
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

REASONINGBANK: SCALING AGENT SELF-EVOLVING
WITH REASONING MEMORY

Anonymous authors
Paper under double-blind review

ABSTRACT

With the growing adoption of large language model (LLM) agents in persistent,
real-world roles, they naturally encounter continuous streams of tasks and
interactions. A key limitation, however, is their failure to learn from the
accumulated experiences, forcing them to discard valuable insights and repeat
past errors. Unlike prior works that primarily store raw experience or successful
routines, we propose REASONINGBANK, a novel memory framework that allows
an agent to self-curate generalizable reasoning strategies from both its successful
and failed experiences for future use. This mechanism enables agents to
generalize across tasks and become more capable over time. To accelerate and
diversify this test-time learning process, we further propose memory-aware test-
time scaling (MATTS), which leverages a powerful synergy between memory
and test-time scaling. On one hand, relevant memory from REASONINGBANK
guides the scaling process toward more effective exploration and improved
reliability. On the other, scaling — in both parallel and sequential settings —
generates abundant, diverse experiences that provide rich contrastive signals for
synthesizing higher-quality memory. Experiments on web browsing and software
engineering benchmarks show that REASONINGBANK consistently outperforms
existing memory mechanisms in both effectiveness and efficiency, with MATTS
further amplifying the gains. These findings position memory-driven experience
as a new dimension of test-time scaling, where emergent behaviors naturally arise
and agents acquire self-evolving capabilities.

1 INTRODUCTION

The rapid advancement of large language models (LLMs) has significantly accelerated the
development of interactive LLM agents (Wang et al., 2024; Liu et al., 2025a), which are crucial
in tackling complex real-world tasks that require multi-turn interactions with environments. These
agents have demonstrated great potential across diverse scenarios, including web browsing (Gur
et al., 2024), computer use (Yang et al., 2024; Xie et al., 2024), and scientific discovery (Ghafarollahi
& Buehler, 2025). As these agents are increasingly deployed in persistent, long-running roles, they
naturally encounter a continuous stream of tasks and interactions. However, a critical limitation
persists: they largely fail to learn from this accumulated experience. By approaching each new task
in isolation, they are doomed to (i) repeat similar errors observed in the past (Yin et al., 2025),
(ii) discard valuable insights gained from related problems, and, most importantly, (iii) lack self-
evolving capabilities that make the agent system more capable over time (Gao et al., 2025). This
phenomenon highlights the necessity of building memory-aware agent systems that could learn from
their past experiences (Zhang et al., 2024b).

Recent efforts on agent memory have primarily focused on storing past interactions for reuse (Zhao
et al., 2024; Tang et al., 2025b; Chen et al., 2025; Sun et al., 2025). While useful, these approaches
are often limited to leveraging raw trajectories (Zheng et al., 2024; Kagaya et al., 2024; Kong et al.,
2025) or common, successful routines (i.e., workflows, procedures) (Wang et al., 2025d; Fang et al.,
2025). These approaches suffer from two fundamental drawbacks. First, they lack the ability
to distill higher-level, transferable reasoning patterns. Second, by over-emphasizing successful
experiences, it leaves the valuable lessons from an agent’s own failures largely underexplored (Zhang
et al., 2024a). Consequently, existing memory designs often remain limited to passive record-
keeping rather than providing actionable, generalizable guidance for future decisions.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

0 10 20 30 40
Number of Tested Tasks

N
um

be
r o

f S
uc

ce
ss

fu
l T

as
ks

0

3

6

12

15

18

Top-3 best-
selling
products in
Jan 2023 Best-selling product

type in Jan 2023

Top-2 searches
in the store Num of reviews

mentioning “decent”

Monthly counts of
top-3 products for
01/2023-05/2023 in
MM:COUNT format

Grand total of
invoice

Trajectory Memory

ReasoningBank Memory

Workflow Memory

<action> click('188') </action>

<think> I have successfully navigated to
the 'My Account' page. The user wants
to know the date of their first purchase.
On this page, I see a "Recent Orders"
section. To ensure I find the *first*
purchase, I need to view the complete
order history, not just the recent ones.
There is a "View All" link next to
"Recent Orders" which should take me
to the full order history. </think>
<action> click('1530') </action>

<think> I am on the "My Orders" page.
The user wants to know the date of
their first purchase. The orders are
currently displayed from most recent to
oldest. …</think>
 <action> click('1614') </action>

Earliest order
for customer

Workflow: Retrieve Information from
Specific Page Section
<think> This workflow is designed to
access a specific section … </think>
<action> click(‘section_or_tab_id') </
action> <action>
send_msg_to_user('extracted_info_m
essage') </action>

Title Navigation Strategy
Description When searching for
specific information within history …
Content … 1. Detect pagination
mode and examine all items in relevant
orders, …; 2. Avoid infinite scrolls, use
fallbacks if primary mode fails, …; 3.
Cross-reference with common …

Solution: ReasoningBank
We get rich task insights from expensive test-time exploration / scaling.

We store them in a ReasoningBank.

When a new task comes, we incorporate the relevant insights to aid decision making.

9

ReasoningBank

No Memory

Figure 1: REASONINGBANK induces reusable reasoning strategies, making memory items more
transferrable for future use. This enables agents to continuously evolve and achieve higher
accumulative success rates than the “No Memory” baseline on the WebArena-Admin subset.

Motivated by this, we propose REASONINGBANK, a novel memory framework for agent
systems that distills and organizes memory items from both successful and failed experiences.
REASONINGBANK focuses on capturing high-level reasoning insights, enabling agents to generalize
across tasks and adapt to dynamic environments more effectively as shown in Figure 1. When facing
a new query, the agent retrieves relevant memory items from REASONINGBANK and integrates them
into its inference process; after execution, new experiences are distilled and consolidated back into
REASONINGBANK. This closed-loop design continuously enables the agent to evolve and discover
new strategies for unseen tasks.

As a strong experience learner, REASONINGBANK naturally benefits more from diverse experiences,
making scaling a principled way to unlock greater gains. To this end, we introduce memory-aware
test-time scaling (MATTS) in both parallel and sequential settings, where scaling supplies diverse
contrastive experiences that enrich the quality and generality of REASONINGBANK’s memory.
Moreover, we reveal a synergy between memory and test-time scaling: while REASONINGBANK
provides guidance that steers scaling towards sampling more promising trajectories (termed as
“rollouts”), and the diverse rollouts generated during scaling in turn provide abundant experience
sources with valuable contrastive signals for memory curation. This forms a positive feedback
loop and positions memory-driven experience as a new dimension of test-time scaling where agents
acquire self-evolving capabilities.

Our contributions are threefold: (1) We propose REASONINGBANK, a novel memory framework
that distills generalizable reasoning strategies from both successful and failed experiences, beyond
prior work that primarily stores raw trajectories or success-only routines. (2) We introduce MATTS
that establishes a powerful, bidirectional synergy between memory and test-time scaling, with
memory-driven experience as a new scaling dimension. (3) We conduct extensive experiments on
web browsing (WebArena, Mind2Web) and software engineering (SWE-Bench-Verified) tasks. We
demonstrate that our approaches not only outperform existing methods in effectiveness (up to 24.1%
relative improvement) and efficiency (18.0% less interactions), but also uniquely learn from failures
and enable agents to develop increasingly complex, emergent reasoning strategies over time.

2 RELATED WORK

Memory for LLM Agents. Memory has emerged as an essential module in modern agent
systems (Zhang et al., 2024b), with prior efforts primarily emphasizing personalization and
long-context management (Xu et al., 2022; Maharana et al., 2024; Wu et al., 2025; Hu et al.,
2025). Memory representations have been organized in various forms, including latent knowledge
embeddings (Wang et al., 2025b) and structured graphs (Xu et al., 2025; Chhikara et al., 2025;
Packer et al., 2023). Beyond memory content, reflective mechanisms such as RMM (Tan et al.,
2025) develop both backward- and forward-looking strategies, while MemoryBank (Zhong et al.,
2024) introduces a novel updating mechanism. More recently, with the growing integration
of reinforcement learning (RL) in LLM agents, memory has also been leveraged for managing
contextual information across interactions (Yu et al., 2025a; Zhou et al., 2025). This paper
falls in the research line of learning from past experiences as memory. Different from previous

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

works that emphasize reusing successful trajectories (Zheng et al., 2024; Tang et al., 2025a) or
procedural workflows (Wang et al., 2025d; Qian et al., 2024; Fang et al., 2025; Liu et al., 2025b),
REASONINGBANK stores high-level strategies and reasoning hints. By abstracting experiences into
reusable reasoning units, REASONINGBANK enables agents to generalize not only from successful
cases but also by learning from failures, thereby providing richer guidance for test-time learning.
Additionally, we are the first to explore memory-aware test-time scaling, where REASONINGBANK
synergistically work with diverse signals from abundant exploration trajectories.

Agent Test-Time Scaling. Test-time scaling (TTS) (Snell et al., 2025) has demonstrated strong
effectiveness and has become a widely adopted practice in end-to-end problem-solving such as
coding (Li et al., 2025; Yu et al., 2025c) and math reasoning (Muennighoff et al., 2025), where
methods including best-of-N (Chow et al., 2025), beam search (Wu et al., 2024b), and leveraging
verifiers (Setlur et al., 2025) are commonly employed. However, its application to multi-turn
interactive scenarios, particularly agentic tasks, remains underexplored. Existing works mainly
adapt the lesson learned from reasoning tasks (Zhu et al., 2025b) and scale different dimensions of
agentic systems, including the search space for each action (Yu et al., 2025b), the number of agents
in multi-agent systems (Jin et al., 2025), and the number of interactions with the environment (Shen
et al., 2025). We found that none of these efforts considers the role of agent memory in scaling,
where an agent can learn from past experiences to guide future decisions. Our work extends this
line of research by introducing memory-aware test-time scaling (MATTS). As we will show in our
empirical results (§4.3 and §4.4), memory offers benefits beyond mere computational scaling, where
memory and scaling synergistically work towards better performance.

3 METHODOLOGY

In this section, we introduce the problem setup (§3.1), and present our proposed REASONINGBANK
(§3.2), based on which we further develop memory-aware test-time scaling (MATTS) (§3.3).

3.1 PROBLEM FORMULATION

Agent Configuration. The scope of this work focuses on language model (LM)-based agents.
The agent policy πL(·|M,A) is parameterized by the backbone LLM L, conditioned on a memory
module M, and the action space A, denoted as πL for short. The agent needs to perform a task
via interacting with the environment, which can be viewed as a sequential decision-making process.
Formally, the transition function of the environment is defined as T (st+1|st, at) where st is the state
and at is the action selected by πL at time t. We focus on web browsing and software engineering
(SWE) tasks. A is a set of web navigation operations for web browsing and bash commands for
SWE, M is REASONINGBANK and initialized as empty. For each given task, the agent generates a
trajectory of (o0:t, a0:t) for t steps, where observation ot is from the current state st. Observations are
text-based accessibility tree of web pages1 for web browsing tasks and code snippets for SWE. The
agent needs to generate an action at+1 ∈ A via πL(o0:t, a0:t;M,A) → at+1. For implementation,
the memory module M contributes relevant memories as additional system instruction for πL.

Test-Time Learning. We focus on the test-time learning paradigm (Wu et al., 2024a; Wang et al.,
2025c) where a sequence of task queries Q = {q1, q2, ..., qN} arrives in a streaming fashion, i.e.,
each query is revealed and must be completed sequentially without access to future ones. In this
setting, no ground truth is available during test-time, so the agent must continually evolve by only
leveraging its own past trajectories and any self-verification without relying on external labels. This
streaming setting highlights two key challenges: (i) how to extract and preserve useful memory
from past trajectories, and (ii) how to effectively leverage such memory for future queries to avoid
redundantly re-discovering already successful strategies or repeating past mistakes.

3.2 REASONINGBANK

Past raw trajectories (or experiences), while being comprehensive and original, are often too
lengthy and noisy to be directly applied to the current user query. As illustrated in Figure 2,

1We use the thinking process of πL as the approximation of o0:t due to lengthy observation representations
following Wang et al. (2025d).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Time
Task q1 Task q2 …… …… Task qNTask qi

Methodology
Problem Formulation: Streaming nature of testing tasks

Given a test set of tasks , the agent works on the tasks sequentially:

•

• No ground-truth feedback during testing

{t1, t2, ⋯, tn}
t1 → t2 → ⋯ → tn

qi Agent Env

ReasoningBank: a collection of memory items

: experience/trajectoryℋ

(i) Memory Retrieval

Memory
Items

(ii) Memory
Extraction

(iii) Memory
Consolidation

Task : Tell me the status of my latest order and when it will arriveqi

Experience/Trajectory ℋ <think>… I need to navigate to …</think>
<action> click(‘188’) </action>

Memory
Item j

Title: Prioritize user account sections for personal data
Description When a query requests user-specific…
Content: Systematically look for and click on links …

Memory Extractor

Figure 2: Overview of REASONINGBANK. Experiences are distilled into structured memory items
with a title, description, and content. For each new task, the agent retrieves relevant items to interact
with the environment, and constructs new ones from both successful and failed trajectories. These
items are then consolidated into REASONINGBANK, forming a closed-loop memory process.

REASONINGBANK distills useful strategies and reasoning hints from past experiences into
structured memory items, which are then stored in the agent’s memory for future reuse.

Memory Schema. Memory items in REASONINGBANK are designed and induced from past
experiences as structured knowledge units that abstract away low-level execution details while
preserving transferrable reasoning patterns and strategies. Each memory item specifies three
components: (i) a title, which serves as a concise identifier summarizing the core strategy or
reasoning pattern; (ii) a description, which provides a brief one-sentence summary of the memory
item; and (iii) the content, which records the distilled reasoning steps, decision rationales, or
operational insights extracted from past experiences. Together, memory items extracted are both
human-interpretable and machine-usable, facilitating efficient usage and integration with agents.

Integrating REASONINGBANK with Agents. An agent πL equipped with REASONINGBANK can
draw upon a curated pool of transferable strategies to guide decision-making. This enables the agent
to recall effective insights, avoid previously observed pitfalls, and adapt more robustly to unseen
queries. The integration proceeds in three steps: (i) memory retrieval, (ii) memory construction,
and (iii) memory consolidation, as shown in Figure 2. During memory retrieval, the agent queries
REASONINGBANK with the current query context to identify the top-k relevant experiences and their
corresponding memory items using embedding-based similarity search. Retrieved items are injected
into the agent’s system instruction, ensuring that action prediction from A is grounded with useful
past experiences. When the current query task is completed, we will perform memory construction to
extract new memory items. The first step is to obtain correctness signals for completed trajectories:
we adopt an LLM-as-a-judge (Gu et al., 2024) to label outcomes as success or failure given the
query and trajectory. Based on these signals, we apply different extraction strategies: successful
experiences contribute validated strategies, while failed ones supply counterfactual signals and
pitfalls that help sharpen guardrails. In practice, we extract multiple memory items for each
trajectory/experience as detailed in Appendix A.1. Finally, memory consolidation incorporates these
items into REASONINGBANK with a simple addition operation, maintaining an evolving repository
of memory items. Details are in Appendix A.2. Together, these steps form a closed-loop process:
the agent leverages past experiences, constructs new memory from current tasks, and continually
updates its memory, enabling sustained evolvement in test-time learning scenarios.2

3.3 MATTS: MEMORY-AWARE TEST-TIME SCALING

REASONINGBANK enables learning from experiences to translate more experiences into greater
improvements. As test-time scaling (TTS) (Snell et al., 2025) recently emerged as a powerful
strategy for boosting the performance of LLM agents (Zhu et al., 2025a), it shows strong potential
by allocating additional inference-time computation to generate abundant exploration histories. A
vanilla combination is depicted in Figure 3(a), where more trajectories are independently converted
to more memory items. However, this is suboptimal because it does not leverage inherent
contrastive signal that arises from abundant explorations on the same problem, which limits the

2We deliberately keep the memory usage pipeline simple, avoiding additional complexity in retrieval or
consolidation so as to highlight the contribution of REASONINGBANK itself. These components, however, can
be further enhanced with more sophisticated techniques, which could provide additional benefits.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Methodology
Memory-aware test-time scaling (MaTS): Leverage contrastive signals from past experiences:
• Parallel Scaling: use self-contrast for memory curation
• Sequential Scaling: use self-refinement for memory curation

Task qi Task qi+1

Current
memory

New
memory

Self-Refine

Traj Traj’ …

(c) MaTTS - Sequential
Task qi Task qi+1

(b) MaTTS - Parallel

Current
memory

Trajectory 1

Trajectory 2

Trajectory n

New
memory

Self-
Contrast

……

Traj 1

Traj 2

Traj n

New
Mem 1Mem 1

New
Mem 2

New
Mem n

Mem 2

Mem n

…… …………

Task qi Task qi+1
(a) Vanilla TTS (MaTTS w/o aggregation)

Figure 3: Comparison of (a) vanilla TTS that independently run REASONINGBANK for multiple
times without aggregating on trajectories, MATTS with (b) parallel scaling, where self-contrast
across multiple trajectories curates reliable memory, and (c) sequential scaling, where self-
refinement enriches memory with intermediate reasoning signals.

resulting performance advantage brought by TTS. To address this, we propose Memory-aware
Test-Time Scaling (MATTS), a novel integration of test-time scaling with our memory framework,
REASONINGBANK. Unlike the vanilla approach, MATTS learns by deliberately aggregating from
the abundant successful and failure trajectories generated during scaling for more effective memory
curation. We design two complementary instantiations for MATTS, parallel scaling and sequential
scaling, as illustrated in Figure 3(b) and 3(c) with detailed implementation in Appendix A.3.

Parallel Scaling. In the parallel setting, we generate multiple trajectories for the same query
under the guidance of retrieved memory items. By comparing and contrasting (self-contrast (Chen
et al., 2020)) across different trajectories, the agent can identify consistent reasoning patterns while
filtering out spurious solutions. This process enables more reliable memory curation from multiple
trials of a single query and promotes diverse yet grounded exploration.

Sequential Scaling. We iteratively refine its reasoning within a single trajectory after the initial
completion, following the principle of self-refinement (Madaan et al., 2023). In this process, the
intermediate notes generated in self-refinement are also used as valuable signals for memory, since
they capture reasoning attempts, corrections, and insights that may not appear in the final solution.

We define the scaling factor k, denoting the number of trajectories for parallel scaling and refinement
steps for sequential scaling. Equipped with REASONINGBANK, both parallel and sequential
strategies become memory-aware, ensuring that the additional computation allocated at test time
translates into more transferable and higher-quality memory for future tasks.

4 EXPERIMENTS

4.1 SETUP

Following existing work (Wang et al., 2025d), we conduct experiments on WebArena (Zhou et al.,
2024) which features general web navigation across diverse domains,3 and Mind2Web (Deng
et al., 2023) that tests generalization of agents on versatile operations and environments. We also
conduct experiment on SWE-Bench-Verified for repository-level issue-resolving. For comparison,
we consider baselines ranging from memory-free agents (No Memory) to trajectory-based memory
(Synapse) (Zheng et al., 2024) and workflow-based memory (AWM) (Wang et al., 2025d). Our
agents are built on Gemini-2.5 (Comanici et al., 2025) and Claude-3.7 (Anthropic, 2025) models
using BrowserGym (de Chezelles et al., 2025) for web browsing and bash-only for SWE, following
ReAct (Yao et al., 2023) style with default decoding configurations. We evaluate effectiveness
(success rate, SR) and efficiency (average steps, AS), with specific metrics varying for each dataset.
Full descriptions for datasets, baselines, implementations, and evaluation are in Appendix B.

4.2 RESULTS OF REASONINGBANK

Tables 1, 2, 3 summarize the main evaluation results of REASONINGBANK on WebArena,
Mind2Web, and SWE-Bench-Verified accordingly. We have the following observations.

REASONINGBANK consistently outperforms baselines across LLM backbones on all datasets.
Specifically, REASONINGBANK improves the overall success rate on WebArena (Table 1) by +8.3,

3We exclude the domain of Map due to website issues following Miyai et al. (2025) for a fair comparison.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Experiment results of REASONINGBANK on WebArena benchmark. Success rate (SR ↑)
and average number of steps (AS ↓) are reported on 5 subsets for 3 different backbone LLMs.

Models Shopping Admin Gitlab Reddit Multi Overall

SR AS SR AS SR AS SR AS SR AS SR AS

Gemini-2.5-flash
No Memory 39.0 8.2 44.5 9.5 33.9 13.3 55.7 6.7 10.3 10.0 40.5 9.7
Synapse 40.6 7.0 45.1 9.1 35.6 13.0 59.4 6.5 10.3 10.5 42.1 9.2
AWM 44.4 7.0 46.7 8.8 37.2 13.2 62.3 6.1 3.4 7.7 44.1 9.0
REASONINGBANK 49.7 6.1 51.1 8.2 40.6 12.3 67.0 5.6 13.8 8.8 48.8 8.3

Gemini-2.5-pro
No Memory 45.5 7.6 51.1 8.7 35.0 11.6 71.7 6.0 6.9 8.8 46.7 8.8
Synapse 46.5 6.6 52.2 8.9 38.3 11.3 68.9 5.9 6.9 9.0 47.7 8.5
AWM 48.1 6.4 49.3 9.8 40.0 11.2 68.9 6.4 3.4 9.3 47.6 8.7
REASONINGBANK 51.9 6.0 56.6 7.7 44.4 9.8 80.2 5.1 13.8 8.2 53.9 7.4

Claude-3.7-sonnet
No Memory 38.5 6.1 49.5 8.4 36.7 10.6 53.8 5.5 0.0 11.6 41.7 8.0
Synapse 39.6 5.8 50.5 8.5 38.0 10.0 53.8 6.1 0.0 11.8 42.6 7.9
AWM 39.6 7.2 47.8 9.3 34.6 10.9 52.8 7.0 0.0 12.4 40.8 8.9
REASONINGBANK 44.9 5.6 53.3 7.6 41.1 9.5 57.5 5.2 3.4 10.5 46.3 7.3

+7.2, and +4.6 with three different backbone LLMs compared to memory-free agents. A similar
pattern holds on Mind2Web (Table 3), where REASONINGBANK delivers clear gains across cross-
task, cross-website, and cross-domain settings, underscoring both the consistency and scalability
of its benefits across datasets and model sizes. Results on SWE-Bench-Verified (Table 2) further
confirm its robustness. Crucially, unlike baselines such as Synapse and AWM that rely on a narrow,
homogeneous memory source derived exclusively from successful trajectories, REASONINGBANK
employs a superior extraction strategy that is key to its consistent outperformance.

Table 2: Experiment results of REA-
SONINGBANK on SWE-Bench-Verified
dataset for issue-resolving in a given
repository.

Methods Resolve Rate AS

Gemini-2.5-flash
No Memory 34.2 30.3
Synapse 35.4 30.7
REASONINGBANK 38.8 27.5

Gemini-2.5-pro
No Memory 54.0 21.1
Synapse 53.4 21.0
REASONINGBANK 57.4 19.8

REASONINGBANK enhances generalization with bet-
ter transferrable memory across tasks. We also evalu-
ate in challenging generalization settings. On WebArena
(Table 1), the Multi subset requires transferring memory
across multiple websites, where REASONINGBANK
achieves a notable gain of +4.6 averaged SR over
the strongest baseline. In contrast, strong baselines
such as AWM fail to provide gains and even degrade
in this setting. On Mind2Web (Table 3), which
includes cross-task, cross-website, and cross-domain
evaluations that impose progressively higher demands,
REASONINGBANK consistently improves success rates.
The gains are especially pronounced in the cross-domain
setting, which requires the highest level of generalization.
These results demonstrate that memory curated by REASONINGBANK is more robust and
transferable, enabling agents to generalize effectively across diverse scenarios.

REASONINGBANK achieves superior efficiency by leveraging past experiences as memory. In
addition to higher success rates, REASONINGBANK also reduces the number of interaction steps
needed to complete tasks, as shown in the Step metric of Table 1 and 2. On WebArena, across
almost all subsets and backbones, REASONINGBANK lowers the average step count by up to 1.4
compared with “No Memory”, and 1.6 compared with other memory baselines. The average step
on SWE-Bench-Verified is also smaller by saving 2.8 and 1.3 steps respectively. This indicates that
REASONINGBANK enables agents to solve tasks more efficiently by reusing and refining reasoning
knowledge, thus avoiding unnecessary or redundant exploration.

4.3 RESULTS OF MATTS

We experimented MATTS with Gemini-2.5-flash on Webarena-Shopping subset. By default,
MATTS integrates REASONINGBANK, but it could also use other memory mechanisms. To

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: Results on Mind2Web benchmark for cross-task, cross-website, and cross-domain
generalization test. EA (↑) is short for element accuracy, AF1 (↑) is short for action F1, and SSR (↑)
is short for step success rate. SR (↑) is the task-level success rate measuring if all steps are correct.

Models Cross-Task Cross-Website Cross-Domain

EA AF1 SSR SR EA AF1 SSR SR EA AF1 SSR SR

Gemini-2.5-flash
No Memory 46.0 59.1 40.3 3.3 39.8 45.1 31.7 1.7 35.8 37.9 31.9 1.0
Synapse 47.0 59.5 41.2 3.5 40.3 46.0 32.1 1.9 36.3 38.5 32.4 1.1
AWM 46.3 56.1 41.0 3.5 39.1 42.2 31.7 2.1 33.3 36.5 30.1 0.7
REASONINGBANK 52.1 60.4 44.9 4.8 44.3 52.6 33.9 2.3 40.6 41.3 36.6 1.6

Gemini-2.5-pro
No Memory 49.3 60.2 44.4 3.5 41.2 49.8 34.8 3.4 37.9 37.7 35.0 1.4
Synapse 50.1 61.0 44.7 3.6 41.8 51.2 35.0 3.2 38.5 39.8 35.6 1.5
AWM 48.6 61.2 44.4 3.7 41.9 47.9 34.8 2.3 37.3 38.1 34.4 1.2
REASONINGBANK 53.6 62.7 45.6 5.1 46.1 54.8 36.9 3.8 42.8 45.2 38.1 1.7

investigate the overall scaling effect, we benchmark with (i) MATTS w/o memory, which
represents the scaling setting without memory mechanism, (ii) MATTS w/o aggregation, which
is equal to Vanilla TTS in Figure 3(a) and (iii) MATTS to demonstrate the effect with respect to
scaling factor k. Notably, k = 1 is the setting without scaling. For parallel scaling, we compute
Best-of-N (BoN) as the final metric detailed in Appendix A.3. Results are shown in Figure 4.

Experiment Results
Evaluation of MaTS

(b) Sequential Scaling

36

40

44

48

52

56

(a) Parallel Scaling

Su
cc

es
s

Ra
te

 (S
R)

40.6
41.7 42.2

39.439.0

49.7

50.3

49.7

52.4
54.0 55.1

51.3
52.9 52.4

36

40

44

48

52

56

40.640.1
38.5

37.4
39.0

49.7

51.9
53.5 54.0

54.5

51.952.451.950.8

1 2 3 4 5

MaTTSMaTTS w/o aggregationMaTTS w/o memory

1 2 3 4 5

Figure 4: Effect of scaling factor k for MATTS under with
REASONINGBANK on WebArena-Shopping subset. We compare
(a) parallel and (b) sequential test-time scaling.

Both parallel scaling and se-
quential scaling boost perfor-
mance. Increasing k generally
improves success rate, confirm-
ing the benefit of allocating
more inference-time computa-
tion. With MATTS, parallel
scaling grows from 49.7 (k = 1)
to 55.1 (k = 5), while sequential
scaling rises from 49.7 to 54.5.
For the baseline of MATTS w/o
memory, the gains are smaller
and less consistent (e.g., parallel
scaling fluctuates between 39.0
and 42.2, sequential between 37.4 and 40.6). In contrast, MATTS enables stronger and more stable
improvements across both scaling strategies, highlighting its role in making scaling more effective.

MATTS is consistently better than vanilla TTS. With REASONINGBANK, MATTS consistently
surpasses MATTS w/o aggregation (vanilla TTS), showing that memory-aware coordination and
aggregation is important. Specifically, at k = 5, MATTS achieves 55.1 in parallel scaling compared
with 52.4 for vanilla TTS, and 54.5 versus 51.9 in sequential scaling. These improvements
highlight that memory-aware scaling effectively directs the agent toward more promising solutions
by synthesizing insights from multiple trajectories or interaction steps to leverage contrastive signals.

Sequential scaling shows short-term advantage, but parallel dominates at larger scales for
REASONINGBANK. With stronger memory mechanisms such as REASONINGBANK, sequential
refinement brings higher gains at small k, but its benefit quickly saturates—once the model either
succeeds or fails decisively, further refinements add little new insight. In contrast, parallel scaling
continues to provide diverse rollouts that allow the model to critique and improve upon its own
generations, leading it to surpass sequential at larger k (e.g., 55.1 vs. 54.5 at k = 5). In contrast, for
vanilla TTS which is not equipped with memory module, sequential scaling yields little or even no
benefit as scaling goes on, and parallel scaling consistently dominates.

4.4 SYNERGY OF MEMORY AND TEST-TIME SCALING

While the previous section establishes the overall effectiveness of MATTS, we highlight the synergy
between memory and TTS in this section. Figure 5 presents a snapshot of MATTS on the WebArena-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Shopping subset with parallel scaling factor k = 3, where we report both Pass@1 (randomly selected
trajectory) and Best-of-3 (BoN). This setting allows us to examine the bidirectional interaction
between memory quality and scaling effectiveness.

Better memory enables stronger test-time scaling performance. To see how memory improves
the effectiveness of scaling, we focus on the BoN results, which directly measures an agent’s ability
to surface the best outcome among multiple rollouts. As shown by blue bars in Figure 5, the benefit
of scaling depends critically on the underlying memory. Without memory, scaling yields slight
improvement, with BoN rises only from 39.0 to 40.6. Weaker memory mechanisms such as Synapse
and AWM provide moderate gains, reaching 42.8 and 45.5, respectively. In contrast, MATTS with
REASONINGBANK delivers the strongest benefit, with BoN climbing from 49.7 to 52.4. These
results show that high-quality memory directs scaling toward more promising rollouts, ensuring that
the additional trajectories are not wasted but converted into higher success rates.

35

40

45

50

55

35

40

45

50

55

No Memory Synapse AWM ReasoningBank

No Scaling Pass@1
Best-of-3

39.0
40.6

44.4

49.7

40.6 40.1 41.2

50.8

42.8

45.5

52.4

Su
cc

es
s

Ra
te

 (S
R)

Experiment Results
Synergy of Memory and TTS

38.5

Figure 5: Snapshot of MATTS on WebArena-
Shopping subset with different memory mecha-
nisms with k = 3. We compute BoN for all
3 trajectories and Pass@1 with one randomly
selected trajectory.

Scaling yields better memory curation. To
fairly evaluate how scaling feeds back into
memory, we report Pass@1, which measures
the average quality of trajectories after memory
curation and allows direct comparison with the
no-scaling case. The trend is depicted in pick
bars and is striking: scaling actually reduces
performance for weaker memories, where
Synapse drops from 40.6 to 40.1, and AWM
from 44.4 to 41.2. These declines suggest
that without strong guidance, the extra rollouts
generated by scaling introduce noise rather than
useful signals. In contrast, REASONINGBANK
is the only method that benefits: Pass@1 rises
from 49.7 to 50.8, showing that high-quality
memory can harness the diversity of scaling to
extract constructive contrastive signals. This asymmetry highlights that scaling alone is insufficient;
only when paired with good memory mechanism does it contribute to curation of more effective
memory, thereby closing the virtuous cycle.

5 ANALYSIS

We analyze REASONINGBANK beyond overall benchmark performance through three aspects:
incorporating failure trajectories, examining emergent strategies, and evaluating efficiency across
both successful and failed cases. Additional analyses are presented in Appendix C, including but
not limited to number of retrieved experiences, calibration of LLM-as-a-judge, additional results on
smaller open-source model, and inference cost study.

Find reviewer who complain of customer service

Emergent advanced strategies

Regularly cross-referencing the current view with the task requirements helps
prevent errors and guides efficient navigation. If the current data doesn't align with
expectations (e.g., contents are incorrect or irrelevant), reassess available navigation
options such as specific page numbers, search filters, or alternative sections.

…, actively look for and click on ”Next Page,"
"Page X," or "Load More" links.

… it’s crucial to first re-check the
element's current identifier …

Procedural/execution
strategy

Atomic self-reflection

Test-time Learning Timeline

Before scanning, always leverage any
available search or filter functionalities,
ensure completeness before reporting …

Regularly cross-referencing the current
view with the task requirements helps
prevent errors… If the current data
doesn't align with expectations (e.g.,
contents are incorrect or irrelevant),
reassess available options such as
search filters, alternative sections …

Generalized complex/effective strategy

Evolved adaptive check

Figure 6: A case study illustrating emergent behaviors in REASONINGBANK through memory items.

Emergent behaviors with REASONINGBANK. We find that the strategies in REASONINGBANK
are not flat or monolithic, but instead evolve over time, exhibiting emergent behaviors that resemble
the learning dynamics of RL (Wang et al., 2025a). As illustrated in a human case study in
Figure 6, memory items describing a specific strategy “User-Specific Information Navigation”
in REASONINGBANK could gradually evolve during test-time learning process. It starts from
execution-oriented or procedural strategies (e.g., find navigation links), where the agent follows
straightforward action rules. It then progresses to adaptive self-reflections such as re-verifying

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Average number of steps on successful and failed test instances across four WebArena
domains. REASONINGBANK consistently reduces the number of steps compared to the vanilla
baseline, with notably larger reductions on successful instances.

Models Shopping Admin Gitlab Reddit

Successful Failed Successful Failed Successful Failed Successful Failed

No Memory 6.8 8.7 8.4 10.4 8.6 15.7 6.1 7.6
REASONINGBANK 4.7↓2.1 7.3↓1.4 7.0↓1.4 9.5↓0.9 7.6↓1.0 15.5↓0.2 5.0↓1.1 6.8↓0.8

identifiers to reduce simple mistakes. With more experiences, the same memory item evolves
into adaptive checks, where the agent systematically leverages available search or filters to ensure
completeness before results. Finally, it eventually matures into compositional strategies such
as cross-referencing task requirements and reassessing options. This evolution highlights how
REASONINGBANK enables agents to refine strategies from low-level actions to high-level reasoning
during test-time learning.

Analysis
Ablation Study

35

38

41

44

47

50

Synapse AWM ReasoningBank

No mem: 39.0

Success only

w/ Failure

40.6

44.4

46.5

41.7 42.2

49.7

38

41

44

47

50

0 1 2 3 4
Number of experiences

39

49.7

46

45.5

44.4

Su
cc

es
s

Ra
te

Su
cc

es
s

Ra
te

Figure 7: Ablation results of
incorporating failure trajectories
for memory induction.

REASONINGBANK makes good use of failure trajectories.
Figure 7 compares different memory designs on WebArena-
Shopping with Gemini-2.5-flash under two settings: using
only successful trajectories versus leveraging both successes
and failures. Baseline methods such as Synapse and AWM
build memory solely from successful trajectories, and thus are
not equipped to benefit from failures. As a result, when failures
are added, their performance is limited or even degraded:
Synapse increases only from 40.6 (success only) to 41.7 (with
failures), while AWM drops from 44.4 to 42.2. In contrast, the
design of REASONINGBANK enables distillation of reasoning
patterns from both successes and failures, achieving 46.5
on success-only traces and further improving to 49.7 when
failures are included. This highlights that, unlike baselines, REASONINGBANK can transform
failures into constructive signals rather than noise, enabling more robust generalization.

REASONINGBANK delivers targeted efficient gains. While the overall number of steps in
Table 1 provides a general view of model efficiency, it does not distinguish whether reductions
come from successful or failed trajectories. To gain deeper insight, we further separate the
analysis into successful and failed test cases, which allows us to understand the source of step
reduction: a desirable system should reduce unnecessary exploration when it is on the right track,
rather than merely cutting short failed attempts. The results are shown in Table 4. We find
that REASONINGBANK consistently reduces the number of steps across all domains compared
to the baseline. More importantly, the reduction is particularly pronounced on successful cases,
reaching up to 2.1 fewer steps (a 26.9% relative reduction) than on failed ones. This indicates
that REASONINGBANK primarily helps the agent reach solutions with fewer interactions by
strengthening its ability to follow effective reasoning paths rather than simply truncating failed
trajectories, which highlight the role of memory in guiding purposeful decision-making and
improving efficiency in practice.

6 CONCLUSION

We introduce REASONINGBANK, a memory framework that distills strategy-level reasoning signals
from both successes and failures and integrates them into test-time scaling (MATTS). Extensive
experiments show that REASONINGBANK consistently improves performance while reducing
redundant exploration. Further results reveal a strong synergy between memory and scaling:
REASONINGBANK guides scaling toward more promising rollouts, while diverse rollouts enrich
memory with valuable contrastive signals. We also provide analyses of individual components and
emergent behaviors. Our findings suggest a practical pathway toward building adaptive and lifelong-
learning agents, with additional future directions and limitations in Appendix D and E.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work does not involve human subjects, sensitive personal data, or any tasks requiring
Institutional Review Board (IRB) approval. All datasets used in our experiments (WebArena,
Mind2Web, SWE-Bench-Verified) are publicly available and widely used in the community; detailed
descriptions and preprocessing steps are provided in Appendix B to ensure transparency and
compliance. Our methods, REASONINGBANK and MATTS, focus on improving the effectiveness,
efficiency and generalization of LLM-based agents in web navigation and software engineering
tasks. While these advances aim to benefit research on adaptive and lifelong-learning agents, we are
mindful of potential concerns regarding misuse (e.g., automation of harmful tasks). We therefore
restrict our experiments to established academic benchmarks and commit to open-sourcing our code
under a research-only license to encourage responsible use. We have carefully followed the ICLR
Code of Ethics throughout this research and submission process.

REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of our work. The full methodology of
REASONINGBANK and Memory-Aware Test-Time Scaling (MATTS) is detailed in Section 3, with
additional implementation details provided in Appendix A. Experimental setups, including datasets
(WebArena, Mind2Web, SWE-Bench-Verified), baselines, evaluation protocols, and environment
configurations, are described in Section 4.1 and Appendix B. For clarity, we provide ablation
studies (Section 5), efficiency analyses (Section 5), and emergent behavior case studies (Section 5)
to validate the robustness of our findings. To further facilitate replication, we include precise
descriptions of the memory schema, retrieval, construction, and consolidation pipeline in Section 3.2
and Appendix A.1-A.2, and we outline the scaling procedures for both parallel and sequential
variants in Section 3.3 and Appendix A.3. We will release our full codebase to the open-source
community to foster transparency, reproducibility, and future research.

REFERENCES

Anthropic. Claude 3.7 sonnet and claude code, 2025. URL https://www.anthropic.com/news/
claude-3-7-sonnet.

Silin Chen, Shaoxin Lin, Xiaodong Gu, Yuling Shi, Heng Lian, Longfei Yun, Dong Chen, Weiguo
Sun, Lin Cao, and Qianxiang Wang. Swe-exp: Experience-driven software issue resolution. ArXiv
preprint, abs/2507.23361, 2025. URL https://arxiv.org/abs/2507.23361.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A simple framework for
contrastive learning of visual representations. In Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings
of Machine Learning Research, pp. 1597–1607. PMLR, 2020. URL http://proceedings.mlr.
press/v119/chen20j.html.

Prateek Chhikara, Dev Khant, Saket Aryan, Taranjeet Singh, and Deshraj Yadav. Mem0: Building
production-ready ai agents with scalable long-term memory. ArXiv preprint, abs/2504.19413,
2025. URL https://arxiv.org/abs/2504.19413.

Yinlam Chow, Guy Tennenholtz, Izzeddin Gur, Vincent Zhuang, Bo Dai, Aviral Kumar, Rishabh
Agarwal, Sridhar Thiagarajan, Craig Boutilier, and Aleksandra Faust. Inference-aware fine-tuning
for best-of-n sampling in large language models. In The Thirteenth International Conference on
Learning Representations, 2025. URL https://openreview.net/forum?id=77gQUdQhE7.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing
the frontier with advanced reasoning, multimodality, long context, and next generation agentic
capabilities. ArXiv preprint, abs/2507.06261, 2025. URL https://arxiv.org/abs/2507.
06261.

Thibault Le Sellier de Chezelles, Maxime Gasse, Alexandre Lacoste, Massimo Caccia, Alexandre
Drouin, Léo Boisvert, Megh Thakkar, Tom Marty, Rim Assouel, Sahar Omidi Shayegan,

10

https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://arxiv.org/abs/2507.23361
http://proceedings.mlr.press/v119/chen20j.html
http://proceedings.mlr.press/v119/chen20j.html
https://arxiv.org/abs/2504.19413
https://openreview.net/forum?id=77gQUdQhE7
https://arxiv.org/abs/2507.06261
https://arxiv.org/abs/2507.06261

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Lawrence Keunho Jang, Xing Han Lù, Ori Yoran, Dehan Kong, Frank F. Xu, Siva Reddy,
Graham Neubig, Quentin Cappart, Russ Salakhutdinov, and Nicolas Chapados. The browsergym
ecosystem for web agent research. Transactions on Machine Learning Research, 2025. ISSN
2835-8856. URL https://openreview.net/forum?id=5298fKGmv3. Expert Certification.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samual Stevens, Boshi Wang, Huan
Sun, and Yu Su. Mind2web: Towards a generalist agent for the web. In Alice Oh,
Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.),
Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December
10 - 16, 2023, 2023. URL http://papers.nips.cc/paper files/paper/2023/hash/
5950bf290a1570ea401bf98882128160-Abstract-Datasets and Benchmarks.html.

Runnan Fang, Yuan Liang, Xiaobin Wang, Jialong Wu, Shuofei Qiao, Pengjun Xie, Fei Huang,
Huajun Chen, and Ningyu Zhang. Memp: Exploring agent procedural memory. ArXiv preprint,
abs/2508.06433, 2025. URL https://arxiv.org/abs/2508.06433.

Zafeirios Fountas, Martin Benfeghoul, Adnan Oomerjee, Fenia Christopoulou, Gerasimos
Lampouras, Haitham Bou Ammar, and Jun Wang. Human-inspired episodic memory for infinite
context LLMs. In The Thirteenth International Conference on Learning Representations, 2025.
URL https://openreview.net/forum?id=BI2int5SAC.

Huan-ang Gao, Jiayi Geng, Wenyue Hua, Mengkang Hu, Xinzhe Juan, Hongzhang Liu, Shilong
Liu, Jiahao Qiu, Xuan Qi, Yiran Wu, et al. A survey of self-evolving agents: On path to artificial
super intelligence. ArXiv preprint, abs/2507.21046, 2025. URL https://arxiv.org/abs/2507.
21046.

Alireza Ghafarollahi and Markus J Buehler. Sciagents: automating scientific discovery through
bioinspired multi-agent intelligent graph reasoning. Advanced Materials, 37(22):2413523, 2025.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan
Shen, Shengjie Ma, Honghao Liu, et al. A survey on llm-as-a-judge. ArXiv preprint,
abs/2411.15594, 2024. URL https://arxiv.org/abs/2411.15594.

Izzeddin Gur, Hiroki Furuta, Austin V. Huang, Mustafa Safdari, Yutaka Matsuo, Douglas Eck,
and Aleksandra Faust. A real-world webagent with planning, long context understanding, and
program synthesis. In The Twelfth International Conference on Learning Representations, ICLR
2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.
net/forum?id=9JQtrumvg8.

Yuanzhe Hu, Yu Wang, and Julian McAuley. Evaluating memory in LLM agents via incremental
multi-turn interactions. In ICML 2025 Workshop on Long-Context Foundation Models, 2025.
URL https://openreview.net/forum?id=ZgQ0t3zYTQ.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R.
Narasimhan. Swe-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11,
2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=VTF8yNQM66.

Can Jin, Hongwu Peng, Qixin Zhang, Yujin Tang, Dimitris N Metaxas, and Tong Che. Two heads
are better than one: Test-time scaling of multi-agent collaborative reasoning. ArXiv preprint,
abs/2504.09772, 2025. URL https://arxiv.org/abs/2504.09772.

Tomoyuki Kagaya, Thong Jing Yuan, Yuxuan Lou, Jayashree Karlekar, Sugiri Pranata, Akira
Kinose, Koki Oguri, Felix Wick, and Yang You. Rap: Retrieval-augmented planning with
contextual memory for multimodal llm agents. ArXiv preprint, abs/2402.03610, 2024. URL
https://arxiv.org/abs/2402.03610.

Yi Kong, Dianxi Shi, Guoli Yang, Chenlin Huang, Xiaopeng Li, Songchang Jin, et al. Mapagent:
Trajectory-constructed memory-augmented planning for mobile task automation. ArXiv preprint,
abs/2507.21953, 2025. URL https://arxiv.org/abs/2507.21953.

11

https://openreview.net/forum?id=5298fKGmv3
http://papers.nips.cc/paper_files/paper/2023/hash/5950bf290a1570ea401bf98882128160-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/5950bf290a1570ea401bf98882128160-Abstract-Datasets_and_Benchmarks.html
https://arxiv.org/abs/2508.06433
https://openreview.net/forum?id=BI2int5SAC
https://arxiv.org/abs/2507.21046
https://arxiv.org/abs/2507.21046
https://arxiv.org/abs/2411.15594
https://openreview.net/forum?id=9JQtrumvg8
https://openreview.net/forum?id=9JQtrumvg8
https://openreview.net/forum?id=ZgQ0t3zYTQ
https://openreview.net/forum?id=VTF8yNQM66
https://arxiv.org/abs/2504.09772
https://arxiv.org/abs/2402.03610
https://arxiv.org/abs/2507.21953

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jinhyuk Lee, Feiyang Chen, Sahil Dua, Daniel Cer, Madhuri Shanbhogue, Iftekhar Naim,
Gustavo Hernández Ábrego, Zhe Li, Kaifeng Chen, Henrique Schechter Vera, et al. Gemini
embedding: Generalizable embeddings from gemini. ArXiv preprint, abs/2503.07891, 2025. URL
https://arxiv.org/abs/2503.07891.

Dacheng Li, Shiyi Cao, Chengkun Cao, Xiuyu Li, Shangyin Tan, Kurt Keutzer, Jiarong Xing,
Joseph E Gonzalez, and Ion Stoica. S*: Test time scaling for code generation. ArXiv preprint,
abs/2502.14382, 2025. URL https://arxiv.org/abs/2502.14382.

Bang Liu, Xinfeng Li, Jiayi Zhang, Jinlin Wang, Tanjin He, Sirui Hong, Hongzhang Liu, Shaokun
Zhang, Kaitao Song, Kunlun Zhu, et al. Advances and challenges in foundation agents: From
brain-inspired intelligence to evolutionary, collaborative, and safe systems. ArXiv preprint,
abs/2504.01990, 2025a. URL https://arxiv.org/abs/2504.01990.

Yitao Liu, Chenglei Si, Karthik R Narasimhan, and Shunyu Yao. Contextual experience replay for
self-improvement of language agents. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and
Mohammad Taher Pilehvar (eds.), Proceedings of the 63rd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 14179–14198, Vienna, Austria, 2025b.
Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.
acl-long.694. URL https://aclanthology.org/2025.acl-long.694/.

Elias Lumer, Anmol Gulati, Vamse Kumar Subbiah, Pradeep Honaganahalli Basavaraju, and
James A Burke. Memtool: Optimizing short-term memory management for dynamic tool
calling in llm agent multi-turn conversations. ArXiv preprint, abs/2507.21428, 2025. URL
https://arxiv.org/abs/2507.21428.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegr-
effe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta,
Bodhisattwa Prasad Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh,
and Peter Clark. Self-refine: Iterative refinement with self-feedback. In Alice Oh,
Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.),
Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December
10 - 16, 2023, 2023. URL http://papers.nips.cc/paper files/paper/2023/hash/
91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html.

Adyasha Maharana, Dong-Ho Lee, Sergey Tulyakov, Mohit Bansal, Francesco Barbieri, and Yuwei
Fang. Evaluating very long-term conversational memory of LLM agents. In Lun-Wei Ku, Andre
Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 13851–13870, Bangkok, Thailand,
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.747. URL
https://aclanthology.org/2024.acl-long.747/.

Atsuyuki Miyai, Zaiying Zhao, Kazuki Egashira, Atsuki Sato, Tatsumi Sunada, Shota Onohara,
Hiromasa Yamanishi, Mashiro Toyooka, Kunato Nishina, Ryoma Maeda, et al. Webchorearena:
Evaluating web browsing agents on realistic tedious web tasks. ArXiv preprint, abs/2506.01952,
2025. URL https://arxiv.org/abs/2506.01952.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. ArXiv preprint, abs/2501.19393, 2025. URL https://arxiv.org/abs/2501.19393.

Charles Packer, Vivian Fang, Shishir G Patil, Kevin Lin, Sarah Wooders, and Joseph E Gonzalez.
Memgpt: Towards llms as operating systems. 2023.

Jiayi Pan, Yichi Zhang, Nicholas Tomlin, Yifei Zhou, Sergey Levine, and Alane Suhr. Autonomous
evaluation and refinement of digital agents. In First Conference on Language Modeling, 2024.
URL https://openreview.net/forum?id=NPAQ6FKSmK.

Cheng Qian, Shihao Liang, Yujia Qin, Yining Ye, Xin Cong, Yankai Lin, Yesai Wu, Zhiyuan Liu,
and Maosong Sun. Investigate-consolidate-exploit: A general strategy for inter-task agent self-
evolution. ArXiv preprint, abs/2401.13996, 2024. URL https://arxiv.org/abs/2401.13996.

12

https://arxiv.org/abs/2503.07891
https://arxiv.org/abs/2502.14382
https://arxiv.org/abs/2504.01990
https://aclanthology.org/2025.acl-long.694/
https://arxiv.org/abs/2507.21428
http://papers.nips.cc/paper_files/paper/2023/hash/91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html
https://aclanthology.org/2024.acl-long.747/
https://arxiv.org/abs/2506.01952
https://arxiv.org/abs/2501.19393
https://openreview.net/forum?id=NPAQ6FKSmK
https://arxiv.org/abs/2401.13996

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Amrith Setlur, Nived Rajaraman, Sergey Levine, and Aviral Kumar. Scaling test-time compute
without verification or RL is suboptimal. In Forty-second International Conference on Machine
Learning, 2025. URL https://openreview.net/forum?id=beeNgQEfe2.

Rulin Shao, Rui Qiao, Varsha Kishore, Niklas Muennighoff, Xi Victoria Lin, Daniela Rus, Bryan
Kian Hsiang Low, Sewon Min, Wen tau Yih, Pang Wei Koh, and Luke Zettlemoyer. ReasonIR:
Training retrievers for reasoning tasks. In Second Conference on Language Modeling, 2025. URL
https://openreview.net/forum?id=kkBCNLMbGj.

Junhong Shen, Hao Bai, Lunjun Zhang, Yifei Zhou, Amrith Setlur, Shengbang Tong, Diego Caples,
Nan Jiang, Tong Zhang, Ameet Talwalkar, et al. Thinking vs. doing: Agents that reason by
scaling test-time interaction. ArXiv preprint, abs/2506.07976, 2025. URL https://arxiv.org/
abs/2506.07976.

Charlie Victor Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time compute
optimally can be more effective than scaling parameters for reasoning. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.net/
forum?id=4FWAwZtd2n.

Zeyi Sun, Ziyu Liu, Yuhang Zang, Yuhang Cao, Xiaoyi Dong, Tong Wu, Dahua Lin, and Jiaqi
Wang. Seagent: Self-evolving computer use agent with autonomous learning from experience.
ArXiv preprint, abs/2508.04700, 2025. URL https://arxiv.org/abs/2508.04700.

Zhen Tan, Jun Yan, I-Hung Hsu, Rujun Han, Zifeng Wang, Long Le, Yiwen Song, Yanfei
Chen, Hamid Palangi, George Lee, Anand Rajan Iyer, Tianlong Chen, Huan Liu, Chen-Yu
Lee, and Tomas Pfister. In prospect and retrospect: Reflective memory management for long-
term personalized dialogue agents. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and
Mohammad Taher Pilehvar (eds.), Proceedings of the 63rd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 8416–8439, Vienna, Austria, 2025.
Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.
acl-long.413. URL https://aclanthology.org/2025.acl-long.413/.

Xiangru Tang, Tianyu Hu, Muyang Ye, Yanjun Shao, Xunjian Yin, Siru Ouyang, Wangchunshu
Zhou, Pan Lu, Zhuosheng Zhang, Yilun Zhao, Arman Cohan, and Mark Gerstein. Chemagent:
Self-updating memories in large language models improves chemical reasoning. In The Thirteenth
International Conference on Learning Representations, 2025a. URL https://openreview.
net/forum?id=kuhIqeVg0e.

Xiangru Tang, Tianrui Qin, Tianhao Peng, Ziyang Zhou, Daniel Shao, Tingting Du, Xinming Wei,
Peng Xia, Fang Wu, He Zhu, et al. Agent kb: Leveraging cross-domain experience for agentic
problem solving. ArXiv preprint, abs/2507.06229, 2025b. URL https://arxiv.org/abs/2507.
06229.

Haozhe Wang, Qixin Xu, Che Liu, Junhong Wu, Fangzhen Lin, and Wenhu Chen. Emergent
hierarchical reasoning in llms through reinforcement learning. ArXiv preprint, abs/2509.03646,
2025a. URL https://arxiv.org/abs/2509.03646.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
Frontiers of Computer Science, 18(6):186345, 2024.

Yu Wang, Dmitry Krotov, Yuanzhe Hu, Yifan Gao, Wangchunshu Zhou, Julian McAuley, Dan
Gutfreund, Rogerio Feris, and Zexue He. M+: Extending memoryLLM with scalable long-
term memory. In Forty-second International Conference on Machine Learning, 2025b. URL
https://openreview.net/forum?id=OcqbkROe8J.

Zora Zhiruo Wang, Apurva Gandhi, Graham Neubig, and Daniel Fried. Inducing programmatic
skills for agentic tasks. ArXiv preprint, abs/2504.06821, 2025c. URL https://arxiv.org/abs/
2504.06821.

Zora Zhiruo Wang, Jiayuan Mao, Daniel Fried, and Graham Neubig. Agent workflow memory.
In Forty-second International Conference on Machine Learning, 2025d. URL https://
openreview.net/forum?id=NTAhi2JEEE.

13

https://openreview.net/forum?id=beeNgQEfe2
https://openreview.net/forum?id=kkBCNLMbGj
https://arxiv.org/abs/2506.07976
https://arxiv.org/abs/2506.07976
https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=4FWAwZtd2n
https://arxiv.org/abs/2508.04700
https://aclanthology.org/2025.acl-long.413/
https://openreview.net/forum?id=kuhIqeVg0e
https://openreview.net/forum?id=kuhIqeVg0e
https://arxiv.org/abs/2507.06229
https://arxiv.org/abs/2507.06229
https://arxiv.org/abs/2509.03646
https://openreview.net/forum?id=OcqbkROe8J
https://arxiv.org/abs/2504.06821
https://arxiv.org/abs/2504.06821
https://openreview.net/forum?id=NTAhi2JEEE
https://openreview.net/forum?id=NTAhi2JEEE

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Cheng-Kuang Wu, Zhi Rui Tam, Chieh-Yen Lin, Yun-Nung Chen, and Hung-yi Lee. Streambench:
Towards benchmarking continuous improvement of language agents. In Amir Globersons,
Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng
Zhang (eds.), Advances in Neural Information Processing Systems 38: Annual Conference on
Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December
10 - 15, 2024, 2024a. URL http://papers.nips.cc/paper files/paper/2024/hash/
c189915371c4474fe9789be3728113fc-Abstract-Datasets and Benchmarks Track.html.

Di Wu, Hongwei Wang, Wenhao Yu, Yuwei Zhang, Kai-Wei Chang, and Dong Yu. Longmemeval:
Benchmarking chat assistants on long-term interactive memory. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?id=
pZiyCaVuti.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws:
An empirical analysis of compute-optimal inference for problem-solving with language models.
ArXiv preprint, abs/2408.00724, 2024b. URL https://arxiv.org/abs/2408.00724.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Silvio
Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. Osworld: Benchmarking multimodal
agents for open-ended tasks in real computer environments. In Amir Globersons, Lester
Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang
(eds.), Advances in Neural Information Processing Systems 38: Annual Conference on Neural
Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December
10 - 15, 2024, 2024. URL http://papers.nips.cc/paper files/paper/2024/hash/
5d413e48f84dc61244b6be550f1cd8f5-Abstract-Datasets and Benchmarks Track.html.

Jing Xu, Arthur Szlam, and Jason Weston. Beyond goldfish memory: Long-term open-domain
conversation. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings
of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 5180–5197, Dublin, Ireland, 2022. Association for Computational Linguistics. doi:
10.18653/v1/2022.acl-long.356. URL https://aclanthology.org/2022.acl-long.356.

Wujiang Xu, Zujie Liang, Kai Mei, Hang Gao, Juntao Tan, and Yongfeng Zhang. A-mem: Agentic
memory for llm agents. ArXiv preprint, abs/2502.12110, 2025. URL https://arxiv.org/abs/
2502.12110.

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
In Amir Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M.
Tomczak, and Cheng Zhang (eds.), Advances in Neural Information Processing Systems 38:
Annual Conference on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver,
BC, Canada, December 10 - 15, 2024, 2024. URL http://papers.nips.cc/paper files/
paper/2024/hash/5a7c947568c1b1328ccc5230172e1e7c-Abstract-Conference.html.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R. Narasimhan, and
Yuan Cao. React: Synergizing reasoning and acting in language models. In The Eleventh
International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5,
2023. OpenReview.net, 2023. URL https://openreview.net/pdf?id=WE vluYUL-X.

Shaozhe Yin, Jinyu Guo, Kai Shuang, Xia Liu, and Ruize Ou. Learning wisdom from errors:
Promoting llm’s continual relation learning through exploiting error cases. ArXiv preprint,
abs/2508.12031, 2025. URL https://arxiv.org/abs/2508.12031.

Hongli Yu, Tinghong Chen, Jiangtao Feng, Jiangjie Chen, Weinan Dai, Qiying Yu, Ya-Qin Zhang,
Wei-Ying Ma, Jingjing Liu, Mingxuan Wang, et al. Memagent: Reshaping long-context llm
with multi-conv rl-based memory agent. ArXiv preprint, abs/2507.02259, 2025a. URL https:
//arxiv.org/abs/2507.02259.

Xiao Yu, Baolin Peng, Vineeth Vajipey, Hao Cheng, Michel Galley, Jianfeng Gao, and Zhou Yu.
ExACT: Teaching AI agents to explore with reflective-MCTS and exploratory learning. In
The Thirteenth International Conference on Learning Representations, 2025b. URL https:
//openreview.net/forum?id=GBIUbwW9D8.

14

http://papers.nips.cc/paper_files/paper/2024/hash/c189915371c4474fe9789be3728113fc-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/c189915371c4474fe9789be3728113fc-Abstract-Datasets_and_Benchmarks_Track.html
https://openreview.net/forum?id=pZiyCaVuti
https://openreview.net/forum?id=pZiyCaVuti
https://arxiv.org/abs/2408.00724
http://papers.nips.cc/paper_files/paper/2024/hash/5d413e48f84dc61244b6be550f1cd8f5-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/5d413e48f84dc61244b6be550f1cd8f5-Abstract-Datasets_and_Benchmarks_Track.html
https://aclanthology.org/2022.acl-long.356
https://arxiv.org/abs/2502.12110
https://arxiv.org/abs/2502.12110
http://papers.nips.cc/paper_files/paper/2024/hash/5a7c947568c1b1328ccc5230172e1e7c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/5a7c947568c1b1328ccc5230172e1e7c-Abstract-Conference.html
https://openreview.net/pdf?id=WE_vluYUL-X
https://arxiv.org/abs/2508.12031
https://arxiv.org/abs/2507.02259
https://arxiv.org/abs/2507.02259
https://openreview.net/forum?id=GBIUbwW9D8
https://openreview.net/forum?id=GBIUbwW9D8

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Zhaojian Yu, Yinghao Wu, Yilun Zhao, Arman Cohan, and Xiao-Ping Zhang. Z1: Efficient test-
time scaling with code. ArXiv preprint, abs/2504.00810, 2025c. URL https://arxiv.org/
abs/2504.00810.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does
reinforcement learning really incentivize reasoning capacity in llms beyond the base model?
ArXiv preprint, abs/2504.13837, 2025. URL https://arxiv.org/abs/2504.13837.

Tianjun Zhang, Aman Madaan, Luyu Gao, Steven Zheng, Swaroop Mishra, Yiming Yang,
Niket Tandon, and Uri Alon. In-context principle learning from mistakes. In Forty-first
International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.
OpenReview.net, 2024a. URL https://openreview.net/forum?id=PAPY0cAB3C.

Zeyu Zhang, Quanyu Dai, Xiaohe Bo, Chen Ma, Rui Li, Xu Chen, Jieming Zhu, Zhenhua Dong,
and Ji-Rong Wen. A survey on the memory mechanism of large language model based agents.
ACM Transactions on Information Systems, 2024b.

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin, Yong-Jin Liu, and Gao Huang. Expel:
LLM agents are experiential learners. In Michael J. Wooldridge, Jennifer G. Dy, and Sriraam
Natarajan (eds.), Thirty-Eighth AAAI Conference on Artificial Intelligence, AAAI 2024, Thirty-
Sixth Conference on Innovative Applications of Artificial Intelligence, IAAI 2024, Fourteenth
Symposium on Educational Advances in Artificial Intelligence, EAAI 2014, February 20-27, 2024,
Vancouver, Canada, pp. 19632–19642. AAAI Press, 2024. doi: 10.1609/AAAI.V38I17.29936.
URL https://doi.org/10.1609/aaai.v38i17.29936.

Longtao Zheng, Rundong Wang, Xinrun Wang, and Bo An. Synapse: Trajectory-as-exemplar
prompting with memory for computer control. In The Twelfth International Conference on
Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024.
URL https://openreview.net/forum?id=Pc8AU1aF5e.

Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and Yanlin Wang. Memorybank: Enhancing large
language models with long-term memory. In Michael J. Wooldridge, Jennifer G. Dy, and Sriraam
Natarajan (eds.), Thirty-Eighth AAAI Conference on Artificial Intelligence, AAAI 2024, Thirty-
Sixth Conference on Innovative Applications of Artificial Intelligence, IAAI 2024, Fourteenth
Symposium on Educational Advances in Artificial Intelligence, EAAI 2014, February 20-27, 2024,
Vancouver, Canada, pp. 19724–19731. AAAI Press, 2024. doi: 10.1609/AAAI.V38I17.29946.
URL https://doi.org/10.1609/aaai.v38i17.29946.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A realistic
web environment for building autonomous agents. In The Twelfth International Conference on
Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024.
URL https://openreview.net/forum?id=oKn9c6ytLx.

Zijian Zhou, Ao Qu, Zhaoxuan Wu, Sunghwan Kim, Alok Prakash, Daniela Rus, Jinhua Zhao,
Bryan Kian Hsiang Low, and Paul Pu Liang. Mem1: Learning to synergize memory and reasoning
for efficient long-horizon agents. ArXiv preprint, abs/2506.15841, 2025. URL https://arxiv.
org/abs/2506.15841.

King Zhu, Hanhao Li, Siwei Wu, Tianshun Xing, Dehua Ma, Xiangru Tang, Minghao Liu,
Jian Yang, Jiaheng Liu, Yuchen Eleanor Jiang, Changwang Zhang, Chenghua Lin, Jun Wang,
Ge Zhang, and Wangchunshu Zhou. Scaling test-time compute for LLM agents. ArXiv preprint,
abs/2506.12928, 2025a. URL https://arxiv.org/abs/2506.12928.

King Zhu, Hanhao Li, Siwei Wu, Tianshun Xing, Dehua Ma, Xiangru Tang, Minghao Liu, Jian
Yang, Jiaheng Liu, Yuchen Eleanor Jiang, et al. Scaling test-time compute for llm agents. ArXiv
preprint, abs/2506.12928, 2025b. URL https://arxiv.org/abs/2506.12928.

15

https://arxiv.org/abs/2504.00810
https://arxiv.org/abs/2504.00810
https://arxiv.org/abs/2504.13837
https://openreview.net/forum?id=PAPY0cAB3C
https://doi.org/10.1609/aaai.v38i17.29936
https://openreview.net/forum?id=Pc8AU1aF5e
https://doi.org/10.1609/aaai.v38i17.29946
https://openreview.net/forum?id=oKn9c6ytLx
https://arxiv.org/abs/2506.15841
https://arxiv.org/abs/2506.15841
https://arxiv.org/abs/2506.12928
https://arxiv.org/abs/2506.12928

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

You are an expert in web navigation. You will be given a user query, the corresponding trajectory
that represents how an agent successfully accomplished the task.

Guidelines
You need to extract and summarize useful insights in the format of memory items based on the
agent's successful trajectory.
The goal of summarized memory items is to be helpful and generalizable for future similar tasks.

Important notes
- You must first think why the trajectory is successful, and then summarize the insights.
- You can extract at most 3 memory items from the trajectory.
- You must not repeat similar or overlapping items.
- Do not mention specific websites, queries, or string contents, but rather focus on the

generalizable insights.

Output Format
Your output must strictly follow the Markdown format shown below:
```  
# Memory Item i  
## Title <the title of the memory item>  
## Description <one sentence summary of the memory item>  
## Content <1-3 sentences describing the insights learned to successfully accomplishing the 
task> ```

System Instruction

Input Prompt
Query: <user query> 

Trajectory: <trajectory that completes the query>

You are an expert in web navigation. You will be given a user query, the corresponding trajectory 
that represents how an agent attempted to resolve the task but failed.  

## Guidelines  
You need to extract and summarize useful insights in the format of memory items based on the 
agent's failed trajectory.  
The goal of summarized memory items is to be helpful and generalizable for future similar tasks.  

## Important notes  
- You must first reflect and think why the trajectory failed, and then summarize what lessons 

you have learned or strategies to prevent the failure in the future. 
- You can extract at most 3  memory items from the trajectory.  
- You must not repeat similar or overlapping items.  
- Do not mention specific websites, queries, or string contents, but rather focus on the 

generalizable insights.  

## Output Format  
Your output must strictly follow the Markdown format shown below:  
```  
Memory Item i
Title <the title of the memory item>
Description <one sentence summary of the memory item>
Content <1-3 sentences describing the insights learned to successfully accomplishing the
task> ```

System Instruction

Input Prompt
Query: <user query>

Trajectory: <trajectory that completes the query>

Figure 8: System instructions for extracting memory items from agent trajectories: the left panel
targets successful trajectories (summarizing why they succeed), while the right targets failed
trajectories (reflecting on failure and deriving lessons).

A EXPERIMENT DETAILS

This section details the implementation of REASONINGBANK with agent systems mentioned in
Section 4.1 for web browsing tasks including WebArena and Mind2Web. We first present all the
prompts used for memory extraction in Appendix A.1, and then we provide the technical details for
memory extraction, retrieval, and consolidation in Appendix A.2.

A.1 PROMPTS USED FOR REASONINGBANK

Memory Extraction. Figure 8 illustrates the system instructions we used to guide the extraction
of memory items from agent trajectories mentioned in Section 3.2. We will first obtain correctness
signals from LLM-as-a-Judge (Gu et al., 2024) using the same backbone LLMs. When the trajectory
corresponds to a successful case (left panel), the instruction emphasizes analyzing why the trajectory
led to success and summarizing transferable reasoning strategies. Conversely, when the trajectory
represents a failed case (right panel), the instruction requires reflecting on the causes of failure and
articulating lessons or preventive strategies. In both settings, the output format is constrained to at
most three memory items expressed in a structured Markdown format, ensuring that the resulting
insights are concise, non-redundant, and generalizable across tasks rather than tied to specific
websites or queries.

LLM-as-a-Judge for Correctness Signals. Figure 9 displays the instruction used for self-
evaluation used to get binary signals for both successes and failures. Given the current user query,
trajectory in resolving the query, final state of the website, and model output, the LLM is required to
output the state of “Success” or “Failure” of whether the trajectory given successfully resolved the
query or not.

A.2 IMPLEMENTATION DETAILS

Memory Extraction. We use an LLM-based extraction pipeline to convert raw trajectories into
structured memory items. Specifically, we design a prompt template that asks the model to distill
reasoning patterns into three components: title, description, and content as previously mentioned
in Appendix A.1. The backbone LLM of the extractor is set to the same as the agent system with
temperature 1.0. For each trajectory, at most 3 memory items could be extracted. Crucially, we

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

You are an expert in evaluating the performance of a web navigation agent. The agent is designed to help a human user navigate a website to
complete a task. Given the user's intent, the agent's action history, the final state of the webpage, and the agent's response to the user, your goal is to
decide whether the agent's execution is successful or not.

There are three types of tasks:

1. Information seeking: The user wants to obtain certain information from the webpage, such as the information of a product, reviews, map info,
comparison of map routes, etc. The bot's response must contain the information the user wants, or explicitly state that the information is not
available. Otherwise, e.g. the bot encounters an exception and respond with the error content, the task is considered a failure. Besides, be careful
about the sufficiency of the agent's actions. For example, when asked to list the top-searched items in a shop, the agent should order the items by
the number of searches, and then return the top items. If the ordering action is missing, the task is likely to fail.

2. Site navigation: The user wants to navigate to a specific page. Carefully examine the bot's action history and the final state of the webpage to
determine whether the bot successfully completes the task. No need to consider the bot's response.

3. Content modification: The user wants to modify the content of a webpage or configuration. Carefully examine the bot's action history and the final
state of the webpage to determine whether the bot successfully completes the task. No need to consider the bot's response.

IMPORTANT
Format your response into two lines as shown below:
Thoughts: <your thoughts and reasoning process>"
Status: "success" or "failure"

System Instruction

Input Prompt

User Intent: {intent}

Trajectory: {trajectory}

The detailed final state of the webpage: ```md {cap} ```

Bot response to the user: {response if response else "N/A"}

Figure 9: System instructions for obtaining binary signals indicating success or failures of the current
trajectory.

You are an expert in web navigation. You will be given a user query and multiple trajectories showing
how an agent attempted the task. Some trajectories may be successful, and others may have failed.

Guidelines
Your goal is to compare and contrast these trajectories to identify the most useful and generalizable
strategies as memory items.
Use self-contrast reasoning:
- Identify patterns and strategies that consistently led to success.
- Identify mistakes or inefficiencies from failed trajectories and formulate preventative strategies.
- Prefer strategies that generalize beyond specific pages or exact wording.

Important notes
- Think first: Why did some trajectories succeed while others failed?
- You can extract at most 5 memory items from all trajectories combined.
- Do not repeat similar or overlapping items.
- Do not mention specific websites, queries, or string contents — focus on generalizable behaviors and
reasoning patterns.
- Make sure each memory item captures actionable and transferable insights.

Output Format
Your output must strictly follow the Markdown format shown below:
``` # Memory Item i  
## Title <the title of the memory item>  
## Description <one sentence summary of the memory item>  
## Content <1-5 sentences describing the insights learned to successfully accomplishing the task> ```

System Instruction

Input Prompt
Query: <user query> 

Trajectories: <trajectory 1>\n<trajectory 2>\n…<trajectory k>

First-time Check Instruction

Important: Let's carefully re-examine the previous trajectory, 
including your reasoning steps and actions taken.  

Pay special attention to whether you used the correct 
elements on the page, and whether your response addresses 
the user query. If you find inconsistencies, correct them. If 
everything seems correct, confirm your final answer.  

Output must stay in the same “<think>...</think><action></
action>” format as previous trajectories.

Follow-up Check Instruction

Let's check again.  

Output must stay in the same “<think>...</think><action></
action>” format as previous trajectories.

Figure 10: System instructions for memory-aware test-time scaling: the left panel shows parallel
scaling (comparing multiple trajectories to extract generalizable insights), while the right panel
shows sequential scaling (iteratively re-checking a trajectory to refine the final answer).

induce items from both successful and failed trajectories. Successes provide validated strategies,
while failures supply counterfactual pitfalls that act as negative signals. To determine success or
failure, we adopt an LLM-based binary classifier following (Pan et al., 2024; Wang et al., 2025d).
The classifier is prompted with the trajectory and the given user query, and asked to output a
categorical judgment (Success or Failure) as shown in Figure 9. Similarly, the backbone of
the classifier is set to the same as the agent system, with decoding temperature setting to 0.0 for
determinism.

Memory Retrieval and Response Generation. For retrieval, we embed each task query using
gemini-embedding-001 (Lee et al., 2025), accessed via Vertex AI.4 Similarity search is conducted

4https://ai.google.dev/gemini-api/docs/embeddings

17

https://ai.google.dev/gemini-api/docs/embeddings


918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

over the memory pool using cosine distance. We select memory items of the top-k most similar
experiences (default k = 1; ablation study in §5). The retrieved items are concatenated into the
agent’s system prompt with a simple formatting template (each item represented by its title and
content) and instruction:

Below are some memory items that I accumulated from past interaction from the environment
that may be helpful to solve the task. You can use it when you feel it’s relevant. In each step,
please first explicitly discuss if you want to use each memory item or not, and then take action.

Memory Consolidation. After finishing each new query, the trajectory is processed by the
extraction pipeline to produce new memory items, which are appended into the memory pool.
We adopt a minimal consolidation strategy: newly generated items are directly added without
additional pruning. This choice highlights the contribution of REASONINGBANK itself without
introducing confounding factors from complex consolidation algorithms. Nevertheless, more
advanced consolidation mechanisms (e.g., merging, forgetting) can be incorporated in future work.

REASONINGBANK Storage We maintain REASONINGBANK in a JSON format, and each entry
of REASONINGBANK consists of a task query, the original trajectory, and the corresponding memory
items. All memory items are stored with the schema {title, description, content}. The
embedding is pre-computed for each given query and stored in another JSON file for efficient
similarity search. We persist the memory pool for each independent run, enabling continual
accumulation of experiences throughout test-time learning.

A.3 MATTS DETAILS

Prompt Used for MATTS Figure 10 illustrates the system instructions used in our MATTS
framework mentioned in Section 3.3. In the parallel scaling setting (left), multiple trajectories for
the same query—both successful and failed—are provided, and the model is instructed to perform
self-contrast reasoning. Instead of relying on the LLM to act as an external judge of quality,
the model is guided to directly compare and contrast trajectories, identifying patterns that lead
to success and mistakes that cause failure. This provides a contrastive signal that grounds the
memory extraction process in observable differences between outcomes, yielding more reliable and
transferable insights. In the sequential scaling setting (right), the model repeatedly re-examines its
own trajectory with check instructions, ensuring consistency and correction over iterations without
appealing to external judgment.

Best-of-N Calculation Details. Given the task query and N trajectories from the agent system,
we leverage an LLM and selects the best answer from the N trajectories. The LLM is initiated as
the same backbone LLM as the agent system (e.g., if the agent system uses Gemini-2.5-flash, then
the model also uses Gemini-2.5-flash). We feed all the N trajectories to the model at once and use a
carefully curated prompt shown in Figure 11, asking the model to select the best answer.

B DETAILS FOR EXPERIMENT SETTINGS

B.1 WEB BROWSING

In this section, we detail the experiment settings used for web browsing agents mentioned in
Section 4.1.

Datasets. We test REASONINGBANK on three agentic datasets for benchmarking web browsing
and coding agents. Specifically, we conduct experiments on WebArena (Zhou et al., 2024) which
features general web navigation across diverse domains, spaning shopping, administration, coding
(Gitlab), and forums (Reddit). Another benchmark we used is Mind2Web (Deng et al., 2023), which
provides playground to test the generalization of agents on versatile operations and environments,
including cross-task, cross-website, and cross-domain settings. There are 684 and 1341 test
instances in total for WebArena and Mind2Web, respectively. For WebArena, the number of

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

You are an expert in evaluating web navigation agent trajectories. You will be given the user query, and {N} candidate trajectories, each representing a 
sequence of steps for solving the same task. Your job is to select the single best trajectory that most effectively and efficiently solves the task, and 
explain your reasoning.  

## Input Format:  
Each trajectory consists of multiple steps. For each step, you will be provided:  
- step_num: Step index in the trajectory.  
- action_output: The action the agent takes (click, type, scroll, etc.). 
- think_output: The agent's reasoning or plan before taking the action.  

## Evaluation Criteria:  

### Progress Toward Goal 1. How well the trajectory advances toward completing the user's task. 2. Reward tangible, meaningful progress; penalize 
minimal or no advancement. 3. Consider both individual step contributions and overall progress.  

### Trajectory Efficiency 1. How efficiently the trajectory achieves progress given the number and complexity of steps. 2. Reward significant progress 
in fewer steps. 3. Favor better value-to-depth ratios. 4. Reward efficient search space exploration.  

### Loop Detection: Identify loops or redundant actions. 1. Real Loops: Repeating identical observations and actions with no added value. 2. Benign 
Repetitions: Slight variations that still yield new information. 3. Penalize real loops heavily; penalize benign repetitions only if they waste effort.  

### Error Severity and Stability: Assess severity of errors: 1. Fatal/Blocking: Major penalty. 2. Significant: Moderate penalty. 3. Minor/Recoverable: 
Minor penalty. 4. Penalize unstable or incoherent model reasoning. 5. Consider whether errors prevent goal completion.  

### Overall Trajectory Quality 1. Logical flow of steps, clarity of strategy, and coherence. 2. Balanced exploration vs. exploitation. 3. Closeness to final 
goal. 4. Reward consistent progress and coherent planning.  

## Output Format:  
Return the evaluation as a JSON object: ``` { "index": [best_trajectory_index], "analysis": "Detailed reasoning explaining why this trajectory is the best, 
referencing progress, efficiency, loop detection, error severity, and overall quality." } ```

System Instruction

Input Prompt

Query: {query}  

Trajectory 1: {trajectory_1}\nTrajectory 2: {trajectory_2}\n……\nTrajectory N: {trajectory_N}

Figure 11: System instructions for obtaining the best answer from N candidate trajectories for BoN
calculation.

instances for different domains are Shopping (187), Admin (182), Gitlab (180), Reddit (106), and
Multi (29). For Mind2Web, the number of different settings are Cross-Task (252), Cross-Website
(177), and Cross-Domain (912).

Baselines. We compare REASONINGBANK against several representative memory-augmented
approaches: (i) Vanilla, the backbone LLM agent without any memory module, serving as a
reference point; (ii) Synapse (Zheng et al., 2024), a representative work that organizes past
trajectories as in-context memory; and (iii) AWM (Wang et al., 2025d), which further abstracts
common patterns from trajectories into reusable workflows. Together, these baselines span a
progression from agents without memory, to those that directly reuse past trajectories, and finally
to methods that distill higher-level structures, providing a comprehensive comparison for evaluating
REASONINGBANK. To ensure a fair comparison, the baselines are implemented with the same
“Memory Retrieval” and “Memory Consolidation” mechanisms. The only difference is about
“Memory Extraction”, which is exactly how REASONINGBANK different from baselines in terms of
memory formulations.

Implementation Details. We build our agents upon several state-of-the-art LLMs accessed via the
Vertex AI API,5 including Gemini-2.5-Flash, Gemini-2.5-Pro (Comanici et al., 2025), and Claude-
3.7-Sonnet (Anthropic, 2025). These choices allow us to investigate both cross-family (Gemini,
Claude) and intra-family (Flash, Pro) variations. BrowserGym (de Chezelles et al., 2025) is used as
the execution environment for WebArena, where we set a maximum step limit of 30 per query. The
agent is implemented in ReAct (Yao et al., 2023) style, and iterates until the model predicts the stop
action or reaches a task termination condition. We use the decoding temperature of 0.7 for model
generations for both WebArena and Mind2Web.

Evaluation Metrics. For WebArena benchmark, we evaluate all methods across two key
dimensions: effectiveness and efficiency. For effectiveness, we report the success rate (SR). A
task is marked as “successful” only if the agent’s final output or state precisely matches the pre-
defined ground-truth goal, which is measured by the evaluation protocol from the corresponding
benchmarks. SR is the total number of successful tasks divided by the total number of tasks
evaluated, formally, it is calculated as SR = 1

N

∑N
i=1 isSuccess(qi), where isSuccess(qi) is the

binary function that returns 1 if task qi is successful and 0 otherwise. For efficiency, we measure

5https://cloud.google.com/vertex-ai

19

https://cloud.google.com/vertex-ai


1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

the average number of steps (AS) taken by the agent to complete each query, which reflects the
computational and interaction cost incurred during task completion. A single step is defined as one
complete agent-env interaction cycle following the ReAct loop, which typically involves observing
the current state, generating a thought, and a subsequent action. AS is calculated as the total number
of steps taken in the trajectory when solving task qi divided by the total number of tasks, specifically,
AS = 1

N

∑N
i=1 Steps(qi) For Mind2Web dataset, each task in has a predefined fixed number of

steps; at each step, the agent needs to predict an action, which is evaluated by: element accuracy: to
check if the correct page element is selected, action F1 to check if the action taken on the element is
correct. Aggregating element accuracy and action F1 yields step success rate which checks that both
element and action selection are correct at the current step. Lastly, after completing every step in the
given task, the last metric task-level success rate measures if all intermediate steps are successfully
conducted for this task, i.e., all steps for this task score 1.0 under metric step success rate.

B.2 SOFTWARE ENGINEERING

Datasets. To benchmark agentic coding tasks, we evaluate on SWE-Bench-Verified (Jimenez et al.,
2024), a repository-level issue resolution benchmark. The dataset consists of 500 high-quality test
instances that have been manually verified. Each instance requires generating a patch to address the
underlying bug described in the input issue. The objective is to modify the relevant portions of the
codebase such that all provided test scripts execute successfully.

Metrics. We report the issue resolution rate on SWE-Bench-Verified as the primary evaluation
metric. The resolution rate measures the percentage of issues successfully fixed across all data
points, where an issue is deemed resolved if the submitted patch passes all test scripts. To evaluate
the patch application rate, we attempt to apply the generated patches to the repository using the
standard patch program, counting only successful applications. Our implementation follows the
official evaluation scripts.6 For efficiency, we additionally report the average number of steps
performed by the agent per instance, following web-browsing tasks.

Implementation. We implement REASONINGBANK for SWE-Bench following the setting of mini-
SWE-Agent (Yang et al., 2024), which enforces the Bash-Only environment with no tools and no
special scaffold structure. It assumes a simple ReAct agent loop (Yao et al., 2023). Similar to
previous experiments, we compare REASONINGBANK against (i) No memory and (ii) Synapse. 7

C ADDITIONAL ANALYSES

C.1 NUMBER OF RETRIEVED EXPERIENCES

Analysis
Ablation Study

35

38

41

44

47

50

Synapse AWM ReasoningBank

No mem: 39.0

Success only

w/ Failure

40.6

44.4

46.5

41.7 42.2

49.7

38

41

44

47

50

0 1 2 3 4
Number of experiences

39

49.7

46

45.5

44.4

Su
cc

es
s 

Ra
te

Su
cc

es
s 

Ra
te

Figure 12: Ablation results for us-
ing various number of experiences.

We conduct another ablation study on different number of
retrieved experiences using Gemini-2.5-flash on WebArena-
Shopping subset. As shown in Figure 12, we found
that incorporating relevant memory significantly boosts
performance (from 39.0 without memory to 49.7 with one
experience). However, as the number of experiences increases,
the success rate gradually declines (46.0 with 2, 45.5 with 3,
and 44.4 with 4). This suggests that while memory provides
valuable guidance, excessive experiences may introduce
conflicts or noise. Hence, the relevance and quality of memory
are more crucial than sheer quantity for effective performance.

6https://www.swebench.com/SWE-bench/api/harness/
7We exclude AWM here because the action space in mini-SWE-Agent is open-ended (arbitrary Bash

commands), making it difficult to extract the common routines or fixed workflows that AWM requires for
cross-task generalization.

20

https://www.swebench.com/SWE-bench/api/harness/


1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C.2 CALIBRATION OF LLM-AS-A-JUDGE

A critical step in our method is sourcing correctness signals for agent trajectories via an LLM-as-a-
Judge. In this section, we quantitatively calibrate this judge and analyze its robustness to verification
noise. We conduct our analysis on the WebArena-Shopping subset, using Gemini-2.5-flash as the
judge. We first establish the baseline accuracy by comparing the judge’s predictions against ground-
truth labels, which we find to be 72.7%.

47

48.2

49.4

50.6

51.8

53

100 90 80 70 60 50

47.647.6

49.7

48.7

49.7

52.4

Simulated LLM-as-a-Judge Accuracy

Su
cc

es
s 

Ra
te

Figure 13: Results for success rate
with respect to simulated LLM-as-
a-judge accuracy.

To systematically study the judge’s robustness, we simulate
different levels of verification accuracy. This is achieved by
probabilistically correlating the judge’s labels with the ground-
truth. For example, a 100% accurate verifier uses the ground-
truth labels directly. A 90% accurate verifier is simulated by
using the correct (ground-truth) label 90% of the time and
the incorrect (flipped) label 10% of the time. We extend this
simulation down to 50% accuracy, which represents a random-
guess baseline for this binary (success/failure) classification
task. The results are presented in Figure 13.

We observe that REASONINGBANK maintains a substantial
performance improvement over baselines across all simulated
judge accuracies. Furthermore, the judge’s accuracy does not
significantly impact the performance of REASONINGBANK, as
all variants achieve similar success rates within reasonable accuracy range (70%-90%). Intuitively,
the 100% (ground-truth) accuracy setting yields the best performance. These findings confirm that
REASONINGBANK is robust to noise in the verification step.

C.3 INFERENCE COST STUDY

Table 5: Breakdown results of total token consumption
required for each task.

Methods Action
Generation

LLM-as
-a-Judge

Memory
Extraction Total

No Memory 50847.4 - - 50847.4
Synapse 55920.5 2594.2 - 58514.7
AWM 53819.6 2479.1 3074.1 59372.8
REASONINGBANK 49306.1 2186.3 1562.1 53054.5

In this section, we provide a
comprehensive view on inference
cost for REASONINGBANK and
baselines to facilitate real-world
deployment. We report a break-
down of the averaged total token
consumption for each trajectory in
addition to number of interaction
steps mentioned in Section 4.1.
The results are shown in Table 5.

From the table we can see that compared with “No memory”, while the total token consumption
is increased only by around 4.3%, the overall performance is boosted by 20.5%. Other memory
baselines such as Synapse and AWM will greatly increase the computation overhead while achieving
less performance gains compared with REASONINGBANK, demonstrating the cost-effectiveness of
REASONINGBANK.

C.4 PASS@K ANALYSIS

Memory-aware scaling improves sample efficiency and sustains stronger performance gains.
Pass@k analysis under parallel scaling on WebArena-Shopping subset with Gemini-2.5-flash
(Figure 14) reveals two distinct effects. First, MATTS w/o aggregation (Vanilla TTS) already makes
test-time learning behave similarly to RL training: instead of inflating pass@k at large k, it improves
sample efficiency by guiding exploration. For example, at k = 2, MATTS w/o aggregation achieves
50.8 compared to 47.6 from MATTS w/o memory, extracting more value from each rollout as noted
in (Yue et al., 2025). Second, equipping TTS with memory-aware scaling pushes performance
further. MATTS not only preserves efficiency at small k (51.3 at k = 2) but also sustains strong
growth with scaling, reaching 62.1 at k = 5, compared to only 52.4 for MATTS w/o memory.
Overall, we see that MATTS unlocks more potential of agent systems and encourages diversified
generation for better pass@k performance.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Google Cloud Proprietary & Confidential    24

Analysis 2: Case Study (Effectiveness)

Start on homepage click (‘My Account’) View ‘Recent Orders’ table

Baseline (No memory)

Answer ('Your first purchase on this site 
was made on 3/11/23.')

Reasoning Bank

What is the date when I made my first purchase on this site?

Start on homepage click (‘My Account’) View ‘My Orders’ table Next Page

Answer ('Your first purchase 
on this site was made on 
March 2, 2022.')

To find information regarding certain purchase, I will 
use memory item 5. I see a link in `My Orders`, as 
mentioned in the memory …

Figure 15: REASONINGBANK enables the agent to recall and apply past reasoning hints, guiding
it to the full order history and yielding the correct first purchase date, unlike the baseline that fails
with only recent orders.

C.5 CASE STUDY

36

45

54

63

72

1 2 3 4 5
Scaling factor k

Pa
ss

@
k

62.1

58.8
54.5

51.349.7
56.155.1

52.9
50.8

49.7

39.0

47.6
49.7 51.3 52.4

MaTTS w/o memory

MaTTS w/o aggregation

MaTTS

Interpreting Memory: an RL Perspective
Sample Efficiency

Figure 14: Pass@k under parallel
scaling with REASONINGBANK.

To better illustrate the benefits of our approach, we present
three representative case studies.

Effectiveness. Figure 15 highlights the effectiveness of
REASONINGBANK in leveraging related previous experiences
as memory items. While the baseline agent (without memory)
only checks the “Recent Orders” table and mistakenly outputs
the most recent purchase date, REASONINGBANK recalls from
past reasoning hints to explore the full purchase history and
correctly identifies the earliest order.

Efficiency. Figure 16 demonstrates the efficiency gains. In a
navigation-heavy shopping task, the baseline requires 29 steps
due to repeated inefficient browsing. It stucks and struggles
to find the correct place of filter for “Men”. In contrast,
REASONINGBANK leverages stored reasoning about category
filtering, enabling the agent to directly reach the relevant items
and complete the task in only 10 steps.

Emergent Capabilities. Figure 17 shows how memory items induced by REASONINGBANK
through reflecting on past trajectories helps to prevent similar errors from happening again,
which enables emergent improvement. In this case, the original trajectory actually fails because
of the imprecise search query that leads to numerous returned items, and irrelevant objects.
REASONINGBANK is able to first reflect on the trajectory, pinpoint the key reason of failure, and
extract valuable strategies that would avoid similar errors such as search query optimization and
using the functionality filters.

D FUTURE DIRECTIONS

In this section, we briefly discuss the potential future directions following REASONINGBANK and
MATTS.

Modular and Compositional Memory. Our current framework distills each experience into
multiple memory items, and when a new query arrives, we retrieve similar experiences and reuse

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Google Cloud Proprietary & Confidential    25

Analysis 2: Case Study (Efficiency)

Start on homepage

Baseline (No memory)

Reasoning Bank

Buy the best rating product from "Men's shoe" category with at least 5 reviews and the product is least expensive

Start on homepage Hover (Shoes), Hover (Men) Select Price () Identified with at 
least 5 reviews

I will click "Proceed to 
Checkout" from the cart

……

Cannot filter by `Men`, need scroll down

10 Steps in total.

29 Steps in total.

I will click "Proceed to 
Checkout" from the cart

Inefficient search for navigation, consuming 
8 steps

Select Price ()

…………

According to Memory Item 11, to correctly navigate to 
certain categories, I need to first filter products ….

……

Figure 16: REASONINGBANK improves efficiency by leveraging past reasoning hints, reducing the
navigation from 29 steps to 10 steps compared to the baseline without memory.Learning from Failures

User Query: Provide me with the complete names of Bluetooth headphones from Sony, and also share the price 
range for the available models.

Irrelevant objects

Too many items to browse

Diagnose the trajectory: 
“The agent spent endless steps on ‘page next’, 
which exhausts the interaction limits without 
providing the requested information from user. …”

Distilled strategies to ReasoningBank: 
“Search query optimization” to avoid irrelevance 
and ensure preciseness 
“Adjust number of items displayed per page” to 
accelerate 
“Use filters available”

Figure 17: Memory items induced by REASONINGBANK unlocks emergent improvement of
REASONINGBANK, which help avoid similar errors from happening again.

all associated items independently. This design highlights the effect of memory content but
does not consider how items could be composed into higher-level strategies. Future work could
explore composition-aware retrieval and consolidation with based on modular memory extraction,
enabling the agent to combine complementary items or form reusable macros, thereby yielding
richer strategies and stronger generalization in long-horizon tasks. For example, memory could be
extracted with respect to “planning memory”, “tool-use memory”, “operational memory”, “user-
centric memory”, etc. In this way, memory extracted would be more fine-grained and memory
retrieval could unlock compositional and complementary power, not just task similarity.

Advanced Memory Architectures. Our current system design is intentionally minimal; a natural
next step is to build a layered, product-level memory stack that integrates mature paradigms — e.g.,
episodic traces (Fountas et al., 2025) for per-task context, short-term “working” memory (Lumer
et al., 2025) for within-session state, and long-term (Wang et al., 2025b) consolidated knowledge
with decay/refresh policies. The philosophy of REASONINGBANK are compatible with the above
different memory angularities. Additionally, the current memory retrieval could also move beyond
embedding-based similarities to reasoning-intensive controllers (Shao et al., 2025) that decompose
queries, plan multi-hop lookups across tiers, and condition selection on uncertainty, recency, and
cost. Learning-based routers and consolidation policies could also automate this process. This

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

integration would turn REASONINGBANK with MATTS into a deployable memory service that
scales across domains and teams.

E LIMITATIONS

While REASONINGBANK demonstrates strong empirical performance and introduces a practical
paradigm for memory as a scaling dimension, it also comes with several limitations that suggest
directions for future research.

Focus on memory content. Our study emphasizes how to curate and utilize memory content (e.g.,
integrating failure trajectories, constructing distilled reasoning cues). For this reason, we did not
extensively compare with other memory architectures such as episodic or hierarchical memory.
These designs address orthogonal concerns (memory form/structure), while our contribution targets
what should be stored and reused. Exploring their combination would be an interesting future
direction.

Simplicity in memory retrieval and consolidation. We intentionally adopt simple embedding-
based retrieval and straightforward consolidation to better isolate the effect of content quality. More
sophisticated strategies (e.g., adaptive retrieval, hierarchical consolidation) are compatible with our
framework and could further enhance performance, but are not the focus of this work. This choice
ensures that the observed gains can be attributed directly to the design of reasoning-oriented memory
content.

Dependence on LLM-as-a-judge for correctness signals. In our implementation, success and
failure signals for trajectories are determined by an LLM-as-a-judge. While this automatic labeling
enables scalable evaluation without ground-truth feedback, it may introduce noise when tasks
are ambiguous or when the judge model itself errs. While our results suggest the framework
remains robust under such noise, future work could incorporate stronger verifiers, human-in-the-
loop feedback, or ensemble judgment to enhance the reliability of memory induction.

F USE OF LLMS

We used LLMs as a general-purpose writing assist tool during the preparation of this submission.
Specifically, LLMs were employed for polishing the clarity and readability of text (e.g., refining
sentence structure, improving grammar, and shortening overly verbose phrasing). All research
ideas, methodology design, experiments, analyses, and final writing decisions were conceived,
implemented, and validated solely by the authors.

24


	Introduction
	Related Work
	Methodology
	Problem Formulation
	ReasoningBank
	MaTTS: Memory-aware Test-Time Scaling

	Experiments
	Setup
	Results of ReasoningBank
	Results of MaTTS
	Synergy of Memory and Test-Time Scaling

	Analysis
	Conclusion
	Experiment Details
	Prompts Used for ReasoningBank
	Implementation Details
	MaTTS Details

	Details for Experiment Settings
	Web Browsing
	Software Engineering

	Additional Analyses
	Number of Retrieved Experiences
	Calibration of LLM-as-a-Judge
	Inference Cost Study
	Pass@k Analysis
	Case Study

	Future Directions
	Limitations
	Use of LLMs

