the thinking process of πL as the approximation of o0:t due to lengthy observation representations
following Wang et al. (2025d).

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Time
Task q1 Task q2 …… …… Task qNTask qi

Methodology
Problem Formulation: Streaming nature of testing tasks  

Given a test set of tasks , the agent works on the tasks sequentially:  

•   

• No ground-truth feedback during testing

{t1, t2, ⋯, tn}
t1 → t2 → ⋯ → tn

qi Agent Env

ReasoningBank:  a collection of memory items

: experience/trajectoryℋ

(i) Memory Retrieval

Memory 
Items

(ii) Memory 
Extraction

(iii) Memory 
Consolidation

Task : Tell me the status of my latest order and when it will arriveqi

Experience/Trajectory ℋ <think>… I need to navigate to …</think> 
<action> click(‘188’) </action>

Memory 
Item j 

Title: Prioritize user account sections for personal data
Description When a query requests user-specific…
Content: Systematically look for and click on links …

Memory Extractor

Figure 2: Overview of REASONINGBANK. Experiences are distilled into structured memory items
with a title, description, and content. For each new task, the agent retrieves relevant items to interact
with the environment, and constructs new ones from both successful and failed trajectories. These
items are then consolidated into REASONINGBANK, forming a closed-loop memory process.

REASONINGBANK distills useful strategies and reasoning hints from past experiences into
structured memory items, which are then stored in the agent’s memory for future reuse.

Memory Schema. Memory items in REASONINGBANK are designed and induced from past
experiences as structured knowledge units that abstract away low-level execution details while
preserving transferrable reasoning patterns and strategies. Each memory item specifies three
components: (i) a title, which serves as a concise identifier summarizing the core strategy or
reasoning pattern; (ii) a description, which provides a brief one-sentence summary of the memory
item; and (iii) the content, which records the distilled reasoning steps, decision rationales, or
operational insights extracted from past experiences. Together, memory items extracted are both
human-interpretable and machine-usable, facilitating efficient usage and integration with agents.

Integrating REASONINGBANK with Agents. An agent πL equipped with REASONINGBANK can
draw upon a curated pool of transferable strategies to guide decision-making. This enables the agent
to recall effective insights, avoid previously observed pitfalls, and adapt more robustly to unseen
queries. The integration proceeds in three steps: (i) memory retrieval, (ii) memory construction,
and (iii) memory consolidation, as shown in Figure 2. During memory retrieval, the agent queries
REASONINGBANK with the current query context to identify the top-k relevant experiences and their
corresponding memory items using embedding-based similarity search. Retrieved items are injected
into the agent’s system instruction, ensuring that action prediction from A is grounded with useful
past experiences. When the current query task is completed, we will perform memory construction to
extract new memory items. The first step is to obtain correctness signals for completed trajectories:
we adopt an LLM-as-a-judge (Gu et al., 2024) to label outcomes as success or failure given the
query and trajectory. Based on these signals, we apply different extraction strategies: successful
experiences contribute validated strategies, while failed ones supply counterfactual signals and
pitfalls that help sharpen guardrails. In practice, we extract multiple memory items for each
trajectory/experience as detailed in Appendix A.1. Finally, memory consolidation incorporates these
items into REASONINGBANK with a simple addition operation, maintaining an evolving repository
of memory items. Details are in Appendix A.2. Together, these steps form a closed-loop process:
the agent leverages past experiences, constructs new memory from current tasks, and continually
updates its memory, enabling sustained evolvement in test-time learning scenarios.2

3.3 MATTS: MEMORY-AWARE TEST-TIME SCALING

REASONINGBANK enables learning from experiences to translate more experiences into greater
improvements. As test-time scaling (TTS) (Snell et al., 2025) recently emerged as a powerful
strategy for boosting the performance of LLM agents (Zhu et al., 2025a), it shows strong potential
by allocating additional inference-time computation to generate abundant exploration histories. A
vanilla combination is depicted in Figure 3(a), where more trajectories are independently converted
to more memory items. However, this is suboptimal because it does not leverage inherent
contrastive signal that arises from abundant explorations on the same problem, which limits the

2We deliberately keep the memory usage pipeline simple, avoiding additional complexity in retrieval or
consolidation so as to highlight the contribution of REASONINGBANK itself. These components, however, can
be further enhanced with more sophisticated techniques, which could provide additional benefits.
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Methodology
Memory-aware test-time scaling (MaTS): Leverage contrastive signals from past experiences: 
• Parallel Scaling: use self-contrast for memory curation 
• Sequential Scaling: use self-refinement for memory curation

Task qi Task qi+1

Current 
memory

New 
memory

Self-Refine

Traj Traj’ …

(c) MaTTS - Sequential
Task qi Task qi+1

(b) MaTTS - Parallel

Current 
memory

Trajectory 1

Trajectory 2

Trajectory n

New 
memory

Self-
Contrast

……

Traj 1

Traj 2

Traj n

New 
Mem 1Mem 1

New 
Mem 2

New 
Mem n

Mem 2

Mem n

…… …………

Task qi Task qi+1
(a) Vanilla TTS (MaTTS w/o aggregation)

Figure 3: Comparison of (a) vanilla TTS that independently run REASONINGBANK for multiple
times without aggregating on trajectories, MATTS with (b) parallel scaling, where self-contrast
across multiple trajectories curates reliable memory, and (c) sequential scaling, where self-
refinement enriches memory with intermediate reasoning signals.

resulting performance advantage brought by TTS. To address this, we propose Memory-aware
Test-Time Scaling (MATTS), a novel integration of test-time scaling with our memory framework,
REASONINGBANK. Unlike the vanilla approach, MATTS learns by deliberately aggregating from
the abundant successful and failure trajectories generated during scaling for more effective memory
curation. We design two complementary instantiations for MATTS, parallel scaling and sequential
scaling, as illustrated in Figure 3(b) and 3(c) with detailed implementation in Appendix A.3.

Parallel Scaling. In the parallel setting, we generate multiple trajectories for the same query
under the guidance of retrieved memory items. By comparing and contrasting (self-contrast (Chen
et al., 2020)) across different trajectories, the agent can identify consistent reasoning patterns while
filtering out spurious solutions. This process enables more reliable memory curation from multiple
trials of a single query and promotes diverse yet grounded exploration.

Sequential Scaling. We iteratively refine its reasoning within a single trajectory after the initial
completion, following the principle of self-refinement (Madaan et al., 2023). In this process, the
intermediate notes generated in self-refinement are also used as valuable signals for memory, since
they capture reasoning attempts, corrections, and insights that may not appear in the final solution.

We define the scaling factor k, denoting the number of trajectories for parallel scaling and refinement
steps for sequential scaling. Equipped with REASONINGBANK, both parallel and sequential
strategies become memory-aware, ensuring that the additional computation allocated at test time
translates into more transferable and higher-quality memory for future tasks.

4 EXPERIMENTS

4.1 SETUP

Following existing work (Wang et al., 2025d), we conduct experiments on WebArena (Zhou et al.,
2024) which features general web navigation across diverse domains,3 and Mind2Web (Deng
et al., 2023) that tests generalization of agents on versatile operations and environments. We also
conduct experiment on SWE-Bench-Verified for repository-level issue-resolving. For comparison,
we consider baselines ranging from memory-free agents (No Memory) to trajectory-based memory
(Synapse) (Zheng et al., 2024) and workflow-based memory (AWM) (Wang et al., 2025d). Our
agents are built on Gemini-2.5 (Comanici et al., 2025) and Claude-3.7 (Anthropic, 2025) models
using BrowserGym (de Chezelles et al., 2025) for web browsing and bash-only for SWE, following
ReAct (Yao et al., 2023) style with default decoding configurations. We evaluate effectiveness
(success rate, SR) and efficiency (average steps, AS), with specific metrics varying for each dataset.
Full descriptions for datasets, baselines, implementations, and evaluation are in Appendix B.

4.2 RESULTS OF REASONINGBANK

Tables 1, 2, 3 summarize the main evaluation results of REASONINGBANK on WebArena,
Mind2Web, and SWE-Bench-Verified accordingly. We have the following observations.

REASONINGBANK consistently outperforms baselines across LLM backbones on all datasets.
Specifically, REASONINGBANK improves the overall success rate on WebArena (Table 1) by +8.3,

3We exclude the domain of Map due to website issues following Miyai et al. (2025) for a fair comparison.
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Table 1: Experiment results of REASONINGBANK on WebArena benchmark. Success rate (SR ↑)
and average number of steps (AS ↓) are reported on 5 subsets for 3 different backbone LLMs.

Models Shopping Admin Gitlab Reddit Multi Overall

SR AS SR AS SR AS SR AS SR AS SR AS

Gemini-2.5-flash
No Memory 39.0 8.2 44.5 9.5 33.9 13.3 55.7 6.7 10.3 10.0 40.5 9.7
Synapse 40.6 7.0 45.1 9.1 35.6 13.0 59.4 6.5 10.3 10.5 42.1 9.2
AWM 44.4 7.0 46.7 8.8 37.2 13.2 62.3 6.1 3.4 7.7 44.1 9.0
REASONINGBANK 49.7 6.1 51.1 8.2 40.6 12.3 67.0 5.6 13.8 8.8 48.8 8.3

Gemini-2.5-pro
No Memory 45.5 7.6 51.1 8.7 35.0 11.6 71.7 6.0 6.9 8.8 46.7 8.8
Synapse 46.5 6.6 52.2 8.9 38.3 11.3 68.9 5.9 6.9 9.0 47.7 8.5
AWM 48.1 6.4 49.3 9.8 40.0 11.2 68.9 6.4 3.4 9.3 47.6 8.7
REASONINGBANK 51.9 6.0 56.6 7.7 44.4 9.8 80.2 5.1 13.8 8.2 53.9 7.4

Claude-3.7-sonnet
No Memory 38.5 6.1 49.5 8.4 36.7 10.6 53.8 5.5 0.0 11.6 41.7 8.0
Synapse 39.6 5.8 50.5 8.5 38.0 10.0 53.8 6.1 0.0 11.8 42.6 7.9
AWM 39.6 7.2 47.8 9.3 34.6 10.9 52.8 7.0 0.0 12.4 40.8 8.9
REASONINGBANK 44.9 5.6 53.3 7.6 41.1 9.5 57.5 5.2 3.4 10.5 46.3 7.3

+7.2, and +4.6 with three different backbone LLMs compared to memory-free agents. A similar
pattern holds on Mind2Web (Table 3), where REASONINGBANK delivers clear gains across cross-
task, cross-website, and cross-domain settings, underscoring both the consistency and scalability
of its benefits across datasets and model sizes. Results on SWE-Bench-Verified (Table 2) further
confirm its robustness. Crucially, unlike baselines such as Synapse and AWM that rely on a narrow,
homogeneous memory source derived exclusively from successful trajectories, REASONINGBANK
employs a superior extraction strategy that is key to its consistent outperformance.

Table 2: Experiment results of REA-
SONINGBANK on SWE-Bench-Verified
dataset for issue-resolving in a given
repository.

Methods Resolve Rate AS

Gemini-2.5-flash
No Memory 34.2 30.3
Synapse 35.4 30.7
REASONINGBANK 38.8 27.5

Gemini-2.5-pro
No Memory 54.0 21.1
Synapse 53.4 21.0
REASONINGBANK 57.4 19.8

REASONINGBANK enhances generalization with bet-
ter transferrable memory across tasks. We also evalu-
ate in challenging generalization settings. On WebArena
(Table 1), the Multi subset requires transferring memory
across multiple websites, where REASONINGBANK
achieves a notable gain of +4.6 averaged SR over
the strongest baseline. In contrast, strong baselines
such as AWM fail to provide gains and even degrade
in this setting. On Mind2Web (Table 3), which
includes cross-task, cross-website, and cross-domain
evaluations that impose progressively higher demands,
REASONINGBANK consistently improves success rates.
The gains are especially pronounced in the cross-domain
setting, which requires the highest level of generalization.
These results demonstrate that memory curated by REASONINGBANK is more robust and
transferable, enabling agents to generalize effectively across diverse scenarios.

REASONINGBANK achieves superior efficiency by leveraging past experiences as memory. In
addition to higher success rates, REASONINGBANK also reduces the number of interaction steps
needed to complete tasks, as shown in the Step metric of Table 1 and 2. On WebArena, across
almost all subsets and backbones, REASONINGBANK lowers the average step count by up to 1.4
compared with “No Memory”, and 1.6 compared with other memory baselines. The average step
on SWE-Bench-Verified is also smaller by saving 2.8 and 1.3 steps respectively. This indicates that
REASONINGBANK enables agents to solve tasks more efficiently by reusing and refining reasoning
knowledge, thus avoiding unnecessary or redundant exploration.

4.3 RESULTS OF MATTS

We experimented MATTS with Gemini-2.5-flash on Webarena-Shopping subset. By default,
MATTS integrates REASONINGBANK, but it could also use other memory mechanisms. To
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Table 3: Results on Mind2Web benchmark for cross-task, cross-website, and cross-domain
generalization test. EA (↑) is short for element accuracy, AF1 (↑) is short for action F1, and SSR (↑)
is short for step success rate. SR (↑) is the task-level success rate measuring if all steps are correct.

Models Cross-Task Cross-Website Cross-Domain

EA AF1 SSR SR EA AF1 SSR SR EA AF1 SSR SR

Gemini-2.5-flash
No Memory 46.0 59.1 40.3 3.3 39.8 45.1 31.7 1.7 35.8 37.9 31.9 1.0
Synapse 47.0 59.5 41.2 3.5 40.3 46.0 32.1 1.9 36.3 38.5 32.4 1.1
AWM 46.3 56.1 41.0 3.5 39.1 42.2 31.7 2.1 33.3 36.5 30.1 0.7
REASONINGBANK 52.1 60.4 44.9 4.8 44.3 52.6 33.9 2.3 40.6 41.3 36.6 1.6

Gemini-2.5-pro
No Memory 49.3 60.2 44.4 3.5 41.2 49.8 34.8 3.4 37.9 37.7 35.0 1.4
Synapse 50.1 61.0 44.7 3.6 41.8 51.2 35.0 3.2 38.5 39.8 35.6 1.5
AWM 48.6 61.2 44.4 3.7 41.9 47.9 34.8 2.3 37.3 38.1 34.4 1.2
REASONINGBANK 53.6 62.7 45.6 5.1 46.1 54.8 36.9 3.8 42.8 45.2 38.1 1.7

investigate the overall scaling effect, we benchmark with (i) MATTS w/o memory, which
represents the scaling setting without memory mechanism, (ii) MATTS w/o aggregation, which
is equal to Vanilla TTS in Figure 3(a) and (iii) MATTS to demonstrate the effect with respect to
scaling factor k. Notably, k = 1 is the setting without scaling. For parallel scaling, we compute
Best-of-N (BoN) as the final metric detailed in Appendix A.3. Results are shown in Figure 4.
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Figure 4: Effect of scaling factor k for MATTS under with
REASONINGBANK on WebArena-Shopping subset. We compare
(a) parallel and (b) sequential test-time scaling.

Both parallel scaling and se-
quential scaling boost perfor-
mance. Increasing k generally
improves success rate, confirm-
ing the benefit of allocating
more inference-time computa-
tion. With MATTS, parallel
scaling grows from 49.7 (k = 1)
to 55.1 (k = 5), while sequential
scaling rises from 49.7 to 54.5.
For the baseline of MATTS w/o
memory, the gains are smaller
and less consistent (e.g., parallel
scaling fluctuates between 39.0
and 42.2, sequential between 37.4 and 40.6). In contrast, MATTS enables stronger and more stable
improvements across both scaling strategies, highlighting its role in making scaling more effective.

MATTS is consistently better than vanilla TTS. With REASONINGBANK, MATTS consistently
surpasses MATTS w/o aggregation (vanilla TTS), showing that memory-aware coordination and
aggregation is important. Specifically, at k = 5, MATTS achieves 55.1 in parallel scaling compared
with 52.4 for vanilla TTS, and 54.5 versus 51.9 in sequential scaling. These improvements
highlight that memory-aware scaling effectively directs the agent toward more promising solutions
by synthesizing insights from multiple trajectories or interaction steps to leverage contrastive signals.

Sequential scaling shows short-term advantage, but parallel dominates at larger scales for
REASONINGBANK. With stronger memory mechanisms such as REASONINGBANK, sequential
refinement brings higher gains at small k, but its benefit quickly saturates—once the model either
succeeds or fails decisively, further refinements add little new insight. In contrast, parallel scaling
continues to provide diverse rollouts that allow the model to critique and improve upon its own
generations, leading it to surpass sequential at larger k (e.g., 55.1 vs. 54.5 at k = 5). In contrast, for
vanilla TTS which is not equipped with memory module, sequential scaling yields little or even no
benefit as scaling goes on, and parallel scaling consistently dominates.

4.4 SYNERGY OF MEMORY AND TEST-TIME SCALING

While the previous section establishes the overall effectiveness of MATTS, we highlight the synergy
between memory and TTS in this section. Figure 5 presents a snapshot of MATTS on the WebArena-
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Shopping subset with parallel scaling factor k = 3, where we report both Pass@1 (randomly selected
trajectory) and Best-of-3 (BoN). This setting allows us to examine the bidirectional interaction
between memory quality and scaling effectiveness.

Better memory enables stronger test-time scaling performance. To see how memory improves
the effectiveness of scaling, we focus on the BoN results, which directly measures an agent’s ability
to surface the best outcome among multiple rollouts. As shown by blue bars in Figure 5, the benefit
of scaling depends critically on the underlying memory. Without memory, scaling yields slight
improvement, with BoN rises only from 39.0 to 40.6. Weaker memory mechanisms such as Synapse
and AWM provide moderate gains, reaching 42.8 and 45.5, respectively. In contrast, MATTS with
REASONINGBANK delivers the strongest benefit, with BoN climbing from 49.7 to 52.4. These
results show that high-quality memory directs scaling toward more promising rollouts, ensuring that
the additional trajectories are not wasted but converted into higher success rates.
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Figure 5: Snapshot of MATTS on WebArena-
Shopping subset with different memory mecha-
nisms with k = 3. We compute BoN for all
3 trajectories and Pass@1 with one randomly
selected trajectory.

Scaling yields better memory curation. To
fairly evaluate how scaling feeds back into
memory, we report Pass@1, which measures
the average quality of trajectories after memory
curation and allows direct comparison with the
no-scaling case. The trend is depicted in pick
bars and is striking: scaling actually reduces
performance for weaker memories, where
Synapse drops from 40.6 to 40.1, and AWM
from 44.4 to 41.2. These declines suggest
that without strong guidance, the extra rollouts
generated by scaling introduce noise rather than
useful signals. In contrast, REASONINGBANK
is the only method that benefits: Pass@1 rises
from 49.7 to 50.8, showing that high-quality
memory can harness the diversity of scaling to
extract constructive contrastive signals. This asymmetry highlights that scaling alone is insufficient;
only when paired with good memory mechanism does it contribute to curation of more effective
memory, thereby closing the virtuous cycle.

5 ANALYSIS

We analyze REASONINGBANK beyond overall benchmark performance through three aspects:
incorporating failure trajectories, examining emergent strategies, and evaluating efficiency across
both successful and failed cases. Additional analyses are presented in Appendix C, including but
not limited to number of retrieved experiences, calibration of LLM-as-a-judge, additional results on
smaller open-source model, and inference cost study.

Find reviewer who complain of customer service

Emergent advanced strategies

Regularly cross-referencing the current view with the task requirements helps 
prevent errors and guides efficient navigation. If the current data doesn't align with 
expectations (e.g., contents are incorrect or irrelevant), reassess available navigation 
options such as specific page numbers, search filters, or alternative sections.

…, actively look for and click on ”Next Page," 
"Page X," or "Load More" links.

… it’s crucial to first re-check the 
element's current identifier …

Procedural/execution 
strategy

Atomic self-reflection

Test-time Learning Timeline

Before scanning, always leverage any 
available search or filter functionalities, 
ensure completeness before reporting …

Regularly cross-referencing the current 
view with the task requirements helps 
prevent errors… If the current data 
doesn't align with expectations (e.g., 
contents are incorrect or irrelevant), 
reassess available options such as 
search filters,  alternative sections …

Generalized complex/effective strategy

Evolved adaptive check

Figure 6: A case study illustrating emergent behaviors in REASONINGBANK through memory items.

Emergent behaviors with REASONINGBANK. We find that the strategies in REASONINGBANK
are not flat or monolithic, but instead evolve over time, exhibiting emergent behaviors that resemble
the learning dynamics of RL (Wang et al., 2025a). As illustrated in a human case study in
Figure 6, memory items describing a specific strategy “User-Specific Information Navigation”
in REASONINGBANK could gradually evolve during test-time learning process. It starts from
execution-oriented or procedural strategies (e.g., find navigation links), where the agent follows
straightforward action rules. It then progresses to adaptive self-reflections such as re-verifying
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Table 4: Average number of steps on successful and failed test instances across four WebArena
domains. REASONINGBANK consistently reduces the number of steps compared to the vanilla
baseline, with notably larger reductions on successful instances.

Models Shopping Admin Gitlab Reddit

Successful Failed Successful Failed Successful Failed Successful Failed

No Memory 6.8 8.7 8.4 10.4 8.6 15.7 6.1 7.6
REASONINGBANK 4.7↓2.1 7.3↓1.4 7.0↓1.4 9.5↓0.9 7.6↓1.0 15.5↓0.2 5.0↓1.1 6.8↓0.8

identifiers to reduce simple mistakes. With more experiences, the same memory item evolves
into adaptive checks, where the agent systematically leverages available search or filters to ensure
completeness before results. Finally, it eventually matures into compositional strategies such
as cross-referencing task requirements and reassessing options. This evolution highlights how
REASONINGBANK enables agents to refine strategies from low-level actions to high-level reasoning
during test-time learning.

Analysis
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Figure 7: Ablation results of
incorporating failure trajectories
for memory induction.

REASONINGBANK makes good use of failure trajectories.
Figure 7 compares different memory designs on WebArena-
Shopping with Gemini-2.5-flash under two settings: using
only successful trajectories versus leveraging both successes
and failures. Baseline methods such as Synapse and AWM
build memory solely from successful trajectories, and thus are
not equipped to benefit from failures. As a result, when failures
are added, their performance is limited or even degraded:
Synapse increases only from 40.6 (success only) to 41.7 (with
failures), while AWM drops from 44.4 to 42.2. In contrast, the
design of REASONINGBANK enables distillation of reasoning
patterns from both successes and failures, achieving 46.5
on success-only traces and further improving to 49.7 when
failures are included. This highlights that, unlike baselines, REASONINGBANK can transform
failures into constructive signals rather than noise, enabling more robust generalization.

REASONINGBANK delivers targeted efficient gains. While the overall number of steps in
Table 1 provides a general view of model efficiency, it does not distinguish whether reductions
come from successful or failed trajectories. To gain deeper insight, we further separate the
analysis into successful and failed test cases, which allows us to understand the source of step
reduction: a desirable system should reduce unnecessary exploration when it is on the right track,
rather than merely cutting short failed attempts. The results are shown in Table 4. We find
that REASONINGBANK consistently reduces the number of steps across all domains compared
to the baseline. More importantly, the reduction is particularly pronounced on successful cases,
reaching up to 2.1 fewer steps (a 26.9% relative reduction) than on failed ones. This indicates
that REASONINGBANK primarily helps the agent reach solutions with fewer interactions by
strengthening its ability to follow effective reasoning paths rather than simply truncating failed
trajectories, which highlight the role of memory in guiding purposeful decision-making and
improving efficiency in practice.

6 CONCLUSION

We introduce REASONINGBANK, a memory framework that distills strategy-level reasoning signals
from both successes and failures and integrates them into test-time scaling (MATTS). Extensive
experiments show that REASONINGBANK consistently improves performance while reducing
redundant exploration. Further results reveal a strong synergy between memory and scaling:
REASONINGBANK guides scaling toward more promising rollouts, while diverse rollouts enrich
memory with valuable contrastive signals. We also provide analyses of individual components and
emergent behaviors. Our findings suggest a practical pathway toward building adaptive and lifelong-
learning agents, with additional future directions and limitations in Appendix D and E.
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ETHICS STATEMENT

This work does not involve human subjects, sensitive personal data, or any tasks requiring
Institutional Review Board (IRB) approval. All datasets used in our experiments (WebArena,
Mind2Web, SWE-Bench-Verified) are publicly available and widely used in the community; detailed
descriptions and preprocessing steps are provided in Appendix B to ensure transparency and
compliance. Our methods, REASONINGBANK and MATTS, focus on improving the effectiveness,
efficiency and generalization of LLM-based agents in web navigation and software engineering
tasks. While these advances aim to benefit research on adaptive and lifelong-learning agents, we are
mindful of potential concerns regarding misuse (e.g., automation of harmful tasks). We therefore
restrict our experiments to established academic benchmarks and commit to open-sourcing our code
under a research-only license to encourage responsible use. We have carefully followed the ICLR
Code of Ethics throughout this research and submission process.

REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of our work. The full methodology of
REASONINGBANK and Memory-Aware Test-Time Scaling (MATTS) is detailed in Section 3, with
additional implementation details provided in Appendix A. Experimental setups, including datasets
(WebArena, Mind2Web, SWE-Bench-Verified), baselines, evaluation protocols, and environment
configurations, are described in Section 4.1 and Appendix B. For clarity, we provide ablation
studies (Section 5), efficiency analyses (Section 5), and emergent behavior case studies (Section 5)
to validate the robustness of our findings. To further facilitate replication, we include precise
descriptions of the memory schema, retrieval, construction, and consolidation pipeline in Section 3.2
and Appendix A.1-A.2, and we outline the scaling procedures for both parallel and sequential
variants in Section 3.3 and Appendix A.3. We will release our full codebase to the open-source
community to foster transparency, reproducibility, and future research.
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Drouin, Léo Boisvert, Megh Thakkar, Tom Marty, Rim Assouel, Sahar Omidi Shayegan,

10

https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://arxiv.org/abs/2507.23361
http://proceedings.mlr.press/v119/chen20j.html
http://proceedings.mlr.press/v119/chen20j.html
https://arxiv.org/abs/2504.19413
https://openreview.net/forum?id=77gQUdQhE7
https://arxiv.org/abs/2507.06261
https://arxiv.org/abs/2507.06261


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026
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You are an expert in web navigation. You will be given a user query, the corresponding trajectory 
that represents how an agent successfully accomplished the task.  

## Guidelines  
You need to extract and summarize useful insights in the format of memory items based on the 
agent's successful trajectory.  
The goal of summarized memory items is to be helpful and generalizable for future similar tasks.  

## Important notes  
- You must first think why the trajectory is successful, and then summarize the insights.  
- You can extract at most 3  memory items from the trajectory.  
- You must not repeat similar or overlapping items.  
- Do not mention specific websites, queries, or string contents, but rather focus on the 

generalizable insights.  

## Output Format  
Your output must strictly follow the Markdown format shown below:  
```  
# Memory Item i  
## Title <the title of the memory item>  
## Description <one sentence summary of the memory item>  
## Content <1-3 sentences describing the insights learned to successfully accomplishing the 
task> ```

System Instruction

Input Prompt
Query: <user query> 

Trajectory: <trajectory that completes the query>

You are an expert in web navigation. You will be given a user query, the corresponding trajectory 
that represents how an agent attempted to resolve the task but failed.  

## Guidelines  
You need to extract and summarize useful insights in the format of memory items based on the 
agent's failed trajectory.  
The goal of summarized memory items is to be helpful and generalizable for future similar tasks.  

## Important notes  
- You must first reflect and think why the trajectory failed, and then summarize what lessons 

you have learned or strategies to prevent the failure in the future. 
- You can extract at most 3  memory items from the trajectory.  
- You must not repeat similar or overlapping items.  
- Do not mention specific websites, queries, or string contents, but rather focus on the 

generalizable insights.  

## Output Format  
Your output must strictly follow the Markdown format shown below:  
```  
# Memory Item i  
## Title <the title of the memory item>  
## Description <one sentence summary of the memory item>  
## Content <1-3 sentences describing the insights learned to successfully accomplishing the 
task> ```

System Instruction

Input Prompt
Query: <user query> 

Trajectory: <trajectory that completes the query>

Figure 8: System instructions for extracting memory items from agent trajectories: the left panel
targets successful trajectories (summarizing why they succeed), while the right targets failed
trajectories (reflecting on failure and deriving lessons).

A EXPERIMENT DETAILS

This section details the implementation of REASONINGBANK with agent systems mentioned in
Section 4.1 for web browsing tasks including WebArena and Mind2Web. We first present all the
prompts used for memory extraction in Appendix A.1, and then we provide the technical details for
memory extraction, retrieval, and consolidation in Appendix A.2.

A.1 PROMPTS USED FOR REASONINGBANK

Memory Extraction. Figure 8 illustrates the system instructions we used to guide the extraction
of memory items from agent trajectories mentioned in Section 3.2. We will first obtain correctness
signals from LLM-as-a-Judge (Gu et al., 2024) using the same backbone LLMs. When the trajectory
corresponds to a successful case (left panel), the instruction emphasizes analyzing why the trajectory
led to success and summarizing transferable reasoning strategies. Conversely, when the trajectory
represents a failed case (right panel), the instruction requires reflecting on the causes of failure and
articulating lessons or preventive strategies. In both settings, the output format is constrained to at
most three memory items expressed in a structured Markdown format, ensuring that the resulting
insights are concise, non-redundant, and generalizable across tasks rather than tied to specific
websites or queries.

LLM-as-a-Judge for Correctness Signals. Figure 9 displays the instruction used for self-
evaluation used to get binary signals for both successes and failures. Given the current user query,
trajectory in resolving the query, final state of the website, and model output, the LLM is required to
output the state of “Success” or “Failure” of whether the trajectory given successfully resolved the
query or not.

A.2 IMPLEMENTATION DETAILS

Memory Extraction. We use an LLM-based extraction pipeline to convert raw trajectories into
structured memory items. Specifically, we design a prompt template that asks the model to distill
reasoning patterns into three components: title, description, and content as previously mentioned
in Appendix A.1. The backbone LLM of the extractor is set to the same as the agent system with
temperature 1.0. For each trajectory, at most 3 memory items could be extracted. Crucially, we
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You are an expert in evaluating the performance of a web navigation agent. The agent is designed to help a human user navigate a website to 
complete a task. Given the user's intent, the agent's action history, the final state of the webpage, and the agent's response to the user, your goal is to 
decide whether the agent's execution is successful or not.  

There are three types of tasks:  

1. Information seeking: The user wants to obtain certain information from the webpage, such as the information of a product, reviews, map info, 
comparison of map routes, etc. The bot's response must contain the information the user wants, or explicitly state that the information is not 
available. Otherwise, e.g. the bot encounters an exception and respond with the error content, the task is considered a failure. Besides, be careful 
about the sufficiency of the agent's actions. For example, when asked to list the top-searched items in a shop, the agent should order the items by 
the number of searches, and then return the top items. If the ordering action is missing, the task is likely to fail.  

2.  Site navigation: The user wants to navigate to a specific page. Carefully examine the bot's action history and the final state of the webpage to 
determine whether the bot successfully completes the task. No need to consider the bot's response.  

3. Content modification: The user wants to modify the content of a webpage or configuration. Carefully examine the bot's action history and the final 
state of the webpage to determine whether the bot successfully completes the task. No need to consider the bot's response. 

*IMPORTANT*  
Format your response into two lines as shown below:  
Thoughts: <your thoughts and reasoning process>"  
Status: "success" or "failure"

System Instruction

Input Prompt

User Intent: {intent}  

Trajectory: {trajectory}  

The detailed final state of the webpage: ```md {cap} ```  

Bot response to the user: {response if response else "N/A"}

Figure 9: System instructions for obtaining binary signals indicating success or failures of the current
trajectory.

You are an expert in web navigation. You will be given a user query and multiple trajectories showing 
how an agent attempted the task. Some trajectories may be successful, and others may have failed. 

## Guidelines  
Your goal is to compare and contrast these trajectories to identify the most useful and generalizable 
strategies as memory items.  
Use self-contrast reasoning:  
- Identify patterns and strategies that consistently led to success.  
- Identify mistakes or inefficiencies from failed trajectories and formulate preventative strategies.  
- Prefer strategies that generalize beyond specific pages or exact wording.  

## Important notes  
- Think first: Why did some trajectories succeed while others failed?  
- You can extract at most 5 memory items from all trajectories combined.  
- Do not repeat similar or overlapping items.  
- Do not mention specific websites, queries, or string contents — focus on generalizable behaviors and 
reasoning patterns.  
- Make sure each memory item captures actionable and transferable insights. 

## Output Format  
Your output must strictly follow the Markdown format shown below:  
``` # Memory Item i  
## Title <the title of the memory item>  
## Description <one sentence summary of the memory item>  
## Content <1-5 sentences describing the insights learned to successfully accomplishing the task> ```

System Instruction

Input Prompt
Query: <user query> 

Trajectories: <trajectory 1>\n<trajectory 2>\n…<trajectory k>

First-time Check Instruction

Important: Let's carefully re-examine the previous trajectory, 
including your reasoning steps and actions taken.  

Pay special attention to whether you used the correct 
elements on the page, and whether your response addresses 
the user query. If you find inconsistencies, correct them. If 
everything seems correct, confirm your final answer.  

Output must stay in the same “<think>...</think><action></
action>” format as previous trajectories.

Follow-up Check Instruction

Let's check again.  

Output must stay in the same “<think>...</think><action></
action>” format as previous trajectories.

Figure 10: System instructions for memory-aware test-time scaling: the left panel shows parallel
scaling (comparing multiple trajectories to extract generalizable insights), while the right panel
shows sequential scaling (iteratively re-checking a trajectory to refine the final answer).

induce items from both successful and failed trajectories. Successes provide validated strategies,
while failures supply counterfactual pitfalls that act as negative signals. To determine success or
failure, we adopt an LLM-based binary classifier following (Pan et al., 2024; Wang et al., 2025d).
The classifier is prompted with the trajectory and the given user query, and asked to output a
categorical judgment (Success or Failure) as shown in Figure 9. Similarly, the backbone of
the classifier is set to the same as the agent system, with decoding temperature setting to 0.0 for
determinism.

Memory Retrieval and Response Generation. For retrieval, we embed each task query using
gemini-embedding-001 (Lee et al., 2025), accessed via Vertex AI.4 Similarity search is conducted

4https://ai.google.dev/gemini-api/docs/embeddings
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over the memory pool using cosine distance. We select memory items of the top-k most similar
experiences (default k = 1; ablation study in §5). The retrieved items are concatenated into the
agent’s system prompt with a simple formatting template (each item represented by its title and
content) and instruction:

Below are some memory items that I accumulated from past interaction from the environment
that may be helpful to solve the task. You can use it when you feel it’s relevant. In each step,
please first explicitly discuss if you want to use each memory item or not, and then take action.

Memory Consolidation. After finishing each new query, the trajectory is processed by the
extraction pipeline to produce new memory items, which are appended into the memory pool.
We adopt a minimal consolidation strategy: newly generated items are directly added without
additional pruning. This choice highlights the contribution of REASONINGBANK itself without
introducing confounding factors from complex consolidation algorithms. Nevertheless, more
advanced consolidation mechanisms (e.g., merging, forgetting) can be incorporated in future work.

REASONINGBANK Storage We maintain REASONINGBANK in a JSON format, and each entry
of REASONINGBANK consists of a task query, the original trajectory, and the corresponding memory
items. All memory items are stored with the schema {title, description, content}. The
embedding is pre-computed for each given query and stored in another JSON file for efficient
similarity search. We persist the memory pool for each independent run, enabling continual
accumulation of experiences throughout test-time learning.

A.3 MATTS DETAILS

Prompt Used for MATTS Figure 10 illustrates the system instructions used in our MATTS
framework mentioned in Section 3.3. In the parallel scaling setting (left), multiple trajectories for
the same query—both successful and failed—are provided, and the model is instructed to perform
self-contrast reasoning. Instead of relying on the LLM to act as an external judge of quality,
the model is guided to directly compare and contrast trajectories, identifying patterns that lead
to success and mistakes that cause failure. This provides a contrastive signal that grounds the
memory extraction process in observable differences between outcomes, yielding more reliable and
transferable insights. In the sequential scaling setting (right), the model repeatedly re-examines its
own trajectory with check instructions, ensuring consistency and correction over iterations without
appealing to external judgment.

Best-of-N Calculation Details. Given the task query and N trajectories from the agent system,
we leverage an LLM and selects the best answer from the N trajectories. The LLM is initiated as
the same backbone LLM as the agent system (e.g., if the agent system uses Gemini-2.5-flash, then
the model also uses Gemini-2.5-flash). We feed all the N trajectories to the model at once and use a
carefully curated prompt shown in Figure 11, asking the model to select the best answer.

B DETAILS FOR EXPERIMENT SETTINGS

B.1 WEB BROWSING

In this section, we detail the experiment settings used for web browsing agents mentioned in
Section 4.1.

Datasets. We test REASONINGBANK on three agentic datasets for benchmarking web browsing
and coding agents. Specifically, we conduct experiments on WebArena (Zhou et al., 2024) which
features general web navigation across diverse domains, spaning shopping, administration, coding
(Gitlab), and forums (Reddit). Another benchmark we used is Mind2Web (Deng et al., 2023), which
provides playground to test the generalization of agents on versatile operations and environments,
including cross-task, cross-website, and cross-domain settings. There are 684 and 1341 test
instances in total for WebArena and Mind2Web, respectively. For WebArena, the number of
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You are an expert in evaluating web navigation agent trajectories. You will be given the user query, and {N} candidate trajectories, each representing a 
sequence of steps for solving the same task. Your job is to select the single best trajectory that most effectively and efficiently solves the task, and 
explain your reasoning.  

## Input Format:  
Each trajectory consists of multiple steps. For each step, you will be provided:  
- step_num: Step index in the trajectory.  
- action_output: The action the agent takes (click, type, scroll, etc.). 
- think_output: The agent's reasoning or plan before taking the action.  

## Evaluation Criteria:  

### Progress Toward Goal 1. How well the trajectory advances toward completing the user's task. 2. Reward tangible, meaningful progress; penalize 
minimal or no advancement. 3. Consider both individual step contributions and overall progress.  

### Trajectory Efficiency 1. How efficiently the trajectory achieves progress given the number and complexity of steps. 2. Reward significant progress 
in fewer steps. 3. Favor better value-to-depth ratios. 4. Reward efficient search space exploration.  

### Loop Detection: Identify loops or redundant actions. 1. Real Loops: Repeating identical observations and actions with no added value. 2. Benign 
Repetitions: Slight variations that still yield new information. 3. Penalize real loops heavily; penalize benign repetitions only if they waste effort.  

### Error Severity and Stability: Assess severity of errors: 1. Fatal/Blocking: Major penalty. 2. Significant: Moderate penalty. 3. Minor/Recoverable: 
Minor penalty. 4. Penalize unstable or incoherent model reasoning. 5. Consider whether errors prevent goal completion.  

### Overall Trajectory Quality 1. Logical flow of steps, clarity of strategy, and coherence. 2. Balanced exploration vs. exploitation. 3. Closeness to final 
goal. 4. Reward consistent progress and coherent planning.  

## Output Format:  
Return the evaluation as a JSON object: ``` { "index": [best_trajectory_index], "analysis": "Detailed reasoning explaining why this trajectory is the best, 
referencing progress, efficiency, loop detection, error severity, and overall quality." } ```

System Instruction

Input Prompt

Query: {query}  

Trajectory 1: {trajectory_1}\nTrajectory 2: {trajectory_2}\n……\nTrajectory N: {trajectory_N}

Figure 11: System instructions for obtaining the best answer from N candidate trajectories for BoN
calculation.

instances for different domains are Shopping (187), Admin (182), Gitlab (180), Reddit (106), and
Multi (29). For Mind2Web, the number of different settings are Cross-Task (252), Cross-Website
(177), and Cross-Domain (912).

Baselines. We compare REASONINGBANK against several representative memory-augmented
approaches: (i) Vanilla, the backbone LLM agent without any memory module, serving as a
reference point; (ii) Synapse (Zheng et al., 2024), a representative work that organizes past
trajectories as in-context memory; and (iii) AWM (Wang et al., 2025d), which further abstracts
common patterns from trajectories into reusable workflows. Together, these baselines span a
progression from agents without memory, to those that directly reuse past trajectories, and finally
to methods that distill higher-level structures, providing a comprehensive comparison for evaluating
REASONINGBANK. To ensure a fair comparison, the baselines are implemented with the same
“Memory Retrieval” and “Memory Consolidation” mechanisms. The only difference is about
“Memory Extraction”, which is exactly how REASONINGBANK different from baselines in terms of
memory formulations.

Implementation Details. We build our agents upon several state-of-the-art LLMs accessed via the
Vertex AI API,5 including Gemini-2.5-Flash, Gemini-2.5-Pro (Comanici et al., 2025), and Claude-
3.7-Sonnet (Anthropic, 2025). These choices allow us to investigate both cross-family (Gemini,
Claude) and intra-family (Flash, Pro) variations. BrowserGym (de Chezelles et al., 2025) is used as
the execution environment for WebArena, where we set a maximum step limit of 30 per query. The
agent is implemented in ReAct (Yao et al., 2023) style, and iterates until the model predicts the stop
action or reaches a task termination condition. We use the decoding temperature of 0.7 for model
generations for both WebArena and Mind2Web.

Evaluation Metrics. For WebArena benchmark, we evaluate all methods across two key
dimensions: effectiveness and efficiency. For effectiveness, we report the success rate (SR). A
task is marked as “successful” only if the agent’s final output or state precisely matches the pre-
defined ground-truth goal, which is measured by the evaluation protocol from the corresponding
benchmarks. SR is the total number of successful tasks divided by the total number of tasks
evaluated, formally, it is calculated as SR = 1

N

∑N
i=1 isSuccess(qi), where isSuccess(qi) is the

binary function that returns 1 if task qi is successful and 0 otherwise. For efficiency, we measure

5https://cloud.google.com/vertex-ai
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the average number of steps (AS) taken by the agent to complete each query, which reflects the
computational and interaction cost incurred during task completion. A single step is defined as one
complete agent-env interaction cycle following the ReAct loop, which typically involves observing
the current state, generating a thought, and a subsequent action. AS is calculated as the total number
of steps taken in the trajectory when solving task qi divided by the total number of tasks, specifically,
AS = 1

N

∑N
i=1 Steps(qi) For Mind2Web dataset, each task in has a predefined fixed number of

steps; at each step, the agent needs to predict an action, which is evaluated by: element accuracy: to
check if the correct page element is selected, action F1 to check if the action taken on the element is
correct. Aggregating element accuracy and action F1 yields step success rate which checks that both
element and action selection are correct at the current step. Lastly, after completing every step in the
given task, the last metric task-level success rate measures if all intermediate steps are successfully
conducted for this task, i.e., all steps for this task score 1.0 under metric step success rate.

B.2 SOFTWARE ENGINEERING

Datasets. To benchmark agentic coding tasks, we evaluate on SWE-Bench-Verified (Jimenez et al.,
2024), a repository-level issue resolution benchmark. The dataset consists of 500 high-quality test
instances that have been manually verified. Each instance requires generating a patch to address the
underlying bug described in the input issue. The objective is to modify the relevant portions of the
codebase such that all provided test scripts execute successfully.

Metrics. We report the issue resolution rate on SWE-Bench-Verified as the primary evaluation
metric. The resolution rate measures the percentage of issues successfully fixed across all data
points, where an issue is deemed resolved if the submitted patch passes all test scripts. To evaluate
the patch application rate, we attempt to apply the generated patches to the repository using the
standard patch program, counting only successful applications. Our implementation follows the
official evaluation scripts.6 For efficiency, we additionally report the average number of steps
performed by the agent per instance, following web-browsing tasks.

Implementation. We implement REASONINGBANK for SWE-Bench following the setting of mini-
SWE-Agent (Yang et al., 2024), which enforces the Bash-Only environment with no tools and no
special scaffold structure. It assumes a simple ReAct agent loop (Yao et al., 2023). Similar to
previous experiments, we compare REASONINGBANK against (i) No memory and (ii) Synapse. 7

C ADDITIONAL ANALYSES

C.1 NUMBER OF RETRIEVED EXPERIENCES
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Figure 12: Ablation results for us-
ing various number of experiences.

We conduct another ablation study on different number of
retrieved experiences using Gemini-2.5-flash on WebArena-
Shopping subset. As shown in Figure 12, we found
that incorporating relevant memory significantly boosts
performance (from 39.0 without memory to 49.7 with one
experience). However, as the number of experiences increases,
the success rate gradually declines (46.0 with 2, 45.5 with 3,
and 44.4 with 4). This suggests that while memory provides
valuable guidance, excessive experiences may introduce
conflicts or noise. Hence, the relevance and quality of memory
are more crucial than sheer quantity for effective performance.

6https://www.swebench.com/SWE-bench/api/harness/
7We exclude AWM here because the action space in mini-SWE-Agent is open-ended (arbitrary Bash

commands), making it difficult to extract the common routines or fixed workflows that AWM requires for
cross-task generalization.
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C.2 CALIBRATION OF LLM-AS-A-JUDGE

A critical step in our method is sourcing correctness signals for agent trajectories via an LLM-as-a-
Judge. In this section, we quantitatively calibrate this judge and analyze its robustness to verification
noise. We conduct our analysis on the WebArena-Shopping subset, using Gemini-2.5-flash as the
judge. We first establish the baseline accuracy by comparing the judge’s predictions against ground-
truth labels, which we find to be 72.7%.
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Figure 13: Results for success rate
with respect to simulated LLM-as-
a-judge accuracy.

To systematically study the judge’s robustness, we simulate
different levels of verification accuracy. This is achieved by
probabilistically correlating the judge’s labels with the ground-
truth. For example, a 100% accurate verifier uses the ground-
truth labels directly. A 90% accurate verifier is simulated by
using the correct (ground-truth) label 90% of the time and
the incorrect (flipped) label 10% of the time. We extend this
simulation down to 50% accuracy, which represents a random-
guess baseline for this binary (success/failure) classification
task. The results are presented in Figure 13.

We observe that REASONINGBANK maintains a substantial
performance improvement over baselines across all simulated
judge accuracies. Furthermore, the judge’s accuracy does not
significantly impact the performance of REASONINGBANK, as
all variants achieve similar success rates within reasonable accuracy range (70%-90%). Intuitively,
the 100% (ground-truth) accuracy setting yields the best performance. These findings confirm that
REASONINGBANK is robust to noise in the verification step.

C.3 INFERENCE COST STUDY

Table 5: Breakdown results of total token consumption
required for each task.

Methods Action
Generation

LLM-as
-a-Judge

Memory
Extraction Total

No Memory 50847.4 - - 50847.4
Synapse 55920.5 2594.2 - 58514.7
AWM 53819.6 2479.1 3074.1 59372.8
REASONINGBANK 49306.1 2186.3 1562.1 53054.5

In this section, we provide a
comprehensive view on inference
cost for REASONINGBANK and
baselines to facilitate real-world
deployment. We report a break-
down of the averaged total token
consumption for each trajectory in
addition to number of interaction
steps mentioned in Section 4.1.
The results are shown in Table 5.

From the table we can see that compared with “No memory”, while the total token consumption
is increased only by around 4.3%, the overall performance is boosted by 20.5%. Other memory
baselines such as Synapse and AWM will greatly increase the computation overhead while achieving
less performance gains compared with REASONINGBANK, demonstrating the cost-effectiveness of
REASONINGBANK.

C.4 PASS@K ANALYSIS

Memory-aware scaling improves sample efficiency and sustains stronger performance gains.
Pass@k analysis under parallel scaling on WebArena-Shopping subset with Gemini-2.5-flash
(Figure 14) reveals two distinct effects. First, MATTS w/o aggregation (Vanilla TTS) already makes
test-time learning behave similarly to RL training: instead of inflating pass@k at large k, it improves
sample efficiency by guiding exploration. For example, at k = 2, MATTS w/o aggregation achieves
50.8 compared to 47.6 from MATTS w/o memory, extracting more value from each rollout as noted
in (Yue et al., 2025). Second, equipping TTS with memory-aware scaling pushes performance
further. MATTS not only preserves efficiency at small k (51.3 at k = 2) but also sustains strong
growth with scaling, reaching 62.1 at k = 5, compared to only 52.4 for MATTS w/o memory.
Overall, we see that MATTS unlocks more potential of agent systems and encourages diversified
generation for better pass@k performance.
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Analysis 2: Case Study (Effectiveness)

Start on homepage click (‘My Account’) View ‘Recent Orders’ table

Baseline (No memory)

Answer ('Your first purchase on this site 
was made on 3/11/23.')

Reasoning Bank

What is the date when I made my first purchase on this site?

Start on homepage click (‘My Account’) View ‘My Orders’ table Next Page

Answer ('Your first purchase 
on this site was made on 
March 2, 2022.')

To find information regarding certain purchase, I will 
use memory item 5. I see a link in `My Orders`, as 
mentioned in the memory …

Figure 15: REASONINGBANK enables the agent to recall and apply past reasoning hints, guiding
it to the full order history and yielding the correct first purchase date, unlike the baseline that fails
with only recent orders.

C.5 CASE STUDY
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Figure 14: Pass@k under parallel
scaling with REASONINGBANK.

To better illustrate the benefits of our approach, we present
three representative case studies.

Effectiveness. Figure 15 highlights the effectiveness of
REASONINGBANK in leveraging related previous experiences
as memory items. While the baseline agent (without memory)
only checks the “Recent Orders” table and mistakenly outputs
the most recent purchase date, REASONINGBANK recalls from
past reasoning hints to explore the full purchase history and
correctly identifies the earliest order.

Efficiency. Figure 16 demonstrates the efficiency gains. In a
navigation-heavy shopping task, the baseline requires 29 steps
due to repeated inefficient browsing. It stucks and struggles
to find the correct place of filter for “Men”. In contrast,
REASONINGBANK leverages stored reasoning about category
filtering, enabling the agent to directly reach the relevant items
and complete the task in only 10 steps.

Emergent Capabilities. Figure 17 shows how memory items induced by REASONINGBANK
through reflecting on past trajectories helps to prevent similar errors from happening again,
which enables emergent improvement. In this case, the original trajectory actually fails because
of the imprecise search query that leads to numerous returned items, and irrelevant objects.
REASONINGBANK is able to first reflect on the trajectory, pinpoint the key reason of failure, and
extract valuable strategies that would avoid similar errors such as search query optimization and
using the functionality filters.

D FUTURE DIRECTIONS

In this section, we briefly discuss the potential future directions following REASONINGBANK and
MATTS.

Modular and Compositional Memory. Our current framework distills each experience into
multiple memory items, and when a new query arrives, we retrieve similar experiences and reuse
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Analysis 2: Case Study (Efficiency)

Start on homepage

Baseline (No memory)

Reasoning Bank

Buy the best rating product from "Men's shoe" category with at least 5 reviews and the product is least expensive

Start on homepage Hover (Shoes), Hover (Men) Select Price () Identified with at 
least 5 reviews

I will click "Proceed to 
Checkout" from the cart

……

Cannot filter by `Men`, need scroll down

10 Steps in total.

29 Steps in total.

I will click "Proceed to 
Checkout" from the cart

Inefficient search for navigation, consuming 
8 steps

Select Price ()

…………

According to Memory Item 11, to correctly navigate to 
certain categories, I need to first filter products ….

……

Figure 16: REASONINGBANK improves efficiency by leveraging past reasoning hints, reducing the
navigation from 29 steps to 10 steps compared to the baseline without memory.Learning from Failures

User Query: Provide me with the complete names of Bluetooth headphones from Sony, and also share the price 
range for the available models.

Irrelevant objects

Too many items to browse

Diagnose the trajectory: 
“The agent spent endless steps on ‘page next’, 
which exhausts the interaction limits without 
providing the requested information from user. …”

Distilled strategies to ReasoningBank: 
“Search query optimization” to avoid irrelevance 
and ensure preciseness 
“Adjust number of items displayed per page” to 
accelerate 
“Use filters available”

Figure 17: Memory items induced by REASONINGBANK unlocks emergent improvement of
REASONINGBANK, which help avoid similar errors from happening again.

all associated items independently. This design highlights the effect of memory content but
does not consider how items could be composed into higher-level strategies. Future work could
explore composition-aware retrieval and consolidation with based on modular memory extraction,
enabling the agent to combine complementary items or form reusable macros, thereby yielding
richer strategies and stronger generalization in long-horizon tasks. For example, memory could be
extracted with respect to “planning memory”, “tool-use memory”, “operational memory”, “user-
centric memory”, etc. In this way, memory extracted would be more fine-grained and memory
retrieval could unlock compositional and complementary power, not just task similarity.

Advanced Memory Architectures. Our current system design is intentionally minimal; a natural
next step is to build a layered, product-level memory stack that integrates mature paradigms — e.g.,
episodic traces (Fountas et al., 2025) for per-task context, short-term “working” memory (Lumer
et al., 2025) for within-session state, and long-term (Wang et al., 2025b) consolidated knowledge
with decay/refresh policies. The philosophy of REASONINGBANK are compatible with the above
different memory angularities. Additionally, the current memory retrieval could also move beyond
embedding-based similarities to reasoning-intensive controllers (Shao et al., 2025) that decompose
queries, plan multi-hop lookups across tiers, and condition selection on uncertainty, recency, and
cost. Learning-based routers and consolidation policies could also automate this process. This
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integration would turn REASONINGBANK with MATTS into a deployable memory service that
scales across domains and teams.

E LIMITATIONS

While REASONINGBANK demonstrates strong empirical performance and introduces a practical
paradigm for memory as a scaling dimension, it also comes with several limitations that suggest
directions for future research.

Focus on memory content. Our study emphasizes how to curate and utilize memory content (e.g.,
integrating failure trajectories, constructing distilled reasoning cues). For this reason, we did not
extensively compare with other memory architectures such as episodic or hierarchical memory.
These designs address orthogonal concerns (memory form/structure), while our contribution targets
what should be stored and reused. Exploring their combination would be an interesting future
direction.

Simplicity in memory retrieval and consolidation. We intentionally adopt simple embedding-
based retrieval and straightforward consolidation to better isolate the effect of content quality. More
sophisticated strategies (e.g., adaptive retrieval, hierarchical consolidation) are compatible with our
framework and could further enhance performance, but are not the focus of this work. This choice
ensures that the observed gains can be attributed directly to the design of reasoning-oriented memory
content.

Dependence on LLM-as-a-judge for correctness signals. In our implementation, success and
failure signals for trajectories are determined by an LLM-as-a-judge. While this automatic labeling
enables scalable evaluation without ground-truth feedback, it may introduce noise when tasks
are ambiguous or when the judge model itself errs. While our results suggest the framework
remains robust under such noise, future work could incorporate stronger verifiers, human-in-the-
loop feedback, or ensemble judgment to enhance the reliability of memory induction.

F USE OF LLMS

We used LLMs as a general-purpose writing assist tool during the preparation of this submission.
Specifically, LLMs were employed for polishing the clarity and readability of text (e.g., refining
sentence structure, improving grammar, and shortening overly verbose phrasing). All research
ideas, methodology design, experiments, analyses, and final writing decisions were conceived,
implemented, and validated solely by the authors.
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