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Abstract

Conventional wisdom in the age of LLMs dictates that solving IQ-test-like puz-1

zles from the ARC-AGI-1 benchmark requires capabilities derived from massive2

pretraining. To counter this, we introduce CompressARC, a model without any3

pretraining that solves 20% of evaluation puzzles by minimizing the description4

length (MDL) of the target puzzle purely during inference time. The MDL endows5

CompressARC with extreme generalization abilities typically unheard of in deep6

learning. To our knowledge, CompressARC is the only deep learning method for7

ARC-AGI where training happens only on a fraction of one sample: the target8

inference puzzle itself, with the final solution information removed. Moreover,9

CompressARC does not train on the pre-provided ARC-AGI “training set”. Under10

these extremely data-limited conditions, we do not ordinarily expect any puzzles to11

be solvable at all. Yet CompressARC still solves a diverse distribution of creative12

ARC-AGI puzzles, suggesting MDL to be an alternative, highly feasible way to13

produce intelligence, besides conventional massive pretraining.14

1 Introduction15

The ARC-AGI benchmark poses a uniquely challenging problem: to construct a system capable16

of solving novel, abstract reasoning puzzles using only a handful of examples. [1] These puzzles17

are intentionally designed to measure generalization, creativity, and pattern recognition, and have18

historically resisted solutions by even the most powerful pretrained large language models (LLMs).19

The most successful attempts have leaned heavily on massive datasets, fine-tuning, or test-time20

augmentation. [2, 3, 4] However, one possible approach towards artificial general intelligence21

(AGI) has remained surprisingly underexplored in practice: the principle of minimum description22

length (MDL). [5] Closely related to Kolmogorov complexity [6], MDL frames intelligence as the23

ability to compress information efficiently into a minimally sized program, that correctly outputs24

the original information when run. Despite its elegant theoretical connection to generalization and25

prediction, MDL has rarely been successfully implemented in deep learning as an alternative source26

of intelligence to pretrained LLMs. In this work, we directly investigate the power of compression by27

introducing CompressARC, a deep learning method that minimizes description length at inference28

time: it has no prior training at all—and yet it still achieves modest performance on ARC-AGI.29

CompressARC tries to harness MDL by using deep learning, a combination of techniques plagued30

with incompatabilities and roadblocks. The main difficulty in using deep learning to minimize the31

description length is that the description is a discrete program, and cannot be differentiated. Moreover,32

the size of the program varies as we optimize over the program’s code, running counter to gradient33

descent’s requirement of a fixed number of training parameters. Together, these two difficulties34

make it nearly inconceivable to use gradient descent for searching the description space. As a result,35

past MDL-based attempts to solve ARC-AGI have focused on search in (at least partially) discrete36

program spaces. [7] The powerful expressive capacity of deep neural networks, requiring gradient37
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Figure 1: An overview of CompressARC, an MDL-derived deep learning solution to ARC-AGI. We
learn some noise distribution z ∼ N(µ,Σ) (left), feed it into a neural network, and compare the
output to the puzzle we want to solve (right). We learn the noise and the weights at inference time to
minimize the reconstruction error with the target puzzle, with a KL loss term that controls the noise
distribution. The network’s answer prediction is whatever it outputs for the last box (green).

descent to achieve, has not yet been fully combined with the strong generalization abilities promised38

by the MDL principle. These strengths are exactly what CompressARC has managed to conjoin.39

The innovation that underlies CompressARC is a procedure for compiling the continuous information40

stored in a tensor into a discrete code. This procedure is special in that we can track the expected41

resulting code length from the perspective of the original continuous space, without ever having to42

perform the compilation, all in a differentiable fashion. This affords us the ability to include neural43

networks as part of the description, along with tensors representing their weights and inputs. The44

entire problem of minimizing the discrete description length is then offloaded as a deep learning45

task: the final procedure drawn in Figure 1. If we respect the restrictions imposed by the conversion46

of MDL into a deep learning problem, then we may enjoy MDL’s strong generalization abilities as47

benefit:48

• No training time: Since MDL requires us to start by having the target puzzle in hand, Compres-49

sARC starts by skipping training time, to go to inference time immediately to first obtain the target50

puzzle.51

• Inference time learning: At this point, MDL dictates we minimize the description length, so52

CompressARC must run gradient descent using the target puzzle during inference time, to produce53

the solution.54

• Relaxed data requirement: Since we expect to enjoy such strong generalization abilities endowed55

by MDL, we don’t bother loading any other puzzles into memory. The target puzzle just by itself is56

already plenty of data.57

Of course, this means CompressARC skips pretraining and leaves any training set puzzles unused.58

Even so, the extreme generalization of MDL allows CompressARC to solve 20% of evaluation59

puzzles and 34.75% of training puzzles, where we would ordinarily expect 0% from any traditional60

deep learning method under these conditions.61

The remaining sections describe the ARC-AGI benchmark (Section 2), how CompressARC works62

(Section 3), CompressARC’s architecture (Section 4), CompressARC’s performance on ARC-AGI63

(Section 5), our interpretation of CompressARC’s solution to an example puzzle (Section 6), and our64

conclusions (Section 7).65

2 Background: The ARC-AGI Benchmark66

ARC-AGI-1 is an artificial intelligence benchmark designed to test a system’s ability to acquire new67

skills from minimal examples. Each puzzle in the benchmark consists of a different hidden rule,68

which the system must apply to an input colored grid to produce a ground truth target colored grid.69

Several input-output grid pairs are given as examples to help the system to infer the hidden rule70
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in a puzzle. The system is allowed two attempts to guess the output grid correctly, i.e., getting71

every single pixel color correct. The ARC Prize Foundation has launched competitions for machine72

solutions to ARC-AGI-1, with upwards of $1,000,000 in prizes. [2, 8]73

There are 400 training puzzles are easier than the 400 evaluation puzzles, and are meant to help your74

system learn the ideas of objectness, goal-directedness, numbers & counting, and basic geometry &75

topology. These training puzzles play no role in the operation of CompressARC, and we only76

used them to inform our decisions of how to build CompressARC’s architecture.77

The puzzles are designed so that humans can reasonably find the answer, but machines should78

have more difficulty. The average human can solve 76.2% of the training set, and a human expert can79

solve 98.5%. [9] Current methods for solving ARC-AGI focus primarily on tokenizing the puzzles80

and arranging them in a sequence to prompt an LLM for a solution, or code that computes a solution.81

[3] Top methods typically fine-tune on augmented training puzzles and larger alternative synthetic82

puzzle datasets [10] and test-time training [4, 11]. Reasoning models have managed to get up to83

87.5% on the semi-private evaluation set, albeit with astronomical amounts of compute. [12]84

Please refer to Appendix K for more details about the ARC-AGI benchmark. An extended survey of85

other related work is also included in Appendix H.86

As of March 2025, the ARC Prize foundation has launched a new dataset and competition, ARC-87

AGI-2, which is extremely similar in format to ARC-AGI-1. Since the research in this paper predates88

the launch, this paper focuses solely on ARC-AGI-1, which in this paper we generally refer to as89

ARC-AGI.90

3 Method91

We propose that MDL can serve as an effective framework for solving ARC-AGI puzzles. In MDL, a92

more efficient (i.e., lower-bit) compression of a puzzle correlates with a more accurate solution. To93

solve ARC-AGI puzzles, we design a system that transforms an incomplete puzzle into a completed94

one—filling in the answers—by finding a compact representation (i.e., short program,) that when95

run, reproduces the puzzle with any solution. The challenge is to algorithmically obtain this compact96

program representation, given the puzzle.97

Our key innovation is to notice that we can compile a sampling procedure from any continuous98

random process into a short program, whose program length is very close to the KL divergence of this99

process relative to some fixed reference process. This particular kind of compilation is made possible100

by Relative Entropy Coding (REC) [13]. This fact means we can include randomized tensors in a101

description, and count up their total description lengths as KL divergences which mirror the program102

length of the compiled sampling procedures. We can even train the tensors with gradient descent to103

minimize their description lengths as measured by KL terms. Gradient descent then can serve as a104

description length minimizer in a space of deep learning based programs. Finally, as long as we know105

that the description length is being minimized and we are able to extract the solution guess, there is106

no actual need to run REC or compile any sampling procedures in practice.107

In standard machine learning lingo, the operations CompressARC actually needs to perform are:108

(with some simplifications, also see Figure 1)109

1. We start at inference time, and we are given an ARC-AGI puzzle to solve. (e.g., puzzle in the110

diagram below.)111

2. We construct a neural network f (see Appendix C) designed for the puzzle’s specifics (e.g., number112

of examples, observed colors). The network takes random normal input z ∼ N(µ,Σ), and outputs113

per-pixel color logit predictions across all the grids, including an answer grid (3 input-output114

examples, for a total of 6 grids). Importantly, fθ is equivariant to common augmentations—such115

as reordering input-output pairs (including the answer’s pair), color permutations, and spatial116

rotations/reflections.117

3. We initialize the network weights θ and set the parameters µ and Σ for the z distribution.118

4. We jointly optimize θ, µ, Σ to minimize the sum of cross-entropies over the known grids (5 of119

them,) ignoring the answer grid. A KL divergence penalty keeps N(µ,Σ) close to N(0, 1), as in120

a VAE.121
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5. Since the generated answer grid is stochastic due to the randomness in z, we save the answer grids122

throughout training and choose the most frequently occuring one as our final prediction.123

The short program that we would compile the weight θ and input z distributions into, in trying to124

minimize the program code length, looks like the following:125

z = sample_normal(N(0,I), <seed_z>)126

weights = <insert weights here>127

puzzle_and_solution_logits = neural_net(z, weights)128

puzzle_and_solution = sample_categorical(puzzle_and_solution_logits, <seed_error>)129

where <seed_z> and <seed_error> are randomization seeds picked by REC to force z ∼ N(µ,Σ)130

and correct final puzzle sampling, with the seeds being approximately KL(N(µ,Σ)||N(0, I)) and131

CrossEntropyLoss(puzzle_and_solution_logits, true_puzzle, reduction=‘sum’)132

bits long, respectively. Our inference-time training setup and chosen loss function serves entirely to133

shorten the seeds needed by this compiled program, in order to optimize it for Solomoff induction.134

Appendix A contains a more elaborate explanation of why we picked this particular program as our135

candidate shortest program.136

4 Architecture137

We designed our own neural network architecture for decoding the latents z into ARC-AGI puzzles,138

illustrated in Figure 2. The most important feature of our architecture is it’s equivariances, which are139

symmetry rules dictating that whenever the input z undergoes a transformation, the output ARC-AGI140

puzzle must also transform the same way. Some example transformations include reordering of141

input/output pairs, shuffling colors, flips, rotations, and reflections of grids.142

The data format of z is what we call a “multitensor”, which is a bucket of tensors that each may or may143

not have certain dimensions such as example, color, height, width dimensions, which transformations144

can be applied to. All the equivariances can be described in terms of how they change a multitensor.145

More details on multitensors are in Appendix B146

Figure 2: Overall structure of CompressARC’s equivariant neural network. There were too many
equivariances for us to consider at once, so we decided to make a base architecture that’s fully
symmetric, and break unwanted symmetries one by one by adding asymmetric layers to give it
specific non-equivariant abilities (listed later in Appendix G).

The architecture is complicated and has many types of layers that we designed to have inductive147

biases that are useful for solving the given training puzzles. The training puzzles play no role in our148

work other than in this way and in our evaluations. The full architecture consists of the following149

layers, which are each described in the Appendix:150
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• Begin with parameters of the z distribution151

• Decoding Layer, Appendix C.1152

• Repeat 4 times:153

– Multitensor Communication Layer (Upwards), Appendix C.2154

– Softmax Layer, Appendix C.3155

– Directional Cummax Layer, Appendix C.4156

– Directional Shift Layer, Appendix C.4157

– Directional Communication Layer, Appendix C.5158

– Nonlinear Layer, Appendix C.6159

– Multitensor Communication Layer (Downwards), Appendix C.2160

– Normalization Layer, Appendix C.7161

• Linear Heads, Appendix C.8162

5 Results163

CompressARC solves 20% of evaluation set puzzles and 34.75% of training set puzzles if given 2000164

steps per puzzle, as shown in Tables 1 and 2, and Figure 3.165

(a) Training set of 400 puzzles. (b) Evaluation set of 400 puzzles.

Figure 3: CompressARC’s puzzle solve accuracy as a function of the number of steps of inference
time learning it is given, for various numbers of allowed attempts (pass@n). The official benchmark
is reported with 2 allowed attempts, which is why we report 20% on the evaluation set.

Table 1: CompressARC’s puzzle solve accuracy on the training set as a function of the number of
steps of inference time learning it is given, for various numbers of allowed attempts (pass@n). The
official benchmark is reported with 2 allowed attempts, which is why we report 20% on the evaluation
set. Timing is reported for an NVIDIA RTX 4070 GPU.

Training Iteration Time Pass@1 Pass@2 Pass@5 Pass@10 Pass@100 Pass@1000
100 6 h 1.00% 2.25% 3.50% 4.75% 6.75% 6.75%
200 13 h 11.50% 14.25% 16.50% 18.25% 23.25% 23.50%
300 19 h 18.50% 21.25% 23.50% 26.75% 31.50% 32.50%
400 26 h 21.00% 25.00% 28.75% 31.00% 36.00% 37.50%
500 32 h 23.00% 27.50% 31.50% 33.50% 39.25% 40.75%
750 49 h 28.00% 30.50% 34.00% 36.25% 42.75% 44.50%

1000 65 h 28.00% 31.75% 35.50% 37.75% 43.75% 46.50%
1250 81 h 29.00% 32.25% 37.00% 39.25% 45.50% 49.25%
1500 97 h 29.50% 33.00% 38.25% 40.75% 46.75% 51.75%
2000 130 h 30.25% 34.75% 38.25% 41.50% 48.50% 52.75%
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Table 2: CompressARC’s puzzle solve accuracy on the evaluation set, reported the same way as in
Table 1.

Training Iteration Time Pass@1 Pass@2 Pass@5 Pass@10 Pass@100 Pass@1000
100 7 h 0.75% 1.25% 2.25% 2.50% 3.00% 3.00%
200 14 h 5.00% 6.00% 7.00% 7.75% 12.00% 12.25%
300 21 h 10.00% 10.75% 12.25% 13.25% 15.50% 16.25%
400 28 h 11.75% 13.75% 16.00% 17.00% 19.75% 20.00%
500 34 h 13.50% 15.00% 17.75% 19.25% 20.50% 21.50%
750 52 h 15.50% 17.75% 19.75% 21.50% 22.75% 25.50%

1000 69 h 16.75% 19.25% 21.75% 23.00% 26.00% 28.75%
1250 86 h 17.00% 20.75% 23.00% 24.50% 28.25% 30.75%
1500 103 h 18.25% 21.50% 24.25% 25.50% 29.50% 31.75%
2000 138 h 18.50% 20.00% 24.25% 26.00% 31.25% 33.75%

5.1 What Puzzles Can and Can’t We Solve?166

CompressARC tries to use its abilities to figure out as much as it can, until it gets bottlenecked167

by one of it’s inabilities.168

For example, puzzle 28e73c20 in the training set requires extension of a pattern from the edge towards169

the middle, as shown in Figure 11a in the Appendix. Given the layers in it’s network, CompressARC170

is generally able to extend patterns for short ranges but not long ranges. So, it does the best that171

it can, and correctly extends the pattern a short distance before guessing at what happens near the172

center (Figure 11b, Appendix). Appendix G includes a list of which abilities we have empirically173

seen CompressARC able to and not able to perform.174

6 Case Study: Color the Boxes175

In this puzzle (Puzzle 272f95fa, Figure 4), you must color sections depending on which side of the176

grid the section is on. We call this puzzle “Color the Boxes”.177

Figure 4: Color the Boxes, problem 272f95fa.
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Human Solution: We first realize that the input is divided into boxes, and the boxes are still there in178

the output, but now they’re colored. We then try to figure out which colors go in which boxes. First,179

we notice that the corners are always black. Then, we notice that the middle is always magenta. And180

after that, we notice that the color of the side boxes depends on which direction they are in: red for181

up, blue for down, green for right, and yellow for left. At this point, we copy the input over to the182

answer grid, then we color the middle box magenta, and then color the rest of the boxes according to183

their direction.184

CompressARC Solution: Table 3 shows CompressARC’s learning behavior over time. After185

CompressARC is done learning, we can deconstruct it’s learned z distribution to find that it codes for186

a color-direction correspondence table and row/column divider positions (Figure 6).187

During training, the reconstruction error fell extremely quickly. It remained low on average, but188

would spike up every once in a while, causing the KL from z to bump upwards at these moments, as189

shown in Figure 5a.190

(a) Relative proportion of the KL and reconstruc-
tion terms to the loss during training, before taking
the weighted sum. The KL dominates the loss and
reconstruction is most often nearly perfect.

(b) Breaking down the KL loss during training into
contributions from each individual shaped tensor
in the multitensor z. Four tensors dominate, indi-
cating they contain information, and the other 14
fall to zero, indicating their lack of information
content.

Figure 5: Breaking down the loss components during training tells us where and how CompressARC
prefers to store information relevant to solving a puzzle.

6.1 Solution Analysis191

So how does CompressARC learn to solve Color the Boxes? We can look at the representations192

stored in z to find out.193

Since z is a multitensor, each of the tensors it contains produces an additive contribution to the total194

KL for z. By looking at the per-tensor contributions (see Figure 5b), we can determine which tensors195

in z code for information that is used to represent the puzzle.196

All the tensors fall to zero information content during training, except for four tensors. In some197

replications of this experiment, we saw one of these four necessary tensors fall to zero information198

content, and CompressARC typically does not recover the correct answer after that. Here we are199

showing a lucky run where the [color, direction, channel] tensor almost falls but gets picked up 200200

steps in, which is right around when the samples from the model begin to show the correct colors in201

the correct boxes.202

We can look at the average output of the decoding layer (explained in Appendix C.1) corresponding203

to individual tensors of z, to see what information is stored there (see Figure 6). Each tensor contains204

a vector of dimension n_channels for various indices of the tensor. Taking the PCA of these vectors205

reveals some number of activated components, telling us how many pieces of information are coded206

by the tensor.207
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Table 3: CompressARC learning the solution for Color the Boxes, over time.
Learning
steps What is CompressARC doing? Sampled solution guess

50

CompressARC’s network outputs an answer
grid (sample) with light blue rows/columns
wherever the input has the same. It has no-
ticed that all the other input-output pairs in the
puzzle exhibit this correspondence. It doesn’t
know how the other output pixels are assigned
colors; an exponential moving average of the
network output (sample average) shows the
network assigning mostly the same average
color to non-light-blue pixels.

150

The network outputs a grid where nearby pix-
els have similar colors. It has likely noticed
that this is common among all the outputs, and
is guessing that it applies to the answer too.

200

The network output now shows larger blobs of
colors that are cut off by the light blue borders.
It has noticed the common usage of borders
to demarcate blobs of colors in other outputs,
and applies the same idea here. It has also no-
ticed black corner blobs in other given outputs,
which the network imitates.

350

The network output now shows the correct col-
ors assigned to boxes of the correct direction
from the center. It has realized that a single
color-to-direction mapping is used to pick the
blob colors in the other given outputs, so it
imitates this mapping. It is still not the best
at coloring within the lines, and it’s also con-
fused about the center blob, probably because
the middle does not correspond to a direction.
Nevertheless, the average network output does
show a tinge of the correct magenta color in
the middle, meaning the network is catching
on.

1500

The network is as refined as it will ever be.
Sometimes it will still make a mistake in the
sample it outputs, but this uncommon and fil-
tered out.
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(a) (example, height, channel) tensor. For ev-
ery example and row, there is a vector of dimen-
sion n_channels. Taking the PCA of this set of
vectors, the top principal component (1485 times
stronger than the other components) visualized as
the (example, height) matrix shown above tells us
which examples/row combinations are uniquely
identified by the stored information. For every
example, the two brightest pixels give the rows
where the light blue rows in the grids are.

(b) (example,width, channel) tensor. A similar
story here to 6a: in the top principal component
of this tensor, the two darkest pixels for every
example give the columns where the light blue
columns in the grids are. The top principal com-
ponent is 1253 times stronger than the next princi-
pal component.

(c) (direction, color, channel) tensor. The four
brightest pixels identify blue with up, green with
left, red with down, and yellow with right. This
tensor tells each direction which color to use for
the opposite edge’s box. The top principal compo-
nent is 829 times stronger than the next principal
component.

(d) (color, channel) tensor. Here, we look at the
top three principal components, since the first and
second principal components are 134 and 87 times
stronger than the third component, indicating that
they play a role while the third component does not.
The magenta and light blue colors are uniquely
identified, indicating their special usage amongst
the rest of the colors as the center color and the
color of the row/column divisions, respectively.

Figure 6: Breaking down the loss components during training tells us where and how CompressARC
prefers to store information relevant to solving a puzzle.

7 Discussion208

The prevailing reliance of modern deep learning on high-quality data has put the field in a chokehold209

when applied to problems requiring intelligent behavior that have less data available. This is espe-210

cially true for the data-limited ARC-AGI benchmark, where LLMs trained on specially augmented,211

extended, and curated datasets dominate. In the midst of this circumstance, we built CompressARC,212

which not only uses no training data at all, but forgoes the entire process of pretraining altogether.213

One should intuitively expect this to fail and solve no puzzles at all, but by applying MDL to the target214

puzzle during inference time, CompressARC solves a surprisingly large portion of ARC-AGI-1.215

CompressARC’s theoretical underpinnings come from minimizing the description length of the target216

puzzle. While other MDL search strategies have been scarce due to the intractablly large search217

space of possible programs, CompressARC explores a simplified, neural network-based search space218

through gradient descent. Though CompressARC’s architecture is heavily engineered, it’s incredible219

ability to generalize from as low as two demonstration input/output pairs puts it in an entirely new220

regime of generalization for ARC-AGI.221

We challenge the assumption that intelligence must arise from massive pretraining and data, showing222

instead that clever use of MDL and compression principles can lead to surprising capabilities. We223

use CompressARC a proof of concept to demonstrate that modern deep learning frameworks can be224

melded with MDL to create a possible alternative, complimentary route to AGI.225
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A Optimality of Our Candidate Shortest Program304

It isn’t obvious how we get from trying to minimize the description length to the method we ended305

up using. The derivation of our algorithm takes us on a detour through information theory [14],306

algorithmic information theory [15], and coding theory [16], with machine learning only making an307

appearance near the end.308

A.1 A Primer on Lossless Information Compression309

In information theory, lossless information compression is about trying to represent some informa-310

tion in as few bits as possible, while still being able to reconstruct that information from the bit311

representation. [17] This type of problem is abstracted as follows:312

• A source produces some symbol x from some process that generates symbols from a probability313

distribution p(x).314

• A compressor/encoder E must map the symbol x to a string of bits s.315

• A decompressor/decoder D must exactly map s back to the original symbol x.316

The goal in lossless information compression is to use p to construct functions (E,D) which are317

bit-efficient, (i.e., that minimize the expected length of s,) without getting any symbols wrong. The318

optimal decompressor D∗ also plays a role in a program that is the shortest possible (up to additive319

constants in program length) that computes x, in expectation over x drawn from p:320

s = <string of bits>321

x = D*(s)322

This reduces MDL to the problem of lossless information compression. In our case, the symbol x is323

the ARC-AGI dataset (many puzzle + answer pairs), and we may want to figure out what D* is using324

knowledge of p, and what s is when given x. Except, we won’t have the answers (only the puzzles)325

in x, and we don’t actually know p, since it’s hard to model the intelligent process of puzzle ideation326

in humans.327

A.2 One-Size-Fits-All Compression328

To build an efficient lossless compression scheme, you might think we need to know what p is, but329

we argue that it doesn’t really matter since we can make a one-size-fits-all compressor. It all hinges330

on the following assumption:331

There exists some practically implementable, bit efficient compression system (E,D) for ARC-332

AGI datasets x sampled from p.333

If this were false, our whole idea of solving ARC-AGI with compression will be doomed even if we334

knew p anyways, so we might as well make this assumption.335

Our one-size-fits-all compressor (E′, D′) is built without knowing p, and it is almost just as bit-336

efficient as the original (E,D):337

• E′ observes symbol x, picks a program f and input s to minimize len(f) + len(s) under the338

constraint that running the program makes f(s) = x, and then sends the pair (f, s).339

• D′ is just a program executor that executes f on s, correctly producing x.340

It is possible to prove with algorithmic information theory that (E′, D′) achieves a bit efficiency at341

most len(f) bits worse than the bit efficiency of (E,D), where f is the code for implementing D.342

[15] But since compression is practically implementable, the code for D should be simple enough for343

a human engineer to write, so len(f) must be short, meaning our one-size-fits-all compressor will be344

close to the best possible bit efficiency.345

Ironically, the only problem with using this to solve ARC-AGI is that implementing E′ is not346

practical, since E′ needs to minimize the length of a program-input pair (f, s) under partial fixed347

output constraint f(s)puzzle = xpuzzle.348
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A.3 Neural Networks to the Rescue349

To avoid searching through program space, we just pick a program f for a small sacrifice in bit350

efficiency. We hope the diversity of program space can be delegated to diversity in input s space351

instead. Specifically, we write a program f that runs the forward pass of a neural network, where352

s = (θ, z, ϵ) are the weights, inputs, and corrections to the outputs of the neural network. Then, we353

can use gradient descent to “search” over s.354

This restricted compression scheme uses Relative Entropy Coding (REC) [13]1 to encode noisy355

weights θ and neural network inputs z into bits sθ and sz , and arithmetic coding [18] to encode356

output error corrections ϵ into bits sϵ, to make a bit string s consisting of three blocks (sθ, sz, sϵ).357

The compression scheme runs as follows:358

• The decoder runs θ = REC-decode(sθ), z = REC-decode(sz), logits = Neural-Net(θ, z), and359

x = Arithmetic-decode(sϵ, logits).360

• The encoder trains θ and z to minimize the total code length E[len(s)]. sϵ is fixed by arithmetic361

coding to guarantee correct decoding. To calculate the three components of the loss E[len(s)] in a362

differentiable way, we refer to the properties of REC and arithmetic coding:363

– It turns out that the ϵ code length E[len(sϵ)] is equal to the total crossentropy error on all the364

given grids in the puzzle.365

– REC requires us to fix some reference distribution qθ, and also add noise to θ, turning it into366

a distribution pθ. Then, REC allows you to store noisy θ using a code length of E[len(sθ)] =367

KL(pθ||qθ) = Eθ∼pθ
[log(pθ(θ)/qθ(θ))] bits. We will choose to fix qθ = N(0, I/2λ) for large368

λ, such that the loss component E[len(sθ)] ≈ λ|θ|2 + const is equivalent to regularizing the369

decoder.370

– We must also do for z what we do for θ, since it’s also represented using REC. We will371

choose to fix qz = N(0, I), so the code length of z is E[len(sz)] = KL(pz||qz) =372

Ez∼pz [log(pz(z)/qz(z))].373

We can compute gradients of these code lengths via the reparameterization trick. [19]374

At this point, we observe that the total code length for s that we described is actually the VAE loss375

with decoder regularization (= KL for z + reconstruction error + regularization).2 Likewise, if we376

port the rest of what we described above (plus modifications regarding equivariances and inter-puzzle377

independence, and ignoring regularization) into typical machine learning lingo, we get the previous378

description of CompressARC from Section 3.379

B Multitensors380

The actual data (z, hidden activations, and puzzles) passing through our layers comes in a format that381

we call a “multitensor”, which is just a bucket of tensors of various shapes, as shown in Figure 7.382

All the equivariances we use can be described in terms of how they change a multitensor.383

Most common classes of machine learning architectures operate on a single type of tensor with384

constant rank. LLMs operate on rank-3 tensors of shape [n_batch, n_tokens, n_channels],385

and Convolutional Neural Networks (CNNs) operate on rank-4 tensors of shape386

1A lot of caveats/issues are introduced by using REC. The code length when using REC only behaves in
some limits and expectations, there may be a small added constant to the code length, the decoding may be
approximate, etc. We’re not up to date with the current literature, and we’re ignoring all the sticky problems
that may arise and presuming that they are all solved. We will never end up running Relative Entropy Coding
anyways, so it doesn’t matter that it takes runtime exponential in the code length. We only need to make use of
the the fact that such algorithms exist, not that they run fast, nor that we can implement them, in order to derive
our method.

2We penalize the reconstruction error by 10x the KL for z, in the total KL loss. This isn’t detrimental to
the measurement of the total KL because the KL term for z can absorb all of the coded information from the
reconstruction term, which can then go to zero. Since the term for z is not penalized by any extra factor, the total
KL we end up with is then unaffected. We believe this empirically helps because the Gaussians we use for z are
not as efficient for storing bits that can be recovered, as the categorical distributions that define the log likelihood
in the reconstruction error. Forcing all the coded bits into one storage mode removes pathologies introduced by
multiple storage modes.
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Figure 7: Our neural network’s internal representations come in the form of a "mul-
titensor", a bucket of tensors of different shapes. One of the tensors is shaped like
[example, color, height,width, channel], an adequate shape for storing a whole ARC-AGI puzzle.

[n_batch, n_channels, height,width]. Our multitensors are a set of varying-rank ten-387

sors of unique type, whose dimensions are a subset of a rank-6 tensor of shape388

[n_examples, n_colors, n_directions, height,width, n_channels], as illustrated in Figure 7. We389

always keep the channel dimension, so there are at most 32 tensors in each multitensor. We also390

maintain several rules (see Appendix D.1) that determine whether a tensor shape is “legal” or not,391

which reduces the number of tensors in a multitensor to 18.392

Dimension Description
Example Number of examples in the ARC-AGI puzzle, including the one with held-out

answer
Color Number of unique colors in the ARC-AGI puzzle, not including black, see Ap-

pendix E.2
Direction 8
Height Determined when preprocessing the puzzle, see Appendix E.1
Width Determined when preprocessing the puzzle, see Appendix E.1
Channel In the residual connections, the size is 8 if the direction dimension is included, else

16. Within layers it is layer-dependent.
Table 4: Size conventions for multitensor dimensions.

To give an idea of how a multitensor stores data, an ARC-AGI puzzle can be represented by393

using the [example, color, height,width, channel] tensor, by using the channel dimension to select394

either the input or output grid, and the height/width dimensions for pixel location, a one hot vector395

in the color dimension, specifying what color that pixel is. The [example, height, channel] and396

[example,width, channel] tensors can similarly be used to store masks representing grid shapes for397

every example for every input/output grid. All those tensors are included in a single multitensor that398

is computed by the network just before the final linear head (described in Appendix C.8).399

When we apply an operation on a multitensor, we by default assume that all non-channel dimensions400

are treated identically as batch dimensions by default. The operation is copied across the indices401

of dimensions unless specified. This ensures that we keep all our symmetries intact until we use a402

specific layer meant to break a specific symmetry.403

A final note on the channel dimension: usually when talking about a tensor’s shape, we will not even404

mention the channel dimension as it is included by default.405
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C Layers in the Architecture406

C.1 Decoding Layer407

This layer’s job is to sample a multitensor z and bound its information content, before it is passed408

to the next layer. This layer and outputs the KL divergence between the learned z distribution and409

N(0, I). Penalizing the KL prevents CompressARC from learning a distribution for z that memorizes410

the ARC-AGI puzzle in an uncompressed fashion, and forces CompressARC to represent the puzzle411

more succinctly. Specifically, it forces the network to spend more bits on the KL whenever it uses z412

to break a symmetry, and the larger the symmetry group broken, the more bits it spends.413

This layer takes as input:414

• A learned target multiscalar, called the "target capacity".3 The decoding layer will output z whose415

information content per tensor is close to the target capacity,4416

• learned per-element means for z,5417

• learned per-element capacity adjustments for z.418

We begin by normalizing the learned per-element means for z.6 Then, we figure out how much419

Gaussian noise we must add into every tensor to make the AWGN channel capacity [17] equal to the420

target capacity for every tensor (including per-element capacity adjustments). We apply the noise to421

sample z, keeping unit variance of z by rescaling.7422

We compute the information content of z as the KL divergence between the distribution of this sample423

and N(0, 1).424

Finally, we postprocess the noisy z by scaling it by the sigmoid of the signal-to-noise ratio.8 This425

ensures that z is kept as-is when its variance consists mostly of useful information and it is nearly426

zero when its variance consists mostly of noise. All this is done 4 times to make a channel dimension427

of 4. Then we apply a projection (with different weights per tensor in the multitensor, i.e., per-tensor428

projections) mapping the channel dimension up to the dimension of the residual stream.429

C.2 Multitensor Communication Layer430

This layer allows different tensors in a multitensor to interact with each other.431

First, the input from the residual stream passes through per-tensor projections to a fixed size (8 for432

downwards communication and 16 for upwards communication). Then a message is sent to every433

other tensor that has at least the same dimensions for upwards communication, or at most the same434

dimensions for downwards communication. This message is created by either taking means along435

dimensions to remove them, or unsqueezing+broadcasting dimensions to add them, as in Figure 8.436

All the messages received by every tensor are summed together and normalization is applied. This437

result gets up-projected back and then added to the residual stream.438

C.3 Softmax Layer439

This layer allows the network to work with internal one-hot representations, by giving it the tools to440

denoise and sharpen noisy one-hot vectors. For every tensor in the input multitensor, this layer lists441

out all the possible subsets of dimensions of the tensor to take a softmax over,9 takes the softmax442

3Target capacities are exponentially parameterized and rescaled by 10x to increase sensitivity to learning,
initialized at a constant 104 nats per tensor, and forced to be above a minimum value of half a nat.

4The actual information content, which the layer computes later on, will be slightly different because of the
per-element capacity adjustments.

5Means are initialized using normal distribution of variance 10−4.
6Means and variances for normalization are computed along all non-channel dimensions.
7There are many caveats with the way this is implemented and how it works; please refer to the code (see

Appendix N) for more details.
8We are careful not to let the postprocessing operation, which contains unbounded amounts of information

via the signal-to-noise ratios, to leak lots of information across the layer. We only let a bit of it leak by averaging
the signal-to-noise ratios across individual tensors in the multitensor.

9One exception: we always include the example dimension in the subset of dimensions.
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Figure 8: Multitensor communication layer. Higher rank tensors shown at the top, lower rank at the
bottom. Tensors transform between ranks by mean reduction and unsqueezing dimensions.

over these subsets of dimensions, and concatenates all the softmaxxed results together in the channel443

dimension. The output dimension varies across different tensors in the multitensor, depending on444

their tensor rank. A pre-norm is applied, and per-tensor projections map to and from the residual445

stream. The layer has input channel dimension of 2.446

C.4 Directional Cummax/Shift Layer447

The directional cummax and shift layers allow the network to perform the non-equivariant cummax448

and shift operations in an equivariant way, namely by applying the operations once per direction, and449

only letting the output be influenced by the results once the directions are aggregated back together450

(by the multitensor communication layer). These layers are the sole reason we included the direction451

dimension when defining a multitensor: to store the results of directional layers and operate on452

each individually. Of course, this means when we apply a spatial equivariance transformation, we453

must also permute the indices of the direction dimension accordingly, which can get complicated454

sometimes.455

The directional cummax layer takes the eight indices of the direction dimension, treats each slice as456

corresponding to one direction (4 cardinal, 4 diagonal), performs a cumulative max in the respective457

direction for each slice, does it in the opposite direction for half the channels, and stacks the slices458

back together in the direction dimension. An illustration is in Figure 9. The slices are rescaled to459

have min −1 and max 1 before applying the cumulative max.460

The directional shift layer does the same thing, but for shifting the grid by one pixel instead of461

applying the cumulative max, and without the rescaling.462

Some details:463

• Per-tensor projections map to and from the residual stream, with pre-norm.464

• Input channel dimension is 4.465

• These layers are only applied to the [example, color, direction, height,width, channel] and466

[example, direction, height,width, channel] tensors in the input multitensor.467

C.5 Directional Communication Layer468

By default, the network is equivariant to permutations of the eight directions, but we only want469

symmetry up to rotations and flips. So, this layer provides a way to send information between two470

slices in the direction dimension, depending on the angular difference in the two directions. This471

layer defines a separate linear map to be used for each of the 64 possible combinations of angles,472

but the weights of the linear maps are minimally tied such that the directional communication layer473
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Figure 9: The directional cummax layer takes a directional tensor, splits it along the direction axis,
and applies a cumulative max in a different direction for each direction slice. This operation helps
CompressARC transport information across long distances in the puzzle grid.

is equivariant to reflections and rotations. This gets complicated really fast, since the direction474

dimension’s indices also permute when equivariance transformations are applied. Every direction475

slice in a tensor accumulates it’s 8 messages, and adds the results together.10476

For this layer, there are per-tensor projections to and from the residual stream with pre-norm. The477

input channel dimension is 2.478

C.6 Nonlinear Layer479

We use a SiLU nonlinearity with channel dimension 16, surrounded by per-tensor projections with480

pre-norm.481

C.7 Normalization Layer482

We normalize all the tensors in the multitensor, using means and variances computed across all483

dimensions except the channel dimension. Normalization as used within other layers also generally484

operates this way.485

C.8 Linear Heads486

We must take the final multitensor, and convert it to the format of an ARC-AGI puzzle. More487

specifically, we must convert the multitensor into a distribution over ARC-AGI puzzles, so that we488

can compute the log-likelihood of the observed grids in the puzzle.489

The colors of every pixel for every example for both input and output, have logits defined by the490

[example, color, height,width, channel] tensor, with the channel dimension linearly mapped down to491

a size of 2, representing the input and output grids.11 The log-likelihood is given by the crossentropy,492

with sum reduction across all the grids.493

For grids of non-constant shape, the [example, height, channel] and [example,width, channel] tensors494

are used to create distributions over possible contiguous rectangular slices of each grid of colors,495

as shown in Figure 10. Again, the channel dimension is mapped down to a size of 2 for input and496

output grids. For every grid, we have a vector of size [width] and a vector of size [height]. The log497

10We also multiply the results by coefficients depending on the angle: 1 for 0 degrees and 180 degrees, 0.2 for
45 degrees and 135 degrees, and 0.4 for 90 degrees.

11The linear map is initialized to be identical for both the input and output grid, but isn’t fixed this way during
learning. Sometimes this empirically helps with problems of inconsistent input vs output grid shapes. The
bias on this linear map is multiplied by 100 before usage, otherwise it doesn’t seem to be learned fast enough
empirically. This isn’t done for the shape tensors described by the following paragraph though.
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Figure 10: The linear head layer takes the final multitensor of the residual stream and
reads a [example, color, height,width, channel] tensor to be interpreted as color logits, and a
[example, height, channel] tensor and a [example,width, channel] tensor to serve as shape masks.

likelihood of every slice of the vector is taken to be the sum of the values within the slice, minus498

the values outside the slice. The log likelihoods for all the possible slices are then normalized to499

have total probability one, and the colors for every slice are given by the color logits defined in the500

previous paragraph.501

With the puzzle distribution now defined, we can now evaluate the log-likelihood of the observed502

target puzzle, to use as the reconstruction error.12503

D Other Architectural Details504

D.1 Rules for legal multitensors505

1. At least one non-example dimension must be included. Examples are not special for any reason506

not having to do with colors, directions, rows, and columns.507

2. If the width or height dimension is included, the example dimension should also be included.508

Positions are intrinsic to grids, which are indexed by the example dimension. Without a grid it509

doesn’t make as much sense to talk about positions.510

D.2 Weight Tying for Reflection/Rotation Symmetry511

When applying a different linear layer to every tensor in a multitensor, we have a linear layer for512

tensors having a width but not height dimension, and another linear layer for tensors having a height513

but not width dimension. Whenever this is the case, we tie the weights together in order to preserve514

the whole network’s equivariance to diagonal reflections and 90 degree rotations, which swap the515

width and height dimensions.516

The softmax layer is not completely symmetrized because different indices of the output correspond517

to different combinations of dimension to softmax over. Tying the weights properly would be a bit518

complicated and time consuming for the performance improvement we expect, so we did not do this.519

12There are multiple slices of the same shape that result in the correct puzzle to be decoded. We sum together
the probabilities of getting any of the slices by applying a logsumexp to the log probabilities. But, we found
empirically that training prematurely collapses onto one particular slice. So, we pre-multiply and post-divide
the log probabilities by a coefficient when applying the logsumexp. The coefficient starts at 0.1 and increases
exponentially to 1 over the first 100 iterations of training. We also pre-multiply the masks by the square of this
coefficient as well, to ensure they are not able to strongly concentrate on one slice too early in training.
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D.3 Training520

We train for 2000 iterations using Adam, with learning rate 0.01, β1 of 0.5, and β2 of 0.9.521

E Preprocessing522

E.1 Output Shape Determination523

The raw data consists of grids of various shapes, while the neural network operates on grids of524

constant shape. Most of the preprocessing that we do is aimed towards this shape inconsistency525

problem.526

Before doing any training, we determine whether the given ARC-AGI puzzle follows three possible527

shape consistency rules:528

1. The outputs in a given ARC-AGI puzzle are always the same shape as corresponding inputs.529

2. All the inputs in the given ARC-AGI puzzle are the same shape.530

3. All the outputs in the given ARC-AGI puzzle are the same shape.531

Based on rules 1 and 3, we try to predict the shape of held-out outputs, prioritizing rule 1 over rule532

3. If either rule holds, we force the postprocessing step to only consider the predicted shape by533

overwriting the masks produced by the linear head layer. If neither rule holds, we make a temporary534

prediction of the largest width and height out of the grids in the given ARC-AGI puzzle, and we allow535

the masks to predict shapes that are smaller than that.536

The largest width and height that is given or predicted, are used as the size of the multitensor’s width537

and height dimensions.538

The predicted shapes are also used as masks when performing the multitensor communication,539

directional communication and directional cummax/shift layers. We did not apply masks for the540

other layers because of time constraints and because we do not believe it will provide for much of a541

performance improvement.13542

E.2 Number of Colors543

We notice that in almost all ARC-AGI puzzles, colors that are not present in the puzzle are not present544

in the true answers. Hence, any colors that do not appear in the puzzle are not given an index in the545

color dimension of the multitensor.546

In addition, black is treated as a special color that is never included in the multitensor, since it547

normally represents the background in many puzzles. When performing color classification, a tensor548

of zeros is appended to the color dimension after applying the linear head, to represent logits for the549

black color.550

F Postprocessing551

Postprocessing primarily deals with denoising the answers sampled from the network. This is552

complicated by the variable shape grids present in some puzzles.553

Generally, when we sample answers from the network by taking the logits of the554

[example, color, height,width, channel] tensor and argmaxxing over the color dimension, we find that555

the grids are noisy and will often have the wrong colors for several random pixels. We developed556

several methods for removing this noise:557

1. Find the most commonly sampled answer.558

2. Construct an exponential moving average of the output color logits before taking the softmax to559

produce probabilities. Also construct an exponential moving average of the masks.560

13The two masks for the input and output are combined together to make one mask for use in these operations,
since the channel dimension in these operations don’t necessarily correspond to the input and output grids.
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3. Construct an exponential moving average of the output color probabilities after taking the softmax.561

Also construct an exponential moving average of the masks.562

When applying these techniques, we always take the slice of highest probability given the mask, and563

then we take the colors of highest probability afterwards.564

We explored several different rules for when to select which method, and arrived at a combination of565

1 and 2 with a few modifications:566

• At every iteration, count up the sampled answer, as well as the exponential moving average answer567

(decay = 0.97).568

• If before 150 iterations of training, then downweight the answer by a factor of e−10. (Effectively,569

don’t count the answer.)570

• If the answer is from the exponential moving average as opposed to the sample, then downweight571

the answer by a factor of e−4.572

• Downweight the answer by a factor of e−10∗uncertainty, where uncertainty is the average (across573

pixels) negative log probability assigned to the top color of every pixel.574

G Empirically Observed Abilities and Disabilities of CompressARC575

(a) Puzzle 28e73c20

(b) CompressARC’s solution to puzzle 28e73c20

Figure 11: Puzzle 28e73c20, and CompressARC’s solution to it.

A short list of abilities that can be performed by CompressARC includes:576

• Assigning individual colors to individual procedures (see puzzle 0ca9ddb6)577

• Infilling (see puzzle 0dfd9992)578

• Cropping (see puzzle 1c786137)579

• Connecting dots with lines, including 45 degree diagonal lines (see puzzle 1f876c06)580

• Same color detection (see puzzle 1f876c06)581

• Identifying pixel adjacencies (see puzzle 42a50994)582

• Assigning individual colors to individual examples (see puzzle 3bd67248)583

• Identifying parts of a shape (see puzzle 025d127b)584

• Translation by short distances (see puzzle 025d127b)585
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We believe these abilities to be individually endowed by select layers in the architecture, which we586

designed specifically for the purpose of conferring those abilities to CompressARC.587

A short list of abilities that cannot be performed by CompressARC includes:588

• Assigning two colors to each other (see puzzle 0d3d703e)589

• Repeating an operation in series many times (see puzzle 0a938d79)590

• Counting/numbers (see puzzle ce9e57f2)591

• Translation, rotation, reflections, rescaling, image duplication (see puzzles 0e206a2e, 5ad4f10b,592

and 2bcee788)593

• Detecting topological properties such as connectivity (see puzzle 7b6016b9)594

• Planning, simulating the behavior of an agent (see puzzle 2dd70a9a)595

• Long range extensions of patterns (see puzzle 28e73c20 above)596

H Related Work597

H.1 Equivalence of Compression and Intelligence598

The original inspiration of this work came from the Hutter Prize [20], which awards a prize for599

those who can compress a file of Wikipedia text the most, as a motivation for researchers to build600

intelligent systems. It is premised upon the idea that the ability to compress information is equivalent601

to intelligence.602

This equivalence between intelligence and compression has a long history. For example, when603

talking about intelligent solutions to prediction problems, the ideal predictor implements Solomonoff604

Induction, a theoretically best possible but uncomputable prediction algorithm that works universally605

for all prediction tasks. [21] This prediction algorithm is then equivalent to a best possible compres-606

sion algorithm whose compressed code length is the Kolmogorov Complexity of the data. [6] This607

prediction algorithm can also be used to decode a description of the data of minimal length, linking608

these formulations of intelligence to MDL. [5] In our work, we try to approximate this best possible609

compression algorithm with a neural network.610

H.2 Information Theory and Coding Theory611

Since we build an information compression system, we make use of many results in information612

theory and coding theory. The main result required to motivate our model architecture is the existence613

of Relative Entropy Coding (REC). [13] The fact that REC exists means that as long as a KL614

divergence can be bounded, the construction of a compression algorithm is always possible and the615

issue of realizing the algorithm can be abstracted away. Thus, problems about coding theory and616

translating information from Gaussians into binary and back can be ignored, since we can figure617

out the binary code length directly from the Gaussians instead. In other words, we only need to618

do enough information theory using the Gaussians to get the job done, with no coding theory at619

all. While the existence of arithmetic coding [18] would suffice to abstract the problem away when620

distributions are discrete, neural networks operate in a continuous space so we need REC instead.621

Our architecture sends z information through an additive white Gaussian noise (AWGN) channel,622

so the AWGN channel capacity formula (Gaussian input Gaussian noise) plays a heavy role in the623

design of our decoding layer. [17]624

H.3 Variational Autoencoders625

The decoder side of the variational autoencoder [19] serves as our decompression algorithm. While626

we would use something that has more general capabilities like a neural Turing machine [22] instead,627

neural Turing machines are not very amenable to gradient descent-based optimization so we stuck628

with the VAE.629

VAEs have a long history of developments that are relevant to our work. At one point, we tried using630

multiple decoding layers to make a hierarchical VAE decoder [23] instead. This does not affect the631

KL calculation because a channel capacity with feedback is equal to the channel capacity without632
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feedback. [24] But, we found empirically that the first decoding layer would absorb all of the KL633

contribution, making the later decoding layers useless. Thus, we only used one decoding layer at the634

beginning.635

The beta-VAE [25] introduces a reweighting of the reconstruction loss to be stronger than the KL636

loss, and we found that to work well in our case. The NVAE applies a non-constant weighting to loss637

components. [26] A rudimentary form of scheduled loss recombination is used in CompressARC.638

H.4 ARC-AGI Methods639

Aside from LLM-based methods for solving ARC with data augmentation, synthetic datasets, fine-640

tuning, test-time training, and reasoning, several other classes of solution have been studied:641

• An older class of methods consists of hard-coded searches through program spaces in hand-written642

domain-specific languages designed specifically for ARC. [27, 28]643

• [29] introduced a VAE-based method for searching through a latent space of programs. This is the644

most similar work to ours that we found due to their VAE setup.645

H.5 Deep Learning Architectures646

We designed our own neural network architecture from scratch, but not without borrowing crucial647

design principles from many others.648

Our architecture is fundamentally structured like a transformer, consisting of a residual stream where649

representations are stored and operated upon, followed by a linear head. [30, 31] Pre-and post-norms650

with linear up- and down-projections allow layers to read and write to the residual stream. [32] The651

SiLU-based nonlinear layer is especially similar to a transformer’s. [33]652

Our equivariance structures are inspired by permutation-invariant neural networks, which are a653

type of equivariant neural network. [34, 35] Equivariance transformations are taken from common654

augmentations to ARC-AGI puzzles.655

I How to Improve Our Work656

At the time of release of CompressARC, there were several ideas which we thought of trying or657

attempted at some point, but didn’t manage to get working for one reason or another. Some ideas we658

still believe in, but didn’t use, are listed below.659

I.1 Joint Compression via Weight Sharing Between Puzzles660

CompressARC tries to solve each puzzle serially by compressing each puzzle on its own. We believe661

that joint compression of all the entire ARC-AGI dataset at once should yield better learned inductive662

biases per-puzzle, since computations learned for one puzzle can be transferred to other puzzles. We663

do not account for the complexity of f in our derivation of CompressARC, allowing for f to be used664

for memorization/overfitting. By jointly compressing the whole dataset, we only need to have one f ,665

whereas when compressing each puzzle individually, we need to have an f for every puzzle, allowing666

for more memorization/overfitting.667

To implement this, we would most likely explore strategies like:668

• Using the same network weights for all puzzles, and training for puzzles in parallel. Each puzzle669

gets assigned some perturbation to the weights, that is constrained in some way, e.g., LORA. [36]670

• Learning a "puzzle embedding" for every puzzle that is a high dimensional vector (more than 16671

dim, less than 256 dim), and learning a linear mapping from puzzle embeddings to weights for our672

network. This mapping serves as a basic hypernetwork, i.e., a neural network that outputs weights673

for another neural network. [37]674

In a successful case, we might want to also try adding in some form of positional encodings, with the675

hope that f is now small/simple enough to be incapable of memorization/overfitting using positional676

encodings.677
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The reason we didn’t try this is because it would slow down the research iteration process.678

I.2 Convolution-like Layers for Shape Copying Tasks679

This improvement is more ARC-AGI-specific and may have less to do with AGI in our view. Many680

ARC-AGI-1 puzzles can be seen to involve copying shapes from one place to another, and our681

network has no inductive biases for such an operation. An operation which is capable of copying682

shapes onto multiple locations is the convolution. With one grid storing the shape and another with683

pixels activated at locations to copy to, convolving the two grids will produce another grid with the684

shape copied to the designated locations.685

There are several issues with introducing a convolutional operation for the network to use. Ideally,686

we would read two grids via projection from the residual stream, convolve them, and write it back in687

via another projection, with norms in the right places and such. Ignoring the fact that the grid size688

changes during convolution (can be solved with two parallel networks using different grid sizes), the689

bigger problem is that convolutions tend to amplify noise in the grids much more than the sparse690

signals, so their inductive bias is not good for shape copying. We can try to apply a softmax to one691

or both of the grids to reduce the noise (and to draw an interesting connection to attention), but we692

didn’t find any success.693

The last idea that we were tried before discarding the idea was to modify the functional form of the694

convolution:695

(f ∗ g)(x) =
∑
y

f(x− y)g(y)

to a tropical convolution [38], which we found to work well on toy puzzles, but not well enough for696

ARC-AGI-1 training puzzles (which is why we discarded this idea):697

(f ∗ g)(x) = max
y

f(x− y) + g(y)

Convolutions, when repeated with some grids flipped by 180 degrees, tend to create high activations698

at the center pixel, so sometimes it is important to zero out the center pixel to preserve the signal.699

I.3 KL Floor for Posterior Collapse700

We noticed during testing that crucial posterior tensors whose KL fell to zero during learning would701

never make a recovery and play their role in the encoding, just as in the phenomenon of mode collapse702

in variational autoencoders. [39] We believe that the KL divergence may upper bound the information703

content of the gradient training signal for parts of the network that process the encoded information.704

Thus, when a tensor falls to zero KL, the network stops learning to use its information, so the KL is705

no longer given encouragement to recover. If we can hold the KL above zero for a while, the network706

may then learn to use the information, giving the KL a reason to stay above zero when released again.707

We implemented a mechanism to keep the KL above a minimum threshold so that the network always708

learns to use that information, but we do not believe it learns fast enough for this to be useful, as we709

have never seen a tensor recover before. Therefore, it might be useful to explore different ways to710

schedule this KL floor to start high and decay to zero, to allow learning when the KL is forced to be711

high, and to leave the KL unaffected later on in learning. This might cause training results to be more712

consistent across runs.713

I.4 Regularization714

CompressARC does not use regularization on the weights. Regularization measures the complexity715

of f in our problem framing, and is native to our derivation of CompressARC in Appendix A.3. It is716

somewhat reckless for us to exclude it in our implementation.717
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J What Happens to the Representations during Learning718

During training, the gradient descent tries to find representations of the puzzle that require less and719

less information to encode. This information is measured by the KL term for z, plus the a heavily720

penalized reconstruction error.721

Due to the 10x penalization on reconstruction error, and the initial high capacity for z, the z722

distribution (which we call the "posterior") quickly learns the information that is required to perfectly723

reconstruct the given input/output pairs in the puzzle, within the first 20 or so steps. The remainder of724

the training steps are about compressing z information under the constraint of perfect reconstruction,725

by tuning the representations to be more concise.726

Our mental model of how gradient descent compresses the z information consists of several steps727

which we list below:728

1. Suppose the posterior p originally codes for some number n pieces of information z1, . . . , zn729

using thin Gaussians.730

2. The posterior widens and becomes more noisy to try to get closer to the wide Gaussian "prior"731

q = N(0, 1), but since all n pieces of information are needed to ensure good reconstruction, the732

noise is limited by the reconstruction loss incurred.733

3. The ever-widening posteriors push the neurons to become more and more resilient to noise, until734

some limit is reached.735

4. Learning remains stagnant for a while, as a stalemate between compression and reconstruction.736

5. If it turns out that z1 is not reconstructible using z2, . . . , zn, then stop. Else, proceed to step 6.737

6. The neurons, pushed by the widening posterior of z1, figure out a procedure to denoise z1 using738

information from z2, . . . , zn, in the event that the noise sample for z1 is too extreme.739

7. The posterior for the last piece keeps pushing wider, producing more extreme values for z1, and740

the denoising procedure is improved, until the z1 representation consists completely of noise, and741

its usage in the network is replaced by the output of the denoising procedure.742

8. The posterior for z1 is now identical to the prior, so nothing is coded in z1 and it no longer743

contributes to the KL loss.744

9. The posterior now codes for n−1 pieces of information z2, . . . , zn, and compression has occurred.745

These steps happen repeatedly for different unnecessarily coded pieces of information, until there are746

no more. More than one piece of information can be compressed away at once, and there is no need747

for the steps to proceed serially. The process stops when all information coded by the posterior is748

unique, and no piece is reconstructable using the others.749

K Additional Details about the ARC-AGI Benchmark750

Figure 12 shows three examples of ARC-AGI-1 training puzzles.751

For every puzzle, there is a hidden rule that maps each input grid to each output grid. You are given752

some number of examples of input-to-output mappings, and you get two attempts to guess the output753

grid for a given input grid, without being told the hidden rule. If either guess is correct, then you754

score 1 for that puzzle, else you score 0. Some puzzles have more than one input/output pair that you755

have to guess, in which case the score for that puzzle may be in between.756

The main ideas that the training puzzles aim to teach can be described more elaborately as follows:757

• Objectness: Objects persist and cannot appear or disappear without reason. Objects can interact or758

not depending on the circumstances.759

• Goal-directedness: Objects can be animate or inanimate. Some objects are “agents” - they have760

intentions and they pursue goals.761

• Numbers & counting: Objects can be counted or sorted by their shape, appearance, or movement762

using basic mathematics like addition, subtraction, and comparison.763
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(a) Hidden rule: Shift every ob-
ject right by one pixel, except the
bottom/right edges of the object.

(b) Hidden rule: Shrink the big
object and set its color to the scat-
tered dots’ color.

(c) Hidden rule: Extend the
green line to meet the red line by
turning when hitting a wall.

Figure 12: Three example ARC-AGI-1 puzzles.

• Basic geometry & topology: Objects can be shapes like rectangles, triangles, and circles which764

can be mirrored, rotated, translated, deformed, combined, repeated, etc. Differences in distances765

can be detected.766

The competitions launched by the ARC Prize Foundation have been restricted to 12 hours of compute767

per solution submission, in a constrained environment with no internet access. This is where a768

hidden semi-private evaluation set is used to score solutions. The scores we report are on the public769

evaluation set, which is of the same difficulty as the semi-private evaluation set, which we had no770

access to when we performed this work. The scores we listed for reasoning models were achieved771

with compute budgets well over the limits of the constrained environment. Otherwise, all other772

solutions we mention are scored on the semi-private evaluation set within the competition constraints.773

L Additional Case Studies774

Below, we show two additional puzzles and a dissection of CompressARC’s solution to them.775

L.1 Case Study: Bounding Box776

Puzzle 6d75e8bb is part of the training split, see Figure 13.777

L.1.1 Watching the Network Learn: Bounding Box778

Human Solution: We first realize that the input is red and black, and the output is also red and black,779

but some of the black pixels are replaced by light blue pixels. We see that the red shape remains780

unaffected. We notice that the light blue box surrounds the red shape, and finally that it is the smallest781

possible surrounding box that contains the red shape. At this point, we copy the input over to the782

answer grid, then we figure out the horizontal and vertical extent of the red shape, and color all of the783

non-red pixels within that extent as light blue.784

CompressARC Solution: See Table 5785

L.1.2 Solution Analysis: Bounding Box786

Figure 14 shows the amount of contained information in every tensor composing the latent z.787
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Table 5: CompressARC learning the solution for Bounding Box, over time.
Learning
steps What is CompressARC doing? Sampled solution guess

50

The average of sampled outputs shows that
light blue pixels in the input are generally pre-
served in the output. However, black pixels in
the input are haphazardly and randomly col-
ored light blue and red. CompressARC does
not seem to know that the colored input/output
pixels lie within some kind of bounding box,
or that the bounding box is the same for the
input and output grids.

100

The average of sampled outputs shows red
pixels confined to an imaginary rectangle sur-
rounding the light blue pixels. CompressARC
seems to have perceived that other examples
use a common bounding box for the input and
output pixels, but is not completely sure about
where the boundary lies and what colors go in-
side the box in the output. Nevertheless, guess
2 (the second most frequently sampled output)
shows that the correct answer is already being
sampled quite often now.

150

The average of sampled outputs shows almost
all of the pixels in the imaginary bounding
box to be colored red. CompressARC has
figured out the answer, and further training
only refines the answer.
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Figure 13: Bounding Box: Puzzle 6d75e8bb from the training split.

Figure 14: Breaking down the KL loss during training into contributions from each individual shaped
tensor in the multitensor z.

All the tensors in z fall to zero information content during training, except for three tensors. From 600-788

1000 steps, we see the (example, height,width, channel) tensor suffer a massive drop in information789

content, with no change in the outputted answer. We believe it was being used to identify the light blue790

pixels in the input, but this information then got memorized by the nonlinear portions of the network,791

using the (example, height, channel) and (example,width, channel) as positional encodings.792

Figure 15 shows the average output of the decoding layer for these tensors to see what information is793

stored there.794

L.2 Case Study: Center Cross795

Puzzle 41e4d17e is part of the training split, see Figure 16a.796

Human Solution: We first notice that the input consists of blue "bubble" shapes (really they are797

just squares, but the fact that they’re blue reminds us of bubbles) on a light blue background and the798

output has the same. But in the output, there are now magenta rays emanating from the center of each799

bubble. We copy the input over to the answer grid, and then draw magenta rays starting from the800

center of each bubble out to the edge in every cardinal direction. At this point, we submit our answer801

and find that it is wrong, and we notice that in the given demonstrations, the blue bubble color is802

drawn on top of the magenta rays, and we have drawn the rays on top of the bubbles instead. So, we803

pick up the blue color and correct each point where a ray pierces a bubble, back to blue.804

CompressARC Solution: We don’t show CompressARC’s solution evolving over time because805

we think it is uninteresting; instead will describe. We don’t see much change in CompressARC’s806
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(a) (example, height, channel) tensor. The first
principal component is 771 times stronger than
the second principal component. A brighter pixel
indicates a row with more light blue pixels. It
is unclear how CompressARC knows where the
borders of the bounding box are.

(b) (example,width, channel) tensor. The first
principal component is 550 times stronger than
the second principal component. A darker pixel
indicates a column with more light blue pixels.
It is unclear how CompressARC knows where the
borders of the bounding box are.

(c) (color, channel) tensor. This tensor serves to
distinguish the roles of the two colors apart.

Figure 15: Breaking down the loss components during training tells us where and how CompressARC
prefers to store information relevant to solving a puzzle.

(a) The puzzle.

(b) CompressARC’s solution.

Figure 16: Center Cross: Puzzle 41e4d17e from the training split.
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answer over time during learning. It starts by copying over the input grid, and at some point, magenta807

rows and columns start to appear, and they slowly settle on the correct positions. At no point does808

CompressARC mistakenly draw the rays on top of the bubbles; it has always had the order correct.809

L.2.1 Solution Analysis: Center Cross810

Figure 17 shows another plot of the amount of information in every tensor in z. The only surviving811

tensors are the (color, channel) and (example, height,width, channel) tensors, which are interpreted812

in Figure 18.813

Figure 17: Breaking down the KL loss during training into contributions from each individual shaped
tensor in the multitensor z.

(a) (example, height,width, channel) tensor.
The top principal component is 2496 times
stronger than the second principal component.
This tensor codes for the centers of the bubbles.
In the KL contribution plot, we can see that the
information content of this tensor is decreasing
over time. Likely, CompressARC is in the process
of eliminating the plus shaped representation, and
replacing it with a pixel instead, which takes fewer
bits. (b) (color, channel) tensor. This tensor just serves

to distinguish the individual roles of the colors in
the puzzle.

Figure 18: Breaking down the loss components during training tells us where and how CompressARC
prefers to store information relevant to solving a puzzle.

M List of Mentioned ARC-AGI-1 Puzzles814

See Table 6 below.815
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Puzzle 025d127b Puzzle 0a938d79 Puzzle 0ca9ddb6

Puzzle 0d3d703e Puzzle 0dfd9992 Puzzle 0e206a2e
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Puzzle 1c786137 Puzzle 1f876c06 Puzzle 28e73c20

Puzzle 272f95fa Puzzle 2bcee788 Puzzle 2dd70a9a
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Puzzle 3bd67248 Puzzle 41e4d17e Puzzle 42a50994

Puzzle 5ad4f10b Puzzle 6d75e8bb Puzzle 7b6016b9
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Puzzle ce9e57f2

Table 6: List of Mentioned ARC-AGI=1 Puzzles. All these puzzles are part of the training split.

N Code816

Code for this project is provided in the supplemental materials.817
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NeurIPS Paper Checklist818

1. Claims819

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s820

contributions and scope?821

Answer: [Yes]822

Justification: Section 3 details the transfer of the MDL paradigm into an deep learning framework823

to derive CompressARC, and 5 shows the resulting performance of CompressARC on ARC-AGI.824

Guidelines:825

• The answer NA means that the abstract and introduction do not include the claims made in the826

paper.827

• The abstract and/or introduction should clearly state the claims made, including the contributions828

made in the paper and important assumptions and limitations. A No or NA answer to this829

question will not be perceived well by the reviewers.830

• The claims made should match theoretical and experimental results, and reflect how much the831

results can be expected to generalize to other settings.832

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not833

attained by the paper.834

2. Limitations835

Question: Does the paper discuss the limitations of the work performed by the authors?836

Answer: [No]837

Justification: Section 4 points out that the architecture is complicated, but we do not emphasize838

that CompressARC’s overengineering can be seen as running counter to the spirit of intelligent839

neural network design.840

Guidelines:841

• The answer NA means that the paper has no limitation while the answer No means that the842

paper has limitations, but those are not discussed in the paper.843

• The authors are encouraged to create a separate "Limitations" section in their paper.844

• The paper should point out any strong assumptions and how robust the results are to violations of845

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,846

asymptotic approximations only holding locally). The authors should reflect on how these847

assumptions might be violated in practice and what the implications would be.848

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested849

on a few datasets or with a few runs. In general, empirical results often depend on implicit850

assumptions, which should be articulated.851

• The authors should reflect on the factors that influence the performance of the approach. For852

example, a facial recognition algorithm may perform poorly when image resolution is low or853

images are taken in low lighting. Or a speech-to-text system might not be used reliably to854

provide closed captions for online lectures because it fails to handle technical jargon.855

• The authors should discuss the computational efficiency of the proposed algorithms and how856

they scale with dataset size.857

• If applicable, the authors should discuss possible limitations of their approach to address858

problems of privacy and fairness.859

• While the authors might fear that complete honesty about limitations might be used by reviewers860

as grounds for rejection, a worse outcome might be that reviewers discover limitations that861

aren’t acknowledged in the paper. The authors should use their best judgment and recognize862

that individual actions in favor of transparency play an important role in developing norms that863

preserve the integrity of the community. Reviewers will be specifically instructed to not penalize864

honesty concerning limitations.865

3. Theory assumptions and proofs866

Question: For each theoretical result, does the paper provide the full set of assumptions and a867

complete (and correct) proof?868

Answer: [NA]869
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Justification: This paper contains no theoretical results.870

Guidelines:871

• The answer NA means that the paper does not include theoretical results.872

• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.873

• All assumptions should be clearly stated or referenced in the statement of any theorems.874

• The proofs can either appear in the main paper or the supplemental material, but if they appear875

in the supplemental material, the authors are encouraged to provide a short proof sketch to876

provide intuition.877

• Inversely, any informal proof provided in the core of the paper should be complemented by878

formal proofs provided in appendix or supplemental material.879

• Theorems and Lemmas that the proof relies upon should be properly referenced.880

4. Experimental result reproducibility881

Question: Does the paper fully disclose all the information needed to reproduce the main experi-882

mental results of the paper to the extent that it affects the main claims and/or conclusions of the883

paper (regardless of whether the code and data are provided or not)?884

Answer: [Yes]885

Justification: A large number of appendices are dedicated to providing detailed information about886

all of the work we did. In particular, Appendix C details the architecture of CompressARC, and887

code is provided in Appendix N.888

Guidelines:889

• The answer NA means that the paper does not include experiments.890

• If the paper includes experiments, a No answer to this question will not be perceived well by the891

reviewers: Making the paper reproducible is important, regardless of whether the code and data892

are provided or not.893

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make894

their results reproducible or verifiable.895

• Depending on the contribution, reproducibility can be accomplished in various ways. For896

example, if the contribution is a novel architecture, describing the architecture fully might897

suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary898

to either make it possible for others to replicate the model with the same dataset, or provide899

access to the model. In general. releasing code and data is often one good way to accomplish900

this, but reproducibility can also be provided via detailed instructions for how to replicate the901

results, access to a hosted model (e.g., in the case of a large language model), releasing of a902

model checkpoint, or other means that are appropriate to the research performed.903

• While NeurIPS does not require releasing code, the conference does require all submissions904

to provide some reasonable avenue for reproducibility, which may depend on the nature of the905

contribution. For example906

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to907

reproduce that algorithm.908

(b) If the contribution is primarily a new model architecture, the paper should describe the909

architecture clearly and fully.910

(c) If the contribution is a new model (e.g., a large language model), then there should either911

be a way to access this model for reproducing the results or a way to reproduce the model912

(e.g., with an open-source dataset or instructions for how to construct the dataset).913

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are914

welcome to describe the particular way they provide for reproducibility. In the case of915

closed-source models, it may be that access to the model is limited in some way (e.g.,916

to registered users), but it should be possible for other researchers to have some path to917

reproducing or verifying the results.918

5. Open access to data and code919

Question: Does the paper provide open access to the data and code, with sufficient instructions to920

faithfully reproduce the main experimental results, as described in supplemental material?921

Answer: [Yes]922
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Justification: Code is provided in the supplemental materials, and the README contains guides923

to install necessary libraries and reproduce the experimental results.924

Guidelines:925

• The answer NA means that paper does not include experiments requiring code.926

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/927

guides/CodeSubmissionPolicy) for more details.928

• While we encourage the release of code and data, we understand that this might not be possible,929

so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless930

this is central to the contribution (e.g., for a new open-source benchmark).931

• The instructions should contain the exact command and environment needed to run to reproduce932

the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/933

guides/CodeSubmissionPolicy) for more details.934

• The authors should provide instructions on data access and preparation, including how to access935

the raw data, preprocessed data, intermediate data, and generated data, etc.936

• The authors should provide scripts to reproduce all experimental results for the new proposed937

method and baselines. If only a subset of experiments are reproducible, they should state which938
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• At submission time, to preserve anonymity, the authors should release anonymized versions (if940

applicable).941

• Providing as much information as possible in supplemental material (appended to the paper) is942

recommended, but including URLs to data and code is permitted.943

6. Experimental setting/details944

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,945

how they were chosen, type of optimizer, etc.) necessary to understand the results?946

Answer: [Yes]947

Justification: The most important details (eg. learning rate and momentum decay, loss component948

weighting, settings for different layers, multitensor rules, etc.) are described wherever they become949

relevant.950

Guidelines:951

• The answer NA means that the paper does not include experiments.952

• The experimental setting should be presented in the core of the paper to a level of detail that is953

necessary to appreciate the results and make sense of them.954

• The full details can be provided either with the code, in appendix, or as supplemental material.955

7. Experiment statistical significance956

Question: Does the paper report error bars suitably and correctly defined or other appropriate957

information about the statistical significance of the experiments?958

Answer: [No]959

Justification: Our solve rate measurement on the ARC-AGI-1 dataset comes with no error bars,960
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times is very expensive.963
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• The answer NA means that the paper does not include experiments.965
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of the paper.968
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Answer: [Yes]988
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Answer: [Yes]1002
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potential societal risks, and is well documented with code made available for reproducibility.1004
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1006
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• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due1009

to laws or regulations in their jurisdiction).1010

10. Broader impacts1011
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impacts of the work performed?1013

Answer: [NA]1014
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generalization capabilities. This is foundational research with no conceivable direct effects on1016

society.1017
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• The conference expects that many papers will be foundational research and not tied to par-1026
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• We recognize that providing effective safeguards is challenging, and many papers do not require1055
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12. Licenses for existing assets1057

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the1058

paper, properly credited and are the license and terms of use explicitly mentioned and properly1059

respected?1060

Answer: [Yes]1061

Justification: We only use the ARC-AGI-1 dataset, which we cite. The license for this dataset is1062
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that source should be provided.1070

• If assets are released, the license, copyright information, and terms of use in the package should1071

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for1072
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• For existing datasets that are re-packaged, both the original license and the license of the derived1074

asset (if it has changed) should be provided.1075

• If this information is not available online, the authors are encouraged to reach out to the asset’s1076
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Question: Are new assets introduced in the paper well documented and is the documentation1079

provided alongside the assets?1080

Answer: [Yes]1081

Justification: A README with license notice are included in the code, and the code is the only1082

asset we release.1083

Guidelines:1084

• The answer NA means that the paper does not release new assets.1085

• Researchers should communicate the details of the dataset/code/model as part of their sub-1086

missions via structured templates. This includes details about training, license, limitations,1087

etc.1088

• The paper should discuss whether and how consent was obtained from people whose asset is1089

used.1090

• At submission time, remember to anonymize your assets (if applicable). You can either create1091

an anonymized URL or include an anonymized zip file.1092

14. Crowdsourcing and research with human subjects1093

Question: For crowdsourcing experiments and research with human subjects, does the paper1094

include the full text of instructions given to participants and screenshots, if applicable, as well as1095

details about compensation (if any)?1096

Answer: [NA]1097

Justification: This work does not involve crowdsourcing nor research with human subjects.1098

Guidelines:1099

• The answer NA means that the paper does not involve crowdsourcing nor research with human1100

subjects.1101

• Including this information in the supplemental material is fine, but if the main contribution of1102

the paper involves human subjects, then as much detail as possible should be included in the1103

main paper.1104

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other1105

labor should be paid at least the minimum wage in the country of the data collector.1106

15. Institutional review board (IRB) approvals or equivalent for research with human subjects1107

Question: Does the paper describe potential risks incurred by study participants, whether such1108

risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals1109

(or an equivalent approval/review based on the requirements of your country or institution) were1110

obtained?1111

Answer: [NA]1112

Justification: This work does not involve crowdsourcing nor research with human subjects.1113
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• The answer NA means that the paper does not involve crowdsourcing nor research with human1115

subjects.1116

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be1117

required for any human subjects research. If you obtained IRB approval, you should clearly1118

state this in the paper.1119

• We recognize that the procedures for this may vary significantly between institutions and1120

locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for1121

their institution.1122

• For initial submissions, do not include any information that would break anonymity (if applica-1123

ble), such as the institution conducting the review.1124

16. Declaration of LLM usage1125

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-1126

standard component of the core methods in this research? Note that if the LLM is used only for1127

writing, editing, or formatting purposes and does not impact the core methodology, scientific1128

rigorousness, or originality of the research, declaration is not required.1129
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Answer: [NA]1130

Justification: We develop the core methods of this research without involving LLMs as any1131

components.1132

Guidelines:1133

• The answer NA means that the core method development in this research does not involve LLMs1134

as any important, original, or non-standard components.1135

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what1136

should or should not be described.1137
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