© ®©® N O o A~ W N =

ARC-AGI Without Pretraining

Anonymous Author(s)
Affiliation
Address

email

Abstract

Conventional wisdom in the age of LLMs dictates that solving IQ-test-like puz-
zles from the ARC-AGI-1 benchmark requires capabilities derived from massive
pretraining. To counter this, we introduce CompressARC, a model without any
pretraining that solves 20% of evaluation puzzles by minimizing the description
length (MDL) of the target puzzle purely during inference time. The MDL endows
CompressARC with extreme generalization abilities typically unheard of in deep
learning. To our knowledge, CompressARC is the only deep learning method for
ARC-AGI where training happens only on a fraction of one sample: the target
inference puzzle itself, with the final solution information removed. Moreover,
CompressARC does not train on the pre-provided ARC-AGI “training set”. Under
these extremely data-limited conditions, we do not ordinarily expect any puzzles to
be solvable at all. Yet CompressARC still solves a diverse distribution of creative
ARC-AGI puzzles, suggesting MDL to be an alternative, highly feasible way to
produce intelligence, besides conventional massive pretraining.

1 Introduction

The ARC-AGI benchmark poses a uniquely challenging problem: to construct a system capable
of solving novel, abstract reasoning puzzles using only a handful of examples. [1]] These puzzles
are intentionally designed to measure generalization, creativity, and pattern recognition, and have
historically resisted solutions by even the most powerful pretrained large language models (LLMs).
The most successful attempts have leaned heavily on massive datasets, fine-tuning, or test-time
augmentation. [2| 3| 4] However, one possible approach towards artificial general intelligence
(AGI) has remained surprisingly underexplored in practice: the principle of minimum description
length (MDL). [3]] Closely related to Kolmogorov complexity [[6], MDL frames intelligence as the
ability to compress information efficiently into a minimally sized program, that correctly outputs
the original information when run. Despite its elegant theoretical connection to generalization and
prediction, MDL has rarely been successfully implemented in deep learning as an alternative source
of intelligence to pretrained LLMs. In this work, we directly investigate the power of compression by
introducing CompressARC, a deep learning method that minimizes description length at inference
time: it has no prior training at all—and yet it still achieves modest performance on ARC-AGI.

CompressARC tries to harness MDL by using deep learning, a combination of techniques plagued
with incompatabilities and roadblocks. The main difficulty in using deep learning to minimize the
description length is that the description is a discrete program, and cannot be differentiated. Moreover,
the size of the program varies as we optimize over the program’s code, running counter to gradient
descent’s requirement of a fixed number of training parameters. Together, these two difficulties
make it nearly inconceivable to use gradient descent for searching the description space. As a result,
past MDL-based attempts to solve ARC-AGI have focused on search in (at least partially) discrete
program spaces. [7]] The powerful expressive capacity of deep neural networks, requiring gradient

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

38
39

40
41
42
43
44
45
46
47
48

49
50
51

52
53
54

55
56
57

58
59
60
61

62
63
64
65

66

67
68
69
70

z~ N(u.%) <4 learnable » 8
Reconstruction loss
- —
[[

M KL loss
-

T
Equivariant I.. Ill
—> Neural ImE 1=E
Network f
N l.l.
B

[N

i 1 R =]
i Nony e

N, 1) /\

Answer

L Target Puzzle
Prediction

Figure 1: An overview of CompressARC, an MDL-derived deep learning solution to ARC-AGI. We
learn some noise distribution z ~ N (i, X) (left), feed it into a neural network, and compare the
output to the puzzle we want to solve (right). We learn the noise and the weights at inference time to
minimize the reconstruction error with the target puzzle, with a KL loss term that controls the noise
distribution. The network’s answer prediction is whatever it outputs for the last box (green).

descent to achieve, has not yet been fully combined with the strong generalization abilities promised
by the MDL principle. These strengths are exactly what CompressARC has managed to conjoin.

The innovation that underlies CompressARC is a procedure for compiling the continuous information
stored in a tensor into a discrete code. This procedure is special in that we can track the expected
resulting code length from the perspective of the original continuous space, without ever having to
perform the compilation, all in a differentiable fashion. This affords us the ability to include neural
networks as part of the description, along with tensors representing their weights and inputs. The
entire problem of minimizing the discrete description length is then offloaded as a deep learning
task: the final procedure drawn in Figure[T] If we respect the restrictions imposed by the conversion
of MDL into a deep learning problem, then we may enjoy MDL’s strong generalization abilities as
benefit:

* No training time: Since MDL requires us to start by having the target puzzle in hand, Compres-
sARC starts by skipping training time, to go to inference time immediately to first obtain the target
puzzle.

* Inference time learning: At this point, MDL dictates we minimize the description length, so
CompressARC must run gradient descent using the target puzzle during inference time, to produce
the solution.

* Relaxed data requirement: Since we expect to enjoy such strong generalization abilities endowed
by MDL, we don’t bother loading any other puzzles into memory. The target puzzle just by itself is
already plenty of data.

Of course, this means CompressARC skips pretraining and leaves any training set puzzles unused.
Even so, the extreme generalization of MDL allows CompressARC to solve 20% of evaluation
puzzles and 34.75% of training puzzles, where we would ordinarily expect 0% from any traditional
deep learning method under these conditions.

The remaining sections describe the ARC-AGI benchmark (Section |Z|), how CompressARC works
(Section 3)), CompressARC’s architecture (Section[d), CompressARC’s performance on ARC-AGI
(Section 3)), our interpretation of CompressARC’s solution to an example puzzle (Section [)), and our
conclusions (Section [7)).

2 Background: The ARC-AGI Benchmark

ARC-AGI-1 is an artificial intelligence benchmark designed to test a system’s ability to acquire new
skills from minimal examples. Each puzzle in the benchmark consists of a different hidden rule,
which the system must apply to an input colored grid to produce a ground truth target colored grid.
Several input-output grid pairs are given as examples to help the system to infer the hidden rule

71
72
73

74
75
76
77

78
79
80
81
82
83
84

85
86

87
88
89
90

91

92
93
94
95
96
97

98

99
100
101
102
103
104
105
106
107

109

110
111

112
113
114
115
116
17

118

119
120
121

in a puzzle. The system is allowed two attempts to guess the output grid correctly, i.e., getting
every single pixel color correct. The ARC Prize Foundation has launched competitions for machine
solutions to ARC-AGI-1, with upwards of $1,000,000 in prizes. [2} [8]

There are 400 training puzzles are easier than the 400 evaluation puzzles, and are meant to help your
system learn the ideas of objectness, goal-directedness, numbers & counting, and basic geometry &
topology. These training puzzles play no role in the operation of CompressARC, and we only
used them to inform our decisions of how to build CompressARC’s architecture.

The puzzles are designed so that humans can reasonably find the answer, but machines should
have more difficulty. The average human can solve 76.2% of the training set, and a human expert can
solve 98.5%. [9] Current methods for solving ARC-AGI focus primarily on tokenizing the puzzles
and arranging them in a sequence to prompt an LLM for a solution, or code that computes a solution.
[3] Top methods typically fine-tune on augmented training puzzles and larger alternative synthetic
puzzle datasets [[10] and test-time training [4} [11]. Reasoning models have managed to get up to
87.5% on the semi-private evaluation set, albeit with astronomical amounts of compute. [[12]]

Please refer to Appendix [K]for more details about the ARC-AGI benchmark. An extended survey of
other related work is also included in Appendix [H]

As of March 2025, the ARC Prize foundation has launched a new dataset and competition, ARC-
AGI-2, which is extremely similar in format to ARC-AGI-1. Since the research in this paper predates
the launch, this paper focuses solely on ARC-AGI-1, which in this paper we generally refer to as
ARC-AGI.

3 Method

We propose that MDL can serve as an effective framework for solving ARC-AGI puzzles. In MDL, a
more efficient (i.e., lower-bit) compression of a puzzle correlates with a more accurate solution. To
solve ARC-AGI puzzles, we design a system that transforms an incomplete puzzle into a completed
one—filling in the answers—by finding a compact representation (i.e., short program,) that when
run, reproduces the puzzle with any solution. The challenge is to algorithmically obtain this compact
program representation, given the puzzle.

Our key innovation is to notice that we can compile a sampling procedure from any continuous
random process into a short program, whose program length is very close to the KL divergence of this
process relative to some fixed reference process. This particular kind of compilation is made possible
by Relative Entropy Coding (REC) [[13]]. This fact means we can include randomized tensors in a
description, and count up their total description lengths as KL divergences which mirror the program
length of the compiled sampling procedures. We can even train the tensors with gradient descent to
minimize their description lengths as measured by KL terms. Gradient descent then can serve as a
description length minimizer in a space of deep learning based programs. Finally, as long as we know
that the description length is being minimized and we are able to extract the solution guess, there is
no actual need to run REC or compile any sampling procedures in practice.

In standard machine learning lingo, the operations CompressARC actually needs to perform are:
(with some simplifications, also see Figure|[I))

1. We start at inference time, and we are given an ARC-AGI puzzle to solve. (e.g., puzzle in the
diagram below.)

2. We construct a neural network f (see Appendix [C) designed for the puzzle’s specifics (e.g., number
of examples, observed colors). The network takes random normal input z ~ N (p, X), and outputs
per-pixel color logit predictions across all the grids, including an answer grid (3 input-output
examples, for a total of 6 grids). Importantly, fy is equivariant to common augmentations—such
as reordering input-output pairs (including the answer’s pair), color permutations, and spatial
rotations/reflections.

3. We initialize the network weights 6 and set the parameters 1 and X for the z distribution.

4. We jointly optimize 6, 1, 32 to minimize the sum of cross-entropies over the known grids (5 of
them,) ignoring the answer grid. A KL divergence penalty keeps N (1, X) close to N (0, 1), as in
a VAE.

122 5. Since the generated answer grid is stochastic due to the randomness in z, we save the answer grids
123 throughout training and choose the most frequently occuring one as our final prediction.

124 The short program that we would compile the weight 6 and input z distributions into, in trying to
125 minimize the program code length, looks like the following:

126 z = sample_normal(N(0,I), <seed_z>)

127 weights = <insert weights here>

128 puzzle_and_solution_logits = neural_net(z, weights)

129 puzzle_and_solution = sample_categorical (puzzle_and_solution_logits, <seed_error>)

130 where <seed_z> and <seed_error> are randomization seeds picked by REC to force z ~ N (p, %)
131 and correct final puzzle sampling, with the seeds being approximately K L(N (u, £)||N(0, 1)) and
132 CrossEntropyLoss(puzzle_and_solution_logits, true_puzzle, reduction=‘sum’)
133 bits long, respectively. Our inference-time training setup and chosen loss function serves entirely to
134 shorten the seeds needed by this compiled program, in order to optimize it for Solomoff induction.

135 Appendix [A] contains a more elaborate explanation of why we picked this particular program as our
136 candidate shortest program.

137 4 Architecture

138 We designed our own neural network architecture for decoding the latents z into ARC-AGI puzzles,
130 illustrated in Figure 2] The most important feature of our architecture is it’s equivariances, which are
140 symmetry rules dictating that whenever the input z undergoes a transformation, the output ARC-AGI
141 puzzle must also transform the same way. Some example transformations include reordering of
142 input/output pairs, shuffling colors, flips, rotations, and reflections of grids.

143 The data format of z is what we call a “multitensor”, which is a bucket of tensors that each may or may
144 not have certain dimensions such as example, color, height, width dimensions, which transformations
145 can be applied to. All the equivariances can be described in terms of how they change a multitensor.
146 More details on multitensors are in Appendix

Non-Equivariant Layers
A

{ Equivariant Layers \ r l
| e Multitensor 4 . . q . e]
communication 1 | Short-range Spatial Ordering Long-range Spatial Ordering Directional Symmetry
1 e Softmaxes 1 | Symmetry Breaking Symmetry Breaking Breaking up to Rotations
l\ e SiLU] e Directional shift e Directional cummax e Directional communication

0

=
Q.

]

Q

=

o

3

7]

——

e
5

C

N Equivariant Base ’

Note: Decoding of z, linear heads, and layernorms are not shown. They are included in the equivariant base.

Figure 2: Overall structure of CompressARC’s equivariant neural network. There were too many
equivariances for us to consider at once, so we decided to make a base architecture that’s fully
symmetric, and break unwanted symmetries one by one by adding asymmetric layers to give it
specific non-equivariant abilities (listed later in Appendix @

147 The architecture is complicated and has many types of layers that we designed to have inductive
148 biases that are useful for solving the given training puzzles. The training puzzles play no role in our
149 work other than in this way and in our evaluations. The full architecture consists of the following
150 layers, which are each described in the Appendix:

151 * Begin with parameters of the z distribution

12 * Decoding Layer, Appendix [C.1]

153 * Repeat 4 times:

154 - Multitensor Communication Layer (Upwards), Appendix [C.2]
155 - Softmax Layer, Appendix[C.3]

Directional Cummax Layer, Appendix [C.4]

Directional Shift Layer, Appendix [C.4]

Directional Communication Layer, Appendix [C.5]

Nonlinear Layer, Appendix [C.6]

Multitensor Communication Layer (Downwards), Appendix [C.2]
161 Normalization Layer, Appendix [C.7]

162 * Linear Heads, Appendix[C.§|

156

157

158

159

160

163 5 Results

164 CompressARC solves 20% of evaluation set puzzles and 34.75% of training set puzzles if given 2000
165 steps per puzzle, as shown in Tables[I|and [2] and Figure[3]

0.4

o
w
L

accuracy
accuracy

pass@1
pass@2
pass@>5
pass@10

—— pass@1
—— pass@2
— pass@5
— pass@10

o
¥
L

0.1

—— pass@100 0.05 pass@100
— pass@1000 pass@1000
004 4 pass@2000 0.00 4 pass@2000
(I) 25‘0 560 75‘0 10‘00 lZIEO 15:30 17‘50 20‘00 6 25‘0 560 75‘0 lUIGO 12‘50 1560 17‘50 2060
step step
(a) Training set of 400 puzzles. (b) Evaluation set of 400 puzzles.

Figure 3: CompressARC’s puzzle solve accuracy as a function of the number of steps of inference
time learning it is given, for various numbers of allowed attempts (pass@n). The official benchmark
is reported with 2 allowed attempts, which is why we report 20% on the evaluation set.

Table 1: CompressARC’s puzzle solve accuracy on the training set as a function of the number of
steps of inference time learning it is given, for various numbers of allowed attempts (pass@n). The
official benchmark is reported with 2 allowed attempts, which is why we report 20% on the evaluation
set. Timing is reported for an NVIDIA RTX 4070 GPU.

Training Iteration Time Pass@1 Pass@2 Pass@5 Pass@10 Pass@100 Pass@1000

100 6h 1.00% 2.25% 3.50% 4.75% 6.75% 6.75%
200 13h 11.50% 14.25% 16.50% 18.25% 23.25% 23.50%
300 19h 1850% 21.25% 23.50% 26.75% 31.50% 32.50%
400 26h 21.00% 25.00% 28.75% 31.00% 36.00% 37.50%
500 32h 23.00% 27.50% 31.50% 33.50% 39.25% 40.75%
750 49h 28.00% 30.50% 34.00% 36.25% 42.75% 44.50%
1000 65h 28.00% 31.75% 35.50% 37.75% 43.75% 46.50%
1250 81h 29.00% 3225% 37.00% 39.25% 45.50% 49.25%
1500 97h 29.50% 33.00% 38.25% 40.75% 46.75% 51.75%
2000 130h 3025% 34.75% 3825% 41.50% 48.50% 52.75%

Table 2: CompressARC’s puzzle solve accuracy on the evaluation set, reported the same way as in
Table[T]

Training Iteration Time Pass@1l Pass@2 Pass@5 Pass@10 Pass@100 Pass@1000

100 7h 0.75% 1.25% 2.25% 2.50% 3.00% 3.00%

200 14h 5.00% 6.00% 7.00% 7.75% 12.00% 12.25%
300 21h 10.00% 10.75% 12.25% 13.25% 15.50% 16.25%
400 28h 11.75% 13.75% 16.00% 17.00% 19.75% 20.00%
500 34h 13.50% 15.00% 17.75% 19.25% 20.50% 21.50%
750 52h 1550% 17.75% 19.75% 21.50% 22.75% 25.50%
1000 69h 16.75% 19.25% 21.75% 23.00% 26.00% 28.75%
1250 86h 17.00% 20.75% 23.00% 24.50% 28.25% 30.75%
1500 103h 1825% 21.50% 24.25% 25.50% 29.50% 31.75%
2000 138h 18.50% 20.00% 24.25% 26.00% 31.25% 33.75%

166 5.1 What Puzzles Can and Can’t We Solve?

167 CompressARC tries to use its abilities to figure out as much as it can, until it gets bottlenecked
168 by one of it’s inabilities.

169 For example, puzzle 28¢73c20 in the training set requires extension of a pattern from the edge towards
170 the middle, as shown in Figure in the Appendix. Given the layers in it’s network, CompressARC
171 is generally able to extend patterns for short ranges but not long ranges. So, it does the best that
172 it can, and correctly extends the pattern a short distance before guessing at what happens near the
173 center (Figure[TTb] Appendix). Appendix [G]includes a list of which abilities we have empirically
174 seen CompressARC able to and not able to perform.

175 6 Case Study: Color the Boxes

176 In this puzzle (Puzzle 27295fa, Figure), you must color sections depending on which side of the
177 grid the section is on. We call this puzzle “Color the Boxes”.

HEE

ilHE IR
. — . HH
ilHE IR

BEE -
-

Figure 4: Color the Boxes, problem 272f95fa.

178
179
180
181
182
183
184

185
186
187

188
189
190

191

192
193

194
195
196

197
198
199
200
201
202

203

204

206
207

Human Solution: We first realize that the input is divided into boxes, and the boxes are still there in
the output, but now they’re colored. We then try to figure out which colors go in which boxes. First,
we notice that the corners are always black. Then, we notice that the middle is always magenta. And
after that, we notice that the color of the side boxes depends on which direction they are in: red for
up, blue for down, green for right, and yellow for left. At this point, we copy the input over to the
answer grid, then we color the middle box magenta, and then color the rest of the boxes according to
their direction.

CompressARC Solution: Table [3] shows CompressARC’s learning behavior over time. After
CompressARC is done learning, we can deconstruct it’s learned z distribution to find that it codes for
a color-direction correspondence table and row/column divider positions (Figure [6)).

During training, the reconstruction error fell extremely quickly. It remained low on average, but
would spike up every once in a while, causing the KL from z to bump upwards at these moments, as
shown in Figure [5a]

104 § t —— (color, channel)
—— (color, direction, channel}

— KLfromz

10° 4 + ! —— (example, height, channel)
(example, width, channel)

—— reconstruction error
103 4

102 4

KL contribution

total KL or reconstruction error

0 200 400 600 800 1000 1200 1400
step

0 200 400 600 800 1000 1200 1400
step

(b) Breaking down the KL loss during training into

(a) Relative proportion of the KL and reconstruc- contributions from each individual shaped tensor

tion terms to the loss during training, before taking in the multitensor z. Four tensors dominate, indi-

the weighted sum. The KL dominates the loss and cating they contain information, and the other 14

reconstruction is most often nearly perfect. fall to zero, indicating their lack of information
content.

Figure 5: Breaking down the loss components during training tells us where and how CompressARC
prefers to store information relevant to solving a puzzle.

6.1 Solution Analysis

So how does CompressARC learn to solve Color the Boxes? We can look at the representations
stored in z to find out.

Since z is a multitensor, each of the tensors it contains produces an additive contribution to the total
KL for z. By looking at the per-tensor contributions (see Figure[5b), we can determine which tensors
in z code for information that is used to represent the puzzle.

All the tensors fall to zero information content during training, except for four tensors. In some
replications of this experiment, we saw one of these four necessary tensors fall to zero information
content, and CompressARC typically does not recover the correct answer after that. Here we are
showing a lucky run where the [color, direction, channel] tensor almost falls but gets picked up 200
steps in, which is right around when the samples from the model begin to show the correct colors in
the correct boxes.

We can look at the average output of the decoding layer (explained in Appendix [C.T) corresponding
to individual tensors of z, to see what information is stored there (see Figure |§[) Each tensor contains
a vector of dimension n_channels for various indices of the tensor. Taking the PCA of these vectors
reveals some number of activated components, telling us how many pieces of information are coded
by the tensor.

Table 3: CompressARC learning the solution for Color the Boxes, over time.

Learning

steps What is CompressARC doing? Sampled solution guess

CompressARC’s network outputs an answer sample average
grid (sample) with light blue rows/columns
wherever the input has the same. It has no-
ticed that all the other input-output pairs in the
puzzle exhibit this correspondence. It doesn’t
know how the other output pixels are assigned
colors; an exponential moving average of the
network output (sample average) shows the
network assigning mostly the same average
color to non-light-blue pixels.

50

The network outputs a grid where nearby pix-
els have similar colors. It has likely noticed
that this is common among all the outputs, and
is guessing that it applies to the answer too.

150

The network output now shows larger blobs of
colors that are cut off by the light blue borders.
It has noticed the common usage of borders

200 to demarcate blobs of colors in other outputs,
and applies the same idea here. It has also no-
ticed black corner blobs in other given outputs,
which the network imitates.

The network output now shows the correct col-
ors assigned to boxes of the correct direction
from the center. It has realized that a single
color-to-direction mapping is used to pick the
blob colors in the other given outputs, so it
imitates this mapping. It is still not the best

350 at coloring within the lines, and it’s also con-
fused about the center blob, probably because
the middle does not correspond to a direction.
Nevertheless, the average network output does
show a tinge of the correct magenta color in
the middle, meaning the network is catching
on.

sample sample average

sample sample average

The network is as refined as it will ever be.
Sometimes it will still make a mistake in the
sample it outputs, but this uncommon and fil-
tered out.

1500

208

209
210
211
212
213
214
215

216
217
218
219
220
221

222
223
224
225

component 0, strength = 0.2773546576499939

example
No= o

0 2 4 6 8 10 12 14 16
height

(a) (example, height, channel) tensor. For ev-
ery example and row, there is a vector of dimen-
sion n_channels. Taking the PCA of this set of
vectors, the top principal component (1485 times
stronger than the other components) visualized as
the (example, height) matrix shown above tells us
which examples/row combinations are uniquely
identified by the stored information. For every
example, the two brightest pixels give the rows
where the light blue rows in the grids are.

component 0, strength = 0.24497896432876587

blue

red

green

color

magenta

- 2 1T KN « v

direction

VNN

(c) (direction, color, channel) tensor. The four
brightest pixels identify blue with up, green with
left, red with down, and yellow with right. This
tensor tells each direction which color to use for
the opposite edge’s box. The top principal compo-
nent is 829 times stronger than the next principal
component.

component 0, strength = 0.24215418100357056

example

0.0 2.5 5.0 7.5 10.0 125 15.0 17.5

width

(b) (example, width, channel) tensor. A similar
story here to[6al in the top principal component
of this tensor, the two darkest pixels for every
example give the columns where the light blue
columns in the grids are. The top principal com-
ponent is 1253 times stronger than the next princi-
pal component.

component 0, strength = 0.7474625110626221

blue red green
color

magenta

component 1, strength = 0.49271631240844727

blue red green
color

magenta

(d) (color, channel) tensor. Here, we look at the
top three principal components, since the first and
second principal components are 134 and 87 times
stronger than the third component, indicating that
they play a role while the third component does not.
The magenta and light blue colors are uniquely
identified, indicating their special usage amongst
the rest of the colors as the center color and the
color of the row/column divisions, respectively.

Figure 6: Breaking down the loss components during training tells us where and how CompressARC
prefers to store information relevant to solving a puzzle.

7 Discussion

The prevailing reliance of modern deep learning on high-quality data has put the field in a chokehold
when applied to problems requiring intelligent behavior that have less data available. This is espe-
cially true for the data-limited ARC-AGI benchmark, where LLMs trained on specially augmented,
extended, and curated datasets dominate. In the midst of this circumstance, we built CompressARC,
which not only uses no training data at all, but forgoes the entire process of pretraining altogether.
One should intuitively expect this to fail and solve no puzzles at all, but by applying MDL to the target
puzzle during inference time, CompressARC solves a surprisingly large portion of ARC-AGI-1.

CompressARC'’s theoretical underpinnings come from minimizing the description length of the target
puzzle. While other MDL search strategies have been scarce due to the intractablly large search
space of possible programs, CompressARC explores a simplified, neural network-based search space
through gradient descent. Though CompressARC’s architecture is heavily engineered, it’s incredible
ability to generalize from as low as two demonstration input/output pairs puts it in an entirely new
regime of generalization for ARC-AGI.

We challenge the assumption that intelligence must arise from massive pretraining and data, showing
instead that clever use of MDL and compression principles can lead to surprising capabilities. We
use CompressARC a proof of concept to demonstrate that modern deep learning frameworks can be
melded with MDL to create a possible alternative, complimentary route to AGI.

226

227

228
229

231
232

234

235

236
237

239

240
241
242

243
244

245
246
247

248
249

250
251

252

254
255

256

257
258

259
260

261
262

263

264

266
267

268

References

[1] Frangois Chollet. On the measure of intelligence, 2019.

[2] Francois Chollet, Mike Knoop, Gregory Kamradt, and Bryan Landers. Arc prize 2024: Technical
report, 2025.

[3] Ryan Greenblatt. Getting 50% (sota) on arc-agi with gpt-4o0. https://redwoodresearch!
substack.com/p/getting-50-sota-on-arc-agi-with-gpt, 2024. Accessed: 2025-05-
12.

[4] Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei A. Efros, and Moritz Hardt. Test-time
training with self-supervision for generalization under distribution shifts, 2020.

[5] J. Rissanen. Modeling by shortest data description. Automatica, 14(5):465-471, 1978.

[6] A.N. Kolmogorov. On tables of random numbers. Theoretical Computer Science, 207(2):387—
395, 1998.

[7] Sébastien Ferré. Madil: An mdl-based framework for efficient program synthesis in the arc
benchmark, 2025.

[8] Mike Knoop. ARC Prize 2024 Winners & Technical Report Published — arcprize.org. https:
//arcprize.org/blog/arc-prize-2024-winners-technical-report, 2024. [Ac-
cessed 12-05-2025].

[9] Solim LeGris, Wai Keen Vong, Brenden M. Lake, and Todd M. Gureckis. H-arc: A robust
estimate of human performance on the abstraction and reasoning corpus benchmark, 2024.

[10] Wen-Ding Li, Keya Hu, Carter Larsen, Yuqing Wu, Simon Alford, Caleb Woo, Spencer M.
Dunn, Hao Tang, Michelangelo Naim, Dat Nguyen, Wei-Long Zheng, Zenna Tavares, Yewen
Pu, and Kevin Ellis. Combining induction and transduction for abstract reasoning, 2024.

[11] Guillermo Barbadillo. Solution summary for arc24. https://ironbar.github.io/arc24/
05_Solution_Summary/, 2024. Accessed: 2025-05-12.

[12] Francois Chollet. Openai 03 breakthrough high score on arc-agi-pub. https://arcprize.
org/blog/oai-o3-pub-breakthroughl, 2024. Accessed: 2025-05-12.

[13] Gergely Flamich, Marton Havasi, and José Miguel Herndndez-Lobato. Compressing images by
encoding their latent representations with relative entropy coding, 2021.

[14] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. John Wiley & Sons,
Inc., 2006.

[15] Peter D. Grunwald and Paul M. B. Vitanyi. Algorithmic information theory, 2008.

[16] James Irvine and David Harle. Data Communications and Networks: An Engineering Approach.
Wiley, New York, 1 edition, 2001. Hardcover.

[17] C.E. Shannon. A mathematical theory of communication. The Bell System Technical Journal,
27(3):379-423, 1948.

[18] G. G. Langdon. An introduction to arithmetic coding. IBM Journal of Research and Develop-
ment, 28(2):135-149, 1984.

[19] Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2022.

[20] Marcus Hutter. Hutter prize for lossless compression of human knowledge. https://prize.
hutterl.net/), 2006. Accessed: 2025-05-12.

[21] R.J. Solomonoff. A formal theory of inductive inference. part i. Information and Control,
7(1):1-22, 1964.

[22] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines, 2014.

10

https://redwoodresearch.substack.com/p/getting-50-sota-on-arc-agi-with-gpt
https://redwoodresearch.substack.com/p/getting-50-sota-on-arc-agi-with-gpt
https://redwoodresearch.substack.com/p/getting-50-sota-on-arc-agi-with-gpt
https://arcprize.org/blog/arc-prize-2024-winners-technical-report
https://arcprize.org/blog/arc-prize-2024-winners-technical-report
https://arcprize.org/blog/arc-prize-2024-winners-technical-report
https://ironbar.github.io/arc24/05_Solution_Summary/
https://ironbar.github.io/arc24/05_Solution_Summary/
https://ironbar.github.io/arc24/05_Solution_Summary/
https://arcprize.org/blog/oai-o3-pub-breakthrough
https://arcprize.org/blog/oai-o3-pub-breakthrough
https://arcprize.org/blog/oai-o3-pub-breakthrough
https://prize.hutter1.net/
https://prize.hutter1.net/
https://prize.hutter1.net/

269
270

271
272

273
274
275
276

277

278
279

281
282
283

284

286

287
288

289

291

292

293
294

295

296
297

298
299

300

302
303

[23] Casper Kaae Sgnderby, Tapani Raiko, Lars Maalge, Sgren Kaae Sgnderby, and Ole Winther.
Ladder variational autoencoders, 2016.

[24] C. Shannon. The zero error capacity of a noisy channel. IRE Transactions on Information
Theory, 2(3):8-19, 1956.

[25] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-VAE: Learning basic visual concepts with a

constrained variational framework. In International Conference on Learning Representations,
2017.

[26] Arash Vahdat and Jan Kautz. Nvae: A deep hierarchical variational autoencoder, 2021.

[27] Michael Hodel. Domain specific language for the abstraction and reasoning corpus. https:
//github.com/michaelhodel/arc-dsl/blob/main/arc_dsl_writeup.pdf} 2024. Ac-
cessed: 2025-05-12.

[28] Victor Vikram Odouard. Arc-solution_documentation. https://github.com/
victorvikram/ARC-icecuber/blob/master/ARC-solution_documentation.pdf,
2024. Accessed: 2025-05-12.

[29] Clément Bonnet and Matthew V Macfarlane. Searching latent program spaces, 2024.

[30] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023.

[31] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition, 2015.

[32] Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai
Zhang, Yanyan Lan, Liwei Wang, and Tie-Yan Liu. On layer normalization in the transformer
architecture, 2020.

[33] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus), 2023.

[34] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan Salakhutdinov,
and Alexander Smola. Deep sets, 2018.

[35] Taco S. Cohen and Max Welling. Group equivariant convolutional networks, 2016.

[36] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021.

[37] Vinod Kumar Chauhan, Jiandong Zhou, Ping Lu, Soheila Molaei, and David A. Clifton. A brief
review of hypernetworks in deep learning. Artificial Intelligence Review, 57(9), August 2024.

[38] Shiqing Fan, Liu Liying, and Ye Luo. An alternative practice of tropical convolution to
traditional convolutional neural networks, 2021.

[39] Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation
learning, 2018.

11

https://github.com/michaelhodel/arc-dsl/blob/main/arc_dsl_writeup.pdf
https://github.com/michaelhodel/arc-dsl/blob/main/arc_dsl_writeup.pdf
https://github.com/michaelhodel/arc-dsl/blob/main/arc_dsl_writeup.pdf
https://github.com/victorvikram/ARC-icecuber/blob/master/ARC-solution_documentation.pdf
https://github.com/victorvikram/ARC-icecuber/blob/master/ARC-solution_documentation.pdf
https://github.com/victorvikram/ARC-icecuber/blob/master/ARC-solution_documentation.pdf

304

305
306
307
308

309

310
311
312

313

314

315

316

317

318

319
320

321
322

324
325
326
327

328

330
331

332
333

335

336

338
339

340

341
342

344
345

347
348

A Optimality of Our Candidate Shortest Program

It isn’t obvious how we get from trying to minimize the description length to the method we ended
up using. The derivation of our algorithm takes us on a detour through information theory [14]],
algorithmic information theory [15]], and coding theory [16], with machine learning only making an
appearance near the end.

A.1 A Primer on Lossless Information Compression

In information theory, lossless information compression is about trying to represent some informa-
tion in as few bits as possible, while still being able to reconstruct that information from the bit
representation. [[17]] This type of problem is abstracted as follows:

* A source produces some symbol z from some process that generates symbols from a probability
distribution p(x).

* A compressor/encoder 2 must map the symbol z to a string of bits s.

* A decompressor/decoder D must exactly map s back to the original symbol x.

The goal in lossless information compression is to use p to construct functions (£, D) which are
bit-efficient, (i.e., that minimize the expected length of s,) without getting any symbols wrong. The
optimal decompressor D* also plays a role in a program that is the shortest possible (up to additive
constants in program length) that computes z, in expectation over x drawn from p:

s = <string of bits>

Dx(s)

This reduces MDL to the problem of lossless information compression. In our case, the symbol z is
the ARC-AGI dataset (many puzzle + answer pairs), and we may want to figure out what D* is using
knowledge of p, and what s is when given z. Except, we won’t have the answers (only the puzzles)
in z, and we don’t actually know p, since it’s hard to model the intelligent process of puzzle ideation
in humans.

A.2 One-Size-Fits-All Compression

To build an efficient lossless compression scheme, you might think we need to know what p is, but
we argue that it doesn’t really matter since we can make a one-size-fits-all compressor. It all hinges
on the following assumption:

There exists some practically implementable, bit efficient compression system (E, D) for ARC-
AGI datasets x sampled from p.

If this were false, our whole idea of solving ARC-AGI with compression will be doomed even if we
knew p anyways, so we might as well make this assumption.

Our one-size-fits-all compressor (E’, D') is built without knowing p, and it is almost just as bit-
efficient as the original (E, D):

* E’ observes symbol z, picks a program f and input s to minimize len(f) + len(s) under the
constraint that running the program makes f(s) = z, and then sends the pair (f, s).

e D’ is just a program executor that executes f on s, correctly producing x.

It is possible to prove with algorithmic information theory that (E’, D') achieves a bit efficiency at
most len(f) bits worse than the bit efficiency of (E, D), where f is the code for implementing D.
[L5] But since compression is practically implementable, the code for D should be simple enough for
a human engineer to write, so len(f) must be short, meaning our one-size-fits-all compressor will be
close to the best possible bit efficiency.

Ironically, the only problem with using this to solve ARC-AGI is that implementing E’ is not
practical, since E’ needs to minimize the length of a program-input pair (f, s) under partial fixed
output constraint f(s)puzzte = Tpuzzle-

12

349

350

352
353
354

355
356
357
358

359
360

361
362
363

365
366

368
369
370
371
372
373

374

375
376
377
378
379

380

382
383

384
385
386

A.3 Neural Networks to the Rescue

To avoid searching through program space, we just pick a program f for a small sacrifice in bit
efficiency. We hope the diversity of program space can be delegated to diversity in input s space
instead. Specifically, we write a program f that runs the forward pass of a neural network, where
s = (0, z, €) are the weights, inputs, and corrections to the outputs of the neural network. Then, we
can use gradient descent to “search” over s.

This restricted compression scheme uses Relative Entropy Coding (REC) [1311_] to encode noisy
weights 6 and neural network inputs z into bits sg and s,, and arithmetic coding [18]] to encode
output error corrections € into bits s, to make a bit string s consisting of three blocks (sg, s, S).
The compression scheme runs as follows:

* The decoder runs § = REC-decode(sg), z = REC-decode(s,), logits = Neural-Net(f, z), and
2 = Arithmetic-decode(s., logits).
* The encoder trains § and z to minimize the total code length E[len(s)]. s, is fixed by arithmetic

coding to guarantee correct decoding. To calculate the three components of the loss E[len(s)] in a

differentiable way, we refer to the properties of REC and arithmetic coding:

— It turns out that the € code length E[len(s.)] is equal to the total crossentropy error on all the
given grids in the puzzle.

— REC requires us to fix some reference distribution gy, and also add noise to 6, turning it into
a distribution py. Then, REC allows you to store noisy 6 using a code length of E[len(sg)] =
KL(pg||gs) = Egrp, [log(pe(6)/qe(0))] bits. We will choose to fix gg = N (0, I/2)\) for large
A, such that the loss component E[len(sg)] &~ A|0|? + const is equivalent to regularizing the

decoder.
— We must also do for z what we do for 6, since it’s also represented using REC. We will
choose to fix ¢, = N(0,I), so the code length of z is E[len(s,)] = KL(p.|lg.) =

Ewp. [log(p=(2)/q=(2))].
We can compute gradients of these code lengths via the reparameterization trick. [[19]

At this point, we observe that the total code length for s that we described is actually the VAE loss
with decoder regularization (= KL for z + reconstruction error + regularization)E] Likewise, if we
port the rest of what we described above (plus modifications regarding equivariances and inter-puzzle
independence, and ignoring regularization) into typical machine learning lingo, we get the previous
description of CompressARC from Section 3]

B Multitensors

The actual data (z, hidden activations, and puzzles) passing through our layers comes in a format that
we call a “multitensor”, which is just a bucket of tensors of various shapes, as shown in Figure
All the equivariances we use can be described in terms of how they change a multitensor.

Most common classes of machine learning architectures operate on a single type of tensor with
constant rank. LLMs operate on rank-3 tensors of shape [n_batch,n_tokens, n_channels],
and Convolutional Neural Networks (CNNs) operate on rank-4 tensors of shape

'A lot of caveats/issues are introduced by using REC. The code length when using REC only behaves in
some limits and expectations, there may be a small added constant to the code length, the decoding may be
approximate, etc. We’re not up to date with the current literature, and we’re ignoring all the sticky problems
that may arise and presuming that they are all solved. We will never end up running Relative Entropy Coding
anyways, so it doesn’t matter that it takes runtime exponential in the code length. We only need to make use of
the the fact that such algorithms exist, not that they run fast, nor that we can implement them, in order to derive
our method.

2We penalize the reconstruction error by 10x the KL for z, in the total KL loss. This isn’t detrimental to
the measurement of the total KL because the KL term for z can absorb all of the coded information from the
reconstruction term, which can then go to zero. Since the term for z is not penalized by any extra factor, the total
KL we end up with is then unaffected. We believe this empirically helps because the Gaussians we use for z are
not as efficient for storing bits that can be recovered, as the categorical distributions that define the log likelihood
in the reconstruction error. Forcing all the coded bits into one storage mode removes pathologies introduced by
multiple storage modes.

13

387
388
389
390
391
392

393
394
395
396
397
398
399

400
401
402
403

404
405

tensor
Multitensor [example, direction, height, width]

tensor
[direction]

tensor
[example, height]

tensor

[example, width] e

[color]

1
tensor
[example, color, direction]

tensor
[example, color, height] tensor

tensor [example, direction]
[color, direction]

= =/

Note: channel dimension not shown.

Figure 7: Our neural network’s internal representations come in the form of a "mul-
titensor”, a bucket of tensors of different shapes. One of the tensors is shaped like
[example, color, height, width, channel], an adequate shape for storing a whole ARC-AGI puzzle.

[n_batch, n_channels, height, width]. Our multitensors are a set of varying-rank ten-
sors of unique type, whose dimensions are a subset of a rank-6 tensor of shape
[n_examples, n_colors, n_directions, height, width, n_channels], as illustrated in Figure We
always keep the channel dimension, so there are at most 32 tensors in each multitensor. We also
maintain several rules (see Appendix [D.T)) that determine whether a tensor shape is “legal” or not,
which reduces the number of tensors in a multitensor to 18.

Dimension Description

Example Number of examples in the ARC-AGI puzzle, including the one with held-out

answer

Color Number of unique colors in the ARC-AGI puzzle, not including black, see Ap-
pendix

Direction 8

Height Determined when preprocessing the puzzle, see Appendix

Width Determined when preprocessing the puzzle, see Appendix

Channel In the residual connections, the size is 8 if the direction dimension is included, else

16. Within layers it is layer-dependent.

Table 4: Size conventions for multitensor dimensions.

To give an idea of how a multitensor stores data, an ARC-AGI puzzle can be represented by
using the [example, color, height, width, channel] tensor, by using the channel dimension to select
either the input or output grid, and the height/width dimensions for pixel location, a one hot vector
in the color dimension, specifying what color that pixel is. The [example, height, channel] and
[example, width, channel] tensors can similarly be used to store masks representing grid shapes for
every example for every input/output grid. All those tensors are included in a single multitensor that
is computed by the network just before the final linear head (described in Appendix [C.8).

When we apply an operation on a multitensor, we by default assume that all non-channel dimensions
are treated identically as batch dimensions by default. The operation is copied across the indices
of dimensions unless specified. This ensures that we keep all our symmetries intact until we use a
specific layer meant to break a specific symmetry.

A final note on the channel dimension: usually when talking about a tensor’s shape, we will not even
mention the channel dimension as it is included by default.

14

406

407

408
409
410
411
412
413

414

415
416

417

418

419
420
421
422

423
424

425
426
427
428
429

430

431

432
433
434
435
436
437

439

440
441
442

C Layers in the Architecture

C.1 Decoding Layer

This layer’s job is to sample a multitensor z and bound its information content, before it is passed
to the next layer. This layer and outputs the KL divergence between the learned z distribution and
N(0,I). Penalizing the KL prevents CompressARC from learning a distribution for z that memorizes
the ARC-AGI puzzle in an uncompressed fashion, and forces CompressARC to represent the puzzle
more succinctly. Specifically, it forces the network to spend more bits on the KL whenever it uses z
to break a symmetry, and the larger the symmetry group broken, the more bits it spends.

This layer takes as input:

* A learned target multiscalar, called the "target capacity"E] The decoding layer will output z whose
information content per tensor is close to the target capacity.

+ learned per-element means for zJ|

* learned per-element capacity adjustments for z.

We begin by normalizing the learned per-element means for ZEI Then, we figure out how much
Gaussian noise we must add into every tensor to make the AWGN channel capacity [17] equal to the
target capacity for every tensor (including per-element capacity adjustments). We apply the noise to
sample z, keeping unit variance of z by rescaling

We compute the information content of z as the KL divergence between the distribution of this sample
and N(0,1).

Finally, we postprocess the noisy z by scaling it by the sigmoid of the signal-to-noise ratioE] This
ensures that z is kept as-is when its variance consists mostly of useful information and it is nearly
zero when its variance consists mostly of noise. All this is done 4 times to make a channel dimension
of 4. Then we apply a projection (with different weights per tensor in the multitensor, i.e., per-tensor
projections) mapping the channel dimension up to the dimension of the residual stream.

C.2 Multitensor Communication Layer

This layer allows different tensors in a multitensor to interact with each other.

First, the input from the residual stream passes through per-tensor projections to a fixed size (8 for
downwards communication and 16 for upwards communication). Then a message is sent to every
other tensor that has at least the same dimensions for upwards communication, or at most the same
dimensions for downwards communication. This message is created by either taking means along
dimensions to remove them, or unsqueezing+broadcasting dimensions to add them, as in Figure
All the messages received by every tensor are summed together and normalization is applied. This
result gets up-projected back and then added to the residual stream.

C.3 Softmax Layer

This layer allows the network to work with internal one-hot representations, by giving it the tools to
denoise and sharpen noisy one-hot vectors. For every tensor in the input multitensor, this layer lists
out all the possible subsets of dimensions of the tensor to take a softmax overﬂ takes the softmax

3Target capacities are exponentially parameterized and rescaled by 10x to increase sensitivity to learning,
initialized at a constant 10* nats per tensor, and forced to be above a minimum value of half a nat.

“The actual information content, which the layer computes later on, will be slightly different because of the
per-element capacity adjustments.

>Means are initialized using normal distribution of variance 10™*.

Means and variances for normalization are computed along all non-channel dimensions.

"There are many caveats with the way this is implemented and how it works; please refer to the code (see
Appendix @]) for more details.

8We are careful not to let the postprocessing operation, which contains unbounded amounts of information
via the signal-to-noise ratios, to leak lots of information across the layer. We only let a bit of it leak by averaging
the signal-to-noise ratios across individual tensors in the multitensor.

One exception: we always include the example dimension in the subset of dimensions.

15

443
444
445
446

447

448
449
450
451
452
453
454

456
457
458
459
460

461
462

463

464

466
467

469
470
471
472
473

tensor
[example, color, direction]
unsqueeze mean reduce

tensor tensor tensor
[example, color] [color, direction] [example, direction]

tensor tensor
[exam [color] [direction]
L] L]

lllegal tensor -
See rules for legal multitensors

Figure 8: Multitensor communication layer. Higher rank tensors shown at the top, lower rank at the
bottom. Tensors transform between ranks by mean reduction and unsqueezing dimensions.

over these subsets of dimensions, and concatenates all the softmaxxed results together in the channel
dimension. The output dimension varies across different tensors in the multitensor, depending on
their tensor rank. A pre-norm is applied, and per-tensor projections map to and from the residual
stream. The layer has input channel dimension of 2.

C.4 Directional Cummax/Shift Layer

The directional cummax and shift layers allow the network to perform the non-equivariant cummax
and shift operations in an equivariant way, namely by applying the operations once per direction, and
only letting the output be influenced by the results once the directions are aggregated back together
(by the multitensor communication layer). These layers are the sole reason we included the direction
dimension when defining a multitensor: to store the results of directional layers and operate on
each individually. Of course, this means when we apply a spatial equivariance transformation, we
must also permute the indices of the direction dimension accordingly, which can get complicated
sometimes.

The directional cummax layer takes the eight indices of the direction dimension, treats each slice as
corresponding to one direction (4 cardinal, 4 diagonal), performs a cumulative max in the respective
direction for each slice, does it in the opposite direction for half the channels, and stacks the slices
back together in the direction dimension. An illustration is in Figure[9] The slices are rescaled to
have min —1 and max 1 before applying the cumulative max.

The directional shift layer does the same thing, but for shifting the grid by one pixel instead of
applying the cumulative max, and without the rescaling.

Some details:

* Per-tensor projections map to and from the residual stream, with pre-norm.
* Input channel dimension is 4.

» These layers are only applied to the [example, color,direction, height, width, channel] and
[example, direction, height, width, channel] tensors in the input multitensor.

C.5 Directional Communication Layer

By default, the network is equivariant to permutations of the eight directions, but we only want
symmetry up to rotations and flips. So, this layer provides a way to send information between two
slices in the direction dimension, depending on the angular difference in the two directions. This
layer defines a separate linear map to be used for each of the 64 possible combinations of angles,
but the weights of the linear maps are minimally tied such that the directional communication layer

16

474
475
476

477
478

479

480
481

482

483
484
485

486

487
488
489

491
492
493

494
495
496
497

..
—_—
-
-

..

e
e —>
—> —_—
—> —_—
e —>
e —>
—> —_—
—> ——
—_— —>
—_— —>

—
—
—_—

R —————
—
—
—_—

X b Ay K-

-— Direction + channel dimensions —»

Figure 9: The directional cummax layer takes a directional tensor, splits it along the direction axis,
and applies a cumulative max in a different direction for each direction slice. This operation helps
CompressARC transport information across long distances in the puzzle grid.

is equivariant to reflections and rotations. This gets complicated really fast, since the direction
dimension’s indices also permute when equivariance transformations are applied. Every direction
slice in a tensor accumulates it’s 8 messages, and adds the results together.

For this layer, there are per-tensor projections to and from the residual stream with pre-norm. The
input channel dimension is 2.

C.6 Nonlinear Layer

We use a SiLU nonlinearity with channel dimension 16, surrounded by per-tensor projections with
pre-norm.

C.7 Normalization Layer

We normalize all the tensors in the multitensor, using means and variances computed across all
dimensions except the channel dimension. Normalization as used within other layers also generally
operates this way.

C.8 Linear Heads

We must take the final multitensor, and convert it to the format of an ARC-AGI puzzle. More
specifically, we must convert the multitensor into a distribution over ARC-AGI puzzles, so that we
can compute the log-likelihood of the observed grids in the puzzle.

The colors of every pixel for every example for both input and output, have logits defined by the
[example, color, height, width, channel| tensor, with the channel dimension linearly mapped down to
a size of 2, representing the input and output gridsE] The log-likelihood is given by the crossentropy,
with sum reduction across all the grids.

For grids of non-constant shape, the [example, height, channel] and [example, width, channel] tensors
are used to create distributions over possible contiguous rectangular slices of each grid of colors,
as shown in Figure[I0] Again, the channel dimension is mapped down to a size of 2 for input and
output grids. For every grid, we have a vector of size [width] and a vector of size [height]. The log

1We also multiply the results by coefficients depending on the angle: 1 for 0 degrees and 180 degrees, 0.2 for
45 degrees and 135 degrees, and 0.4 for 90 degrees.

""The linear map is initialized to be identical for both the input and output grid, but isn’t fixed this way during
learning. Sometimes this empirically helps with problems of inconsistent input vs output grid shapes. The
bias on this linear map is multiplied by 100 before usage, otherwise it doesn’t seem to be learned fast enough
empirically. This isn’t done for the shape tensors described by the following paragraph though.

17

498
499
500

502
503

504

505

506
507

508
509
510

511

512
513
514
515
516

517
518
519

Multitensor

v v v

solution colors tensor row mask tensor column mask tensor
[example, color, height, width] [example, height] [example, width]

. (one example) (one example)

(one example) |

L -

Reconstruction
(one example)

Figure 10: The linear head layer takes the final multitensor of the residual stream and
reads a [example, color, height, width, channel] tensor to be interpreted as color logits, and a
[example, height, channel| tensor and a [example, width, channel] tensor to serve as shape masks.

likelihood of every slice of the vector is taken to be the sum of the values within the slice, minus
the values outside the slice. The log likelihoods for all the possible slices are then normalized to
have total probability one, and the colors for every slice are given by the color logits defined in the
previous paragraph.

With the puzzle distribution now defined, we can now evaluate the log-likelihood of the observed
target puzzle, to use as the reconstruction error

D Other Architectural Details

D.1 Rules for legal multitensors

1. Atleast one non-example dimension must be included. Examples are not special for any reason
not having to do with colors, directions, rows, and columns.

2. If the width or height dimension is included, the example dimension should also be included.
Positions are intrinsic to grids, which are indexed by the example dimension. Without a grid it
doesn’t make as much sense to talk about positions.

D.2 Weight Tying for Reflection/Rotation Symmetry

When applying a different linear layer to every tensor in a multitensor, we have a linear layer for
tensors having a width but not height dimension, and another linear layer for tensors having a height
but not width dimension. Whenever this is the case, we tie the weights together in order to preserve
the whole network’s equivariance to diagonal reflections and 90 degree rotations, which swap the
width and height dimensions.

The softmax layer is not completely symmetrized because different indices of the output correspond
to different combinations of dimension to softmax over. Tying the weights properly would be a bit
complicated and time consuming for the performance improvement we expect, so we did not do this.

2There are multiple slices of the same shape that result in the correct puzzle to be decoded. We sum together
the probabilities of getting any of the slices by applying a logsumexp to the log probabilities. But, we found
empirically that training prematurely collapses onto one particular slice. So, we pre-multiply and post-divide
the log probabilities by a coefficient when applying the logsumexp. The coefficient starts at 0.1 and increases
exponentially to 1 over the first 100 iterations of training. We also pre-multiply the masks by the square of this
coefficient as well, to ensure they are not able to strongly concentrate on one slice too early in training.

18

520

521

522

523

524
525
526

527
528

529

530

531

532
533
534
535
536

537
538

539
540
541
542

543

544
545

547
548
549
550

551

552
553

554
555
556
557

558

559

D.3 Training

We train for 2000 iterations using Adam, with learning rate 0.01, 51 of 0.5, and /32 of 0.9.

E Preprocessing

E.1 Output Shape Determination

The raw data consists of grids of various shapes, while the neural network operates on grids of
constant shape. Most of the preprocessing that we do is aimed towards this shape inconsistency
problem.

Before doing any training, we determine whether the given ARC-AGI puzzle follows three possible
shape consistency rules:

1. The outputs in a given ARC-AGI puzzle are always the same shape as corresponding inputs.
2. All the inputs in the given ARC-AGI puzzle are the same shape.
3. All the outputs in the given ARC-AGI puzzle are the same shape.

Based on rules 1 and 3, we try to predict the shape of held-out outputs, prioritizing rule 1 over rule
3. If either rule holds, we force the postprocessing step to only consider the predicted shape by
overwriting the masks produced by the linear head layer. If neither rule holds, we make a temporary
prediction of the largest width and height out of the grids in the given ARC-AGI puzzle, and we allow
the masks to predict shapes that are smaller than that.

The largest width and height that is given or predicted, are used as the size of the multitensor’s width
and height dimensions.

The predicted shapes are also used as masks when performing the multitensor communication,
directional communication and directional cummax/shift layers. We did not apply masks for the
other layers because of time constraints and because we do not believe it will provide for much of a
performance improvementE]

E.2 Number of Colors

We notice that in almost all ARC-AGI puzzles, colors that are not present in the puzzle are not present
in the true answers. Hence, any colors that do not appear in the puzzle are not given an index in the
color dimension of the multitensor.

In addition, black is treated as a special color that is never included in the multitensor, since it
normally represents the background in many puzzles. When performing color classification, a tensor
of zeros is appended to the color dimension after applying the linear head, to represent logits for the
black color.

F Postprocessing

Postprocessing primarily deals with denoising the answers sampled from the network. This is
complicated by the variable shape grids present in some puzzles.

Generally, when we sample answers from the network by taking the logits of the
[example, color, height, width, channel] tensor and argmaxxing over the color dimension, we find that
the grids are noisy and will often have the wrong colors for several random pixels. We developed
several methods for removing this noise:

1. Find the most commonly sampled answer.

2. Construct an exponential moving average of the output color logits before taking the softmax to
produce probabilities. Also construct an exponential moving average of the masks.

3The two masks for the input and output are combined together to make one mask for use in these operations,
since the channel dimension in these operations don’t necessarily correspond to the input and output grids.

19

561
562

564

565

566

567

568

569
570

571
572

573
574

575

576

577

578

579

580

581

582

583

584

585

3. Construct an exponential moving average of the output color probabilities after taking the softmax.
Also construct an exponential moving average of the masks.

When applying these techniques, we always take the slice of highest probability given the mask, and

then we take the colors of highest probability afterwards.

We explored several different rules for when to select which method, and arrived at a combination of

1 and 2 with a few modifications:

At every iteration, count up the sampled answer, as well as the exponential moving average answer
(decay = 0.97).

» If before 150 iterations of training, then downweight the answer by a factor of e =10, (Effectively,
don’t count the answer.)

* If the answer is from the exponential moving average as opposed to the sample, then downweight
the answer by a factor of e =4

» Downweight the answer by a factor of e~ 10*uncertainty - ywhere uncertainty is the average (across
pixels) negative log probability assigned to the top color of every pixel.

G Empirically Observed Abilities and Disabilities of CompressARC

sample sample average guess 1 guess 2

(b) CompressARC’s solution to puzzle 28¢73¢20

|

(a) Puzzle 28e73c20
Figure 11: Puzzle 28e73c20, and CompressARC’s solution to it.

A short list of abilities that can be performed by CompressARC includes:

* Assigning individual colors to individual procedures (see puzzle [0ca9ddbé))

* Infilling (see puzzle [0dfd9992)

* Cropping (see puzzle[Ic786137)

« Connecting dots with lines, including 45 degree diagonal lines (see puzzle [ITf876c06)
* Same color detection (see puzzle [[f876c06)

* Identifying pixel adjacencies (see puzzle @2a50994)

* Assigning individual colors to individual examples (see puzzle 3bd67248)

* Identifying parts of a shape (see puzzle[025d127b)
« Translation by short distances (see puzzle [025d127b)

20

586
587

588

589

591

592
593

594

595

596

597

598

599
600
601
602

603
604
605
606
607
608
609
610

611

612
613
614
615
616
617
618
619
620
621

622
623
624

625

626
627
628
629

630
631
632

We believe these abilities to be individually endowed by select layers in the architecture, which we
designed specifically for the purpose of conferring those abilities to CompressARC.

A short list of abilities that cannot be performed by CompressARC includes:

* Assigning two colors to each other (see puzzle

* Repeating an operation in series many times (see puzzle [0a938d79)

* Counting/numbers (see puzzle

e Translation, rotation, reflections, rescaling, image duplication (see puzzles[0e206a2e] [5ad4T10b]
and PeeeTS)

* Detecting topological properties such as connectivity (see puzzle[7b6016b9)

¢ Planning, simulating the behavior of an agent (see puzzle

* Long range extensions of patterns (see puzzle 28e73c20 above)

H Related Work

H.1 Equivalence of Compression and Intelligence

The original inspiration of this work came from the Hutter Prize [20], which awards a prize for
those who can compress a file of Wikipedia text the most, as a motivation for researchers to build
intelligent systems. It is premised upon the idea that the ability to compress information is equivalent
to intelligence.

This equivalence between intelligence and compression has a long history. For example, when
talking about intelligent solutions to prediction problems, the ideal predictor implements Solomonoff
Induction, a theoretically best possible but uncomputable prediction algorithm that works universally
for all prediction tasks. [21] This prediction algorithm is then equivalent to a best possible compres-
sion algorithm whose compressed code length is the Kolmogorov Complexity of the data. 6] This
prediction algorithm can also be used to decode a description of the data of minimal length, linking
these formulations of intelligence to MDL. [3]] In our work, we try to approximate this best possible
compression algorithm with a neural network.

H.2 Information Theory and Coding Theory

Since we build an information compression system, we make use of many results in information
theory and coding theory. The main result required to motivate our model architecture is the existence
of Relative Entropy Coding (REC). [13] The fact that REC exists means that as long as a KL
divergence can be bounded, the construction of a compression algorithm is always possible and the
issue of realizing the algorithm can be abstracted away. Thus, problems about coding theory and
translating information from Gaussians into binary and back can be ignored, since we can figure
out the binary code length directly from the Gaussians instead. In other words, we only need to
do enough information theory using the Gaussians to get the job done, with no coding theory at
all. While the existence of arithmetic coding [[18] would suffice to abstract the problem away when
distributions are discrete, neural networks operate in a continuous space so we need REC instead.

Our architecture sends z information through an additive white Gaussian noise (AWGN) channel,
so the AWGN channel capacity formula (Gaussian input Gaussian noise) plays a heavy role in the
design of our decoding layer. [17]

H.3 Variational Autoencoders

The decoder side of the variational autoencoder [19] serves as our decompression algorithm. While
we would use something that has more general capabilities like a neural Turing machine [22] instead,
neural Turing machines are not very amenable to gradient descent-based optimization so we stuck
with the VAE.

VAEs have a long history of developments that are relevant to our work. At one point, we tried using
multiple decoding layers to make a hierarchical VAE decoder [23] instead. This does not affect the
KL calculation because a channel capacity with feedback is equal to the channel capacity without

21

633
634
635

636
637
638

639

640
641

642

643

644
645

646

647

649
650

652

653
654
655

656

657
658
659

660

661

663
664
665
666
667

668

670

671
672
673
674

676
677

feedback. [24] But, we found empirically that the first decoding layer would absorb all of the KL
contribution, making the later decoding layers useless. Thus, we only used one decoding layer at the
beginning.

The beta-VAE [23] introduces a reweighting of the reconstruction loss to be stronger than the KL
loss, and we found that to work well in our case. The NVAE applies a non-constant weighting to loss
components. [26] A rudimentary form of scheduled loss recombination is used in CompressARC.

H.4 ARC-AGI Methods

Aside from LLM-based methods for solving ARC with data augmentation, synthetic datasets, fine-
tuning, test-time training, and reasoning, several other classes of solution have been studied:

* An older class of methods consists of hard-coded searches through program spaces in hand-written
domain-specific languages designed specifically for ARC. [27, 28]

* [29] introduced a VAE-based method for searching through a latent space of programs. This is the
most similar work to ours that we found due to their VAE setup.

H.5 Deep Learning Architectures

We designed our own neural network architecture from scratch, but not without borrowing crucial
design principles from many others.

Our architecture is fundamentally structured like a transformer, consisting of a residual stream where
representations are stored and operated upon, followed by a linear head. [30,31] Pre-and post-norms
with linear up- and down-projections allow layers to read and write to the residual stream. [32] The
SiLU-based nonlinear layer is especially similar to a transformer’s. [33]]

Our equivariance structures are inspired by permutation-invariant neural networks, which are a
type of equivariant neural network. [34}[35]] Equivariance transformations are taken from common
augmentations to ARC-AGI puzzles.

I How to Improve Our Work

At the time of release of CompressARC, there were several ideas which we thought of trying or
attempted at some point, but didn’t manage to get working for one reason or another. Some ideas we
still believe in, but didn’t use, are listed below.

L1 Joint Compression via Weight Sharing Between Puzzles

CompressARC tries to solve each puzzle serially by compressing each puzzle on its own. We believe
that joint compression of all the entire ARC-AGI dataset at once should yield better learned inductive
biases per-puzzle, since computations learned for one puzzle can be transferred to other puzzles. We
do not account for the complexity of f in our derivation of CompressARC, allowing for f to be used
for memorization/overfitting. By jointly compressing the whole dataset, we only need to have one f,
whereas when compressing each puzzle individually, we need to have an f for every puzzle, allowing
for more memorization/overfitting.

To implement this, we would most likely explore strategies like:

* Using the same network weights for all puzzles, and training for puzzles in parallel. Each puzzle
gets assigned some perturbation to the weights, that is constrained in some way, e.g., LORA. [36]

* Learning a "puzzle embedding" for every puzzle that is a high dimensional vector (more than 16
dim, less than 256 dim), and learning a linear mapping from puzzle embeddings to weights for our
network. This mapping serves as a basic hypernetwork, i.e., a neural network that outputs weights
for another neural network. [37]]

In a successful case, we might want to also try adding in some form of positional encodings, with the

hope that f is now small/simple enough to be incapable of memorization/overfitting using positional
encodings.

22

678

679

680

682
683
684
685

686
687
688
689
690
691
692
693

694
695

696
697

698
699

700

701
702
703
704
705
706
707

708
709
710
71
712
713

714

715
716
77

The reason we didn’t try this is because it would slow down the research iteration process.

LI.2 Convolution-like Layers for Shape Copying Tasks

This improvement is more ARC-AGI-specific and may have less to do with AGI in our view. Many
ARC-AGI-1 puzzles can be seen to involve copying shapes from one place to another, and our
network has no inductive biases for such an operation. An operation which is capable of copying
shapes onto multiple locations is the convolution. With one grid storing the shape and another with
pixels activated at locations to copy to, convolving the two grids will produce another grid with the
shape copied to the designated locations.

There are several issues with introducing a convolutional operation for the network to use. Ideally,
we would read two grids via projection from the residual stream, convolve them, and write it back in
via another projection, with norms in the right places and such. Ignoring the fact that the grid size
changes during convolution (can be solved with two parallel networks using different grid sizes), the
bigger problem is that convolutions tend to amplify noise in the grids much more than the sparse
signals, so their inductive bias is not good for shape copying. We can try to apply a softmax to one
or both of the grids to reduce the noise (and to draw an interesting connection to attention), but we
didn’t find any success.

The last idea that we were tried before discarding the idea was to modify the functional form of the
convolution:

(fx9)(@) = flz—1)g(y)

to a tropical convolution [38]], which we found to work well on toy puzzles, but not well enough for
ARC-AGI-1 training puzzles (which is why we discarded this idea):

(fxg)(z) = mng(w —y) +9(y)

Convolutions, when repeated with some grids flipped by 180 degrees, tend to create high activations
at the center pixel, so sometimes it is important to zero out the center pixel to preserve the signal.

L3 KL Floor for Posterior Collapse

We noticed during testing that crucial posterior tensors whose KL fell to zero during learning would
never make a recovery and play their role in the encoding, just as in the phenomenon of mode collapse
in variational autoencoders. [39] We believe that the KL divergence may upper bound the information
content of the gradient training signal for parts of the network that process the encoded information.
Thus, when a tensor falls to zero KL, the network stops learning to use its information, so the KL is
no longer given encouragement to recover. If we can hold the KL above zero for a while, the network
may then learn to use the information, giving the KL a reason to stay above zero when released again.

We implemented a mechanism to keep the KL above a minimum threshold so that the network always
learns to use that information, but we do not believe it learns fast enough for this to be useful, as we
have never seen a tensor recover before. Therefore, it might be useful to explore different ways to
schedule this KL floor to start high and decay to zero, to allow learning when the KL is forced to be
high, and to leave the KL unaffected later on in learning. This might cause training results to be more
consistent across runs.

1.4 Regularization
CompressARC does not use regularization on the weights. Regularization measures the complexity

of f in our problem framing, and is native to our derivation of CompressARC in Appendix Itis
somewhat reckless for us to exclude it in our implementation.

23

718

719
720
721

722
723
724
725
726

727

728

729

731
732
733

734
735

736

737

738
739

740
741
742

743
744

745

746
747
748
749

750

751

752
753
754
755
756

757

758

759

760
761

762
763

J What Happens to the Representations during Learning

During training, the gradient descent tries to find representations of the puzzle that require less and
less information to encode. This information is measured by the KL term for z, plus the a heavily
penalized reconstruction error.

Due to the 10x penalization on reconstruction error, and the initial high capacity for z, the z
distribution (which we call the "posterior") quickly learns the information that is required to perfectly
reconstruct the given input/output pairs in the puzzle, within the first 20 or so steps. The remainder of
the training steps are about compressing z information under the constraint of perfect reconstruction,
by tuning the representations to be more concise.

Our mental model of how gradient descent compresses the z information consists of several steps

which we list below:

1. Suppose the posterior p originally codes for some number n pieces of information 21, ..., 2,
using thin Gaussians.

2. The posterior widens and becomes more noisy to try to get closer to the wide Gaussian "prior”
g = N(0,1), but since all n pieces of information are needed to ensure good reconstruction, the
noise is limited by the reconstruction loss incurred.

3. The ever-widening posteriors push the neurons to become more and more resilient to noise, until
some limit is reached.

4. Learning remains stagnant for a while, as a stalemate between compression and reconstruction.
5. If it turns out that z; is not reconstructible using 29, . . ., z,, then stop. Else, proceed to step 6.

6. The neurons, pushed by the widening posterior of 21, figure out a procedure to denoise z; using
information from 23, . . ., 2, in the event that the noise sample for z; is too extreme.

7. The posterior for the last piece keeps pushing wider, producing more extreme values for z1, and
the denoising procedure is improved, until the z; representation consists completely of noise, and
its usage in the network is replaced by the output of the denoising procedure.

8. The posterior for z; is now identical to the prior, so nothing is coded in z; and it no longer
contributes to the KL loss.

9. The posterior now codes for n — 1 pieces of information 23, . . ., 25, and compression has occurred.
These steps happen repeatedly for different unnecessarily coded pieces of information, until there are
no more. More than one piece of information can be compressed away at once, and there is no need

for the steps to proceed serially. The process stops when all information coded by the posterior is
unique, and no piece is reconstructable using the others.

K Additional Details about the ARC-AGI Benchmark

Figure 12| shows three examples of ARC-AGI-1 training puzzles.

For every puzzle, there is a hidden rule that maps each input grid to each output grid. You are given
some number of examples of input-to-output mappings, and you get two attempts to guess the output
grid for a given input grid, without being told the hidden rule. If either guess is correct, then you
score 1 for that puzzle, else you score 0. Some puzzles have more than one input/output pair that you
have to guess, in which case the score for that puzzle may be in between.

The main ideas that the training puzzles aim to teach can be described more elaborately as follows:
* Objectness: Objects persist and cannot appear or disappear without reason. Objects can interact or
not depending on the circumstances.

* Goal-directedness: Objects can be animate or inanimate. Some objects are “agents” - they have
intentions and they pursue goals.

* Numbers & counting: Objects can be counted or sorted by their shape, appearance, or movement
using basic mathematics like addition, subtraction, and comparison.

24

764
765
766

767
768
769
770
771
772
773

774

775

776

77

778

779
780
781
782
783
784

785

786

787

}

l

—r

(a) Hidden rule: Shift every ob- (b) Hidden rule: Shrink the big (c) Hidden rule: Extend the
ject right by one pixel, except the object and set its color to the scat- green line to meet the red line by
bottom/right edges of the object. tered dots’ color. turning when hitting a wall.

Figure 12: Three example ARC-AGI-1 puzzles.

» Basic geometry & topology: Objects can be shapes like rectangles, triangles, and circles which
can be mirrored, rotated, translated, deformed, combined, repeated, etc. Differences in distances
can be detected.

The competitions launched by the ARC Prize Foundation have been restricted to 12 hours of compute
per solution submission, in a constrained environment with no internet access. This is where a
hidden semi-private evaluation set is used to score solutions. The scores we report are on the public
evaluation set, which is of the same difficulty as the semi-private evaluation set, which we had no
access to when we performed this work. The scores we listed for reasoning models were achieved
with compute budgets well over the limits of the constrained environment. Otherwise, all other
solutions we mention are scored on the semi-private evaluation set within the competition constraints.

L Additional Case Studies

Below, we show two additional puzzles and a dissection of CompressARC’s solution to them.

L.1 Case Study: Bounding Box

Puzzle 6d75e8bb is part of the training split, see Figure [I3]

L.1.1 Watching the Network Learn: Bounding Box

Human Solution: We first realize that the input is red and black, and the output is also red and black,
but some of the black pixels are replaced by light blue pixels. We see that the red shape remains
unaffected. We notice that the light blue box surrounds the red shape, and finally that it is the smallest
possible surrounding box that contains the red shape. At this point, we copy the input over to the
answer grid, then we figure out the horizontal and vertical extent of the red shape, and color all of the
non-red pixels within that extent as light blue.

CompressARC Solution: See Table[5]

L.1.2 Solution Analysis: Bounding Box

Figure|14|shows the amount of contained information in every tensor composing the latent z.

25

Table 5: CompressARC learning the solution for Bounding Box, over time.

Learning
steps

What is CompressARC doing?

Sampled solution guess

50

100

150

The average of sampled outputs shows that
light blue pixels in the input are generally pre-
served in the output. However, black pixels in
the input are haphazardly and randomly col-
ored light blue and red. CompressARC does
not seem to know that the colored input/output
pixels lie within some kind of bounding box,
or that the bounding box is the same for the
input and output grids.

The average of sampled outputs shows red
pixels confined to an imaginary rectangle sur-
rounding the light blue pixels. CompressARC
seems to have perceived that other examples
use a common bounding box for the input and
output pixels, but is not completely sure about
where the boundary lies and what colors go in-
side the box in the output. Nevertheless, guess
2 (the second most frequently sampled output)
shows that the correct answer is already being
sampled quite often now.

The average of sampled outputs shows almost
all of the pixels in the imaginary bounding
box to be colored red. CompressARC has
figured out the answer, and further training
only refines the answer.

sample

guess 1

sample average

guess 2

u

sample

guess 1

sample average

guess 2

sample

guess 1

sample average

guess 2

26

788
789
790
791
792

793
794

795

796

797
798
799
800

802
803
804

805
806

—
—

EE

E-’ ?

Figure 13: Bounding Box: Puzzle 6d75e8bb from the training split.

—— ({color, channel)

—— (example, height, channel)
(example, width, channel)

—— (example, height, width, channel}

10° 3—

102 3— - N’-‘.F SRR ru""\‘\"-:"".-.i"u ﬂ’m\-ﬂ" M"M

KL contribution

10! 3—

100 =

T T T T T T T T
o] 200 400 600 800 1000 1200 1400
step

Figure 14: Breaking down the KL loss during training into contributions from each individual shaped
tensor in the multitensor z.

All the tensors in z fall to zero information content during training, except for three tensors. From 600-
1000 steps, we see the (example, height, width, channel) tensor suffer a massive drop in information
content, with no change in the outputted answer. We believe it was being used to identify the light blue
pixels in the input, but this information then got memorized by the nonlinear portions of the network,
using the (example, height, channel) and (example, width, channel) as positional encodings.

Figure 5] shows the average output of the decoding layer for these tensors to see what information is
stored there.

L.2 Case Study: Center Cross

Puzzle 41e4d17e is part of the training split, see Figure[T6a]

Human Solution: We first notice that the input consists of blue "bubble" shapes (really they are
just squares, but the fact that they’re blue reminds us of bubbles) on a light blue background and the
output has the same. But in the output, there are now magenta rays emanating from the center of each
bubble. We copy the input over to the answer grid, and then draw magenta rays starting from the
center of each bubble out to the edge in every cardinal direction. At this point, we submit our answer
and find that it is wrong, and we notice that in the given demonstrations, the blue bubble color is
drawn on top of the magenta rays, and we have drawn the rays on top of the bubbles instead. So, we
pick up the blue color and correct each point where a ray pierces a bubble, back to blue.

CompressARC Solution: We don’t show CompressARC’s solution evolving over time because
we think it is uninteresting; instead will describe. We don’t see much change in CompressARC’s

27

component 0, strength = 0.2844579815864563

0 2 4 6 8 10 12

height

0

1

example

2

3

(a) (example, height, channel) tensor. The first
principal component is 771 times stronger than
the second principal component. A brighter pixel
indicates a row with more light blue pixels. It
is unclear how CompressARC knows where the
borders of the bounding box are.

red

component 0, strength = 0.3220091760158539

o 2 4 6 8 10

width

o

1

example

2

3

(b) (example, width, channel) tensor. The first
principal component is 550 times stronger than
the second principal component. A darker pixel
indicates a column with more light blue pixels.
It is unclear how CompressARC knows where the
borders of the bounding box are.

component 0, strength = 1.1545500755310059

color

(c) (color, channel) tensor. This tensor serves to
distinguish the roles of the two colors apart.

Figure 15: Breaking down the loss components during training tells us where and how CompressARC
prefers to store information relevant to solving a puzzle.

(b) CompressARC'’s solution.

(a) The puzzle.

Figure 16: Center Cross: Puzzle 41e4d17e from the training split.

28

807
808
809

810

811
812
813

814

815

answer over time during learning. It starts by copying over the input grid, and at some point, magenta
rows and columns start to appear, and they slowly settle on the correct positions. At no point does
CompressARC mistakenly draw the rays on top of the bubbles; it has always had the order correct.

L.2.1 Solution Analysis: Center Cross

Figure [T7]shows another plot of the amount of information in every tensor in z. The only surviving
tensors are the (color, channel) and (example, height, width, channel) tensors, which are interpreted

in Figure[T§]

104 4§ | — (color, channel)

| —— (example, height, width, channel}

102 3

KL contribution

10' 3

10° 3

T T T
1000 1200 1400

Figure 17: Breaking down the KL loss during training into contributions from each individual shaped
tensor in the multitensor z.

component 0, strength = 1.2195433378219604

component 0, strength = 0.019098609685897827
example 0 example 1 example 2
0 0 0
£ 5 £ 5 £ 5
o) =
ERTY 210 210
0 10 0 10 0 10 blue magenta
width width width color

component 1, strength = 0.9535569548606873

(a) (example, height, width, channel) tensor.
The top principal component is 2496 times
stronger than the second principal component.
This tensor codes for the centers of the bubbles.
In the KL contribution plot, we can see that the
information content of this tensor is decreasing
over time. Likely, CompressARC is in the process

R . . blue magenta
of eliminating the plus shaped representation, and color
replacing it with a pixel instead, which takes fewer))
bits. (b) (color, channel) tensor. This tensor just serves
to distinguish the individual roles of the colors in
the puzzle.

Figure 18: Breaking down the loss components during training tells us where and how CompressARC
prefers to store information relevant to solving a puzzle.

M List of Mentioned ARC-AGI-1 Puzzles

See Table[@ below.

29

Puzzle 025d127b Puzzle 0a938d79 Puzzle Oca9ddb6
l _..l B I
- -
Puzzle 0d3d703e Puzzle 0e206a2e

H—A
e §
HH—N
11—
-

Puzzle 0dfd9992
o

}

30

Puzzle 1¢786137 Puzzle 1£876c06 Puzzle 28e¢73c20

E
m

|
| EEE= -

Puzzle 272f95fa Puzzle 2bcee788 Puzzle 2dd70a9a
NN N B .

Nl

iIlE I !
. RN HH
iIlEE I'n

MGG -

&R e gk
-

31

Puzzle 3bd67248

Puzzle 41e4d17e

Puzzle 42a50994

—

- -
m H
ﬁ ﬁ
ll. L A1)

?

Puzzle 6d75e8bb

Puzzle 7b6016b9

T
T

%3

32

Puzzle ce9e57f2

-m
.m
.m

?

Table 6: List of Mentioned ARC-AGI=1 Puzzles. All these puzzles are part of the training split.

sts N Code

817 Code for this project is provided in the supplemental materials.

33

8

8

819

820
821

822

824
825
826
827

828
829
830

831
832

833
834
835
836
837

838
839
840

841
842
843
844
845
846
847
848
849
850

852
853

855

856
857

858
859

860

862
863
864
865

866

867
868

869

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: Section [3]details the transfer of the MDL paradigm into an deep learning framework
to derive CompressARC, and [5] shows the resulting performance of CompressARC on ARC-AGI.

Guidelines:

» The answer NA means that the abstract and introduction do not include the claims made in the
paper.

* The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

* Itis fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer:

Justification: Section[d]points out that the architecture is complicated, but we do not emphasize
that CompressARC’s overengineering can be seen as running counter to the spirit of intelligent
neural network design.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

» While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [NA]

34

870

871

872
873
874
875
876
877

878

880

881

882
883
884

885

886
887
888

889

890
891

893

894
895

896
897
898

900
901
902
903

904
905
906

908
909
910
911
912
913
914
915
916
917
918

919

920
921

922

Justification: This paper contains no theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if they appear
in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: A large number of appendices are dedicated to providing detailed information about
all of the work we did. In particular, Appendix [C]details the architecture of CompressARC, and
code is provided in Appendix [N}

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived well by the
reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

« If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to
reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either
be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

35

923
924

925

926

927
928

929
930

932
933
934

935
936

937
938
939

940
941
942
943

944

946

947

948
949
950

951

952

953
954

955

956

957
958

959

960
961
962
963

964

965
966

968

969
970
971
972
973
974

Justification: Code is provided in the supplemental materials, and the README contains guides
to install necessary libraries and reproduce the experimental results.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

* The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

* Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLSs to data and code is permitted.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: The most important details (eg. learning rate and momentum decay, loss component
weighting, settings for different layers, multitensor rules, etc.) are described wherever they become
relevant.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Our solve rate measurement on the ARC-AGI-1 dataset comes with no error bars,
since measuring the variance would require performing inference multiple times. Unlike in most
machine learning settings, ours takes much longer for inference, so running inference multiple
times is very expensive.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

36

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

975
976

977
978
979

980
981

982
983
984

985
986
987

988

989

990

991

992
993

994
995

996
997

999

1000
1001

1002

1003
1004

1005

1006

1007
1008

1009
1010
1011

1012
1013

1014

1015
1016
1017

1018

1019

1020
1021
1022
1023
1024
1025

10.

« It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of
errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?

Answer: [Yes]
Justification: Table [l|mentions that we perform experiments on an NVIDIA RTX 4070 GPU.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This research involves no human subjects, only public datasets, poses no known
potential societal risks, and is well documented with code made available for reproducibility.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [NA|

Justification: This paper primarily concerns alternative method of producing intelligence via
generalization capabilities. This is foundational research with no conceivable direct effects on
society.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

37

https://neurips.cc/public/EthicsGuidelines

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039

1040

1041
1042
1043

1044

1045
1046
1047

1048

1049

1050
1051
1052

1053
1054

1055
1056
1057

1058
1059
1060

1061

1062
1063

1064

1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077

11.

12.

» The conference expects that many papers will be foundational research and not tied to par-
ticular applications, let alone deployments. However, if there is a direct path to any negative
applications, the authors should point it out. For example, it is legitimate to point out that
an improvement in the quality of generative models could be used to generate deepfakes for
disinformation. On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for
monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?

Answer: [NA]

Justification: The ARC-AGI dataset used is publicly available with no direct connection to avenues
of misuse, and CompressARC is ARC-AGI-specific so it also carries no direct ties to potential
avenues of misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

» Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

» Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [Yes]

Justification: We only use the ARC-AGI-1 dataset, which we cite. The license for this dataset is
included with the code in the supplementary materials.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

1078 13. New assets

38

paperswithcode.com/datasets

1079
1080

1081

1082
1083

1084

1085
1086
1087
1088
1089
1090
1091
1092

1093

1094
1095
1096

1097

1098

1099

1100

1101

1102
1103
1104

1105
1106

1107

1108
1109
1110
1111

1112

1113

1114

1115

1116

1117
1118
1119

1120
1121
1122

1123
1124

1125

1126
1127
1128
1129

14.

15.

16.

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: A README with license notice are included in the code, and the code is the only
asset we release.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.

* At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?

Answer: [NA]

Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

» The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.

* Including this information in the supplemental material is fine, but if the main contribution of
the paper involves human subjects, then as much detail as possible should be included in the
main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?

Answer: [NA]

Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and

locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for

their institution.

For initial submissions, do not include any information that would break anonymity (if applica-

ble), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.

39

1130 Answer: [NA]

1131 Justification: We develop the core methods of this research without involving LLMs as any
1132 components.

1133 Guidelines:

1134 * The answer NA means that the core method development in this research does not involve LLMs
1135 as any important, original, or non-standard components.

1136 * Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
1187 should or should not be described.

40

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background: The ARC-AGI Benchmark
	Method
	Architecture
	Results
	What Puzzles Can and Can't We Solve?

	Case Study: Color the Boxes
	Solution Analysis

	Discussion
	Optimality of Our Candidate Shortest Program
	A Primer on Lossless Information Compression
	One-Size-Fits-All Compression
	Neural Networks to the Rescue

	Multitensors
	Layers in the Architecture
	Decoding Layer
	Multitensor Communication Layer
	Softmax Layer
	Directional Cummax/Shift Layer
	Directional Communication Layer
	Nonlinear Layer
	Normalization Layer
	Linear Heads

	Other Architectural Details
	Rules for legal multitensors
	Weight Tying for Reflection/Rotation Symmetry
	Training

	Preprocessing
	Output Shape Determination
	Number of Colors

	Postprocessing
	Empirically Observed Abilities and Disabilities of CompressARC
	Related Work
	Equivalence of Compression and Intelligence
	Information Theory and Coding Theory
	Variational Autoencoders
	ARC-AGI Methods
	Deep Learning Architectures

	How to Improve Our Work
	Joint Compression via Weight Sharing Between Puzzles
	Convolution-like Layers for Shape Copying Tasks
	KL Floor for Posterior Collapse
	Regularization

	What Happens to the Representations during Learning
	Additional Details about the ARC-AGI Benchmark
	Additional Case Studies
	Case Study: Bounding Box
	Watching the Network Learn: Bounding Box
	Solution Analysis: Bounding Box

	Case Study: Center Cross
	Solution Analysis: Center Cross

	List of Mentioned ARC-AGI-1 Puzzles
	Code

