Addition is almost all you need: Compressing neural networks with double
binary factorization

Vladimir Boza! Vladimir Macko !

Abstract

Binary quantization approaches, which replace
weight matrices with binary matrices and substi-
tute costly multiplications with cheaper additions,
offer a computationally efficient approach to ad-
dress the increasing computational and storage
requirements of Large Language Models (LLMs).
However, the severe quantization constraint (3-1)
can lead to significant accuracy degradation. In
this paper, we propose Double Binary Factoriza-
tion (DBF), a novel method that factorizes dense
weight matrices into products of two binary (sign)
matrices, each accompanied by scaling vectors.
DBF preserves the efficiency advantages of bi-
nary representations while achieving compression
rates that are competitive with or superior to state-
of-the-art methods. Specifically, in a 1-bit per
weight range, DBF is better than existing binariza-
tion approaches. In a 2-bit per weight range, DBF
is competitive with the best quantization meth-
ods like QuIP# and QTIP. Unlike most existing
compression techniques, which offer limited com-
pression level choices, DBF allows fine-grained
control over compression ratios by adjusting the
factorization’s intermediate dimension.

1. Introduction

Large language models (LLMs) have achieved unprece-
dented success in various natural language processing and
reasoning tasks. However, the increasing scale of these
models has led to substantial computational and storage
demands, posing significant challenges for deployment. To
address these limitations, various compression techniques
such as quantization (Frantar et al., 2022; Malinovskii et al.,

"Faculty of Mathematics, Physics and Informatics,
Comenius University. Correspondence to: Vladimir
Boza <boza@fmph.uniba.sk>, Vladimir Macko

<vladimir.macko @fmph.uniba.sk>.

Proceedings of the 42" International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

2024; Tseng et al., 2024a;b), and pruning (Frantar & Al-
istarh, 2023; Boza, 2024) have emerged, aiming to reduce
model size and inference latency without significant loss in
performance. Moreover, methods like BitNet (Wang et al.,
2023) and OneBit (Xu et al., 2024) restrict weight matrices
to binary values and replace energy-costly multiplication
with more energy-efficient addition.

In this paper, we push weight binarization further. We pro-
pose to replace each weight matrix with a product of two
binary sign matrices, each scaled by appropriate vectors.
We present a heuristic algorithm for calculating such fac-
torization and show that it results in superior compression
compared to a single sign matrix and is competitive with
the state-of-the-art quantization approaches.

Summary of contributions. We propose a practical algo-
rithm for factorizing dense weight matrices into a product of
two binary matrices (with appropriate scaling factors). We
apply this factorization to LLM compression and achieve
results better than single-matrix binarization and competi-
tive with leading quantization methods. Our factorization
is practical for deployment on current GPUs, achieving
2-3x speedups during inference. Furthermore, since multi-
plication with binary matrices requires only additions, our
approach has potential for significant energy savings.

DBF also has multiple notable advantages compared to
other weight compression methods. First of all, it can take
weight importance into account and gives lower error to
weights with higher importance. Furthermore, DBF can also
achieve any compression ratio by varying the size of the
middle dimension of the factorization. Typical compression
approaches allow only limited choices of compression ratios
and are commonly limited to an integer number of bits per
weight.

2. Related work

Post-Training quantization (PTQ). There are many meth-
ods for post-training quantization of LLMs. Almost all of
them work by solving some variation of the layer-wise com-
pression problem. GPTQ (Frantar et al., 2022) improves
scalar quantization by minimizing layer-wise errors. QuIP#
(Tseng et al., 2024a) uses incoherence preprocessing and

Addition is almost all you need

:H OL® O ® ©

X A+1

o
3

B+1

[«]

n
-%- DBF
N 9 * ® AQLM+PV
z ~ * QTIP
£ 84— m OneBit
v S
§ AP QulP#
=77 <<
\\\
~
6 - T
1.0 1.5 2.0

Figure 1. Left: Schematic drawing of computation in Double binary factorization. X is the layer input in FP16 format, W is the original
weight matrix. A and B consist of £1 elements, a, m, b are vectors in FP16 format. We omit matrix transpositions for simplicity. Right:
Comparison of our Double binary factorization (DBF) with previously proposed network compression methods on Llama2-7B.

lattice codebooks to further improve quantization accuracy.
AQLM (Egiazarian et al., 2024) uses learned vector code-
books. QTIP (Tseng et al., 2024b) combines incoherence
preprocessing with trellis coding to get even better accu-
racy than previous methods. However, a key drawback
of these more sophisticated quantization methods is that
they require decompressing weights back to full precision
and performing full-precision multiplications, thus prevent-
ing them from utilizing hardware acceleration optimized
for lower-precision arithmetic. Additionally, most existing
methods support only a limited set of compression ratios
(e.g., QTIP needs an integer number of bits per weight),
reducing their flexibility.

Models with binary weights. Networks with binary
weights (Rastegari et al., 2016) were always attractive, due
to the potential of simple computation, where one replaces
multiplication with additions. This idea was applied to
LLMs in BitNet (Wang et al., 2023), which showed a pos-
sibility of training LLMs with binary weights. OneBit (Xu
et al., 2024) showed a simple way of converting each weight
matrix into a binary matrix during post-training quantization.
BiLLM (Huang et al., 2024) also binarizes weight matrices,
but uses another binary matrix to enhance precision for a
selected subset of important parameters.

Weight factorization. Rather than quantizing weight matri-
ces, another approach is to approximate them as a product of
several smaller matrices. The most common method is low-
rank factorization (Li & Shi, 2018; Jaderberg et al., 2014),
where an nxmnxm matrix is decomposed into the product
of ann x k and k x m matrix, with & << min(n, m). How-
ever, low-rank factorizations come with severe degradation
in accuracy. Boza & Macko (2025) showed that one can
factorize the weight matrix into two sparse matrices and
get better results than using just one sparse matrix with the
same amount of nonzeros.

Finetuning of quantized models. State-of-the-art LLM
compression methods use fine-tuning during and after quan-
tization. Multiple methods fine-tune only the remaining
continuous parameters. AQLM (Egiazarian et al., 2024)
only finetunes continuous parameters after the quantization.
QulP# (Tseng et al., 2024a) and QTIP (Tseng et al., 2024b)
use lightweight fine-tuning during the quantization process
and then proceed to fine-tune continuous parameters after
quantization.

In most cases, the fine-tuning of discrete parameters of
quantized models is done via straight-through estimation
(Courbariaux et al., 2014; Jacob et al., 2018). The other
option is to use stochastic rounding (Alistarh et al., 2017).
Malinovskii et al. (2024) proposed PV-tuning, where they
showed that it is better to tune discrete parameters with a
higher learning rate, but only tune a small subset of discrete
parameters in each update step.

3. Double binary factorization

We work in the context of layer-wise compression, where
each linear layer in the model is replaced by a compressed
version. Our goal is to keep weight matrices in a binary
format while having regular 16-bit floating-point activations.

OneBit decomposition. Xu et al. (2024) proposed to ap-
proximate weight matrices by:

Weaao W ©bF

where a, b are column vectors,IW1 is a sign matrix with en-
tries from {—1, 1} and ® denotes elementwise (Hadamard)
product with appropriate broadcasting. During linear layer
computation, we calculate:

XWT ~ (X ob")yWi) od"

Addition is almost all you need

OneBit decomposition is calculated via Sign-Value-
Independent Decomposition (SVID), which first sets
Wi1 = Sign(W) and ab” is the rank-1 approximation
of |W| calculated via SVD or NMF.

Double binary factorization. Inspired by Double Sparse
Factorization (BoZa & Macko, 2025), we propose to factor-
ize the weight matrix into a product of two binary matrices
with appropriate vector scaling in between (see also Fig. 1):

W = (a®AL10mT)(B210bT) = (a®A+)(mO B, 0b)

where a, m, b are vectors and A, B4 are sign matrices,
which translates into following computation during network
forward pass:

XWT~ (X ob")BL) om")AL) ©d”

Middle dimension size. The original matrix W has a shape
nxm. Vectors a and b must have sizes n and m respectively.
But we can select the middle dimension size k to match the
desired compression ratio. Then the vector m will have
size k, and matrices A1 and B4 will have size n x k and
k x m.

For example, if the input matrix is squared and we target
approximately 1-bit compression, we will select k& = n /2.
If we target “2-bit compression we will select £ = n. In
general, we will select k£ as k = b-2"-, where b is the

n+m?
desired average number of bits per original weight.

3.1. Practical considerations for double binary
factorization

Storage size. By controlling the middle dimension of fac-
torization, we can compress the matrix to any desirable size.
This is a huge advantage compared to many other methods,
which support a limited number of sizes (e.g., scalar quan-
tization supports only integer values as a number of bits
per weight). We also need to store scaling vectors, but their
size is negligible (e.g., when compressing a matrix of size
4096 x 4096 to 2 bits/weight, storing scaling vectors costs
0.012 bits per weight).

Inference costs. It is true that the total number of operations
for DBF is higher than for ordinary scalar quantization (ex-
cept for the case where the number of bits per weight is less
than or equal to 1), but in all cases, we replace costly mul-
tiplications with much simpler additions. Moreover, LLM
inference is often bound by memory transfer, and memory
transfer costs for DBF are similar to the costs of any other
quantization with an equal number of bits per weight. We
measure actual matrix multiplication timings in the exper-
imental section and found that DBF is 2-3.5x faster than

dense baseline when using 2 bits per weight. Moreover,
Wang et al. (2023) showed that using binary weights can
save energy during inference since one needs only additions
instead of multiplications. This could lead to even better
savings in the future with proper HW support.

Storage of middle activations during finetuning. As with
any other weight factorization, one needs to store the mid-
dle activations during fine-tuning, which incurs nontrivial
memory costs. Similar to Double sparse factorization (Boza
& Macko, 2025), we found that when using gradient check-
pointing, this storage increase is practically negligible.

3.2. Computing Double Binary Factorization

Computing optimal Double binary factorization is probably
an NP-hard problem, but we respond to that with "Here’s
where the fun begins.” (Solo, 1977) and propose a heuristic
algorithm for computing DBF. We compute Double Binary
Factorization very similarly to Double Sparse Factorization
(Boza & Macko, 2025). Our main goal is to minimize:

min |[W — (¢ ® Ay @ m”)(By ©67)]|3

First, we split the middle scaling factor into two (we can eas-
ily put it back by multiplying the middle factors together):

min |[W — (a ® Ax1 @ m{)(me ® B4y ©b7)|]3

Denote A = a ® ALy @ mT and B = my © Byy ® b7.
We run alternating minimization, where we first initialize A
with a random matrix, then fix A and optimize B, then fix
B and optimize A, etc.

The main subproblem of the alternating minimization is:

min [|AB — W]r

s.t. A=a® A, om!

We solve this problem using the Alternating direction
method of multipliers (ADMM) (Boyd et al., 2011). ADMM
is an iterative algorithm for solving constrained optimiza-
tion problems. While ADMM provably converges only for
convex problems, and our constraint is non-convex, there
have been numerous successful attempts to use ADMM for
non-convex problems.

We use ADMM for solving constrained optimization of the
form:

minimize

f(z)

subjectto = € C

Addition is almost all you need

In this case, the one iteration of ADMM is (p is a penalty
factor, usually set to one in our case, and w are scaled dual
variables):

M = argmin f(z) + (p/2)||z — 2* + u¥||2
x

Zk+1 _ Hc(l‘k+1 + ’U,k)

I S
Where II¢ is a Euclidean projection onto the set C'. In our
case, we want to project onto the set of matrices, which
can be factorized as a ® Ay ©® mi. We will use SVID
projection from OneBit (Xu et al., 2024), i.e., we will cal-
culate SVID(Z) as follows: First, we set Z1; = Sign(Z),
and do rank-1 decomposition of |Z| into am?. Then
SVID(Z) = a ® Z+; ® m¥. Since we need to do a lot
of iterations, we compute the rank-1 decomposition using
power iteration.

Then the one ADMM update becomes:

ARHD = gyTp(WEHD 4)
yk+1) _ rrk + ﬁ/\(kJrl) _ AG+1)

We also use all heuristic improvements from DSF. We also
normalize rows of matrix B; we prefer to use fewer inner
updates (ADMM steps) and more outer updates (alternating
minimization steps), and we reuse solutions from previous
inner iterations.

3.3. Input and output importance scaling

While many compression schemes try to solve the layer-
wise pruning problem (min || XW — XW.||3, where X is
the calibration input, W the original matrix, and W, the
compressed matrix) (Frantar & Alistarh, 2023; Frantar et al.,
2022; Tseng et al., 2024a), we opt to use a slightly different
approach.

We assign different importance to preserving the rows and
columns of the matrix W. We use input activation norm
(similar to Wanda (Sun et al., 2023)) as the column (input)
importance. We use the gradient norm as row (output) im-
portance. Both input activation norms and gradient norms
are precalculated using a small calibration dataset.

We can easily incorporate input and output importance
into our factorization algorithm. We first calculate W’/ =
0 ® W ®iT, where o are gradient norms and i are input
activation norms. We then factorize W/ =~ (¢’ ® A11 ®
mT)(B+1 ® b'T) and scale scaling vectors back: a = a’/o,
b=1V/i.

Table 1. Results for uniform compression of Llama2-7B. Avg. bits
refer to the average number of bits per original weight.

Avg. bits Method Wikitext Avg. zero shot
16 Dense 5.12 66.73
2.3 AQLM + PV 5.84 64.23
2.3 DBF 5.87 63.77
23 DBF+PV 5.85 64.15
2 QTIP 5.86 64.14
2 QUIP# 6.19 62.70
2 DBF 6.14 62.78
2 DBF+PV 6.09 62.76
1.5 AQLM + PV 7.32 57.52
1.5 DBF 7.16 59.77
1.5 DBF+PV 7.01 60.03
1 OneBit 9.73 49.43
1.1 BiLLM 32.48 43.40
1 DBF 9.57 52.01

1 DBF+PV 8.76 53.10

3.4. Fine-tuning during and after factorization

Almost all state-of-the-art quantization algorithms use some
form of fine-tuning. We use slight variation of the proce-
dure from QulP# (Tseng et al., 2024a) and QTIP (Tseng
et al., 2024b) as follows: We use a small calibration dataset
(in our case, 256 sequences). When compressing the i-th
transformer block, we collect its expected output Y (*) from
the original dense model. We also collect the output of
the (¢ — 1)-th block after compression, which becomes the
input X @) of the i-th block. Before compression, we first
fine-tune the block to correct errors from previous blocks.
Then we compress the query, value, and output matrices,
fine-tune the rest of the block, and compress the remaining
matrices. After the compression, we fine-tune the remain-
ing unquantized parameters (scaling vectors in each binary
factorization).

PV-tuning. We also attempt to fine-tune signs in the binary
matrices. This is challenging since storing dense weights
(e.g., for straight-through estimation or PV tuning) requires
more memory than the dense model. We reduce the memory
requirements by always running PV-tuning only on a subset
of layers. In each k-step (we set k = 50), we select a
random subset of layers to be PV-tuned, where each layer
has a probability of 1/10 of being selected. We also fine-tune
all continuous parameters in all layers.

4. Experiments

4.1. Compression of LLMs

We evaluate our proposed Double binary factorization on
compressing Llama2-7B (Touvron et al., 2023) and Llama3-

Addition is almost all you need

Table 2. Results for uniform compression of Llama3-8B. Avg. bits
refer to the average number of bits per original weight.

Avg. bits Method Wikitext Avg. zero shot
16 Dense 5.54 70.71
2.3 AQLM + PV 6.76 66.98
2.3 DBF 6.97 67.61
23 DBF+PV 6.91 68.05
2 QTIP 7.33 66.93
2 QUIP# 7.84 63.98
2 DBF 7.48 65.07
2 DBF+PV 7.39 64.98
1.5 AQLM +PV 9.43 58.87
1.5 DBF 9.37 59.96
1.5 DBF+PV 9.05 60.95
1.1 BIiLLM 28.80 40.20
1 DBF 15.61 48.38

1 DBF+PV 13.57 51.89

8B (Grattafiori et al., 2024) models. We uniformly compress
all layers to the same target bits per weight.

Calibration and fine-tuning data. We use Redpajama
dataset (Weber et al., 2024) for calibration and fine-tuning.
We use the same preprocessing as in (Malinovskii et al.,
2024). We select 256 random sequences as a calibration
dataset and use them to compute input activation norms and
output gradient norms for each linear layer. We also use it
for fine-tuning during compression.

Compute resources. Compression with fine-tuning during
compression was done on one RTX 4090 GPU and takes
6-8 hours. We further run fine-tuning on 4 A100 GPUs for
24 hours.

Evaluation metrics. We evaluate compression methods
using Wikitext-2 (Merity et al., 2016) perplexity and zero-
shot accuracy on ARC-easy and ARC-challenge (Clark et al.,
2018), PiQA (Bisk et al., 2020) and Winogrande (Sakaguchi
etal., 2021).

Compared methods. We compare against multiple state-
to-art methods in 1-2.3 bit compression range. We com-
pare with AQLM (Egiazarian et al., 2024) with PV-tuning
(Malinovskii et al., 2024). We only compare against PV-
tuned models, which are publicly available. We also com-
pare against QulP# (Tseng et al., 2024a) and QTIP (Tseng
et al., 2024b). Finally, we compare against OneBit (Xu
et al., 2024) and BiLLM (Huang et al., 2024), which are
specifically designed for extreme 1-bit quantization. For our
method, we always report numbers with simple tuning (only
continuous parameters) and with PV-tuning.

Results. Results for uniform compression are shown in
Tab. 1, and 2. Our results are comparable to AQLM with

Table 3. Batch size 1 decoding throughput on Nvidia RTX 4090
for two versions of Llama models.

Avg.

bits 2-7B 3-8b
Base 16 68 tok/s 60 tok/s
DBF 2.3 144 tok/s (x2.12) 121 tok/s (x2.01)
DBF 2 153 tok/s (x2.25) 133 tok/s (x2.22)
DBF 1.5 167 tok/s (x2.46) 153 tok/s (x2.55)
DBF 1 170 tok/s (x2.50) 174 tok/s (x2.90)

PV-tuning for 2.3 bit compression. We are marginally worse
than QTIP but better than QulIP# for 2 bit compression. Both
methods require decompression into full precision weight,
while DSF uses mostly additions. For 1-1.5 bit compression,
our method is superior to other tested methods. Note that
OneBit was fine-tuned for much longer than DBF (OneBit
reports 7 days on 8 H100s, we tune for 1 day on 4 A100s),
and DBF with only continuous parameters fine-tuning is still
better. Also, note that to achieve the average 1 bit per layer,
we need the middle dimension of factorization to be smaller
than the dimensions of the original matrix. But even with
the low-rank bottleneck, DBF is still better than OneBit.

4.2. Properties of DBF

Adherence to weight importance. In this experiment, we
test whether DBF has lower approximation error for weights
with higher importance. We factorize layer 7.self_attn.k_proj
from Llama3-8B with input and output importance calcu-
lated from the calibration set as in the main experiments. As
controls, we use basic 3-bit scalar quantization and OneBit.
In case of OneBit, we use importance scaling as described
in Sec. 3.3. We plot the results in Fig. 2. We see that neither
simple scalar quantization (this is expected) nor OneBit can
follow weight importance, while DBF decreases error as the
weight importance increases.

Approximation error vs avg. number of bits. We also ex-
plore how the approximation error changes with the change
in compression ratio (avg. number of bits per layer). Again,
we compare DBF with scalar quantization and OneBit. This
time, we do not use weight importance. We test different
compression ratios for DBF and scalar quantization. Results
are shown in Fig. 3. We see that for 1-3 bit compression,
our method is better. However, at 4 bits and higher, scalar
quantization is better than DBF. We do not know whether
this is a fundamental limitation of DBF or just a problem in
factorization calculation.

4.3. Inference speed

Although our main objective is to show that one can achieve
competitive network compression using just binary matrices,

Addition is almost all you need

OneBit

DBF 3-bit scalar quant

0.00045 A 0.00045 -
S
@
% 0.00030 - 0.00030 A
Q.
©
£
()]
@ 0.00015 - 0.00015 A
=

0.00000 -

0.0 0.2 0.4 0.6
Weight importance

Sal
0.00000 _m
0.0

Weight importance

0.0020 T
0.0015 4
0.0010 4

0.0005 A

0.0000 -
0.4 0.6 0.0 0.2 0.4 0.6

Weight importance

Figure 2. Comparison of weight importance (calculated as a product of input and output importance) vs. approximation error on
7.self_attn.k_proj of Llama3-8B. Blue points are actual matrix elements, and the orange line is a smoothed version.

® OneBit DBF —e— Scalar quant
9.v_proj 10.q9_proj
° °
51071 4 10-1 4
]
X
Q
£ 1072 4 1072 4
[
o
10_3 = T T T T T T
2 4 6 2 4 6

Number of bits Number of bits

Figure 3. Comparison of number of bits vs. approximation error
on two layers of Llama3-8B.

we also obtain practical speedups on current hardware. We
benchmark decoding speeds of LLMs with batch size 1.
To perform the computation, we use the implementation
of binary matrix multiplication from the package gemlite
(Badri & Shaji, 2023).

For LLM decoding, we measure the time it takes to generate
128 tokens from empty prompt, performed on compiled
computational graphs, with batch size 1, and report the
average number of generated tokens per second on a single
GPU. We report results in Tab. 3. DBF achieves 2-3x
speedup compared to the fp16 baseline.

Although our empirical throughput numbers were timed
on NVIDIA GPUs, DBF can be fast on a broad class of
accelerators due to its flexibility and simplicity.

5. Conclusions and Future Work

In this paper, we introduced Double Binary Factorization
(DBF), a novel compression method that approximates
weight matrices as the product of two binary (sign) matrices,
each accompanied by appropriate scaling vectors. The main

benefit of DBF is replacing energy-costly multiplications
with cheaper additions. DBF extends the concept of binary
quantization, achieving competitive or superior compres-
sion performance compared to state-of-the-art quantization
approaches. We demonstrated that DBF significantly outper-
forms existing methods using binary weight matrices and
achieves comparable accuracy with state-of-the-art methods
at compression rates of around 2 bits per weight. Further-
more, our approach is also practical, yielding speedups of
2-3x relative to dense baselines and promising significant
energy savings due to the computational simplicity of binary
operations, which only use additions instead of multiplica-
tions. A distinct advantage of DBF is its inherent flexibility.
Unlike many quantization approaches, DBF allows con-
tinuous control over compression ratios by adjusting the
factorization’s middle dimension.

There are multiple directions for future research to address
DBF limitations. One of the main limitations of DBF
is the problematic fine-tuning of binary matrices. While
PV-tuning brings some benefits, we think that this can be
further improved by doing factorization on-the-fly during
fine-tuning. Furthermore, integrating the iterative pruning
scheme with fine-tuning would also be beneficial.

Acknowledgement

This research was supported by grants 1/0140/25, and
1/0538/22 from Slovak research grant agency VEGA. Part
of the research results was obtained using the computational
resources procured in the national project National compe-
tence centre for high performance computing (project code:
311070AKF2) funded by European Regional Development
Fund, EU Structural Funds Informati- zation of society,
Operational Program Integrated Infrastructure. We acknowl-
edge the EuroHPC Joint Undertaking for awarding this
project access to the EuroHPC supercomputer LEONARDO,

Addition is almost all you need

hosted by CINECA (Italy) and the LEONARDO consortium
through an EuroHPC Benchmark and Al Access calls.

References

Alistarh, D., Grubic, D., Li, J., Tomioka, R., and Vojnovic,
M. Qsgd: Communication-efficient sgd via gradient quan-
tization and encoding. Advances in neural information
processing systems, 30, 2017.

Badri, H. and Shaji, A. Half-quadratic quantization of
large machine learning models, November 2023. URL
https://mobiusml.github.io/hggq _blog/.

Bisk, Y., Zellers, R., Gao, J., Choi, Y., et al. Piga: Reasoning
about physical commonsense in natural language. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432-7439, 2020.

Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al.
Distributed optimization and statistical learning via the
alternating direction method of multipliers. Foundations
and Trends® in Machine learning, 3(1):1-122, 2011.

Boza, V. Fast and effective weight update for pruned large
language models. Transactions on Machine Learning
Research, 2024. ISSN 2835-8856. URL https://
openreview.net/forum?id=1lhcpXd9Jir.

Boza, V. and Macko, V. Two sparse matrices are better than
one: Sparsifying neural networks with double sparse fac-
torization. In /3th International Conference on Learning
Representations, ICLR 2025, 2025.

Clark, P., Cowhey, L., Etzioni, O., Khot, T., Sabharwal, A.,
Schoenick, C., and Tafjord, O. Think you have solved
question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Courbariaux, M., Bengio, Y., and David, J.-P. Training deep
neural networks with low precision multiplications. arXiv
preprint arXiv:1412.7024, 2014.

Egiazarian, V., Panferov, A., Kuznedelev, D., Frantar, E.,
Babenko, A., and Alistarh, D. Extreme compression
of large language models via additive quantization. In
Forty-first International Conference on Machine Learn-
ing, 2024.

Frantar, E. and Alistarh, D. Sparsegpt: Massive language
models can be accurately pruned in one-shot. In Inter-
national Conference on Machine Learning, pp. 10323—
10337. PMLR, 2023.

Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh, D. Gptq:
Accurate post-training quantization for generative pre-
trained transformers. arXiv preprint arXiv:2210.17323,
2022.

Grattafiori, A., Dubey, A., Jauhri, A., Pandey, A., Kadian,
A., Al-Dahle, A., Letman, A., Mathur, A., Schelten, A.,
Vaughan, A., et al. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783, 2024.

Huang, W., Liu, Y., Qin, H., Li, Y., Zhang, S., Liu,
X., Magno, M., and Qi, X. Billm: Pushing the limit
of post-training quantization for llms. arXiv preprint
arXiv:2402.04291, 2024.

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard,
A., Adam, H., and Kalenichenko, D. Quantization
and training of neural networks for efficient integer-
arithmetic-only inference. In Proceedings of the IEEE

conference on computer vision and pattern recognition,
pp.- 2704-2713, 2018.

Jaderberg, M., Vedaldi, A., and Zisserman, A. Speeding up
convolutional neural networks with low rank expansions.
arXiv preprint arXiv:1405.3866, 2014.

Li, C. and Shi, C. Constrained optimization based low-rank
approximation of deep neural networks. In Proceedings
of the European Conference on Computer Vision (ECCV),
pp. 732-747, 2018.

Malinovskii, V., Mazur, D., Ilin, 1., Kuznedelev, D.,
Burlachenko, K., Yi, K., Alistarh, D., and Richtarik, P.
Pv-tuning: Beyond straight-through estimation for ex-

treme 1lm compression. arXiv preprint arXiv:2405.14852,
2024.

Merity, S., Xiong, C., Bradbury, J., and Socher, R.
Pointer sentinel mixture models. arXiv preprint
arXiv:1609.07843, 2016.

Rastegari, M., Ordonez, V., Redmon, J., and Farhadi, A.
Xnor-net: Imagenet classification using binary convo-
lutional neural networks. In European conference on
computer vision, pp. 525-542. Springer, 2016.

Sakaguchi, K., Bras, R. L., Bhagavatula, C., and Choi, Y.
Winogrande: An adversarial winograd schema challenge
at scale. Communications of the ACM, 64(9):99-106,
2021.

Sun, M., Liu, Z., Bair, A., and Kolter, J. Z. A simple and
effective pruning approach for large language models.
arXiv preprint arXiv:2306.11695, 2023.

Touvron, H., Martin, L., Stone, K., Albert, P., Almabhairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

https://mobiusml.github.io/hqq_blog/
https://openreview.net/forum?id=1hcpXd9Jir
https://openreview.net/forum?id=1hcpXd9Jir

Addition is almost all you need

Tseng, A., Chee, J., Sun, Q., Kuleshov, V., and De Sa, C.
Quip #: Even better llm quantization with hadamard inco-
herence and lattice codebooks. In Forty-first International
Conference on Machine Learning, 2024a.

Tseng, A., Sun, Q., Hou, D., and De Sa, C. M. Qtip: Quan-
tization with trellises and incoherence processing. Ad-
vances in Neural Information Processing Systems, 37:
59597-59620, 2024b.

Wang, H., Ma, S., Dong, L., Huang, S., Wang, H., Ma, L.,
Yang, F.,, Wang, R., Wu, Y., and Wei, F. Bitnet: Scaling 1-
bit transformers for large language models. arXiv preprint
arXiv:2310.11453, 2023.

Weber, M., Fu, D., Anthony, Q., Oren, Y., Adams, S.,
Alexandrov, A., Lyu, X., Nguyen, H., Yao, X., Adams, V.,
et al. Redpajama: an open dataset for training large lan-
guage models. arXiv preprint arXiv:2411.12372, 2024.

Xu, Y., Han, X., Yang, Z., Wang, S., Zhu, Q., Liu, Z.,
Liu, W., and Che, W. Onebit: Towards extremely low-
bit large language models. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems,
2024.

Addition is almost all you need

A. Appendix - detailed results

We provide detailed results for our compressed models in Tab 4 and 5.

Table 4. Detailed results for uniform compression of Llama2-7B. Avg. bits refer to the average number of bits per original weight.

Avg. bits Method Wikitext ppl. ArcC ArcE PiQA Wino Avg. zero shot
16 Dense 512 4343 7634 78.07 69.06 66.73
23 AQLM +PV 584 3891 7290 7737 67.72 64.23
2.3 DBF 5.87 3839 7335 7649 66.85 63.77
2.3 DBF+PV 585 3933 73.65 76.55 67.08 64.15
2 QTIP 586 39.76 7331 76.27 67.20 64.14
2 QUIP# 6.19 37.79 71.88 7546 65.66 62.70
2 DBF 6.14 37.03 7205 7622 65.82 62.78
2 DBF+PV 6.09 3694 71.88 76.16 66.06 62.76
1.5 AQLM + PV 732 2944 64.14 7312 63.38 57.52
1.5 DBF 7.16 35.06 6632 7328 64.40 59.77
1.5 DBF+PV 7.01 3558 67.12 73.72 63.69 60.03
1 OneBit 9.73 29.61 4158 68.12 5841 49.43
1.1 BiLLM 3248 2440 3620 60.60 52.40 43.40
1 DBF 9.57 2645 5530 6741 58.87 52.01

1 DBF+PV 876 2747 57.87 68.66 58.40 53.10

Table 5. Detailed results for uniform compression of Llama3-8B. Avg. bits refer to the average number of bits per original weight.

Avg. bits Method Wikitext ppl ArcC ArcE PiQA Wino Avg. zero shot
16 Dense 5.54 5043 80.09 79.71 72.61 70.71
23 AQLM +PV 6.76 4232 7546 7845 71.67 66.98
23 DBF 6.97 4573 7693 7747 70.32 67.61
23 DBF+PV 691 4547 7794 77.69 7T1.11 68.05
2 QTIP 7.33 4420 7520 77.60 70.70 66.93

2 QUIP# 7.84 3920 7290 75.60 68.20 63.98

2 DBF 748 41.04 7445 76.82 6795 65.07

2 DBF+PV 7.39 4138 74.11 77.04 67.40 64.98
1.5 AQLM + PV 943 3268 6578 72.63 6440 58.87
1.5 DBF 9.37 33.61 67.59 7399 64.64 59.96
1.5 DBF+PV 9.05 3558 68.68 74.10 65.43 60.95
1.1 BiLLM 28.80 17.70 36.00 56.10 51.00 40.20
1 DBF 15.61 21.67 50.25 65.17 56.43 48.38

1 DBF+PV 13.57 25.08 56.22 67.46 58.80 51.89

