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ABSTRACT

Although transformers demonstrate impressive capabilities in a variety of tasks,
the fairness issue remains a significant concern when deploying these models.
Existing works to address fairness issues in transformers require sensitive labels
(such as age, gender, etc.), which can raise privacy concerns or violate legal reg-
ulations. An alternative way is through fairness without demographics. However,
existing works that improve Rawlsian Max-Min fairness may impose overly re-
strictive constraints. Other methods that use auxiliary networks could be parame-
ter inefficient. In this paper, we present a new approach to debiasing transformers
by leveraging their inherent structure. By reconsidering the roles of important
components (queries, keys, and values) in the attention mechanism, we introduce
a simple yet effective debiasing strategy from two perspectives: 1) Grounded in
theoretical analysis, we normalize and apply absolute value operations to queries
and keys to minimize the bias in attention weight allocation; 2) We reduce the bias
within values through local alignment via contrastive learning. Throughout the
entire process, our approach does not require any sensitive labels. Furthermore,
to enhance memory efficiency in the training phase, we propose a strategy that de-
biases only the last encoder to improve fairness in pre-trained models. We conduct
experiments in computer vision and natural language processing tasks and show
that our method is comparable and even outperforms the state-of-the-art method
with substantially lower energy consumption.

1 INTRODUCTION
Transformer-based models demonstrate immense power and achieve remarkable success in both
computer vision and natural language processing fields. The transformer architecture is based on
the concept of self-attention, which allows the model to weigh the importance of different tokens or
patches of the input sequence when making predictions (Vaswani et al., 2017).

Fairness is a crucial factor to consider in machine learning models. For example, Gong et al. (2021)
highlight the potential risk of applying biased face recognition systems in law enforcement. Al-
though transformer models exhibit outstanding performance, Sudhakar et al. (2023), Qiang et al.
(2023), and Baldini et al. (2021) observe that transformers make biased predictions in vision and
NLP domains. Addressing fairness issues in transformers is a significant but challenging task. Our
work focuses on mitigating biases within transformer architectures.

Existing works attempt to address fairness issues in transformers in two ways: targeted alignment
for debiasing transformers (TADeT) and debiasing self-attention (DSA). Sudhakar et al. (2023) pro-
posed to debias transformer by aligning “Query” in different sensitive groups within the same task.
DSA (Qiang et al., 2023) generates adversarial examples by attacking spurious features, and aligns
attention weight between training samples and adversarial examples. However, these methods ne-
cessitate sensitive attributes (such as gender and race) to improve fair transformers. Collecting such
information is not only costly but may also raise privacy concerns.

Several studies (Hashimoto et al., 2018; Lahoti et al., 2020; Liu et al., 2021; Creager et al.,
2021; Chai et al., 2022) propose to resolve general fairness issues without sensitive information.
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Hashimoto et al. (2018) propose to optimize the worst group to achieve equal utility in different sen-
sitive groups. However, this method is likely to be affected by outliers, leading to a significant drop
in performance. Lahoti et al. (2020) share the same idea to solve fairness issues but use a reweight-
ing strategy. However, their method incorporates adversarial training, which introduces instability.
Moreover, improving the worst-performing group imposes a strong constraint on the objective func-
tion. Liu et al. (2021) suggest a method where a network is trained twice, emphasizing samples
misclassified by the initial model. However, this double-training approach lacks efficiency and runs
counter to green deep learning initiatives (Xu et al., 2021). Creager et al. (2021) propose a method
that is also a two-stage method, where the first step is to perform environment inference, followed
by leveraging a robust optimization method to train the network. The limitation here is that their
environment inference relies on the Bernoulli distribution, making it applicable only to binary sensi-
tive labels. A recent study (Chai et al., 2022) tackles fairness without demographics via knowledge
distillation. However, this approach involves a teacher network that is significantly larger than the
student network for making predictions, thus being time-consuming and parameter-inefficient.

Additionally, large-scale pre-trained models also face fairness issues. Many existing methods require
tuning all the parameters to achieve a balance between fairness and accuracy, but updating a large
number of parameters can be prohibitively expensive (Petersen et al., 2021).

In summary, existing works of fair transformers require sensitive attributes. Existing methods for
fairness without demographics either need a large auxiliary network or lay a strong constraint. For
addressing fairness concerns in pre-trained models, tuning all parameters lacks efficiency and ne-
cessitates high-demand computational resources.

To resolve the above challenges, we propose a novel approach to tailoring the fairness considera-
tions to the transformer encoder. Instead of debiasing the entire representation of the transformer
encoder which places significant constraints on the representation, we propose to debias each com-
ponent (Query, Key, and Value) in the attention formulation. This approach, derived from theoretical
foundations, presents a simple yet effective strategy to address the fairness concern in transformers
without the necessity of auxiliary networks or iterative training.

We debias from two perspectives within the attention mechanism.
• Attention allocation: Drawing inspiration from theoretical analyses, we find that normal-

izing and applying the absolute value to q and k reduces discrepancies in attention weight
between different sensitive groups.

• Local alignment on value: We mitigate bias in v through local alignment. This is ac-
complished with a supervised contrastive learning approach, which encourages the core
segments from different sensitive groups to be similar.

We conduct extensive experiments on real-world datasets, encompassing various classification tasks
in computer vision and natural language processing (NLP) fields. Furthermore, we provide a GPU
memory-efficient solution to address fairness in pre-trained models. We append a fairness-aware
encoder on these models and only train that encoder. We demonstrate its efficacy in enhancing
fairness within pre-trained models.

We summarize our contributions as follows:
• To the best of our knowledge, we are the first to enhance fairness in transformers without

demographics.

• Our algorithm achieves effective results in both computer vision and NLP domains.

• Our method could plug in a pre-trained model to improve fairness without the need for
re-training, resulting in improved memory efficiency.

2 RELATED WORK
2.1 FAIRNESS INTERVENTION
Existing fairness intervention strategies can be categorized as pre-processing, in-processing, and
post-processing (Wang et al., 2024). Pre-processing methods mitigate biases by optimizing the data,
including sampling (Qraitem et al., 2023; Kamiran & Calders, 2012; Chakraborty et al., 2020; Yao &
Liu, 2023), transformation (Yao et al., 2022; Calmon et al., 2017), and augmentation (Zietlow et al.,
2022; Jang et al., 2021; Wang et al., 2020; Cheong et al., 2022). Nonetheless, the methods discussed
incur significant costs due to the necessity for human annotation of sensitive attributes (Chen et al.,
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2024); Post-processing methods adjust outputs directly to meet fairness objectives, with various ap-
proaches such as flip prediction (Hardt et al., 2016), score transformation (Alghamdi et al., 2022;
Wei et al., 2021), threshold adjustment (Jang et al., 2022; Xian et al., 2023); In-processing methods
are integrated into the model design and training phase, fostering the development of fair models
(Wan et al., 2023). These can be classified into fair regularizer (Agarwal et al., 2018; Kamishima
et al., 2011; Zemel et al., 2013; Jiang et al., 2020; Zafar et al., 2019; Lowy et al., 2021), adversarial
learning (Zhang et al., 2018; Wadsworth et al., 2018), disentanglement (Sarhan et al., 2020; Lo-
catello et al., 2019; Creager et al., 2019) an so on. In this work, we adopt an in-processing strategy
because it offers more flexibility (Song et al., 2024) and allows us to directly address fairness issues
during the training process. Compared to existing in-processing methods, our approach leverages
the unique structure of the transformer and incorporates a tailored design to specifically address
fairness concerns within these architectures.
2.2 FAIRNESS WITHOUT DEMOGRAPHICS
Distributionally robust optimization (DRO) (Hashimoto et al., 2018) achieves Rawlsian Max-Min
fairness by optimizing the risk of the worst-case samples. Adversarially reweighted learning (ARL)
(Lahoti et al., 2020) aims to optimize the performance of computationally identifiable samples by
reweighting them, thus improving the worst-case performance. Knowledge distillation (KD) (Chai
et al., 2022) leverages the soft labels generated by a teacher network and combines them with hard
labels to debias a student model. Just Train Twice (JTT) (Liu et al., 2021) follows a reweighting
paradigm, emphasizing error samples in the training set by giving them elevated weights. The
training phase is split into two stages: an Empirical Risk Minimization (ERM) stage, succeeded by
a reweighted ERM stage. Environment Inference for Invariant Learning (EIIL) (Creager et al., 2021)
is also a two-stage method. The initial step employs a trained network to infer group labels, and the
second step utilizes a robust optimization strategy to re-train the network. Learning from Failure
(LfF) (Nam et al., 2020) involves training two neural networks concurrently: one with amplified
bias and another focusing on samples that contradict this bias. Through this process, the second
network is conditioned to correct the errors made by the first.
2.3 FAIRNESS-AWARE TRANSFORMERS
Recently, Sudhakar et al. (2023) and Qiang et al. (2023) aim to solve fairness issues in vision trans-
formers. Sudhakar et al. (2023) proposed to use an adversarial training technique to hide the sensi-
tive information in the classification token. Plus, they apply L2 Loss to penalize query vectors with
large discrepancies among different sensitive groups with the same target label. However, debias-
ing on query may not be sufficient for resolving fairness issues in transformers, and the introduced
adversarial training may incur instability issues. Qiang et al. (2023) propose a two-stage method to
mitigate bias in vision transformer (ViT). They first identify sensitive related patches and use adver-
sarial attacks to perturb those patches. Next, they train a ViT using both the original training set and
the attacked dataset to perform attention weight alignment. However, this work hypothesizes that
the sensitive attribute must be identifiable and has no overlap with target related patch. This laid
a too strong constraint and may have a negative effect on the model performance. Moreover, both
existing methods require sensitive attributes during the training phase.
2.4 CONTRASTIVE LOSS
The contrastive loss has been proven to be more robust (Xue et al., 2022) and has a better generaliza-
tion performance than cross-entropy loss (Khosla et al., 2020). Supervised contrastive loss (Supcon)
(Khosla et al., 2020) utilizes label information to pull together normalized embeddings of the same
class and push apart normalized embeddings from different classes. Differing from self-supervised
representation learning (Chen et al., 2020; Tian et al., 2020), SupCon selects positive samples from
the same class within a mini-batch, leading to many positive and negative samples for each anchor,
which enhances performance.
3 METHOD
Problem setup We denote a dataset D : (X,Y,A) ∈ X × Y × A, with X as features, Y being
target labels, and A being sensitive attributes. Our goal is to learn a classifier fθ : X 7→ Ŷ , where Ŷ
is a prediction labels that satisfies fairness criteria. For example, Demographic parity (DP) requires
Ŷ ⊥ A, Equal opportunity (EOp) requires Ŷ ⊥ A|Y = 1 , and Equalized odds (EOd) requires
Ŷ ⊥ A|Y = y, y ∈ {0, 1}. We focus on the setting where we do not have access to sensitive
attributes in the training set.
Background and notation The informative capability of the transformer model can be attributed
to its attention mechanism. In a transformer, an input image (or a sequence in NLP) is divided into
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patches (tokens in NLP). These patches or tokens are first processed through an embedding layer.
Subsequently, they undergo a transformation in the encoder through three linear modules, which
map them to query, key, and value (Vaswani et al., 2017; Dosovitskiy et al., 2020). In this work,
we denote Q ∈ RN×dk as query, K ∈ RN×dk as key, and V ∈ RN×dv as value, where N is the
number of tokens. Additionally, we denote q ∈ Rdk as a query vector corresponding to a patch,
extracted from Q. Similarly, we denote k ∈ Rdk as a key vector, v ∈ Rdv as a value vector. We use
the subscript “cls” as a special symbol to denote a patch or token used for a downstream task. This
notation aligns with the conventions established in (Devlin et al., 2018).
Motivation A recent study (Sudhakar et al., 2023) reveals disparities in average query across dif-
ferent sensitive groups when performing the same task, highlighting discriminatory behavior in the
attention mechanism. In addition, Sudhakar et al. (2023); Qiang et al. (2023) underscore the impor-
tance of the attention mechanism in mitigating bias issues. They empirically validate that addressing
fairness concerns within the attention mechanism is effective and yields good performance compared
to other in-processing methods. Based on these findings, our work focuses on debiasing within the
attention mechanism. To this end, we revisit the attention mechanism (Vaswani et al., 2017):

Attention(Q,K,V) = softmax(
QK⊤
√
dk

)V, (1)

The attention mechanism in equation 1 can be viewed as a two-stage operation: 1) Attention allo-
cation performed by the inner product of Q and K, and 2) Weighted sum over V. We attribute the
discrimination in a transformer-based model to 1) a misallocation of attention weight and 2) biased
representation of V. Based on the observations, we present a two-stage approach that does not
require sensitive attributes to mitigate discrimination in a transformer encoder.
3.1 FAIRNESS-AWARE ATTENTION WEIGHT RELOCATION
Drawing inspiration from the principle of minimizing the statistical distance between representations
of various groups to enhance fairness (Balunović et al., 2021), we introduce a method that aligns the
expected attention weights across diverse demographic groups without accessing sensitive attributes.
To be specific, we denote w = q⊤k√

dk
as attention weight of two tokens (patches). Given the fairness

consideration, our optimization problem can be written as:

min |δ| s.t. δ = E[w|a = 0]− E[w|a = 1] (2)

which is to minimize the disparity in attention weights w between different sensitive groups. Di-
rectly solving equation 2 can be challenging due to the inaccessibility of the sensitive attribute. We
present Theorem 1, which shows that a series operation can effectively reduce the attention alloca-
tion disparity among different sensitive groups.
Assumption 1. Denote P (q|a = i) = N (µq,i,Σq,i), P (k|a = i) = N (µk,i,Σk,i), i ∈ {0, 1}. For
qj ∈ q and kj ∈ k, qj and kj are independent1, j ∈ {1, ..., dk}. The base rate for P (a = 0) = λ0

and P (a = 1) = λ1. The distribution of query q and the key k of a transformer can be written as:

q ∼λ0N (µq,0,Σq,0) + λ1N (µq,1,Σq,1) (3)
k ∼λ0N (µk,0,Σk,0) + λ1N (µk,1,Σk,1) (4)

For a transformer, the expected difference in attention weight is

|δ| = |E[q
⊤k√
dk
|a = 0]− E[

q⊤k√
dk
|a = 1]| = 1√

dk
|

dk∑
j=1

(E[qjkj |a = 0]− E[qjkj |a = 1])|

=
1√
dk
|

dk∑
j=1

(µq,0,jµk,0,j − µq,1,jµk,1,j)|

(5)

δ in a vanilla transformer is unbounded. To resolve this issue, we reference Theorem 1.

Theorem 1. For a vector x = [x1, ..xd] ∈ Rd, define n(x) = [x1−E[x1]√
Var[x1]

, ..., xd−E[xd]√
Var[xd]

], and m(x) =

[|x1|, ..., |xd|]. Given query q ∈ Rdk and key k ∈ Rdk , denote the debiased query and key as
qde = m ◦ n(q) ∈ Rdk , kde = m ◦ n(k) ∈ Rdk . Under Assumption 1, the disparity in debiased
attention weight is upper bounded by

1The independence of qj and kj follows the same assumption presented in (Vaswani et al., 2017).
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|δde| =

∣∣∣∣∣E[qde⊤kde
√
dk
|a = 0]− E[

qde⊤kde
√
dk
|a = 1]

∣∣∣∣∣ ≤√
dk

[(√ 2

πλ0
+

√
λ1

λ0

)2
+
(√ 2

πλ1
+

√
λ0

λ1

)2]
For the attention mechanism in a transformer encoder, as shown in equation 5, the disparity of the
attention weights across different demographic groups has the potential to diverge toward infinity.
Theorem 1 indicates that upon normalization of vectors in Q and K, and taking their absolute
values, the disparity in attention allocation could be bounded at a constant, wherein the constant
incorporates the base rate of the training set and the embedding dimension. Note that when the
sensitive attribution is balanced (e.g. The numbers of male and female samples are the same in
CelebA), the disparity is minimal. We leave the details of the proof for Theorem 1 in the appendix.

In practice, we compute attention weight based on qde and kde, where qde = m ◦ n(q) ∈ Rdk ,
kde = m ◦ n(k) ∈ Rdk , as stated in Theorem 1. During the inference period, we use the mean
and standard deviation estimated from the training set to normalize q and k for the test samples.
To estimate these statistics, we utilize the running mean (e) and running standard deviation (s) as
suggested by (Ioffe & Szegedy, 2015). The running mean is initialized with zero tensors, and the
running standard deviation is initialized with one tensors. We update the running mean and running
standard deviation using a momentum-based approach:

e← (1− p)e+ penorm, s← (1− p)s+ psnorm, (6)

where p is the momentum. we set p = 0.1 by following existing protocols (Ba et al., 2016; Ioffe &
Szegedy, 2015). enorm and snorm are sample mean and sample standard deviation in a batch.
3.2 LOCAL ALIGNMENT ON VALUE
In transformer structures, the value of a token (a patch) can be considered as a local representation.
Tokens (patches) with high attention weights encapsulate core objects, ensuring target-specific infor-
mation encoding. For considerations of fairness, it is crucial that the encoding within these tokens
(patches) remains consistent. Conversely, tokens (patches) with low attention weights, typically
representative of background elements, enhance the richness of the final representation.

In representation learning, Chen et al. (2020) demonstrates that using a nonlinear projection head im-
proves the representation quality. We follow this finding and define a small nonlinear head g : v 7→ z
to map value v to a latent representation z. To mitigate bias in the representation while preserving
the discriminative power, we aim to ensure similar representations within the same target label, while
dissimilar representations from different target labels, regardless of the sensitive attribute. A natural
choice for achieving this objective is through supervised contrastive loss (Khosla et al., 2020):

Lalignment =
∑
i

−1
|P (i)|

∑
p∈P (i)

log
exp(zi · zp/τ)∑

k∈B(i) exp(zi · zk/τ)
, (7)

where i ∈ I = {1, ...,M} is the index of anchor, M is the number of samples in a mini-batch,
B(i) = I\{i}, P (i) = {p ∈ B(i) : yp = yi} is the set of indices of all positive samples in
a mini-batch. τ is a temperature hyperparameter, we set τ = 0.07. We selected the Supervised
Contrastive Loss in accordance with our objective of achieving consistent representations. Though
the recently proposed Fair Supervised Contrastive Loss (FSCL) integrates fairness by specifying
negative samples within an identical sensitive group (Park et al., 2022). FSCL might compromise
the efficacy of contrastive learning and necessitates the inclusion of both target and sensitive labels.

We argue that directly employing supervised contrastive learning on the representation of the entire
image or sentence does not necessarily contribute to fairness. Park et al. (2022) demonstrate that
with the use of Supervised Contrastive Learning (SupCon) to pre-train a ResNet model, issues of
unfairness still persist. We attribute this phenomenon to the correlation between the target and sensi-
tive labels. Since the network contrasts the entire representation, it can still leverage sensitive-related
information. From this observation, we propose an attention-weight guided local value alignment
technique to effectively tackle fairness concerns in the representation. The learning framework con-
tains the following steps:

• We define wi =
qde

cls ·k
de
i√

dk
as the attention weight of the i-th token (patch), W =

{w1, ..., wl}, where l is the number of patches (in vision) or the number of tokens (in NLP).
We select vs∗ with top t attention weights: s∗ = argmaxs

∑
i∈s wi, s.t. wi ∈W, |s∗| = t
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• We concatenate all vs∗ and apply a nonlinear projection head g(·) to map from the value
vector to representations: z = g(vs∗). We then apply supervised contrastive loss equation 7
on z to perform the local alignment of the value vector.

Why does local alignment help fairness: Our method debiases on the attention mechanism using
two steps. The first step of debiasing the attention weight (in section 3.1) is crucial for the second
step (in section 3.2) when selecting patches with high attention weights. Utilizing these debiased
weights from the first step, we select the top t patches based on target label relevance. Incorporating
supervised contrastive learning encourages patches within a class to share similar representations,
focusing on encoding information related to the target label, disregarding sensitive information.
This approach reduces the sensitive information encoded in the representations, thereby enhancing
fairness. It’s important to note that without debiasing the attention weights in the first step, the
technique of local alignment on value in the second step does not contribute to fairness. This is
evidenced by our ablation study in Appendix F, where using local alignment alone barely impacts
fairness. In contrast, combining debiased attention with local alignment achieves optimal results in
terms of fairness.

3.3 LEARNING FRAMEWORK
We present our learning framework in Figure 1. Our learning framework contains two steps: First,
we normalize each q and k and take their absolute values in the last encoder layer to compute atten-
tion weights. This approach ensures that attention allocation is less affected by sensitive attributes.
Next, we select value v associated with top t attention weights to perform local value alignment.
Throughout this process, we do not leverage sensitive attributes. We summarized our method in an
algorithm, detailed in Appendix G.

Figure 1: Our learning framework is illustrated using the vision transformer applied to the CelebA
dataset, specifically for y = blond hair, a = male. An input image is processed through L − 1
transformer encoder layers. In the L-th layer, for each image patch, we normalize and take the
absolute value of the query vectors and key vectors to debias the attention weights. Subsequently,
we select the value vectors corresponding to the top t debiased attention weights, concatenate these
t vectors, and map them to a new representation z using the function g(·). We apply a supervised
contrastive loss to this representation z for contrastive learning.

3.4 GPU MEMORY EFFICIENT COMPUTATION

Last encoder training Even if the pre-trained model is powerful, fairness issues still exist. However,
mitigating bias in large pre-trained models is challenging. Fine-tuning all the parameters is not only
time-consuming but also heavily relies on high-performance computational devices.

The bias is spread in all the layers of encoders. However, as demonstrated by (Kirichenko et al.,
2022), the objective of empirical risk minimization (ERM) training is sufficient for learning the core
features on which a debiasing procedure can be deployed at the very last layer of the network.

Based on this observation, we append our proposed encoder layer to the top of the large pre-trained
model. The pre-trained model is capable of capturing the useful features within an image (Caron
et al., 2021) or sentence (Clark et al., 2019). We employ the pre-trained model as a feature extractor
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and only train our fairness-aware one-layer encoder. This method does not require a GPU with
large memory capacity, because parameters in pre-trained models are not updated. We show it has
maintained utility and improved fairness in section 4.3.

4 EXPERIMENTS
We evaluate our method across various settings. We first explore our method in CV by conducting
experiments on two real-world datasets. We next extend the application of our method to the NLP
field. Additionally, we test the capability of our method to address fairness issues in pre-trained
models with limited resources. Finally, we explore the trade-off between fairness and accuracy. To
reproduce our experiment, we have made the code available at https://github.com/lu876/
Debiasing-Attention-Mechanism-in-Transformer-without-Demographics.

4.1 VISION EXPERIMENTS

Experimental setup We test all methods on two real-world datasets: CelebA (Liu et al., 2015),
and UTK (Zhang & Qi, 2017). For CelebA dataset, we follow the fairness study’s protocol and take
y = Blond Hair, a = Male (Sagawa et al., 2019). UTK dataset is a widely used facial dataset in
fairness research. In this study, we follow the task outlined in (Hong & Yang, 2021). The task is to
predict y = gender, the sensitive attributes are a ∈{White, not White}.
We compare our method with ERM and other state-of-the-art methods without demographics: DRO
(Hashimoto et al., 2018), ARL (Lahoti et al., 2020), KD (Chai et al., 2022), JTT (Liu et al., 2021),
and LfF (Nam et al., 2020). Please refer to the Appendix for detailed implementation information.
In our implementation (Ours), the backbone is the same as the ERM model. We normalize and apply
the absolute value to Q and K in the last encoder layer. We select V with the 2 highest attention
weights to perform the local alignment on value procedure. For vision tasks, all methods are trained
from scratch. We evaluate each method w.r.t accuracy and fairness. For the fairness metric, we use
demographic parity (DP), Equal Opportunity (EOp), and equalized odd (EOd), we leave details on
the computation of fair metrics in the appendix.

We train all methods on a single NVIDIA RTX-3090 GPU with 24576 MiB memory. Each method
is independently trained three times, and we report the mean and standard deviation of the results.
We follow a protocol for efficiency assessment in machine learning and report the overall energy
consumption, which can be computed by (Wang et al., 2023):

E =

∫ H

0

u(t)p0dt (Wh), (8)

where u(t) ∈ [0, 1] (in percent) is the GPU utilization level, H represents the duration of a training
process lasting H hours on a GPU. p0 is the power requirement for the GPU. For an NVIDIA RTX-
3090 GPU, p0 = 350 W. In practice, we sample u(t) per minute.

Vision experimental results Results from experiments on the UTK and CelebA datasets can be
found in Tables 1 and 2. We mark the best results in dark blue, and second-best in light blue.
In the UTK dataset, our method achieves enhanced fairness performance with a slight decrease in
accuracy. In the CelebA dataset, we observe that LfF attains optimal fairness. However, this comes
at the expense of a significant reduction in accuracy, where the base rate for y = 0 is 84.67%,
and the accuracy of LfF is merely 87.97%. JTT demonstrates a balanced performance between
fairness and utility. However, in a smaller-scale dataset, the performance of JTT approaches that of
ERM training. We hypothesize that this is due to JTT’s tendency to overfit the up-weighted training
set. Our proposed method not only yields outcomes that are comparable to those of JTT, but also
effectively mitigates bias existing in smaller datasets. Remarkably, our method requires significantly
lower energy consumption compared to JTT. We provide a visualization of attention weight in the
last encoder layer, please refer to the appendix.

ERM DRO ARL KD JTT LfF Ours
DP ↓ 11.55 ± 0.87 11.73 ± 0.76 13.54 ± 0.31 9.89 ± 1.02 11.29 ± 1.42 11.26 ± 1.07 9.72 ± 0.50
EOp ↓ 10.49 ± 1.38 10.47 ± 1.01 11.94 ± 0.30 8.69 ± 1.26 9.19 ± 0.59 11.55 ± 0.44 8.46 ± 0.46
EOd ↓ 9.50 ± 0.92 9.66 ± 0.71 11.72 ± 0.37 7.97 ± 0.93 9.31 ± 1.35 9.39 ± 0.86 7.76 ± 0.41
ACC ↑ 84.26 ± 0.43 83.37 ± 0.66 80.27 ± 1.53 81.33 ± 0.65 83.68 ± 0.48 80.58 ± 1.03 83.11 ± 1.38
E(Wh) ↓ 26.54 12.05 34.77 55.94 62.20 27.48 27.65

Table 1: Classification results in terms of accuracy (ACC), fairness (DP, EOp, EOd) and energy
consumption (E(Wh)) on UTK dataset: sensitive attribute a = race, label y = gender.
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ERM DRO ARL KD JTT LfF Ours
DP ↓ 16.92 ± 0.55 16.88 ± 0.33 12.74 ± 3.46 17.44 ± 0.59 18.04 ± 0.32 19.95 ± 3.80 16.34 ± 1.94
EOp ↓ 42.82 ± 0.47 40.21 ± 1.94 40.55 ± 4.38 41.93 ± 0.47 36.17 ± 1.08 31.79 ± 9.91 38.01 ± 1.32
EOd ↓ 22.90 ± 0.10 22.57 ± 0.58 21.32 ± 2.65 22.54 ± 0.40 20.26 ± 1.72 19.26 ± 3.55 20.43 ± 0.68
ACC ↑ 94.26 ± 0.06 94.06 ± 0.02 92.55 ± 1.34 94.37 ± 0.28 92.75 ± 0.02 87.97 ± 4.08 94.06 ± 0.43
E(Wh) ↓ 144.86 141.75 251.71 287.58 936.24 611.10 172.18

Table 2: Classification results on CelebA dataset: a = male, y = blond hair.

4.2 NLP EXPERIMENTS

Expermental setup We evaluate our method within the domain of natural language processing
(NLP) utilizing both the HateXplain (Mathew et al., 2021) and MultiNLI (Williams et al., 2017)
datasets. For the HateXplain dataset, the target label, denoted by y, is equal to 0 for normal sentences
and 1 for those that are considered hateful or offensive. In line with (Baldini et al., 2021) for
choosing sensitive attributes, we assess whether a given corpus contains information that pertains
to the attribute of gender (a). For the MultiNLI dataset, we follow (Liu et al., 2021), the task is
to predict the entailment of the two sentences, y={entailed, neutral, contradictory}. The sensitive
labels are a={no negation, negation}.
Pre-trained models have significantly advanced the field of NLP. To ensure an equitable comparison,
we leverage a pre-trained model and augment it with an additional encoder. Specifically, we select
“BERT Large” (Devlin et al., 2018) and “BERT Base” (Devlin et al., 2018) to represent large-scale
(340M parameters) and medium-scale (110M parameters) models, respectively. For NLP tasks, we
exclude ARL, KD, and LfF from the comparison because these methods necessitate an auxiliary
network, making it challenging to align with the specifications of a pre-trained model. We apply
AdamW to optimize the parameters. The learning rates of 10−5 are used for both “BERT Large”and
“BERT Base”. All methods share the same batch size and optimizer configuration. In the baseline
model, the add-on layer is the same as one of the encoder layers of the backbone model.

NLP experimental results Table 3 presents results for the HateXplain dataset. It can be observed
that our model not only achieves optimal fairness but also retains utility without compromising
performance. Remarkably, when the backbone is the BERT base model, our method outperforms
other methods in fairness and utility. Given the relatively small size of the HateXplain dataset,
JTT tends to overfit, leading to suboptimal performance. This observation aligns with the results
observed in the CV task.

Table 4 presents the results for the MultiNLI dataset. Our method outperforms both the ERM and
DRO approaches. However, it falls short in comparison to JTT for fairness. This can be attributed
to the base rates of the two groups in MultiNLI, which are λ0 = 92.9% and λ1 = 7.1%. According
to Theorem 1, the upper bound on the disparity in the expected attention allocation is proportional
to 1

λ0
+ 1

λ1
. Consequently, a highly skewed base rate results in an elevated upper bound.

ERM (BL) DRO JTT Ours ERM (BB) DRO JTT Ours
DP ↓ 12.38 ± 2.78 10.45 ± 0.35 3.32 ± 3.00 11.65 ± 0.91 8.88 ± 0.84 8.31 ± 1.87 6.42 ± 3.16 11.30 ± 1.97

EOp ↓ 5.43 ± 3.56 6.40 ± 1.10 13.12 ± 3.59 5.31 ± 1.38 8.55 ± 1.27 7.80 ± 2.54 9.18 ± 3.93 4.74 ± 3.28
EOd ↓ 5.37 ± 1.75 5.53 ± 0.63 7.55 ± 0.95 3.51 ± 1.08 6.62 ± 0.44 5.65 ± 1.72 5.41 ± 1.53 3.40 ± 0.97
ACC ↑ 79.69 ± 0.15 79.21 ± 0.26 76.25 ± 0.07 79.61 ± 0.32 77.74 ± 0.43 77.56 ± 0.44 77.21 ± 1.19 77.89 ± 0.78

E(Wh) ↓ 124.32 144.14 265.48 142.51 22.58 36.87 59.75 34.00

Table 3: Fine-tuning on HateXplain dataset. (BL denotes “BERT Large”, BB denotes “’BERT base’)

ERM (BL) DRO JTT Ours ERM (BB) DRO JTT Ours
DP ↓ 47.76 ± 0.07 46.19 ± 1.34 43.88 ± 0.21 44.63 ± 2.43 47.35 ± 0.97 48.72 ± 0.71 44.27 ± 0.23 47.25 ± 0.22

EOp ↓ 14.71 ± 1.40 12.81 ± 0.86 4.62 ± 0.01 10.36 ± 0.16 18.03 ± 2.23 17.47 ± 2.82 8.98 ± 1.14 13.86 ± 0.43
EOd ↓ 10.81 ± 0.02 9.95 ± 0.95 5.53 ± 0.47 8.59 ± 0.34 13.52 ± 1.30 14.11 ± 1.05 8.35 ± 0.64 12.67 ± 0.25
ACC ↑ 84.33 ± 0.02 83.33 ± 0.60 82.70 ± 0.08 83.95 ± 0.02 81.48 ± 0.53 81.63 ± 0.12 76.75 ± 0.60 81.36 ± 0.01

E(Wh) ↓ 1827.56 1791.07 5417.70 1934.80 507.64 631.87 1642.90 687.42

Table 4: Fine-tuning on MultiNLI dataset. (BL denotes “BERT Large”, BB denotes “’BERT base’)

4.3 EXPERIMENT ON THE EFFICIENCY OF GPU MEMORY TRAINING

We evaluate the effectiveness of our method for mitigating bias in pre-trained models. We employ
the CelebA and HateXplain datasets, with tasks as delineated in sections 4.1 and 4.2.

For the CelebA dataset, we append a fairness-aware encoder on a DINO pre-trained ViT-16 model
(Caron et al., 2021). For the HateXplain dataset, we incorporate a fairness-aware encoder into pre-
trained models, specifically “BERT Large” and “BERT Base”. Additionally, for a fair comparison,

8



Published as a conference paper at ICLR 2024

we append a standard ViT/ BERT encoder to the ERM model. We evaluate two approaches: 1)
fine-tuning all network parameters, denoted as “-FT”, and 2) training only the last encoder, denoted
as “-LE”. We evaluate all methods on accuracy, fairness metrics, and GPU memory consumption.
The results are shown in Table 5, 6.

We observed that the ERM model maintains comparable utility even when the parameters in the
backbone model are frozen. This indicates that pre-trained backbones can effectively extract mean-
ingful features. Additionally, only training the last encoder layer demands considerably less GPU
memory during training. Furthermore, training only the last encoder layer resulted in enhanced fair-
ness outcomes. This improvement is due to the fewer parameters updated, potentially mitigating
overfitting issues. Notably, Ours-LE approach achieves superior fairness results while preserving a
comparable utility.

ERM-FT Ours-FT ERM-LE Ours-LE
DP ↓ 19.11 ± 1.20 18.07 ± 0.71 19.12 ± 0.71 17.10 ± 0.86

EOp ↓ 45.18 ± 2.77 33.94 ± 0.76 38.84 ± 1.79 36.33 ± 1.96
EOd ↓ 24.27 ± 1.38 18.73 ± 0.34 20.83 ± 1.05 19.71 ± 0.86
ACC ↑ 95.59 ± 0.09 94.05 ± 0.22 94.98 ± 0.18 94.14 ± 0.17

GPU (MiB)↓ 11792 11926 2925 3210

Table 5: Comparing Fine-Tuning vs. Training the Last Encoder on the CelebA Dataset.
BERT Large BERT Base

ERM-FT Ours-FT ERM-LE Ours-LE ERM-FT Ours-FT ERM-LE Ours-LE
DP ↓ 12.38 ± 2.78 11.65 ± 0.91 10.11 ± 2.19 12.74 ± 1.09 8.88 ± 0.84 11.30 ± 1.97 10.17 ± 2.23 10.29 ± 1.18

EOp ↓ 5.43 ± 3.56 5.31 ± 1.38 8.27 ± 4.68 2.64 ± 0.97 8.55 ± 1.27 4.74 ± 3.28 6.62 ± 1.80 4.97 ± 1.14
EOd ↓ 5.37 ± 1.75 3.51 ± 1.08 6.67 ± 3.35 2.17 ± 1.05 6.62 ± 0.44 3.40 ± 0.97 6.07 ± 1.62 3.24 ± 0.78
ACC ↑ 79.69 ± 0.15 79.61 ± 0.32 78.74 ± 0.74 76.84 ± 0.45 77.74 ± 0.43 77.89 ± 0.78 79.13 ± 0.26 76.12 ± 0.05

GPU(MiB) 16411 16493 7022 7253 7830 7899 5303 5393

Table 6: Comparing Fine-Tuning vs. Training the Last Encoder on the HateXplain Dataset.
4.4 FAIRNESS-ACCURACY TRADE-OFF

Figure 2: Effects of hyperparameters on
the fairness-accuracy tradeoff.

We explore the effect of hyperparameters. We tune the
following hyperparameters: Ours: We change t, where
t is the number of value vectors to perform the align-
ment. We choose t ∈ {2, 4, 6}; KD: We change λ in
the loss function that governs how much soft-label is be-
ing used. We choose λ ∈ [0.3, 0.7, 1]; DRO: We change
η in the loss function that controls the range of the worst-
case groups. We choose η ∈ {0.1, 0.3, 0.5}; ARL: We
change l the number of encoders stacked for the adversar-
ial network. We choose l ∈ {2, 4, 6}; JTT: We change
the up-weight coefficient λup ∈ {20, 50, 100}. Inspired
by (Kim et al., 2020), we depict a Pareto frontier to ana-
lyze the trade-off between fairness and accuracy. We use
CelebA dataset with a =male and y =Blond hair. All
other hyperparameters remain unchanged with Table 2.
All methods share the same seed. The results can be found in Fig 2.

Observations indicate that JTT outperforms in fairness performance. However, its sensitivity to hy-
perparameters suggests reduced robustness. Both our method and KD show comparable utility, but
our approach outperforms in terms of fairness. DRO demonstrates less sensitivity to hyperparam-
eter variations. Our method is close to the theoretical tradeoff line between fairness and accuracy,
achieving an optimal balance between fairness and accuracy.

5 SUMMARY
In this paper, we introduce a novel method to tackle fairness issues in transformers without demo-
graphics. To mitigate bias in attention weight allocation, we normalize q and k, then take their
absolute values to compute the attention weight. We address bias in value vectors through local
alignment. We conduct rigorous theoretical analysis to validate our method. We address fairness
issues in pre-trained models and propose a method of using an additional fairness-aware encoder
to mitigate these concerns. To validate our approach, we conduct experiments on various datasets
in computer vision and NLP domains. Our results demonstrate the efficacy of our method in ad-
dressing fairness issues. Furthermore, we verify that our approach is useful for improving fairness
in pre-trained models even with limited GPU memory resources.
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A EMPIRICAL VALIDATION ASSUMPTION 1

We use ERM to train a ViT on the CelebA dataset. We save the model that achieves the highest
validation accuracy. From the last encoder, we extract qCLS and K10, where “CLS” refers to a special
token and K10 represents the key vector of the 10-th token. We randomly select one dimension from
qCLS and K10 to generate two conditional distribution plots based on a.

Figure 3: Histogram of a random selected dimension of qcls and k

B PROOF FOR THEROREM 1

We first consider a 1-D case and next generalize the derivation to dk dimensions.

For the 1-D derivation, now we focus only on q, then

q ∼ λ0N (µ0, σ
2
0) + λ1N (µ1, σ

2
1) (9)

where λ0 + λ1 = 1. Then the expectation of q is

µ := E[q] = λ0µ0 + λ1µ1 (10)

and the variance can be written as

σ2 := Var[q] =E[q2]− (E[q])2, (11)

=λ0EN (µ0,σ2
0)
[q2] + λ1EN (µ1,σ2

1)
[q2]− (λ0µ0 + λ1µ1)

2 (12)

=λ0(µ
2
0 + σ2

0) + λ1(µ
2
1 + σ2

1)− (λ0µ0 + λ1µ1)
2 (13)

=(λ0σ
2
0 + λ1σ

2
1) + λ0λ1(µ0 − µ1)

2 (14)

=(λ0σ
2
0 + λ1σ

2
1) + λ0λ1∆

2 WLOG, let ∆ = µ0 − µ1 > 0 (15)

After normalization with qnorm = q−E[q]√
Var[q]

, the conditioned variable qnorm|a = 0 and qnorm|a = 1

are still Gaussian, and the conditioned expectations can be written as

µ0,norm := E[qnorm|a = 0] =
µ0 − µ

σ
=

λ1∆√
(λ0σ2

0 + λ1σ2
1) + λ0λ1∆2

(16)

µ1,norm := E[qnorm|a = 1] =
µ1 − µ

σ
= − λ0∆√

(λ0σ2
0 + λ1σ2

1) + λ0λ1∆2
(17)

and the corresponding variances are

σi,norm =
σi

σ
, i = 0, 1 (18)
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After taking the absolute values, that is qde = |qnorm|, the conditioned expectations can be written
as

E[qde|a = i] =−
∫ 0

−∞
tp(t)dt+

∫ ∞

0

tp(t)dt, p(t) = N (µi,norm, σ2
i,norm), i = 0, 1 (19)

=σi,norm

√
2

π
exp(−

µ2
i,norm

2σ2
i,norm

) + µi,normerf(
µi,norm√
2σi,norm

) (20)

(21)

Recall that µi,norm = µi−µ
σ and σi,norm = σi/σ, we have

E[qde|a = i] =
σi

σ
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π
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σ )2
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σ )2
) +
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(24)

which is because µ1−µ = µ1−λ1µ1−λ0µ0 = λ0(µ1−µ0) = −λ0∆ and µ0−µ = µ0−λ1µ1−
λ0µ0 = λ1(µ0 − µ1) = λ1∆. And (−x)erf(−x) = xerf(x).

Note that λ1−i∆√
2σi

> 0, we have exp(−(λ1−i∆√
2σi

)2) < 1 and erf(λ1−i∆√
2σi

) < 1. As a result, the expecta-
tion can be bounded by

E[qde|a = i] ≤ 1

σ

[
σi

√
2

π
+ λ1−i∆

]
(25)

=
σi

√
2
π√

(λ0σ2
0 + λ1σ2

1) + λ0λ1∆2
+

λ1−i∆√
(λ0σ2

0 + λ1σ2
1) + λ0λ1∆2

(26)

≤ lim
σi→∞

σi

√
2
π√

(λ0σ2
0 + λ1σ2

1) + λ0λ1∆2
+ lim

∆→∞

λ1−i∆√
(λ0σ2

0 + λ1σ2
1) + λ0λ1∆2

(27)

=

√
2

πλi
+

√
λ1−i

λi
(28)

Similar results hold for k, too. Now the original statement can be re-written as

|µq0,deµk0,de − µq1,deµk1,de| (29)

=
∣∣E[qde|a = 0]E[kde|a = 0]− E[qde|a = 1]E[kde|a = 1]

∣∣ (30)

≤E[qde|a = 0]E[kde|a = 0] + E[qde|a = 1]E[kde|a = 1] (31)

≤
(√ 2

πλ0
+

√
λ1

λ0

)2

+
(√ 2

πλ1
+

√
λ0

λ1

)2

(32)
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Now consider the high-dimensional scenario, we have

|δde| =

∣∣∣∣∣E[qde⊤kde

√
dk
|a = 0]− E[

qde⊤kde

√
dk
|a = 1]

∣∣∣∣∣ (33)

=
1√
dk

∣∣E[ dk∑
j=1

(qdej kdej )|a = 0]− E[
dk∑
j=1

(qdej kdej )|a = 1]
∣∣ (34)

=
1√
dk

∣∣∣ dk∑
j=1

E[qdej kdej |a = 0]−
dk∑
j=1

E[qdej kdej |a = 1]
∣∣∣ (35)

=
1√
dk

∣∣∣ dk∑
j=1

(E[qdej kdej |a = 0]− E[qdej kdej |a = 1])
∣∣∣ (36)

≤ 1√
dk

dk∑
j=1

∣∣∣E[qdej kdej |a = 0]− E[qdej kdej |a = 1]
∣∣∣ (37)

=
1√
dk

dk∑
j=1

∣∣∣E[qdej |a = 0]E[kdej |a = 0]− E[qdej |a = 1]E[kdej |a = 1]
∣∣∣ (38)

≤
√
dk

[(√ 2

πλ0
+

√
λ1

λ0

)2
+

(√ 2

πλ1
+

√
λ0

λ1

)2]
.□ (39)

C IMPLEMENTATION DETAILS

We summarize the implementation details as follows:

• ERM: We take the transformer with 8 stack encoders as the baseline model. Each encoder
has 8 attention heads. We implement the ERM model using the Huggingface library with-
out pre-trained weights. We resize the image from CelebA and UTK datasets to 64 × 64,
and divide it into 16 patches. For CelebA and UTK, we take the AdamW as the optimizer
with a learning rate of 10−4, and no scheduler is applied for the fair comparison. For NLP
tasks, we take the AdamW as the optimizer with a learning rate of 10−5. We share all
methods with the same configuration as the ERM model.

• Distributionally robust optimization (DRO): We adapt the backbone to the same as the
ERM model. We tune the hyper-parameter η at the validation set to achieve the highest
accuracy. For CelebA and UTK experiments, we set η = 0.15 and η = 0.10 respectively.
For HateXplain and MultiNLI, we set η = 0.25.

• Adversarially reweighted learning (ARL): We adapt the learner network to the same as the
ERM model. For the adversarial network, we apply a 6-layer stack encoder in the trans-
former. This is a smaller configuration compared to the learner network, as recommended
by the authors.

• Fairness without demographics through knowledge distillation (KD): We adapt the student
model that is the same as the ERM model. For the teacher network, we follow the sugges-
tion of the authors that use a larger network, hence we adopt the vision transformer with 12
stacked encoder layers. The student network is trained by the output of the teacher model
with softmax activation.

• Just train twice (JTT): We adapt the backbone network is the same as the ERM model. For
CelebA, we follow the suggestion in the paper choose the number of epochs of training the
identification model T = 1. During the second training, we choose the upsampling factor
λup = 50. For UTK, we set T = 10, λup = 50. For HateXplain, we set T = 20, λup = 50.
For MultiNLI, we set T = 2, λup = 20.

• Learning from failure (LfF): We take the networks for a biased model and a debiased model
are the same as the ERM model. We set the amplification coefficient in generalized cross
entropy loss q = 0.7 as suggested in the original paper.
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• Ours: For vision tasks, our method employs a backbone identical to the ERM model, which
comprises an 8-stacked encoder vision transformer. In the final encoder, we normalize and
apply the absolute value to q and k for each head. From this encoder layer, we select the
v vectors associated with the two highest attention weights and execute a local alignment.
For NLP tasks, we extend a pre-trained model with an additional encoder layer, applying
our method specifically to this added layer. Similarly, in the NLP tasks, we choose the v
vectors with the two highest attention weights for alignment.

D EVALUATION METRICS

The group fairness metrics are measurements of the performance of different sensitive groups. We
focus on three specific metrics: Demographic Parity, Equal Opportunity, and Equalized Odds. De-
mographic Parity (DP): DP focuses on the equality of the outcomes across different demographic
groups, regardless of their abilities. It ensures that each group receives positive outcomes at the same
rate. Equal Opportunity (EOp): EOp ensures that samples who should receive a positive outcome
have an equal chance of being correctly identified, regardless of their group. Equalized Odds (EOd):
EOd requires both that samples that should receive a positive outcome have an equal chance of being
correctly identified (like EOp), and also that samples that should receive a negative outcome have
an equal chance of being correctly identified, across all sensitive groups. The computations for the
fairness metrics are as follows:

DP = |PPi − PPj |, EOp = |TPRi − TPRj |,

EOd =
1

2
(|TPRi − TPRj |+ |FPRi − FPRj |), i, j ∈ A

(40)

where PP, TPR, and FPR are the positive prediction rate, the true positive rate, and the false
positive rate.

E ATTENTION WEIGHT VISUALIZATION

Figure 4: Visualization of attention weight. y =blond hair, a =male in CelebA.

We present a visualization of the average attention weight in the last encoder layer for both the ERM
and our proposed models in Fig 4. We opted for models that demonstrated the highest validation
accuracy. The ERM model achieved an accuracy of 94.27%, our model achieved an accuracy of
94.08%. We observe inconsistencies in attention allocation using the ERM training objective func-
tion. Despite its high accuracy, the ERM model predominantly focuses on facial features, failing to
distribute attention adequately. In contrast, our model provides a more uniform attention allocation,
effectively reducing the focus on facial features or other irrelevant features.
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F ABLATION STUDY

We perform an ablation experiment from three perspectives to understand their importance. w/o
local alignment: We train our model without incorporating the local value alignment technique. The
training process is solely guided by the cross-entropy loss. w/o debias attention: While training
our model, we exclude the normalization and exclude the absolute values in vectors q and k when
calculating the attention weight. w/o absolute value: We train our model using normalized vectors q
and k to compute the attention weight, but we exclude applying the absolute value on these vectors.
We use CelebA dataset with a =male and y =Blond hair. All the methods share the same seed with
the Baseline model.

Method DP↓ EOp ↓ EOd ↓ ACC ↑
Baseline 16.99 43.04 23.05 94.20
w/o local alignment 18.70 39.59 21.72 93.94
w/o debias attention 16.59 43.36 22.92 94.63
w/o absolute value 18.24 37.44 20.59 94.39
Ours 15.81 36.49 19.47 93.96

Table 7: Ablation study on CelebA dataset.
Table 7 demonstrates the efficacy of our design modules. Notably, without the debias attention,
the outcomes are close to those of the Baseline model. This highlights the significance of debias
attention as an essential component for debiasing attention. Concurrently, the local value alignment
technique further improves fairness, with a large impact on EOd. When the network integrates both
techniques, it achieves optimal fairness with a slight drop in accuracy.

G ALGORITHM

We summarize our training algorithm in Algo 1.

H LIMITATION

In the realm of both computer vision and natural language processing, the transformer architecture
stands as a pivotal framework. Our study introduces a method specifically designed for transformers,
avoiding the use of sensitive information. We recognize that our approach’s primary limitation lies
in its application to binary-sensitive attributes, a simplification compared to the multifaceted nature
of real-world scenarios. Expanding our methodology to accommodate arbitrary sensitive attributes
represents a significant and promising avenue for future research.
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Algorithm 1 Debias Attention mechanism
Input: Input tokens X ∈ RN×dmodel , label y.
Weight matrices WQ ∈ Rdmodel×dk ,WK ∈ Rdmodel×dk ,WV ∈ Rdmodel×dv for Query, Key, Value.
Output: The loss of local alignment on value

1: Project X to Query, Key, and Value matrices: Q← XWQ, K← XWK, V← XWV

2: For each q ∈ Q, k ∈ K:
qde = m ◦ n(q), kde = m ◦ n(k)

m and n are defined in Theorem 1.
3: Compute attention weights wi:

wi =
qde

cls · kde
i√

dk

4: Let W = {w1, w2, ..., wl}where l is the number of tokens. Select value vectors corresponding
to the top t attention weights:

s∗ = argmax
s

∑
i∈s

wi s.t. wi ∈W, |s| = t

5: Extract and concatenate the top t value vectors:

v← concat(Vs∗)

6: Mapping to the contrastive space:
z = g(v)

7:

Lalignment =
∑
i

−1
|P (i)|

∑
p∈P (i)

log
exp(zi · zp/τ)∑

k∈B(i) exp(zi · zk/τ)
,

where i ∈ I = {1, ..., n}, B(i) = I\{i}, P (i) = {p ∈ B(i) : yp = yi}, τ = 0.07.
return Lalignment

19


	Introduction
	Related Work
	Fairness intervention
	Fairness without demographics
	Fairness-aware transformers
	Contrastive loss

	Method
	Fairness-aware Attention weight relocation
	Local alignment on value
	Learning framework
	GPU memory efficient computation

	Experiments
	Vision experiments
	NLP experiments
	Experiment on the efficiency of GPU memory training
	Fairness-accuracy trade-off

	Summary
	Empirical validation Assumption 1
	Proof for Therorem 1
	Implementation details
	Evaluation metrics
	Attention weight visualization
	Ablation study
	Algorithm
	Limitation

