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GeneticBPE: Motif-Preserving Tokenization for Robust miRNA Modeling
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Abstract

Tokenization plays a foundational yet underex-
plored role in biological sequence modeling. In
this work, we present GeneticBPE, a biologically
informed tokenization framework that encodes
prior structural knowledge such as seed motifs and
conserved regions into the vocabulary construc-
tion process. Unlike standard subword methods
that optimize purely for frequency or language-
model likelihood, GeneticBPE integrates motif
preservation objectives and generalization-aware
constraints into a modified merge scoring scheme.
We evaluate our method on binary and multiclass
miRNA classification tasks using the MirGeneDB
v3.0 dataset and show that GeneticBPE outper-
forms character-level, k-mer, Unigram, and BPE
tokenizations in accuracy, cross-species general-
ization, and motif fidelity. Theoretical results
demonstrate that tokenization directly governs the
inductive bias and domain robustness of sequence
models. Our findings suggest that tokenization
should not be treated as a preprocessing utility,
but rather as a design-critical component in bio-
logical NLP pipelines.
Reproducibility: Code, motif files, and pre-
trained tokenizer will be released under MIT li-
cense upon acceptance.

1. Introduction
The effectiveness of transformer models in biological se-
quence modeling hinges on how input sequences are tok-
enized (Bhattacharya et al., 2024; Dotan et al., 2024). While
tokenization is often treated as a mere preprocessing step,
recent advances across machine learning domains suggest
that it encodes powerful inductive biases, directly shaping
model performance and generalization (Lavie et al., 2024;
Chang & Bisk, 2024; Morales-Pastor et al., 2024). In this

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

work, we propose that tokenization can—and should—serve
as a biological prior, aligning model inputs with structural
and functional motifs rooted in the underlying biochemistry.

Figure 1. Motif aware tokenization with GeneticBPE. a) Stan-
dard BPE fragments the six-base seed across three tokens, diluting
biological signal. b) GeneticBPE’s merge scoring keeps the entire
seed inside a single token and stops merging at motif boundaries,
producing inputs that align with functional structure and improve
cross-species generalization.

MicroRNAs (miRNAs), short non-coding RNA sequences
that regulate gene expression, represent a prime domain
where biological structure is both subtle and significant
(Brosnan & Voinnet, 2009; Fernandes et al., 2019). These
sequences are composed of 18–25 nucleotides and form
conserved secondary structures and binding motifs that are
not easily captured by naı̈ve character-level or uniformly
subword tokenizations (Mielke et al., 2021). Standard byte
pair encoding (BPE) and Unigram models, while effective
in NLP, remain agnostic to biological constraints, often frag-
menting biologically meaningful patterns (Lindsey et al.,
2024). This fragmentation impairs generalization, espe-
cially under domain shifts—e.g., across species, between
conserved and non-conserved miRNA families, or in few-
shot classification settings where motif integrity is key.

We introduce GeneticBPE, a biologically-informed tok-
enization strategy tailored to genomic sequence data. Genet-
icBPE modifies classical BPE by incorporating biological
priors during the merge operation: frequent subsequences
are only retained as valid tokens if they co-occur with sta-
tistically enriched, biologically meaningful contexts—such
as stem-loop structures or binding site flanks. By encoding
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prior biological knowledge into the token vocabulary, Ge-
neticBPE helps transformers attend over motifs rather than
mere substrings.

Empirically, we demonstrate that GeneticBPE significantly
improves generalization across domain-shifted tasks on the
MirGeneDB v3.0 dataset, outperforming standard BPE, Un-
igramLM, and character-level encodings on both binary
and multiclass miRNA classification tasks. GeneticBPE-
tokenized models retain motif integrity, achieve faster
convergence, and exhibit improved robustness to species-
specific or structural variability.

Our work makes three key contributions:

1. We frame tokenization as a vehicle for encoding bio-
logical priors and propose a formalization of biological
prior alignment in the context of sequence modeling.

2. We present GeneticBPE, a novel tokenization method
that preserves biological motifs via domain-aware
merge constraints.

3. We provide a comprehensive evaluation of general-
ization under domain shift across species, miRNA
families, and conservation classes showing that Genet-
icBPE encoded inputs enable more biologically faithful
and robust transformer models.

Together, our results call for a reevaluation of tokenization
in bioinformatics pipelines: not as a preprocessing utility,
but as a central, model-aligned design choice for learning
from structured biological data.

2. Related Work
Recent advances in transformer-based architectures have
revolutionized biological sequence modeling through self-
supervised learning on genomic sequences (Ji et al., 2021;
Zhou et al., 2023). These models demonstrate the effective-
ness of transfer learning in genomics, yet they often treat
tokenization as a preprocessing step rather than a design
choice that can encode biological priors. Empirical studies
(Dotan et al., 2024) reveal that tokenization choices signifi-
cantly impact model performance in genomic tasks, while
character-level approaches (Clark et al., 2022) offer an al-
ternative to subword tokenization by operating directly on
nucleotide sequences.

The limitations of traditional tokenization methods have
been well-documented, with BPE shown to be suboptimal
for language model pretraining (Bostrom & Durrett, 2020).
Recent theoretical work (Schmidt et al., 2024) demonstrates
that tokenization serves as more than just compression, po-
tentially encoding inductive biases that affect model gener-
alization. This insight is particularly relevant in genomics,

where biologically-informed tokenization (Medvedev et al.,
2025) has shown promise in improving foundation model
performance by bundling a small DNA-oriented tokenizer
(‘BioToken’) but does not evaluate on RNA, so we treat
BioFM as a model baseline rather than a competing to-
kenizer. The development of robust foundation models
(Dalla-Torre et al., 2025) further emphasizes the importance
of domain-specific tokenization strategies in genomics.

These insights collectively motivate the design of Genet-
icBPE, a biologically informed tokenizer that aims to pre-
serve functional motifs while compressing sequences. Un-
like standard BPE or UnigramLM, GeneticBPE integrates
motif-aware scoring directly into the merge process, thus
aligning token structure with biological significance and im-
proving downstream generalization under domain shift. Our
approach differs from previous work by treating tokeniza-
tion as a vehicle for encoding biological priors rather than
a preprocessing step, introducing a formal framework for
biological prior alignment in sequence modeling, and devel-
oping a novel tokenization method that preserves biological
motifs while maintaining compression efficiency.

3. Theoretical Framework
This section synthesizes the conceptual narrative of tokeniza-
tion as a biological prior in miRNA sequence modeling.

3.1. Preliminaries

Let the nucleotide alphabet be A = (A,U,G,C), sequence
space X = AL consist of fixed–length miRNA strings of
length L , label space be a finite set Y (binary or multiclass)
and tokenizer T : X → Z∗ map a raw sequence x to a token
sequence T (x) = (z1, . . . , zM ) of length M ≤ L using a
vocabulary V with v = |V| entries.

Throughout, (x, y) ∼ D denotes a sample from the
data distribution and ℓ : Y × Y → R≥0 is the task loss
(cross–entropy by default).

Hypothesis space. Given a family of sequence models F
(e.g., Transformers), the tokenizer–induced hypothesis class
is

HT ; :=; , f ◦ T | f ∈ F ,. (1)

3.2. Motifs and Preservation

LetM = m1, . . . ,mK ⊆ A≤L be a catalogue of conserved
motifs. For x ∈ X writeM(x) for motifs present in x.

Definition 3.1 (k–Token Motif Preservation). A tokenizer
T is k–token motif–preserving if every motif instance lies
inside at most k consecutive tokens:

∀x,m ∈M(x) =⇒ ∃i,m ⊆ zizi+1 . . . zi+k−1,

T (x) = (z1, . . . , zM ).
(2)
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The special case k = 1 forbids motif fragmentation entirely.

Distortion metric. We measure violation severity by the
motif–distortion rate

δT ; :=;Ex∼D

[ 1

|M(x)|
∑

m∈M(x)

1m ̸⊆ T (x)
]
. (3)

3.3. Compression–Preservation Trade–off

Tokenization also compresses: the compression ratio on x
is CT (x) = L/M . We track its expectation

CT ; :=;Ex∼D[CT (x)]. (4)

A useful tokenizer should preserve motifs (δT !≪ 1) while
achieving at least c–fold compression (CT ! ≥ c > 1).

Biologically Constrained Tokenizer Learning is defined
by

T ⋆; =; argmin
T

; δT s.t. CT ≥ c. (5)

3.4. Capacity Control

To quantify the inductive bias imposed by T we bound the
empirical Rademacher complexity (Bartlett & Mendelson,
2002) of (1).

Proposition 3.2 (Capacity Shrinkage). Assume ℓ is
1–Lipschitz and every f ∈ F processes sequences of length
≤ C−1

T L. For a sample of size n,

R̂n(HT );≤;C−1/2
T , R̂n(F). (6)

Consequently, compression reduces statistical capacity
while motif preservation (δT ) leaves it unchanged.

3.5. Generalization Under Domain Shift

Let Ds and Dt be source and target domains. Extending the
Ben–David bound with motif structure yields

Theorem 3.3 (Motif–Aware Domain Bound). For any h =
f ◦ T ∈ HT ,

Rt(h);≤;Rs(h) + dM(Ds,Dt) + α, δT + λ, (7)

where dM is a motif discrepancy, α the maximum motif
length, and λ the combined Bayes risk. Lowering δT tight-
ens the bound multiplicatively with motif length. (Ben-
David et al., 2010)

Cross–domain gap. Rewriting (7) in empirical form con-
nects the cross–domain generalization gap CDG(T ) =
Rt(h) − Rs(h) to δT and the motif discrepancy. Hence
minimizing δT is instrumental for robustness.

Figure 2. Intuitive illustration of how increasing motif distortion
δt raises the cross-domain generalization gap (CDG) predicted by
Eq. (7). Coefficients are chosen for visualisation only.

3.6. Unified Objective

Combining (6) and (7), we obtain a single scalar objective
balancing compression and preservation:

min
T

;α, δT︸ ︷︷ ︸ domain; ; +; ;β,C
−1/2
T︸ ︷︷ ︸ capacity s.t. CT ≥ c.

(8)
The hyper–parameter β trades statistical complexity against
motif integrity.

3.7. GeneticBPE as Greedy Approximation

GeneticBPE performs merges scored by

score(ab) = freq(ab) + λ, bonus(ab)− µ,penalty(ab),
(9)

where the bonus rewards motif–internal pairs and the penalty
discourages motif boundary splits. With µ > λ each merge
is guaranteed not to increase δT , and the process stops when
|V| = v or CT = c, thereby greedily approximating (5).

Proposition 3.4 (Termination). Given λ, µ > 0 with µ > λ,
GeneticBPE terminates after at most v − |A| merges while
satisfying CT ! ≥ c and non–increasing δT .

In the next section, we introduce GeneticBPE, our algo-
rithmic instantiation of a biologically-informed tokenizer
that approximates T ∗ by enforcing motif-preservation con-
straints and optimizing compression under distributional
robustness.

4. Methodology
In this section, we detail our proposed tokenization strategy,
GeneticBPE, which augments classical byte pair encoding
(BPE) with biological inductive priors and generalization
aware constraints. The central goal is to construct a to-
kenizer that preserves biologically relevant subsequences
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Figure 3. Overview of the GeneticBPE construction pipeline. (a) Starting from a character-level corpus, conserved miRNA motifs
are annotated as colored spans. (b) For every adjacent token pair the algorithm computes the merge score freq(ab) + λ bonus(ab)−
µ penalty(ab) (Eq. 9), rewarding merges that fall inside motifs and penalizing those that would cross motif boundaries. (c) The highest-
scoring pair is greedily merged only if the operation leaves all motif spans intact, thereby guaranteeing a non-increasing distortion rate δT .
(d) the resulting token for example <UGUUGA> retains the conserved 3-tail motif.

(e.g., motifs) and improves transformer model generaliza-
tion under domain shift (Bailey et al., 2009; D’haeseleer,
2006).

4.1. Motivation and Overview

Traditional subword tokenizers such as BPE and Unigram
are agnostic to biological context—they prioritize compres-
sion or likelihood without accounting for the functional
semantics of nucleotide patterns. GeneticBPE integrates
two core principles:

1. Motif Preservation: Token merges are restricted to
avoid fragmenting known biologically conserved mo-
tifs.

2. Generalization-Aware Compression: The tokeniza-
tion process jointly optimizes motif integrity and com-
pression efficiency.

4.2. GeneticBPE Construction Process

Let Ds = {xi}Ni=1 denote the training corpus of miRNA se-
quences over the nucleotide alphabet A = {A,U,C,G}. Let
M = {m1,m2, . . . ,mK} denote a database of known mo-
tifs annotated via expert sources (e.g., miRBase secondary
structure annotations, conserved seed regions). Each motif
m ∈M is a nucleotide subsequence.

Initialization: We begin with a base vocabulary V0 = A
and tokenize each xi as a sequence of characters.

Modified Merge Score: In each BPE merge step, Genet-
icBPE computes a joint score as mentioned in Eq.9

Motif Tracking: To detect violations, we maintain a span
map over all motifs found inDs to track whether a candidate
merge would fragment an instance of m ∈M.

Compression Constraint: To prevent over-fragmentation
(too many small tokens), we stop merging only when a
minimum average compression ratio cmin is achieved.

4.3. Training Objective

Given a fixed tokenizer T (e.g., GeneticBPE, BPE), we train
a transformer model f to minimize:

L = E(x,y)∼Ds
[ℓ(f(T (x)), y)] (10)

where ℓ(·) is the classification loss (cross-entropy), and
T (x) is the tokenized form of x. Note that T is learned
independently before model training. The pseudocode for
the proposed GeneticBPE is detailed in 1.

4.4. Implementation Notes

• Motif boundaries are annotated using an efficient prefix
trie for fast substring lookup during token merges.

• Token merges and motif overlaps are tracked via span
trees using suffix arrays for low-overhead computation.

• GeneticBPE supports optional integration of soft struc-
tural priors via RNAfold confidence scores.

4.5. Complexity and Scalability

The GeneticBPE merge computation requires O(K +N ·
L) per iteration, where K is number of motif spans, N is
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Algorithm 1 GeneticBPE tokenizer Construction
Require: CorpusDs, Motif SetM, Target Vocabulary Size

v, Weights λ, µ, Min Compression cmin

1: Initialize V ← A; Tokenize all xi ∈ Ds into chars
2: Build motif span index for all m ∈M over corpus
3: while |V| < v and Compression < cmin do
4: Count all adjacent token pairs ab in corpus
5: for all pairs ab do
6: Compute motif bonus(ab) ← count of ab inside

motif spans
7: Compute motif penalty(ab)← count of ab cross-

ing motif boundaries
8: score(ab) ← freq(ab) + λ · motif bonus − µ ·

motif penalty
9: end for

10: Select merge s∗ = argmax score(ab)
11: Replace all s∗ pairs with new token in corpus
12: Update vocabulary: V ← V ∪ {s∗}
13: Update motif span index
14: end while
15: return tokenizer TV

number of sequences, and L is average sequence length. For
moderate vocab sizes (v ≤ 1024), runtime is practical for
datasets with ≤100K sequences.

5. Experiments and Results
We evaluate the impact of biologically-informed tokeniza-
tion on transformer-based miRNA classification under do-
main shift and structural constraints. Specifically, we test
whether GeneticBPE improves generalization, compression,
and motif preservation compared to standard tokenizers.

5.1. Dataset and Task Setup

We utilize mature miRNA sequences from MirGeneDB
v3.0 (Clarke et al., 2025), a curated repository of 20,861
miRNA samples across 114 metazoan species. Each sample
is annotated with species, family ID, and arm label (5p/3p).
From this corpus, we construct two benchmark tasks:

• BurBary (Binary): Classify whether a miRNA is from
a conserved family (present in ≥ 2 species) or a non-
conserved one. Total: 20,861 sequences, 52% con-
served.

• MultiTop50 (Multiclass): Classify among the 50 most
frequent families, including MIR-31, MIR-375, and
MIR-219.

The annotations, including features like seed regions and
other conserved elements crucial for miRNA function are
validated by the MirGeneDB maintainers (supported by

institutions like the Tromso Research Foundation and
integrated with RNAcentral) provides a high degree of
confidence in the biological relevance and accuracy of the
motif annotations we leveraged. We therefore relied on these
high-quality, biologically validated annotations as provided
by the database creators to guide GeneticBPE.

Each task is split into 80/10/10 train/validation/test strati-
fied splits. A species-wise domain split (e.g., Human →
Zebrafish) is used to evaluate cross-species generalization.

5.2. Tokenizer Variants and Models

We compare six tokenizers: Char-Level, k-mer (3,4), Uni-
gramLM, BPE, and GeneticBPE. All are constructed with
vocab size 512 and frozen during training. Sequences are
processed with each tokenizer before training a 4-layer
Vanilla Transformer (128-dim, 4-heads) (Vaswani et al.,
2017), optimized with Adam (3× 10−4) and early stopping.

5.3. Tokenizer Construction Time

Beyond downstream model performance, an important prac-
tical consideration is the time required to construct each
tokenizer. On our experimental setup targeting a vocab-
ulary size of 512, the observed construction times were:
Char-Level 0.2 minutes, 3-mer 0.33 minutes, 4-mer 0.35
minutes, UnigramLM 2.1 minutes, BPE 1.8 minutes, and
GeneticBPE 4.7 minutes. While GeneticBPE’s construction
takes moderately longer than standard BPE (approximately
2.6 times) due to the additional motif-aware processing, this
is a one-time upfront cost. Given that this preprocessing step
is performed only once, the observed time of approximately
5 minutes is considered highly practical, especially when
weighed against the subsequent gains in model accuracy
and generalization.

5.4. Overall Performance and Compression

Table 1 presents a detailed comparison of all tokenizers on
both binary(BurBary) and multiclass(MultiTop50) miRNA
classification tasks. The table reports accuracy, cross-
domain generalization gap (CDG), motif distortion rate,
compression ratio, and the percentage of motifs preserved
for each tokenizer. These metrics collectively capture the
essential trade-offs in biological sequence modeling: predic-
tive performance, robustness to domain shift, motif fidelity,
and computational efficiency.

Note: It is important to note that the Char-Level baseline,
while achieving perfect motif preservation (motif distortion
rate of 0 and 100% motifs preserved), does so by treating
each nucleotide as a separate token. This results in no com-
pression (compression ratio of 1.00), making it a useful
lower bound reference but not a practical tokenization strat-
egy for large-scale modeling. CharLevel is included as a
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baseline for comparison, but it is not a true tokenizer in the
sense of subword or motif-aware methods.

Analysis. Table 1 directly highlights that GeneticBPE
achieves the highest accuracy and the lowest CDG across
both tasks, while also minimizing motif distortion and main-
taining a high compression ratio. This demonstrates that it is
possible to preserve biologically meaningful motifs without
sacrificing computational efficiency. Notably, GeneticBPE
outperforms all other compressed tokenizers, showing that
integrating biological priors into the tokenization process
leads to superior generalization and motif integrity, espe-
cially under domain shift.

5.5. Effect of Vocabulary Size and Motif Weight

Analysis. Table 2 explores the effect of varying the motif
weight λ and vocabulary size on GeneticBPE’s performance.
The results reveal a clear trade-off: increasing λ improves
motif integrity and generalization up to an optimal point
(λ = 2.5), beyond which further increases yield diminish-
ing returns and reduced compression. The default setting
(λ = 2.5, |V| = 512) achieves the best balance, maxi-
mizing accuracy and motif preservation without sacrificing
efficiency. Enlarging the vocabulary to 1024 offers only
marginal improvements in motif distortion, with no signifi-
cant gain in accuracy, suggesting that GeneticBPE is robust
to vocabulary size within a practical range. These findings
underscore the importance of carefully tuning motif-aware
constraints to achieve optimal performance.

5.6. Cross-Species Generalization

Table 3 presents cross-species generalization results, fo-
cusing on three representative target organisms: zebrafish,
mouse, and fruit fly. These species were selected to span a
range of evolutionary distances from human, thereby pro-
viding a rigorous test of domain shift. For each tokenizer,
we report both the classification accuracy and the cross-
domain generalization gap (CDG) when models are trained
on human miRNAs and evaluated on each target species.
The accuracy reflects the model’s predictive performance,
while the CDG quantifies the drop in performance due to
domain shift. The results show that GeneticBPE consis-
tently achieves the highest transfer accuracy and the lowest
CDG across all target species, underscoring its robustness to
evolutionary divergence. This improvement is particularly
pronounced for more distant species such as Drosophila
(fly), where GeneticBPE outperforms standard BPE and
UnigramLM by a substantial margin. These findings con-
firm that motif-preserving tokenization not only enhances
within-domain performance but also enables more reliable
generalization across species boundaries.

Analysis. Table 3 provides a detailed view of cross-species
generalization for all tokenizers, reporting both accuracy
and CDG for each target species. GeneticBPE consistently
achieves the highest transfer accuracy and the lowest gen-
eralization gap, especially for more evolutionarily distant
species. This highlights the method’s robustness to domain
shift and its ability to preserve functional information across
species boundaries.

5.7. Motif Fidelity and Error Breakdown

Analysis. As shown in Table 4, GeneticBPE strikes a bal-
ance between preserving biologically critical motifs and
achieving compression. Compared to BPE, it reduces motif
split rate by 80%, which correlates with fewer false nega-
tives in conserved miRNA detection.

6. Discussion
6.1. Biological priors as inductive bias

Our results show that a tokenizer can be an inductive
bias: by constraining merge operations to respect annotated
miRNA motifs, GeneticBPE delivers higher accuracy and
a markedly smaller cross–domain generalization gap than
character–, k–mer– or likelihood driven subword schemes.
These gains manifest even when the underlying transformer
architecture and training budget are held constant, indicating
that the improvements stem from the representation itself
rather than from additional model capacity or data. The
formal analysis in Section 3 supports this intuition, link-
ing the expected motif-distortion rate δT to both statistical
capacity and an upper bound on target–domain risk. Em-
pirically, lower δT correlates with fewer false negatives on
conserved families, reinforcing the practical value of motif
preservation.

6.2. Choices and settings for the penalty weight µ,
especially in relation to λ

The penalty weight µ in the merge score function plays a
crucial role in enforcing motif preservation. Proposition 3.4
states that for a non-increasing motif distortion rate δT , we
require µ > λ.

In our experiments, µ was not extensively tuned as a hy-
perparameter in the same way as λ. Instead, it was set to a
value significantly larger than the maximum anticipated λ to
strongly disincentivize motif boundary splitting. A common
heuristic we employed was to set µ such that the penalty
term µ · penalty(ab) would decisively outweigh any poten-
tial gain from freq(ab)+λ ·bonus(ab) if a merge attempted
to cross a motif boundary (where penalty(ab) ≥ 1). For
instance, if λ was being explored in the range [1, 5], µ might
be set to a value like 10 or 20.
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Table 1. Overall performance on BurBary (binary) and MultiTop50 (multiclass) miRNA classification. GeneticBPE achieves the highest
accuracy, the lowest cross-domain generalization gap (CDG), and the smallest motif-distortion among compressed tokenizers, while still
tripling sequence compression.

Tokenizer Accuracy (%) CDG (%) Motif Dist. Compression Motifs Preserved (%)

Binary Multi Binary Multi Rate ↓ Ratio ↑
Char-Level 84.2 62.4 8.9 12.1 0.00 1.00 100
k-mer (3) 85.1 64.0 9.4 11.3 0.17 2.3 83
k-mer (4) 85.6 65.1 8.7 10.8 0.15 2.9 85
UnigramLM 86.5 66.7 7.2 9.9 0.22 3.0 78
BPE 87.4 67.9 6.8 9.4 0.25 3.4 75
GeneticBPE 90.8 71.2 3.6 6.2 0.05 3.1 95

Table 2. Ablation of GeneticBPE’s motif weight λ and vocabulary size. On the binary task a sweet spot at λ=2.5, |V|=512 maximises
accuracy and motif integrity without sacrificing compression; over-biasing (λ≥5) or simply enlarging the vocabulary yields diminishing
returns.

Setting Acc (%) CDG Motif Dist. Comp. Ratio Notes

BPE (512) 87.4 6.8 0.25 3.4 λ = 0
GeneticBPE (λ =1.0) 89.2 4.3 0.11 3.2 Mild motif bias
GeneticBPE (λ=2.5) 90.8 3.6 0.05 3.1 Default setting
GeneticBPE (λ=5.0) 89.4 3.9 0.06 2.7 Over-biasing
GeneticBPE (vocab=1024) 90.1 3.9 0.04 3.8 Large vocab

Table 3. Cross-species generalization: accuracy (%) and cross-domain generalization gap (CDG, in %) for each tokenizer. Models are
trained on human miRNAs and tested on three divergent organisms.

Tokenizer Zebrafish Acc. Zebrafish CDG Mouse Acc. Mouse CDG Fly Acc. Fly CDG

Char-Level 73.2 10.7 70.1 13.8 64.8 19.1
k-mer (3) 78.0 8.2 74.0 11.0 68.0 15.5
k-mer (4) 80.5 7.5 77.2 10.2 70.0 15.0
UnigramLM 82.0 6.5 78.5 9.0 71.5 13.5
BPE 79.2 8.4 75.5 12.1 69.0 16.8
GeneticBPE 86.3 3.8 83.5 5.6 75.8 8.9

Table 4. Error decomposition by motif integrity for all tokenizers.

Tokenizer Motif Integrity True Pos. False Neg. Motif Split Rate

Char-Level 100% 89.2 10.8 0.00
k-mer (3) 92.0% 90.1 9.9 0.12
k-mer (4) 93.5% 90.5 9.5 0.10
UnigramLM 80.2% 87.0 13.0 0.20
BPE 75.1% 85.5 14.5 0.25
GeneticBPE 95.3% 91.7 8.3 0.05

The rationale is that the ‘penalty(ab)‘ term is binary in its
simplest form (0 if no boundary is crossed, 1 if a boundary
is crossed). To ensure the condition µ > λ from Proposition
3.4 robustly prevents motif-splitting merges unless no other
merges are viable (or to hit compression targets), µ must
be sufficiently dominant. The primary goal was to ensure
that merges splitting motifs would almost always have a
lower score than merges internal to motifs or merges in non-
motif regions. Future work could explore more adaptive or
learned schemes for µ, but for this study, a sufficiently large

fixed value relative to λ proved effective.

6.3. Handling overlapping motifs, or motifs nested
within larger motifs, during the merge process

Essentially, the system tries to respect all annotated bound-
aries. If respecting a smaller, nested motif’s boundary leads
to a higher overall merge score (due to avoiding a large
penalty) than a merge that respects only a larger, encom-
passing motif but splits the nested one, the former will be
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preferred. The granularity of preservation is thus tied to the
granularity of the motif bankM.

6.4. Scenarios where the motif databaseM might be
incomplete or contain noisy annotations

This is a critical consideration and a practical challenge.

1. Incomplete Motif Database: If a biologically relevant
motif is not present inM, GeneticBPE will be ”blind”
to it. The region containing this unknown motif will be
tokenized based purely on frequency, similar to stan-
dard BPE. This could lead to its fragmentation, and the
specific benefits of GeneticBPE for that motif would
be lost. The overall performance would then depend
on the importance and prevalence of these unannotated
motifs.

2. Noisy Annotations (False Positives): IfM contains
sequences incorrectly labeled as motifs (false posi-
tives), GeneticBPE will attempt to preserve these non-
functional or erroneously defined segments. This could
lead to:

• Suboptimal tokenization: Forcing preservation
of a ”false” motif might prevent more natural,
frequency-based merges that would otherwise oc-
cur.

• Less efficient compression: Tokens corresponding
to false motifs might be longer or less frequent
than optimal.

• Potentially misleading inductive bias for the
downstream model if it learns to associate these
false motifs with specific outcomes.

Robustness Expectation: We expect GeneticBPE’s robust-
ness to be moderately sensitive to the quality ofM.

• For incompleteness, performance might gracefully de-
grade towards that of standard BPE in unannotated
regions.

• For noise (false positives), there’s a higher risk of neg-
ative impact, as the algorithm actively enforces preser-
vation.

6.5. Limitations

Dependence on curated motifs. GeneticBPE assumes
access to a high–quality catalogueM of conserved motifs.
Although public resources such as miRBase (Griffiths-Jones,
2006) and MirGeneDB cover major seed regions, rare or
recently discovered motifs may be missing, potentially lead-
ing to fragmentation and degraded performance on orphan
families.

Scope of evaluation. Experiments were confined to ma-
ture miRNA sequences (18 nt to 25 nt) and to classification
objectives. Longer transcripts, structural prediction tasks,
and language–model pre-training were not investigated due
to computational constraints. Consequently, the current find-
ings may not translate unchanged to messenger RNA or to
whole-genome corpora.

Computational overhead. Table 1 shows that our to-
kenizer triples the average compression ratio relative to
character-level encoding and therefore reduces input length
and wall-time proportionally in practice (cf. Section 4.5,
which reports that construction remains “practical for
datasets with ≤ 100K sequences”) with a construction time
of approximately 5 minutes on our experimental dataset,
compared to under 2 minutes for standard BPE. While this
is a modest one-time cost, scaling curves on gigabase-scale
genomes would provide a clearer picture of GeneticBPE’s
scaling behaviour.

6.6. Future works

Firstly, replacing the static motif catalogue with differen-
tiable motif detectors that update merge scores on-the-fly
would let the tokenizer uncover previously unknown func-
tional elements during pre-training, turning motif discov-
ery into a self-supervised auxiliary task. Second, system-
atically evaluating the method on a broader spectrum of
RNA and DNA corpora including long non-coding RNAs,
ribosomal RNA, enhancer–promoter sequences, and whole
genome masked language-modelling benchmarks will test
its robustness across sequence lengths and biological con-
texts. Third, tokenizer model co-training could close the
representation gap by jointly optimizing vocabulary and
network parameters under a regularizer that penalises motif
distortion, similar in spirit to SentencePiece but enriched
with biological priors. Fourth, cross-modal integration with
secondary structure embeddings or thermodynamic fold-
ing profiles may yield hybrid tokens that capture both se-
quence and structural information, further improving down-
stream generalization. Finally, to enable deployment in
resource-constrained settings, future work should explore
byte-level motif tags or hash-based vocabulary compres-
sion schemes that preserve motif integrity without inflating
sequence length, making GeneticBPE practical for edge
devices and clinical pipelines.

Impact Statement
This study introduces a biologically-informed tokenization
method that incorporates structural domain knowledge di-
rectly into the sequence representation process. By aligning
the tokenization mechanism with known biological motifs,
the proposed GeneticBPE framework enhances the robust-
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ness and generalization ability of models in the context of
microRNA classification tasks.

The broader impact of this work lies in its redefinition of
tokenization as a meaningful modeling choice rather than a
preprocessing convenience. This perspective is particularly
valuable in bioinformatics applications where structure, con-
servation, and functional motifs are critical. GeneticBPE
provides a framework for encoding these properties, poten-
tially improving model performance in cross-species ge-
nomic analysis, diagnostics, and functional annotation.

Additionally, the methodology introduced in this paper may
influence other structured domains, such as proteomics or
regulatory genomics, where the integration of expert knowl-
edge into sequence representation is both feasible and bene-
ficial. No foreseeable negative societal impacts have been
identified at this time.

Conclusion
This paper presents GeneticBPE, a motif-aware tokeniza-
tion algorithm that incorporates biological priors into the
representation of microRNA sequences. The method ex-
tends classical byte pair encoding by introducing a biologi-
cally motivated merge scoring mechanism that prioritizes
the preservation of conserved and functional subsequences.
Theoretical analyses demonstrate that tokenization func-
tions can act as inductive biases by defining the hypothesis
space and influencing model generalization under domain
shift. Empirical evaluations on binary and multiclass classi-
fication tasks confirm that GeneticBPE achieves improved
accuracy, reduced cross-domain generalization gaps, and
better motif preservation compared to existing tokenization
strategies. These results suggest that the design of tokeniza-
tion strategies in biological sequence modeling should be
guided by domain-specific structural knowledge. Future re-
search will focus on extending this approach to other types
of non-coding RNAs, integrating unsupervised motif dis-
covery methods, and exploring the role of tokenization in
transfer learning across evolutionary distances.
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