Under review as a conference paper at ICLR 2026

IS GRAPH MIXUP BENEFICIAL?
INVESTIGATING INTERPOLATION AND EMPIRICAL PER-
FORMANCE OF GRAPH MIXUP METHODS

Anonymous authors
Paper under double-blind review

ABSTRACT

Mixup is a widely used data augmentation technique that constructs new training
examples by interpolating between existing ones. While effective in domains like
vision and language, applying mixup to graph data is challenging. In this paper,
we analyze and empirically explore state-of-the-art graph mixup methods. We
conducted an independent evaluation following established evaluation protocols for
graph classification and found that none of the mixup methods yielded statistically
significant improvements over the no-mixup baseline. To obtain further insights, we
analyzed the graphs generated from existing mixup methods from an interpolation
perspective using the graph edit distance. We found that (i) many mixup methods
failed to interpolate well, (ii) that mixup methods that interpolated well often
outperform methods that did not, (iii) even optimal interpolation did not lead to
performance improvements. Our findings highlight the need for a more rigorous
exploration and evaluation of mixup for graphs.

1 INTRODUCTION

Data augmentation is an essential technique for improving generalization in machine learning and is
particularly useful in domains where training data is scarce. Mixup (Zhang et al., 2018), a popular
data augmentation technique, creates new training examples by interpolating between existing
ones. Originally introduced in computer vision (Zhang et al., 2018), mixup has shown strong
regularization and calibration effects (Thulasidasan et al., 2019) in other domains as well; e.g., in
speech recognition (Meng et al., 2021) and natural language processing (Sun et al., 2020). Mixup is
appealing due to its simplicity and intuitive design, its applicability without requiring domain-specific
knowledge, and since it affects both the input and label space (in contrast to augmentation techniques
such as DropNode (Do et al., 2021) or DropEdge (Rong et al., 2019)). The resulting soft labels
encourage linear separation between classes in the model’s representation space.

In this paper, we revisit mixup for graph classification tasks. Since graphs are complex and irregular,
it is not immediately obvious how mixup should be performed. In the recent years, several alternative
approaches for graph mixup have been proposed to address this question, drawing from domains
such as optimal transport (Villani, 2008), graph theory (Lovdsz and Szegedy, 2006), and graph
matching networks (Li et al., 2019). However, reproduction issues have been raised for some of the
methods (Omeragic and Duranovi¢, 2023), there are no independent evaluations of graph mixup
methods, and the evaluations that have been performed often focused on empirical performance and
did not analyze the produced mixup graphs directly.

Main contributions (C) and results (R). (C1) We address these gaps by first performing an inde-
pendent evaluation of graph mixup in a unified experimental setup following established evaluation
protocols (Errica et al., 2019). (R1) We found that graph mixup provided no significant improvement
over the no-mixup baseline, which questions the practical benefits of graph mixup. (C2) We then
performed a pooled analysis in weaker statistical setups. (R2) Even after pooling, graph mixup
provided no significant improvement over the no-mixup baseline. (C3) To obtain further insights,
we then systematically analyzed the mixup graphs produced by existing mixup methods from an
interpolation perspective. (R3) We found that most graph mixup methods did not interpolate well,
despite that (R4) good interpolation properties were beneficial for empirical performance.

Under review as a conference paper at ICLR 2026

Table 1: Overview of graph mixup methods

Method Interpolating? Inputs Alignment Output Learned?
If-Mixup v Adjacency matrices Arbitrary Edge-weighted graph X
S-Mixup v' Adjacency matrices Learned Edge-weighted graph v
SubMix v Graphs Random Graph X
G-Mixup v Graphons Degree Graphon v
FGW-Mixup v Graphs FGW coupling Graph X
GeoMix v Graphs GW coupling Edge-weighted graph X
Embedding Mixup v Embeddings N.A. Embedding X
GED-Mixup (Sec. 4.3) v/ Graphs Optimal Graph X

2 GRAPH MIXUP

Mixup was originally introduced by Zhang et al. (2018) as a data augmentation technique for
supervised learning tasks, particularly in computer vision and speech recognition. In this paper, we
study mixup for supervised graph classification, where the inputs are graphs (potentially including
node/edge features) and the goal is to learn a classifier for unseen graphs from a set of labeled
examples. Application areas include the biomedical data (Qabel et al., 2022; Wang et al., 2025;
Buterez et al., 2024), bioinformatics (Jang et al., 2024; van der Weg et al., 2025; Jha et al., 2022)),
cybersecurity (Bilot et al., 2024), fraud detection (Motie and Raahemi, 2024), and many more (Cao
et al., 2024; Park et al., 2022; Jin et al., 2025). Training data is often scarce in these applications so
that mixup is a promising approach to combat overfitting.

Linear mixup. Zhang et al. (2018) considered inputs and labels represented as real-valued tensors
(e.g., an image and its one-hot encoded class label) and performed mixup by linear interpolation. More
precisely, given two input examples (1, y1) and (z2, y2), their linear mixup approach constructs a
synthetic example (x s, yar) by taking a convex combination of both inputs and labels

Ty =11+ MNx2 —21) = (1 =Ny +Arg and yur = (1 — N)yr + Ao, (1)

where A € [0, 1] refers to a mixup ratio. Intuitively, A describes how far the result moves away from
the first towards the second input. Linear mixup improved generalization and robustness in their
experimental study, and mixup methods have been widely adopted and extended since then (Shamsian
et al., 2024; Yun et al., 2019; Touvron et al., 2021; Liu et al., 2021; Verma et al., 2019; Ramé et al.,
2021; Bao et al., 2023; Zou et al., 2023).

Graph mixup. Graph mixup methods formulate graph mixup—in the spirit of linear mixup—as
interpolation between two example graphs and their labels. Conceptually, these methods interpolate
the class labels of their inputs using Eq. (1), but differ in how they interpolate between the input
graphs themselves. Intuitively, most methods use alignments to determine “‘common parts” between
the two input graphs (Fig. 1, top right, common parts color-coded). Mixup is then performed only on
the “different parts” by including nodes and edges from both graphs proportional to the desired mixup
ratio (see “good mixup” in Fig. 1, A = 40%). This is similar to linear mixup, in which common
elements of the input tensors are left unchanged and different elements are subject to mixup.

Graph mixup methods. Several graph-specific mixup methods have been introduced in the literature,
including If-Mixup (Guo and Mao, 2023), S-Mixup (Ling et al., 2022), SubMix (Yoo et al., 2022), G-
Mixup (Han et al., 2022), FGW-Mixup (Ma et al., 2023), GeoMix (Zeng et al., 2024), and Embedding
Mixup (Wang et al., 2021). Key differences between these methods include: (i) the inputs to mixup,
(ii) how these inputs are aligned, (iii) the output of mixup, and (iv) whether or not the mixup method
itself is learned. A brief overview along these dimensions is given in Tab. 1; see also App. A.

Inputs to mixup. Mixup can be performed on (i) two graphs, (ii) two adjacency matrices, (iii)
two graphons (each representing the set of graphs associated with a class label), or (iv) two graph
embeddings produced by the downstream network (along the lines of Manifold Mixup (Verma et al.,
2019)). For (ii)—(iv), interpolation is typically done using linear mixup after suitable preprocessing
(e.g., reordering adjacency matrices according to an alignment and adding singleton nodes to match
their sizes), whereas (i) is handled differently. In particular, SubMix (Yoo et al., 2022) adopts a
strategy inspired by CutMix (Yun et al., 2019): given two input graphs, it replaces a subgraph of
one input with a subgraph of the other input. FGW-Mixup (Ma et al., 2023) and GeoMix (Zeng

Under review as a conference paper at ICLR 2026

Table 2: Test accuracy (%) and standard error (pp) for multiple datasets. Missing entries indicate
cases where FGW-Mixup could not generate mixup graphs. Statistically significant differences over
the no-mixup baseline are marked bold (there are none).

Model Method MUTAG ENZYMES IMDB-BINARY PROTEINS Average

GCN Baseline 7842 £ 1.71 7256 £1.21 68.80 £ 1.00 71.83 £2.94 72.90 £ 2.01
Emb-M. 79.66 £ 145 70.89 £ 1.21 66.60 £ 1.85 70.09 £2.13 71.81 £2.78
FGW-M. 76.82 +2.34 - - - -
G-Mixup 8248 £1.33 68.28 + 2.02 69.40 £ 1.13 7413 £1.05 73.57£3.23
GeoMix 75.63 £3.43 74.00 £ 1.19 62.67 £ 2.23 71.65 £2.61 70.99 £ 2.89
If-Mixup 81.43 £1.56 72.06 +0.98 68.53 £ 1.11 74.88 £ 1.06 74.22 £2.73
S-Mixup 80.21 £1.67 67.29 £5.38 70.06 £ 1.61 7226 £ 197 7246 £2.78
SubMix 80.03 +1.88 73.39 + 1.42 68.20 £ 1.27 72.87+2.17 73.62+£243
GED-M." 81.64+ 1.81 72.1141.39 68.97 £1.23 7344+ 139 74.04 £2.70

GIN Baseline 84.41 £1.39 7033 £0.98 70.77 £ 0.53 69.91 £345 73.86 £3.52
Emb-M. 81.89+1.34 70.78 £1.02 67.77 £ 1.89 7126 £2.59 72.92 £ 3.09
FGW-M. 82.81 £ 142 - - - -
G-Mixup 8049 £1.75 69.17 £ 1.11 65.90 + 2.38 68.62 +3.40 71.05+3.23
GeoMix 81.78 £2.23 69.00 + 1.31 70.53 £ 0.60 69.46 +£2.96 72.69 £ 3.05
If-Mixup 84.09 £1.39 70.06 &+ 1.38 69.30 £ 0.72 70.12 £3.51 73.39 £3.57
S-Mixup 80.83 £0.90 68.96 + 1.35 69.29 £ 2.16 62.37+224 70.36 +3.84
SubMix 84.75+1.64 70.72+1.43 70.40 £ 0.45 71.08 £2.70 74.24 £ 3.51
GED-M." 8284+ 135 71.17+0.95 70.40 £ 0.76 68.30 +£3.35 73.18 £3.28

! Introduced in Sec. 4.3.

et al., 2024) rely on the (Fused-)Gromov-Wasserstein distance (Vayer et al., 2020) from the theory of
optimal transport (Villani, 2008). While the former method aims to compute barycenters, the latter
relies on geodesics (Peyré et al., 2016). In both cases, mixup takes place in the Gromov-Wasserstein
space and is computationally expensive so that approximation algorithms are used.

Alignments. Most graph mixup methods (implicitly or explicitly) make use of an alignment between
their inputs. Obtaining a good alignment can be challenging and computationally expensive (Chang
et al., 2023). Different approaches have been explored: (i) arbitrary (i.e., determined by how the
graphs happen to be provided), (ii) learned, (iii) random, (iv) degree-based ordering, (v) a coupling in
the sense of optimal transport (Villani, 2008). We also explore (vi) an optimal alignment in this paper
(for analysis; see Sec. 4.3). Note that Embedding Mixup (Wang et al., 2021) applies mixup on graph
embeddings; here the notion of alignment is not directly applicable.

Outputs. Mixup methods can produce as output: (i) a mixup graph, (ii) an edge-weighted mixup
graph, (iii) a graphon, and (iv) embeddings. Here (i) stays in the input space, (ii) produces graphs in
which edges are labeled with “existence probabilities”, (iii) can be used to sample mixup graphs, and
(iv) stays in the embedding space of the downstream network.

Learned mixup. S-Mixup (Ling et al., 2022) and G-Mixup (Han et al., 2022) use learned mixup, i.e.,
they need to be trained on the training data used for the downstream task beforehand.

3 EMPIRICAL ANALYSIS

We performed an independent experimental study to evaluate the empirical performance of state-
of-the-art graph mixup methods for graph classification in a common setup. Our key goals were to
assess to what extent graph mixup is beneficial in that it increases prediction performance.

Experimental setup. We independently evaluated on four representative datasets from TUDataset
(Morris et al., 2020) commonly used for graph classification tasks (see App. B for dataset statistics),
using GCN (Kipf and Welling, 2017) and GIN (Xu et al., 2018) as backbone models. Our methodology
followed the careful choices of Errica et al. (2019), i.e., nested cross-validation for model selection
and assessment, repeated runs for robustness, and significance testing via Welch’s ¢-test (Welch,
1947). We report mean test accuracy with standard errors across 5-fold nested CV, with three
repetitions per split. We considered the seven graph mixup variants of Tab. 1 along with GED-Mixup

Under review as a conference paper at ICLR 2026

Table 3: Pooled average test accuracy (%), pooled standard errors (pp) and p-values for GCN/GIN
and the evaluation datasets under assumptions (A1)—-(A3). FGW-Mixup is excluded due to missing
results for some datasets. Statistical significant results over the no-mixup baseline are marked in bold.

Al (standard) A2 (fixed dist.) A3 (fixed data)

Method Accuracy SE p SE p SE p

Baseline 73.38 +0.86 - +0.67 - +0.44 -

Emb-M. 72.37 +0.82 040 +0.62 027 +043 0.10
G-Mixup 72.31 +092 039 4068 027 4039 0.69
GeoMix 71.84 +097 024 +0.80 0.14 +040 0.01
If-Mixup 73.81 +0.83 072 £0.59 0.63 £036 045
S-Mixup 71.41 +1.12 0.16 +0.87 0.08 +0.63 0.01
SubMix 73.93 +0.83 0.64 4061 055 4034 032

GED-Mixup (Sec. 4.3) 73.61 +0.82 085 +£0.60 080 026 0.65

(a baseline introduced in Sec. 4.3). Mixup graphs were randomly generated in each training epoch.
Hyperparameters—including model, training, and mixup settings—were tuned individually for each
dataset/method via random search plus Bayesian optimization with TPE (Bergstra et al., 2011) using
Optuna (Akiba et al., 2019). The experimental setup is described in detail in App. C.

Result (D: Graph mixup provided no significant improvement over the no-mixup baseline.
Tab. 2 shows the results for all methods evaluated on GCN (Kipf and Welling, 2017) and GIN (Xu
et al., 2018), respectively. Although some mixup methods appear to improve over or fall behind the
no-mixup baseline, none of these differences were statistically significant. These results question
whether mixup is beneficial for graph classification tasks.

Pooled analysis. To provide more insight, we performed a pooled analysis in weaker statistical
setups. We make three assumptions of increasing strength: (A1, standard): Treat datasets and model
classes as sampled from a dataset and model class distribution. This allows us to make statements
about empirical performance on new datasets and model classes, which is what we are ultimately
interested in. (A2, fixed distribution): Treat datasets and model class as sampled from fixed data
and model distributions. This allows to make statements about empirical performance of GCN/GIN
when applied to the data distribution underlying our evaluation datasets. (A3, fixed data): Treat the
evaluation data as the entire population (i.e., treat the empirical distribution as the data distribution).
This allows us to make statements about the particular data that is used (but not about their underlying
data distribution). More details are provided in App. D.

Result @): Even after pooling, graph mixup provided no significant improvement over the
no-mixup baseline. Our pooled results are shown in Tab. 3. First, under (A1) and (A2), none of the
results were significant even after pooling. For (A3), the strongest set of assumptions, we obtained
statistical significance in that some methods performed worse than the no-mixup baseline. So even in
the most generous point of view (A3), we did not obtain statistically significant results in favor of
mixup. Reasons for this negative result include the suitability of graph mixup in general, potential
flaws in the mixup methods, or insufficient power (e.g., due to small effect sizes).

4 MIXUP AS INTERPOLATION

To investigate the failure of all considered graph mixup methods to produce significant performance
benefits over the no-mixup baseline in our experiments, we now take a closer look at the generated
mixup graphs. Recall from Sec. 2 that the goal of graph mixup is to interpolate between input graphs,
according to a pre-specified mixup ratio A. In this section, we formalize this interpolation goal and
propose interpolation error metrics to quantify to what extent a mixup graph actually interpolates
between inputs. To the best of our knowledge, such an analysis has not been done before.

In Sec. 5, we will use these results to study relationship between interpolation properties and
empirical performance of graph mixup methods. We also consider an approach called GED-Mixup
that interpolates optimally according to our metrics. While this method may not be practically
viable in some applications due to its high computational costs, it provides a baseline result for the
performance that optimal interpolation can achieve.

Under review as a conference paper at ICLR 2026

Interpolation area st : nd -
)) 1% input 2" input
(mixup distance < d(z1,x2)) T T T
!
A
T SA
iGr, Gy =5
T
?
g
< ® =
Target (IC1) 8 £
£ G G
Target (IC2) M TP
d(G1,Gu) =2 d(G1,Gm) =2
d(G2,Gar) =3 d(Ga,Grr) =7

Figure 1: Left: xpr (da,2/5)-interpolates between inputs x; and xo, whereas xp does not. The
dotted line indicates x p’s absolute interpolation error (AIE). Right: Similarly, Gps (dgep, 2/5)-
interpolates between G and G2, whereas G p does not. We have ATE(Gp) =2 — 2|+ |7 — 3| =4
and IE(Gp) = 4/5. The colors symbolize different node attributes. The mapping f : V7 — Vs
constitutes a vertex mapping or alignment between G1 and Gs.

4.1 INTERPOLATION CRITERIA AND INTERPOLATION ERROR

We first make the intuition of “interpolation” more precise. Consider two inputs x; and x5, a mixup
ratio A € [0, 1], and a mixup result z ;. Given a distance metric d(-, -) between inputs, we say that
2 (d, N)-interpolates between x1 and x5 if the following interpolation criteria (IC)

ICy: d(zpr,z1) = N -d(z1,22) and ICy: d(xpr,x2) = (1 — A) - d(x1,x2) 2)
are satisfied. We refer to the right-hand sides of IC; and ICy as interpolation targets. If both targets
are met, then (i) d(x1, z2) = d(x1,znr) + d(x a1, 22) so that s lies on a shortest path between x;
and x5 (w.r.t. d and by the triangle equality) and (ii) the position of x5, on this shortest path precisely
matches the desired relative contribution of 1 (i.e., 1 — \) and z5 (i.e., \).

To gain some intuition, observe that linear mixup of Eq. (1) produces the unique point that satisfies
IC w.r.t. the Euclidean distance d2 (21, x2) = ||x1 — x2||2 (and others, see Prop. 1 below), for both
inputs and labels. This is visualized in Fig. 1 (left). Here xj; is the result of linear mixup and
(d2,2/5)-interpolates between x; and x5. In contrast, x p satisfies only IC; but not IC5. As this
example highlights, both criteria are needed.

As we will see later, graph mixup methods often do not satisfy IC exactly but only approximately. To
quantify the approximation error, we introduce the absolute interpolation error (AIE) given by

ATE (zpr; 21, T2, A) def |d(zM,:171) - A d(xl,z2)| + }d(xM,xQ) —(1-=X 'd(xl,x2)|.

For brevity, we often write AIE(x ;) = AIE4(2a; 21, 2, A) and consider the remaining quantities
as arbitrary but fixed. Observe that if 257 (d, A)-interpolates between 21 and x5, then ATE(z5) =0
(e.g., zps in Fig. 1). If it does not, then ATE(zps) > 0 (e.g., zp in Fig. 1 w.r.t. do). Intuitively, the
AIE measures the distance of the mixup result to actual (d, A)-interpolation targets (cf. Fig. 1). As
this distance can be arbitrarily large, the AIE is not bounded from above.

To be able to compare interpolation errors across input pairs (1, x2) with different distances d(z1, x2)
in a meaningful way, we normalize AIE w.r.t. d(x1, x2) to obtain the mixup interpolation error (IE):

def AlEq(2ar; 71,29, A) ’d(xM,iﬂl) B ’

. d(xp,wa) o
[Eq(zar; w1, 22,) = A(z1.72) (1, 72) (1= M) (3)

d($1, 562)

The following proposition states that linear mixup interpolates optimally.

Proposition 1. For any distance metric d(a,b) = ||a — b|| induced by a norm ||-|| on the input/label
vector space (over R), linear mixup of Eq. (1) satisfies IC for inputs/labels and we have

AIEd(:cM) = IEd(l‘M) =0 / AIEd(yM) = IEd(yM) =0.

Such distances include, for example, the Manhattan distance (induced by 1-norm) and the Euclidean
distance (induced by 2-norm). See App. E for a proof.

Under review as a conference paper at ICLR 2026

4.2 ALIGNMENTS, EDIT SETS, AND THE GRAPH EDIT DISTANCE

As discussed in Sec. 2, graph mixup methods rely on alignments to produce mixup graphs. We now
formalize the notion of an alignment, describe how alignments relate to edits sets and graph mixup,
and finally define an optimal alignment based on the graph edit distance.

Alignments. Let G; = (V4, E1) and Gy = (V2, E3) be two graphs where |V;| < |V3]| w.lo.g.
(otherwise swap G; and G2). Intuitively, an alignment assigns to each node v € V; a unique
corresponding node u € V5. We formalize an alignment as an injective vertex mapping f : Vi — Va;
see Fig. 1 (top right) for an example. Recall that mixup methods aim to retain the “common parts”
(sub-structures such as nodes, edges, or subgraphs) that exist in both input graphs and to mixup the
remaining “different parts.” An alignment formalizes what is meant by “common parts”: for every
node v € V; its corresponding node f(v) € V3, and for every edge (v1,vs) € Ej its corresponding
edge (f(v1), f(v2)) € E5 (if present). In the example of Fig. 1, the common part is given by the two
purple nodes and the edge connecting these nodes.

Edit sets. Given an alignment, we can perform mixup by editing (G; to bring it to closer towards Ga.
To do so, we make use of edit operations. An edit operation is a node or edge insertion, deletion, or
substitution (i.e., changing features). Let F(G1, G2) denote the set of all edit sets—i.e., sets of edit
operations—that transform G into Gs,' i.e.,

f(GhG?) = {F = {617627"'ae\F|} : applY(GhF) = G2}7

where e; denotes an edit operation and apply (G, F') denotes the result of applying all edit operations
in F' to G;. For any pair of graphs, there is an infinite number of edit sets that transform one into the
other. An alignment f induces a particular edit set Fy € F(G1,G2), which only contains the edit
operations for the “different parts.” The edit set induced by f in Fig. 1 contains five operations: two
node insertion operations (for the orange nodes) and three edge insertion operations (for the edges
incident to these nodes). Given f, edit set F'¢ is cheap to obtain, i.e., in asymptotically linear time
with respect to the number of nodes and edges (see App. A and Chang et al. (2023)).

Given an edit set, we can perform mixup by applying a A-fraction of the operations to G; (see Sec. 4.3
for details). In Fig. 1, mixup graph G5 has been generated in this fashion with A = 2/5 (and hence
using 2 out of the 5 edit operations).

Optimal alignments and graph edit distance. An alignment is optimal if its induced edit set is as
small as possible. Intuitively, this means that the alignment identifies a large common part. Alignment
f of Fig. 1 is such an optimal alignment. The size of the edit set induced by optimal alignment is
given by the graph edit distance (GED, Sanfeliu and Fu (1983), Chang et al. (2023)):

deep(G1,G2) = Fefﬂ(ﬂci}ll G2)\F\-

In what follows, we write d(G1, G2) = dgep(G1, G2) for brevity. An example is given in Fig. 1.

Generally, computing the optimal alignment and/or GED is an NP-hard problem (Zeng et al., 2009).
In fact, graph mixup methods typically do not use optimal alignments (cf. Tab. 1), and hence may
produce problematic mixup graphs. For example, graph Gp in Fig. 1 does not interpolate well
between (G; and Go; graph Gp has larger distance to G2 than (G; has to G5 so that it does not
interpolate at all. We further explore such questions in Sec. 5.

Interpolation error. The graph edit distance is the natural choice to quantify the interpolation error
of mixup graphs using Eq. (3). In fact, most (all but Embedding Mixup) graph mixup methods
implicitly make use of an alignment and its corresponding induced edit set. With this choice, the
“good mixup” graph G s (“bad mixup” graph G'p) of Fig. 1 has interpolation error of 0 (4/5).

Computational cost. Even though GED computation is NP-hard, its computation can be feasible
in practice. This is due to the availability of high-performance algorithms (e.g., Chang et al. (2020;
2023)) and since in our setting of graph classification, the graphs are comparably small (e.g., see
dataset statistics in App. B). In our experimental study, we did not run into computational bottlenecks.

'Strictly speaking, G is transformed into another graph G% that is isomorphic to Gz, denoted by G 22 Gl.

2For example, compare the label of each v € Vi with the label of f (v) € V> and add a substitution operation
when they differ. As another example, for each edge (v1,v2) € E1, check whether (f(v1), f(v2)) € Ez is
present and add an edge insertion operation otherwise.

Under review as a conference paper at ICLR 2026

Algorithm 1 GED-Mixup

Require: Graphs G1, Go; mixup ratio A € [0, 1]
Ensure: Mixup graph G,
F* + aminimal edit set from G; to G (i.e., |F*| = dgep(G1, G2))
P <+ avalid ordering of the edit operations in F'* (e.g., chosen at random)
Py, « the first round(A| P|) edit operations in P
return G, = apply(G1, P))

We modified the code of AStar—-BMao (Chang et al., 2023), a state-of-the-art algorithm for exact
GED computation, such that it additionally yielded an optimal alignment f* and its induced edit set
F*—i.e., |F*| = d(G1, G2)—as a by-product without any significant additional compute cost.

4.3 A BASELINE METHOD: GED-MIXUP

Most graph mixup methods rely on alignments when interpolating graphs. This raises the natu-
ral question of whether or not using an optimal alignment (instead of an approximate one) would
benefit graph mixup. To investigate this question, we construct a simple baseline method—coined
GED-Mixup—which uses the optimal alignment and serves as an analysis tool to study its effect on
empirical performance. Without including GED-Mixup in our analyses, the effect of optimal interpo-
lation on empirical performance would remain unclear. The method can be seen as a simplification of
EPIC (Heo et al., 2024).2

The method is described briefly in Alg. 1 and in more detail in App. F. It first computes a minimal
edit set, orders the edit operation in the set, and the applies a fraction of A of the edit operations to
G'1. We only consider valid orderings, in which (i) an edge can only be inserted when its source and
target node are present, (ii) a node can only be removed when it does not have an incident edge, (iii)
label substitutions are only possible for nodes/edges present in the graph, and (iv) when both G; and
G5 are connected, so is G ;. This approach avoids undesirable mixup results.

The following proposition shows that GED-Mixup is optimal in that its interpolation error is as small
as possible (in particular, O whenever interpolation targets are integer). A proof is given in App. G.

Proposition 2. GED-Mixup (Alg. 1) interpolates optimally w.r.t. dggp, and it holds
AIE(GM) =2 |r0und()\ . dGED(Gly Gg)) - dGED(Gla Gg)‘ S 1.

5 INTERPOLATION ANALYSIS

Equipped with the analysis tools ATE, IE, and GED-Mixup, we empirically investigate in this section
how well existing mixup methods interpolate and how this related to their performance.

Experimental setup. We follow the experimental setup described in Sec. 3, but only considered
methods that produce mixup graphs, i.e., SubMix (Yoo et al., 2022), If-Mixup (Guo and Mao,
2022), S-Mixup (Ling et al., 2022), GeoMix (Zeng et al., 2024), FGW-Mixup (Ma et al., 2023), and
GED-Mixup.* During training, we collected all generated mixup graphs as well as their inputs and
corresponding value of \.> We used this approach because it allows us to analyze the mixup graphs
actually used during training, and because some mixup methods are learned based on training data.
Givenaset T = { (G1, G2, G, \); };—, of mixup graphs, we report the mean interpolation error

3EPIC uses learned cost models and GED approximations whereas our approach simply uses unit edit costs
and exact GED. We did not consider EPIC in our experimental study as there is no source code available.

“Methods that produce weighted mixup graphs, in which each edge is annotated with an “existence proba-
bility”, are marked with *. To treat these methods appropriately when computing mIE, we account for edge
weights by sampling edges according to their probability. Corresponding mIE scores can hence be interpreted as
an “expected mIE”. Accounting for edge weights in this fashion always decreased the corresponding mIE scores
substantially.

5As A-values are sampled from a Beta distribution during training or were out of our control (in SubMix), we
allow for a small tolerance of ¢ = 0.005.

Under review as a conference paper at ICLR 2026

Table 4: Comparison of mean interpolation error (mIE) obtained by various methods
and datasets (lower is better and > 2 is particularly bad). We were unable to generate
graphs with FGW-Mixup on some datasets (denoted with —). Emb-Mixup and G-
Mixup do not appear here as we only considered methods that perform pairwise
mixup of two examples (required by mIE). More details can be found in App. H.

Method MUTAG ENZYMES IMDB-BINARY PROTEINS Average
GED-Mixup 0.05 0.01 0.01 0.01 0.02
SubMix 0.45 0.28 0.49 0.30 0.38
If-Mixup* 1.57 0.69 0.86 1.00 1.03
S-Mixup* 3.56 0.95 1.32 0.72 1.64
GeoMix™ 4.31 1.32 0.66 1.60 1.97
FGW-Mixup 2.76 - - - 2.76

(mlE) given by

mIE(T) = 1 Z IEdee (Gar; G, Ga, A).
(G1,G2,Gar, \)ET
An mlE value of 0 indicates that all mixup graphs perfectly interpolate between their inputs; larger
values indicate larger errors. Values greater than 2 generally indicate bad interpolation properties. To
see this, observe that simply setting Gj; = G for an input pair leads to IE < 2 (independently of
A); hence this clearly flawed approach already leads to an mIE < 2 when used throughout training.

Result 3): Most graph mixup methods did not interpolate well. We sampled 500 mixup graphs
for each combination of method, dataset, and choice of A € [0.5+¢],[0.8+¢],[0.9+¢] fore = 0.005.
Our results are summarized in Tab. 4; more detailed results are given in App. H. As can be seen,
only GED-Mixup and SubMix generally produced graphs that interpolated well. This is expected
for GED-Mixup, since it interpolates optimally by design. SubMix uses random alignments, but
uses a more coherent CutMix approach (i.e., swap entire subgraphs) and thus is less impacted by
sub-optimal alignments. S-Mixup, Geo-Mix, and FGW-Mixup did not produce mixup graphs that
interpolated between their inputs, and If-Mixup fell in between. This suggests that the (approximate)
alignments being used by the latter methods are far from optimal; we provide more detail below.

Result @: Good interpolation properties were

beneficial for empirical performance. We now 74 + + ® GED-M.
study to what extent interpolation properties corre- -* ————————— - E}B - @ SubMix
late with empirical performance. Fig. 2 summarizes g7 @ Ii-Mixp
our results using (A3). As can be seen, all methods ¢ {) @ S-Miwp
with high interpolation error as well as Emb-Mixup <72 + ° e
and G-Mixup (which do not perform pairwise inter- + o Emb_M.p
polation of graphs) provided clearly inferior results & £ Baseline
compared to methods that interpolated better (GED- 00 05 10 15 20 NA

. mIE

Mlxup, S ul.)MIX’ If-Mixup). This statemer}t 15 statis- Figure 2: Mean interpolation error (mIE) and
tically significant under all of our assumptions (A1l)— . .

(A3) (p = 6.97 x 1093, 3.52 1004, 1.04 x 10~ 09 resulting test accuracy (%) along with stan-
resp.). These findings provide evidence that bad in- dard errors under (A3, fixed data).
terpolation properties are detrimental for empirical

performance. Nevertheless, even optimal interpolation did not lead to statistically significant improve-
ments (see also Tab. 2 and Tab. 3), i.e., good interpolation is not sufficient.

Detailed analysis. To shed some light into the graphs produced by each of the methods, we visualize
properties of the mixup graphs on the MUTAG dataset® for a choice of A = 0.8 & ¢ in Fig. 3,
including the resulting mIE score. The plot represents each augmented pair (G1, Ga, G, A) by
a (slightly transparent) horizontal line, where the height correspond to the distance between the
input graphs (y = d(G1,G>)) and the start- and endpoint to the distance of the mixup graph to
each input (from x1 = d(G1, Gar) to zo = d(G2, G). The blue targets indicate the points where
d(G1,Gpn) = Md(G1,Gs) and d(Ga, Gy) = (1-XN)d(G1, G2), i.e.,IC; and ICo, resp., are satisfied.
Ideally, all lines start and end at their target. The area marked in red shows particularly troublesome

5The conclusions for the MUTAG dataset are representative for the other datasets as well; see App. 1.

Under review as a conference paper at ICLR 2026

%
o

« TARGETS - 50

I
)

IS

o

30

w
o

N

o
N
o

10 Non-interpolation area

Input-to-input distance d(G,, G2)
=
o

Input-to-input distance d(G;, G3)
Input-to-input distance d(G1, G2)

= (d(Gi,Gu) > d(G1,G2))
0_—_ 0 8 o2
0 10 20 30 40 0 10 20 30 40 50 0 10 20 30 40 50
Output-to-input distances d(G;, Gum) Output-to-input distances d(Gj, Gum) Output-to-input distances d(Gj, Gu)
(a) GED-Mixup (mIE = 0.04) (b) SubMix (mIE = 0.62) (c) If-Mixup® (mIE = 1.31)
60 60 40

w
[

%4

=]
%
o

w
o

N
o
N
o

N
ul

w
o
w
o
N
o

H
w
| |

N
o
N
o

-
o

Input-to-input distance d(G,, G2)
Input-to-input distance d(G;, G3)
Input-to-input distance d(G;, G2)

-
o
=
=)

ul

00 0 40 60 G0 20 40 60 GO 10 20 30 40
Output-to-input distances d(G;, Gm) Output-to-input distances d(G;, Gum) Output-to-input distances d(G;, Gm)
(d) FGW-Mixup (mIE = 2.51) (e) S-Mixup* (mIE = 3.37) (f) GeoMix™ (mIE = 4.25)

Figure 3: Visualization of mixup graphs produced on the MUTAG dataset. Each horizontal line
corresponds to an input pair and its mixup graph and should ideally start and end at the blue targets.

cases: if an endpoint falls into this area, the corresponding mixup graph has a larger distance to one of
the inputs than the distance between the inputs themselves. In addition to not hitting the interpolation
targets, such graphs cannot even be interpreted as an interpolation between their inputs (corresponds
to the non-green area in Fig. 1).

As expected, GED-Mixup interpolated well between inputs. For SubMix, which also interpolated
well, we can see that the reason it slightly fell behind GED-Mixup interpolation is that it typically over-
or undershot interpolation targets. If-Mixup, which fell behind considerably, produced results that
roughly satisfied one of the targets (/C5) but not the other one (/). The mixup graphs produced by
all other methods could generally not be treated as interpolations (red area is almost always touched).

Related work. Note that some prior work also performed structural analysis of mixup graphs to some
extent. In particular, Zeng et al. (2024) evaluate structural plausibility of their GeoMix method using
the Gromov-Wasserstein distance, i.e., within the Gromov-Wasserstein space rather than the input
space. Their conclusions heavily depend on the suitability of that space, which our results call into
question. Moreover, Ling et al. (2022) analyze their S-Mixup method using a variant of GED (which
ignores distance between inputs, for example); our result indicate that S-Mixup does not exhibit good
interpolation properties even though it optimizes that variant. Both works are limited in that they
analyzed their respective proposed methods only, whereas our work provides a more holistic view.

6 CONCLUSION

We performed an independent evaluation of in a unified experimental setup following established
evaluation protocols and systematically analyzed the mixup graphs produced by existing mixup
methods from an interpolation perspective. While we do believe that mixup can be beneficial for
graph classification tasks, our experimental study did not provide evidence for its efficacy. However,
it also did not provide evidence to the contrary. We did find evidence that high interpolation errors
lead to inferior results, though, which indicates that interpolation properties should be taken into
account in subsequent works.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

All of our work is reproducible. For this, we provided pseudo code for our analysis tool, GED-Mixup,
both in the main text in Sec. 4.3 and in App. F with more details. Our experimental design for the
interpolation analysis is described in Sec. 5, the experimental design for the empirical performance is
summarized in Sec. 3 in the main text and described in detail in App. C. The source code required to
reproduce our experiments is provided alongside this submission.

10

Under review as a conference paper at ICLR 2026

REFERENCES

Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical
Risk Minimization. In International Conference on Learning Representations, 2018.

Sunil Thulasidasan, Gopinath Chennupati, Jeff A Bilmes, Tanmoy Bhattacharya, and Sarah Michalak.
On Mixup Training: Improved Calibration and Predictive Uncertainty for Deep Neural Networks.
In Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

Linghui Meng, Jin Xu, Xu Tan, Jindong Wang, Tao Qin, and Bo Xu. Mixspeech: Data augmenta-
tion for low-resource automatic speech recognition. In ICASSP 2021-2021 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 7008-7012. IEEE, 2021.

Lichao Sun, Congying Xia, Wenpeng Yin, Tingting Liang, Philip Yu, and Lifang He. Mixup-
Transformer: Dynamic Data Augmentation for NLP Tasks. In Donia Scott, Nuria Bel, and
Chengqing Zong, editors, Proceedings of the 28th International Conference on Computational Lin-
guistics, pages 3436-3440, Barcelona, Spain (Online), December 2020. International Committee
on Computational Linguistics. doi: 10.18653/v1/2020.coling-main.305.

Tien Huu Do, Duc Minh Nguyen, Giannis Bekoulis, Adrian Munteanu, and Nikos Deligiannis.
Graph convolutional neural networks with node transition probability-based message passing
and DropNode regularization. Expert Systems with Applications, 174:114711, July 2021. ISSN
0957-4174. doi: 10.1016/j.eswa.2021.114711.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. DropEdge: Towards Deep Graph
Convolutional Networks on Node Classification. In International Conference on Learning Repre-
sentations, September 2019.

Cédric Villani. Optimal Transport: Old and New, volume 338. Springer, 2008.

Laszl6 Lovész and Baldzs Szegedy. Limits of dense graph sequences. Journal of Combinatorial
Theory, Series B, 96(6):933-957, November 2006. ISSN 0095-8956. doi: 10.1016/j.jctb.2006.05.
002.

Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli. Graph Matching Networks
for Learning the Similarity of Graph Structured Objects. In Proceedings of the 36th International
Conference on Machine Learning, pages 3835-3845. PMLR, May 2019.

Ermin Omeragic and Vuk Duranovié. [Re] G-Mixup: Graph Data Augmentation for Graph Classifi-
cation. In ML Reproducibility Challenge 2022, 2023.

Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A Fair Comparison of Graph Neu-
ral Networks for Graph Classification. In International Conference on Learning Representations,
September 2019.

Aymen Qabel, Sofiane Ennadir, Giannis Nikolentzos, Johannes Lutzeyer, Michail Chatzianastasis,
Henrik Bostrom, and Michalis Vazirgiannis. Structure-Aware Antibiotic Resistance Classification
Using Graph Neural Networks, October 2022.

Conghao Wang, Gaurav Asok Kumar, and Jagath C. Rajapakse. Drug discovery and mechanism
prediction with explainable graph neural networks. Scientific Reports, 15(1):179, January 2025.
ISSN 2045-2322. doi: 10.1038/s41598-024-83090-3.

David Buterez, Jon Paul Janet, Steven J. Kiddle, Dino Oglic, and Pietro Li6. Transfer learning
with graph neural networks for improved molecular property prediction in the multi-fidelity
setting. Nature Communications, 15(1):1517, February 2024. ISSN 2041-1723. doi: 10.1038/
s41467-024-45566-8.

Yaan J. Jang, Qi-Qi Qin, Si-Yu Huang, Arun T. John Peter, Xue-Ming Ding, and Benoit Korn-
mann. Accurate prediction of protein function using statistics-informed graph networks. Nature
Communications, 15(1):6601, August 2024. ISSN 2041-1723. doi: 10.1038/s41467-024-50955-0.

Karel van der Weg, Erinc Merdivan, Marie Piraud, and Holger Gohlke. TopEC: Prediction of Enzyme
Commission classes by 3D graph neural networks and localized 3D protein descriptor. Nature
Communications, 16(1):2737, March 2025. ISSN 2041-1723. doi: 10.1038/s41467-025-57324-5.

11

Under review as a conference paper at ICLR 2026

Kanchan Jha, Sriparna Saha, and Hiteshi Singh. Prediction of protein—protein interaction using graph
neural networks. Scientific Reports, 12(1):8360, May 2022. ISSN 2045-2322. doi: 10.1038/
s41598-022-12201-9.

Tristan Bilot, Nour El Madhoun, Khaldoun Al Agha, and Anis Zouaoui. A Survey on Malware
Detection with Graph Representation Learning. ACM Comput. Surv., 56(11):278:1-278:36, June
2024. ISSN 0360-0300. doi: 10.1145/3664649.

Soroor Motie and Bijan Raahemi. Financial fraud detection using graph neural networks: A systematic
review. Expert Systems with Applications, 240:122156, April 2024. ISSN 0957-4174. doi:
10.1016/j.eswa.2023.122156.

Chengtai Cao, Fan Zhou, Yurou Dai, Jianping Wang, and Kunpeng Zhang. A Survey of Mix-based
Data Augmentation: Taxonomy, Methods, Applications, and Explainability. ACM Comput. Surv.,
57(2):37:1-37:38, October 2024. ISSN 0360-0300. doi: 10.1145/3696206.

Chanwoo Park, Sangdoo Yun, and Sanghyuk Chun. A Unified Analysis of Mixed Sample Data
Augmentation: A Loss Function Perspective. In Advances in Neural Information Processing
Systems, October 2022.

Xin Jin, Hongyu Zhu, Siyuan Li, Zedong Wang, Zicheng Liu, Juanxi Tian, Chang Yu, Huafeng Qin,
and Stan Z. Li. A Survey on Mixup Augmentations and Beyond, April 2025.

Aviv Shamsian, Aviv Navon, David W. Zhang, Yan Zhang, Ethan Fetaya, Gal Chechik, and Haggai
Maron. Improved Generalization of Weight Space Networks via Augmentations. In Proceedings of
the 41st International Conference on Machine Learning, pages 44378-44393. PMLR, July 2024.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon
Yoo. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 6023-6032,
2019.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Herve
Jegou. Training data-efficient image transformers & distillation through attention. In Proceedings
of the 38th International Conference on Machine Learning, pages 10347-10357. PMLR, July
2021.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pages 10012—-10022, 2021.

Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, Ioannis Mitliagkas, David Lopez-Paz,
and Yoshua Bengio. Manifold mixup: Better representations by interpolating hidden states. In
International Conference on Machine Learning, pages 6438-6447. PMLR, 2019.

Alexandre Ramé, Rémy Sun, and Matthieu Cord. MixMo: Mixing Multiple Inputs for Multiple
Outputs via Deep Subnetworks. In 2021 IEEE/CVF International Conference on Computer Vision
(ICCV), pages 803-813, October 2021. doi: 10.1109/I1CCV48922.2021.00086.

Wenxuan Bao, Francesco Pittaluga, Vijay Kumar B G, and Vincent Bindschaedler. DP-Mix: Mixup-
based Data Augmentation for Differentially Private Learning. Advances in Neural Information
Processing Systems, 36:12154—12170, December 2023.

Difan Zou, Yuan Cao, Yuanzhi Li, and Quanquan Gu. The Benefits of Mixup for Feature Learning.
In Proceedings of the 40th International Conference on Machine Learning, pages 43423—-43479.
PMLR, July 2023.

Hongyu Guo and Yongyi Mao. Interpolating graph pair to regularize graph classification. In
Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence and Thirty-Fifth
Conference on Innovative Applications of Artificial Intelligence and Thirteenth Symposium on
Educational Advances in Artificial Intelligence, volume 37 of AAAI’23/IAAI’23/EAAI’23, pages
7766-7774. AAAI Press, February 2023. ISBN 978-1-57735-880-0. doi: 10.1609/aaai.v37i6.
25941.

12

Under review as a conference paper at ICLR 2026

Hongyi Ling, Zhimeng Jiang, Meng Liu, Shuiwang Ji, and Na Zou. Graph Mixup with Soft
Alignments. In Proceedings of the 40th International Conference on Machine Learning, September
2022.

Jaemin Yoo, Sooyeon Shim, and U Kang. Model-Agnostic Augmentation for Accurate Graph
Classification. In Proceedings of the ACM Web Conference 2022, WWW ’22, pages 1281-1291,
New York, NY, USA, April 2022. Association for Computing Machinery. ISBN 978-1-4503-9096-
5. doi: 10.1145/3485447.3512175.

Xiaotian Han, Zhimeng Jiang, Ninghao Liu, and Xia Hu. G-Mixup: Graph Data Augmentation for
Graph Classification. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang
Niu, and Sivan Sabato, editors, International Conference on Machine Learning, ICML 2022, 17-23
July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine Learning Research,
pages 8230-8248. PMLR, 2022.

Xinyu Ma, Xu Chu, Yasha Wang, Yang Lin, Junfeng Zhao, Liantao Ma, and Wenwu Zhu. Fused
Gromov-Wasserstein Graph Mixup for Graph-level Classifications. Advances in Neural Information
Processing Systems, 36:15252—-15276, December 2023.

Zhichen Zeng, Ruizhong Qiu, Zhe Xu, Zhining Liu, Yuchen Yan, Tianxin Wei, Lei Ying, Jingrui
He, and Hanghang Tong. Graph Mixup on Approximate Gromov—Wasserstein Geodesics. In
Forty-First International Conference on Machine Learning, June 2024.

Yiwei Wang, Wei Wang, Yuxuan Liang, Yujun Cai, and Bryan Hooi. Mixup for Node and Graph
Classification. In Proceedings of the Web Conference 2021, WWW °21, pages 3663-3674, New
York, NY, USA, June 2021. Association for Computing Machinery. ISBN 978-1-4503-8312-7.
doi: 10.1145/3442381.3449796.

Titouan Vayer, Laetitia Chapel, Remi Flamary, Romain Tavenard, and Nicolas Courty. Fused
Gromov-Wasserstein Distance for Structured Objects. Algorithms, 13(9):212, September 2020.
ISSN 1999-4893. doi: 10.3390/a13090212.

Gabriel Peyré, Marco Cuturi, and Justin Solomon. Gromov-Wasserstein Averaging of Kernel and
Distance Matrices. In Proceedings of The 33rd International Conference on Machine Learning,
pages 2664-2672. PMLR, June 2016.

Lijun Chang, Xing Feng, Kai Yao, Lu Qin, and Wenjie Zhang. Accelerating Graph Similarity Search
via Efficient GED Computation. /EEE Transactions on Knowledge and Data Engineering, 35(5):
44854498, May 2023. ISSN 1558-2191. doi: 10.1109/TKDE.2022.3153523.

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. TUDataset: A collection of benchmark datasets for learning with graphs, July 2020.

Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional
Networks. In International Conference on Learning Representations, February 2017.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful are Graph Neural
Networks? In International Conference on Learning Representations, 2018.

Bernard L. Welch. The generalization of ‘STUDENT’S’problem when several different population
varlances are involved. Biometrika, 34(1-2):28-35, 1947.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Baldzs Kégl. Algorithms for Hyper-Parameter
Optimization. In Advances in Neural Information Processing Systems, volume 24. Curran Asso-
ciates, Inc., 2011.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A
Next-generation Hyperparameter Optimization Framework. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’19, pages
2623-2631, New York, NY, USA, July 2019. Association for Computing Machinery. ISBN
978-1-4503-6201-6. doi: 10.1145/3292500.3330701.

13

Under review as a conference paper at ICLR 2026

Alberto Sanfeliu and King-Sun Fu. A distance measure between attributed relational graphs for
pattern recognition. IEEE Transactions on Systems, Man, and Cybernetics, SMC-13(3):353-362,
May 1983. ISSN 2168-2909. doi: 10.1109/TSMC.1983.6313167.

Zhiping Zeng, Anthony K. H. Tung, Jianyong Wang, Jianhua Feng, and Lizhu Zhou. Comparing
stars: On approximating graph edit distance. Proceedings of the VLDB Endowment, 2(1):25-36,
August 2009. ISSN 2150-8097. doi: 10.14778/1687627.1687631.

Lijun Chang, Xing Feng, Xuemin Lin, Lu Qin, Wenjie Zhang, and Dian Ouyang. Speeding Up GED
Verification for Graph Similarity Search. In 2020 IEEE 36th International Conference on Data
Engineering (ICDE), pages 793-804, April 2020. doi: 10.1109/ICDE48307.2020.00074.

Jaeseung Heo, Seungbeom Lee, Sungsoo Ahn, and Dongwoo Kim. EPIC: Graph augmentation with
edit path interpolation via learnable cost. In Proceedings of the Thirty-Third International Joint
Conference on Artificial Intelligence, IICAI °24, pages 41164126, Jeju, Korea, August 2024.
ISBN 978-1-956792-04-1. doi: 10.24963/ijcai.2024/455.

Hongyu Guo and Yongyi Mao. ifMixup: Interpolating Graph Pair to Regularize Graph Classification,
November 2022.

David B. Blumenthal, Nicolas Boria, Johann Gamper, Sébastien Bougleux, and Luc Brun. Comparing
heuristics for graph edit distance computation. The VLDB Journal, 29(1):419-458, January 2020.
ISSN 0949-877X. doi: 10.1007/s00778-019-00544-1.

Glen Jeh and Jennifer Widom. Scaling personalized web search. In Proceedings of the 12th
International Conference on World Wide Web, WWW °03, pages 271-279, New York, NY, USA,
May 2003. Association for Computing Machinery. ISBN 978-1-58113-680-7. doi: 10.1145/
775152.775191.

A. K. Debnath, R. L. Lopez de Compadre, G. Debnath, A. J. Shusterman, and C. Hansch. Structure-
activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. Correlation with
molecular orbital energies and hydrophobicity. Journal of Medicinal Chemistry, 34(2):786-797,
February 1991. ISSN 0022-2623. doi: 10.1021/jm00106a046.

Nils Kriege and Petra Mutzel. Subgraph matching kernels for attributed graphs. In Proceedings of
the 29th International Coference on International Conference on Machine Learning, ICML’12,
pages 291-298, Madison, WI, USA, June 2012. Omnipress. ISBN 978-1-4503-1285-1.

Ida Schomburg, Antje Chang, Christian Ebeling, Marion Gremse, Christian Heldt, Gregor Huhn,
and Dietmar Schomburg. BRENDA, the enzyme database: Updates and major new developments.
Nucleic Acids Research, 32(Database issue):D431-433, January 2004. ISSN 1362-4962. doi:
10.1093/nar/gkh081.

Karsten M. Borgwardt, Cheng Soon Ong, Stefan Schonauer, S. V. N. Vishwanathan, Alex J. Smola,
and Hans-Peter Kriegel. Protein function prediction via graph kernels. Bioinformatics (Oxford,
England), 21 Suppl 1:i147-56, June 2005. ISSN 1367-4803. doi: 10.1093/bioinformatics/bti1007.

Pinar Yanardag and S.V.N. Vishwanathan. Deep Graph Kernels. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 15, pages
1365-1374, New York, NY, USA, August 2015. Association for Computing Machinery. ISBN
978-1-4503-3664-2. doi: 10.1145/2783258.2783417.

Paul D. Dobson and Andrew J. Doig. Distinguishing enzyme structures from non-enzymes without
alignments. Journal of Molecular Biology, 330(4):771-783, July 2003. ISSN 0022-2836. doi:
10.1016/s0022-2836(03)00628-4.

Matthias Fey and Jan Eric Lenssen. Fast Graph Representation Learning with PyTorch Geometric,
April 2019.

Gavin C. Cawley and Nicola LC Talbot. On over-fitting in model selection and subsequent selection
bias in performance evaluation. The Journal of Machine Learning Research, 11:2079-2107, 2010.

14

Under review as a conference paper at ICLR 2026

Yoshua Bengio. Practical Recommendations for Gradient-Based Training of Deep Architectures.
In Grégoire Montavon, Genevieve B. Orr, and Klaus-Robert Miiller, editors, Neural Networks:
Tricks of the Trade: Second Edition, pages 437-478. Springer, Berlin, Heidelberg, 2012. ISBN
978-3-642-35289-8. doi: 10.1007/978-3-642-35289-8_26.

Yoshua Bengio and Yves Grandvalet. No unbiased estimator of the variance of k-fold cross-validation.
Journal of machine learning research, 5(Sep):1089—-1105, 2004.

Jiaxuan You, Rex Ying, and Jure Leskovec. Design space for graph neural networks. In Proceedings
of the 34th International Conference on Neural Information Processing Systems, NIPS °20, pages
17009-17021, Red Hook, NY, USA, December 2020. Curran Associates Inc. ISBN 978-1-7138-
2954-6.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In Yoshua Bengio
and Yann LeCun, editors, 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

Herbert Robbins and Sutton Monro. A Stochastic Approximation Method. The Annals of
Mathematical Statistics, 22(3):400-407, September 1951. ISSN 0003-4851, 2168-8990. doi:
10.1214/a0ms/1177729586.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15(1):
1929-1958, January 2014. ISSN 1532-4435.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In Proceedings of the 32nd International Conference on
International Conference on Machine Learning - Volume 37, ICML’15, pages 448-456, Lille,
France, July 2015. JMLR.org.

15

Under review as a conference paper at ICLR 2026

fo)=d

T f@=e T

-
c e d f c d e f
a b c /0 0 1 1 c /0 1 0 1
_a 01 unaligned __ € 0 0 1 1 aligned __ d 1 01 0
Al_b(l()) Az “d|l1 100 AT =clo 101
f\1 100 fF\1 010

Figure 4: The vertex mapping f : V73 — V5 (dashed lines) maps the vertices V; of (G; to the vertices
V5 of Go. The vertex mapping f is a full vertex mapping because f(v;) is well-defined for all

vy € V4. The adjacency matrix A; corresponds to Gy, and both AYE and A3 correspond

to Gy. The matrix A; directly appears as a substructure in A3 at the top left of the adjacency

: . ligned
matrix, but not in A€,

A RELATED WORK

We first discuss vertex mappings and related concepts, and subsequently summarize existing mixup
methods by relating them to vertex mappings.

A.1 PRELIMINARIES: VERTEX MAPPINGS, EDIT SETS, GRAPH EDIT DISTANCE, ADJACENCY
MATRICES

Consider two input graphs G; and G5, with vertex sets V7 and V5 as well as edge sets £ and Fs,
respectively. Without loss of generality, assume that |V;| < |V,|. Two example graphs are shown
in Fig. 4 (top). Note that the letters shown in the figure do not correspond to vertex labels (the graphs
are unlabeled); we use them for expository reasons only.

A vertex mapping f : Vi — V4 is an injective mapping from the vertices of G to the vertices of
G5. Vertex mappings formalize the notion of an alignment of Sec. 2. One such mapping is shown
in Fig. 4 (top).

Every vertex mapping f induces an edit set, which is obtained by performing the edits required
to obtain G from G by “transforming” each vertex v; € V; (along with its neighborhood) to
f(v1) € V4 (likewise). For example, if (v,u1) ¢ Ej but (f(v1), f(u1)) € Es, we include an
insertion operation of edge (v, u1) to the edit set. The edit set induced by the vertex mapping shown
in Fig. 4 is given by

{insert vertex e, insert vertex f,insert edge (b, e), insert edge (a, f), insert edge (e, f) }.

The induced edit set can be computed in asymptotically linear time with respect to the number of
nodes and edges (cf. Alg. 1 in (Chang et al., 2020)).

A vertex mapping is optimal if the size of its induced edit set is as small as possible. The GED
d(G1,G>) is given by the size of the edit sets of optimal vertex mappings. State-of-the-art algorithms
for exact GED computation such as (Chang et al., 2023; 2020; Blumenthal et al., 2020) (sometimes
implicitly) produce an optimal vertex mapping and hence a corresponding edit set as a by-product.
We exploit this fact in our implementation of GED-Mixup.

For example, the computational framework used by Chang et al. (2020) and its improved version
(Chang et al., 2023) starts by constructing a prefix-shared search tree, where each path from the root
to a leaf represents a full vertex mapping f, and each path from the root to a non-leaf represents a
partial vertex mapping f,, in which f,(v1) is undefined for some v; € V4. Each node is associated
with a cost, which constitutes a lower bound on (or, for leaves, the exact value of) the sizes of the
induced edit sets obtained by all possible completions of the node’s partial vertex mapping. The goal
is to find a minimal-cost leaf, e.g., by using A* search. In order to obtain an efficient algorithm, lower
bounds should (i) be as tight as possible so that pruning is effective and (ii) be efficiently computable.

16

Under review as a conference paper at ICLR 2026

We can alternatively represent vertex mappings by vertex orderings, i.e., an ordering of the vertices in
V1 and V5, as well as by the corresponding adjacency matrices. For example, Fig. 4 shows adjacency
matrix A, of Gy for vertex ordering (a, b). Likewise, A€ is the adjacency matrix of G5 for
vertex ordering (c, e, d, f). The corresponding vertex mapping fundliened jg given by funaliened(g) = ¢
and funaliened(h) — ¢ j.e., the position of every vertex v; the ordering of V; matches the position
of funaligned (3,) in the ordering of V5. Vice versa, we can align the adjacency matrix of G5 to the
adjacency matrix A; with respect to a vertex mapping f. The corresponding adjacency matrix is
shown as A%,

Given two adjacency matrices A; and Ao, we can obtain an edit set by transforming A; to A, using
(1) vertex insertions (inserting a zero row/column at the bottom/right of A1), (ii) edge insertions (flip
a0toal), (iii) edge deletions (flip a 1 to a 0), and (iv) vertex and edge relabelings (not shown).

We are now ready to describe existing graph mixup methods.

A.2 METHODS FOR GRAPH MIXUP

We continue to use the setup and notation established in the previous section.

If-Mixup (Guo and Mao, 2023). If-Mixup uses adjacency matrices A; and As obtained by a
“default” vertex ordering of V7 and V5 present in the data. In more detail, it first pads A; (i.e., the
smaller adjacency matrix) with zero rows and columns to obtain A} (now of same size as As), and
then performs linear mixup. The entries of the resulting adjacency matrix lie in [0, 1] and can be
interpreted as edge weights or edge existence probabilities (which are then fed into the GNN model
as additional features). The result is heavily influenced by the vertex ordering present in the input

data; e.g., for Fig. 4, it is less suitable when Ay = A;“alig“ed and more suitable when Ay = A;lig“ed.

S-Mixup (Ling et al., 2022). S-Mixup can be seen as a variant of If-Mixup that aims to obtain
a better alignment between the two adjacency matrices. Observe that the reordering operation
involved in aligning an adjacency matrix As to A; w.r.t. to vertex mapping f can be expressed as
AYEd — PA, P, where P is a corresponding alignment matrix (which is a permutation matrix).
S-Mixup uses a soft alignment matrix obtained from a Graph Matching Network (Li et al., 2019),
which is trained on the available data. This soft alignment may not be optimal, but the hope is that it
induces smaller edit sets than the “arbitrary” vertex mapping used by If-Mixup. Another difference is
that S-Mixup, depending on the order of the two inputs, either produces a mixup graph with as many
vertices as (G; or a mixup graph with as many vertices as Gs.

SubMix (Yoo et al., 2022). SubMix is a mixup method inspired by CutMix (Yun et al., 2019). In
CutMix, patches of images are cut and pasted between training examples, and the examples labels
are mixed proportionally to the size of the patches. SubMix first samples a partial vertex ordering
of V1 with a diffusion process (personalized page rank (Jeh and Widom, 2003)), likewise V3 of V5.
It then replaces the subgraph of G2 induced by V5 by the subgraph of G; induced by V7. Since the
partial vertex orderings are obtained from a random diffusion process, the quality of the obtained
mixup graph depends on chance.

G-Mixup (Han et al., 2022). G-Mixup follows a different approach. It first computes
graphons (Lovidsz and Szegedy, 2006), each corresponding to a class and summarizing all graphs
of that class present in the training data. In more detail, a graphon is a symmetric function
W :[0,1]2 — [0,1] and can be interpreted as a “probabilistic adjacency matrix” of graphs of
arbitrary sizes. Each probabilistic graph is represented by a set V' of vertex positions (each in [0, 1]),
and the edge existence probability between vertices u,v € V is given by W (u,v). To obtain a
graphon, G-Mixup orders the vertices of the training graphs by degree, i.e., it implicitly uses a
custom vertex ordering. To perform mixup, G-Mixup interpolates the graphons of two classes using
linear mixup, and then samples graphs from the resulting mixed graphon. Note that (Omeragic and
Duranovic, 2023) reported reproducibility problems for this method.

FGW-Mixup (Ma et al., 2023) and GeoMix (Zeng et al., 2024). Both FGW-Mixup and GeoMix
rely on the Gromov-Wasserstein distance (Vayer et al., 2020) from the theory of optimal transport (Vil-

17

Under review as a conference paper at ICLR 2026

lani, 2008). FGW-Mixup uses the Fused-Gromov-Wasserstein distance, which incorporates graph
structure and features and aims to compute barycenters, wheres GeoMix uses the plain Gromov-
Wasserstein distance and relies on geodesics Peyré et al. (2016). In both cases, mixup takes place in
the Gromov-Wasserstein space. The optimal coupling between the input graphs obtained in the mini-
mization of the (Fused-)Gromov-Wasserstein distance corresponds to a vertex mapping, i.e., these
methods also aim to find a suitable mapping. Both FGW-Mixup and GeoMix are computationally
expensive and hence make use of approximation algorithms.

Embedding Mixup. Mixup can also be performed in the embedding space of the GNN model
(Wang et al., 2021), along the lines of manifold mixup (Verma et al., 2019). To do so, the current
GNN model is used to compute embeddings of the two input graphs, and linear mixup is performed
subsequently. Note that in contrast to the methods discussed before, embedding mixup does not
generate a mixup graph. It also does not use an underlying vertex mapping, as the embeddings being
interpolated are neural representations of entire input graphs.

EPIC (Heo et al., 2024). Edit Path Interpolation via Learnable Cost (EPIC) is based on the GED
and associated edit paths between graphs, akin to our GED-Mixup baseline of Sec. 4.3. EPIC learns
a cost model that aims to quantify the “importance” of specific edit operations from training data.
GEDs are computed using this cost model and approximation algorithms. GED-Mixup is a simplified
variant of EPIC in that it (i) uses unit edit costs (and thus does not require learning) and (ii) uses exact
GED. We did not consider EPIC in our experimental study as there was no source code available.

B DATASET STATISTICS
All datasets are obtained through TUDataset (Morris et al., 2020). Key statistics are shown in Tab. 5.

Table 5: Dataset Statistics

MUTAG ENZYMES IMDB-BINARY PROTEINS

Domain Molecules Bioinformatics Social Networks Bioinformatics
Graphs 188 600 1000 1113
Classes 2 6 2 2

Avg. Nodes 17.93 32.63 19.77 39.06
Avg. Edges 19.79 62.14 96.53 72.82
Node Labels v v - v
Edge Labels v - - -
Node Attr. - v (18) - v (1)
Geometry - - - -
Edge Attr. - - - -
References (1991; 2012) (2004; 2005) (2015) (2005; 2003)

C EXPERIMENTAL DETAILS

This section outlines the details of the experimental setup that are summarized in Sec. 3 in the main
text.

Datasets. We considered the datasets discussed in App. B.

Models. We considered the GCN (Kipf and Welling, 2017) and GIN (Xu et al., 2018) models in our
structure. Both are simple, commonly used models and have sufficient representational capacity for
the tasks we consider here. IL.e., they did overfit in our experiments, a problem that mixup aims to
alleviate.

Mixup methods. We considered all methods discussed in Sec. 2 for which open-source implementa-
tions were available, i.e., If-Mixup (Guo and Mao, 2023), S-Mixup (Ling et al., 2022), SubMix (Yoo
et al., 2022), G-Mixup (Han et al., 2022), FGW-Mixup (Ma et al., 2023), GeoMix (Zeng et al., 2024),
and Emb-Mixup (Wang et al., 2021).

18

Under review as a conference paper at ICLR 2026

Training. Given a labeled training set and a choice of hyperparameters, we trained each model in a
common training pipeline based on PyTorch Geometric (Fey and Lenssen, 2019) and Optuna (Akiba
et al., 2019), using cross entropy loss. To perform mixup, we used the original implementations from
prior work as well as our implementation of GED-Mixup. In each epoch, we generated a fixed number
of mixup graphs (a hyperparameter) and added them to the training data for this epoch. We followed
the common approach of producing mixup graphs by mixing two randomly chosen graphs/labels
from the training data, using mixup ratio A ~ Beta(«, «) (for hyperparameter o € R™T).

Methodology. We followed Errica et al. (2019), who describe key criteria for evaluating methods for
graph classification tasks. This includes (i) nested cross-validation (CV) for model selection (inner CV
for hyperparameter search) and model assessment (outer CV for test), (ii) repeat model assessment
multiple times to account for training randomness (e.g., model initialization), and (iii) publish source
code and ensure reproducibility. These criteria are well-established in machine learning (Cawley
and Talbot, 2010; Bengio, 2012; Bengio and Grandvalet, 2004) and particularly important for graph
classification tasks due to small dataset sizes and a lack of predefined train-test splits.

We emphasize these points because we found that prior studies often did not fully adhere to such
evaluation standards. For instance, some studies (Guo and Mao, 2023; Yoo et al., 2022; Wang et al.,
2021) followed the evaluation protocol of Xu et al. (2018), despite its problematic use of validation
rather than test performance (Errica et al., 2019). Other studies (Ling et al., 2022; Han et al., 2022)
used holdout validation instead of a cross-validation or use cross-validation only for model selection
but not for model assessment (Ma et al., 2023). While most methods provide source code of the
proposed method (except for (Guo and Mao, 2023; Heo et al., 2024)), source code for other key
aspects such as model selection is missing. Adding to these points, statistical significance was rarely
assessed so that it is not clear whether reported improvements are real. As we will see, our study
answers this negatively, i.e., most methods failed to produce statistically significant improvements
under a rigorous evaluation.

Hyperparameters. We used training hyperparameters (such as the learning rate or optimizer), model
architecture hyperparameters (such as the number of layers, hidden dimensionalities, or dropout
probability), and mixup hyperparameters (such as the number of added mixup graphs or sampling
distribution of the mixup ratio \). Tab. 6 summarizes our hyperparameters and search space. For
GCN/GIN, we followed You et al. (2020). For specific mixup methods, we used the hyperparameter
values or search spaces suggested in the code or the publication. Descriptions and rationales are given
below the table.

Tuning. Given a training and a validation split, we sampled 10 hyperparameter configurations
randomly and subsequently n configurations using Bayesian optimization with TPE (Bergstra et al.,
2011). Model selection was performed by mean validation accuracy (over the inner CV folds). We
first tuned strong baseline models without mixup in this fashion (using n = 90), and subsequently
tuned just the mixup hyperparameters (separately for each mixup method, using n = 10) in the same
way. This ensures fairness, as all mixup methods used the same, well-performing model architecture.

Metrics. We used 5-fold nested cross-validation throughout, three repeated training runs for model
assessment, and report mean classification accuracy on the test splits as a metric. We also report
standard errors and statistical significance compared to the no-mixup baseline using Welch’s two-sided
t-test (Welch, 1947) with a significance level of 0.05.

Hardware and computational cost. We required approximately 144 GPU hours per model and
dataset to determine the GNN hyperparameters and performance. We required approximately 96
GPU hours to determine hyperparameters and performance for each mixup method and dataset. We
used NVIDIA RTX 2080Ti and NVIDIA RTX A6000 GPUs supported by various generations of
either Intel Xeon CPUs (such as E2640 v2, E5-2640 v3, E5-2698 v4, and Silver 4114) or various
generations of AMD EPYC CPUs (such as 7413, 9474F, and 7713P).

Software. Our experimental pipeline is implemented with PyTorch Geometric (Fey and Lenssen,
2019) (MIT License) and Optuna (Akiba et al., 2019) (MIT License). We used the original mixup
implementations whenever available:

* Emb-Mixup: (own implementation)

* FGW-Mixup: https://github.com/ArthurLeoM/FGWMixup (no license)

* GED-Mixup: (own implementation)

19

https://github.com/ArthurLeoM/FGWMixup

Under review as a conference paper at ICLR 2026

Table 6: Hyperparameter search space

Hyperparameter Search space
Training Optimizer Adam (2015), SGD (1951)

Learning rate 1075 to 10! (log scale)

Batch size {8,16,32,64, 128,256}

Dropout probability (2014) [0,0.5]

Early stopping’ {1,...,1000}
GCN/GIN No. pre-processing layers 1,2,3

No. convolutional layers 2,4,...,8

No. post-processing layers 1,2,3

Embedding size 32 to 256 (log scale)

Readout Mean, Max, Sum

Normalization None, Batch norm (2015)
Mixup” Augmentation ratio? [0.2,2.0]

Keep original graphs?’ Yes or no

Mixup ratio parameter o/* {0.1,0.3,0.5,1.0,5.0}
FGW-Mixup FGW-alpha’ {0.05,0.5,0.95}

p° {0.1,1,10}
S-Mixup GMNet batch size’ {8,64,128}

No. GMNet layers’ {4,5,6}
SubMix Subgraph size® {0.2,0.4,0.6}

_ %

" Used by all mixup methods unless stated otherwise.
We determine the number of “early-stopping” epochs that leads to the best val-

idation result, and use it when we retrain on the entire four folds for testing on
the remaining fold. We do this so that test data is not used for early stopping and
hence not leaked.

[S)

Fraction of generated mixup graphs per epoch w.r.t. the size of the training data.

Here we force each mixup method to add a non-trivial fraction (20%) of mixup
graphs during training. We do this since we are primarily interested in whether
mixup is effective and not in hyperparameter choices that do not actually add

mixup graphs.

3 Whether to include non-mixup graphs during training.

4 Mixup ratio X is sampled from Beta(a,). Does not apply to SubMix.

3 Trade-off parameter between Gromov-Wasserstein cost on graph structure and
Wasserstein cost on node features (cf. (Ma et al., 2023)).

® Step size hyperparameter in mirror descent (cf. (Ma et al., 2023)).

7 Hyperparameter of the graph matching network (cf. (Li et al., 2019)).

8 Relative size of the selected subgraphs (cf. (Yoo et al., 2022)).

20

Under review as a conference paper at ICLR 2026

¢ GeoMix: https://github.com/zhichenz98/GeoMix-ICML24 (no license)

* G-Mixup: https://github.com/ahxt/g-mixup (no license)

* If-Mixup: (own implementation)

e SubMix: https://github.com/snudatalab/GraphAug (custom license available under the
specified URL)

* S-Mixup: https://github.com/divelab/DIG (GPL-3.0 license)

* GED and edit set computation: AStar-BMao (Chang et al., 2023) available from GitHub
https://github.com/LijunChang/Graph_Edit_Distance (MIT License). We modified the code
to additionally provide vertex mappings.

D POOLED ANALYSIS

We estimate standard errors under assumptions (A1)—(A3) discussed in Sec. 3. We start with (A1)
and subsequently discuss (A2)—(A3).

Observations. Consider an arbitrary but fixed mixup method. In our evaluation, we considered

» Two model architectures M = { GCN, GIN },
* Four data distributions D = { MUTAG, ENZYMES, IMDB-BINARY, PROTEINS },

* Five folds F; = { f{,..., f&} per data distribution d € D, each consisting of a training
and a test split, and

* Three runs R,qr = {rindf (T 4 , rgndf } per model architecture m € M, data distribution

d € D, and fold f € Fy.

We then observe the accuracies A,,qr € [0, 1] of run 7 on fold f for data distribution d and model
architecture m.

Assumption (A1, standard). In what follows, we use capital letters to refer to random variables
(e.g., D for a random data distribution) and small as well as calligraphic letters to refer to concrete
realizations (e.g., d for a concrete realization of D and D for multiple such realizations). Under (A1),
we assume that

(A1-M) model architectures are drawn from a distribution p(M) of “real-world” model architectures,
(A1-D) data distributions are drawn from a distribution p(D) of “real-world” data distributions,

(A1-F) folds F are drawn from a fold distribution p(Fp) obtained by sampling each element of
each of the training/test splits independently from data distribution D,

(A1-R) runs R are drawn from a run distribution p(Ry;pr) determined by the random choices
made during training (such as randomness in initialization, batch construction, or mixup).

These assumptions allow us to estimate the impact of mixup beyond the concrete datasets and model
architectures used in this study.

Note that we make a key simplifying assumption here: we treat each observation A,,q, as an
independent realization of Ap;prr. By doing so, we ignore that in our implementation, (i) all 3 runs
use the same fold and hyperparameters, and (ii) all 5 folds are obtained by cross-valuation and from a
single dataset. This may lead to an underestimation of variance Bengio and Grandvalet (2004). We
proceed this way to keep the cost of the experimental study controlled, and we need this simplifying
assumption to make analysis feasible.

Estimators. We estimate the expected accuracy A,,qr = E Reop(Ronar) [Amdf r| of model architec-
ture m on fold f for data distribution d by the sample mean, i.e.,

A 1
Amdf = Z Amdfr~
|Rmdf‘ TERmar

21

https://github.com/zhichenz98/GeoMix-ICML24
https://github.com/ahxt/g-mixup
https://github.com/snudatalab/GraphAug
https://github.com/divelab/DIG
https://github.com/LijunChang/Graph_Edit_Distance

Under review as a conference paper at ICLR 2026

Likewise, the expected accuracy A,,,q = E Frop(Fa) [Asar] of model architecture m on data distribu-
tion d is estimated as
d=
An |]:d| 2 Anm

fe€Fa

This estimate is shown in Tab. 2 for various mixup methods. Finally, the estimates for the expected
performance A,, ~ Ep.,p)[Amp] of model architecture m and expected overall performance
A = Eprp(m)[Ans] are obtained similarly, i.e.,

m Am
|D\ ZD !
~ 1 ~
A A,,.
[M] 2

meM

The latter estimate is shown in Tab. 3 for various mixup methods.
Standard errors. We now derive the standard errors of each of the above estimators under (Al).
First, we estimate the variance o2, daf = VaIRup(R,ap) [Amar r] by the sample variance, i.e.,
1 R
52 2
Omdf = W Z (Amdfr — Amar)”.
mdf rERmadr
For the variance 07, ; = Varp.,(r,)[Amdr], we use the law of total variance to obtain
U?nd = EFNP(Fd) [Var(AmdF|F)] + Varpwp(pd) (E[AmdF|F]) .

“within-fold” “between-folds”

We estimate the first part by the mean within-fold variance estimate and the second part by the sample
variance of estimates across fOldS‘

md |]_~| Z mdf Tt]:| 1 Z (Amdf - Amd)2
feFq feFa

“within-fold” “between-folds”

Using the simplifying assumption of independent observations discussed above, we estimate the
standard error of A,,4 by
52
o~ o
SE(Apnq) = /24,
Nmd

where nima = > e r, 2rer,,,, 1 = 15. This standard error is shown in Tab. 2.

Using the same approach, we obtain an estimate of the variance 02, = Var Dep(D)[AmD] as
Z Z A A2
= + A d— A
deD deD
“within-dataset” “between-datasets”

and of variance 0% = Var /(1) [An] as

R 1 1 R .
7= 2 T g 2 (e A
meM

me/\/l

“within-model” “between-models”
We estimate the standard error of A by

SE(4) =1/ —,

n

where n = 3" (D uep Do fer, Z’V'eRn“if 1 = 120. This standard error is shown in the (Al)
column of Tab. 3.

22

Under review as a conference paper at ICLR 2026

Assumption (A2, fixed distribution). For (A2), we make the stronger assumption that M and D
are not samples (from a distribution of model architectures and a distribution of data distributions, re-
spectively) but the entire population of interest. Then A,,, = ﬁ Y aAmaand A = ﬁ Zme M Am
become means (instead of being expected values). As a consequence, the “between-datasets” and
the “between-models” terms in our estimate of 52, and 62, respectively, vanish. The corresponding
standard errors are shown in the (A2) column of Tab. 3.

Assumption (A3, fixed data). For (A3), we make assumption (A2) plus the additional assumption
that the folds in F4 are not samples (from the data distribution d) but the entire population of
interest. Then A,,,q = ﬁ > FeFs Arq¢ becomes a mean (instead of being an expected value). As a

consequence, the “between-folds” term in our estimate of 62, ; vanishes as well. The corresponding
standard errors are shown in the (A3) column of Tab. 3.

E PROOF OF PROP. 1

Proposition 1. For any distance metric d(a,b) = ||a — b|| induced by a norm ||-|| on the input/label
vector space (over R), linear mixup of Eq. (1) satisfies IC for inputs/labels and we have

AlEg(zyr) = IEq(zpr) =0 7/ AlE4(yar) = IE4(yar) = 0.

Proof. Consider inputs 1 and zo, any A € [0, 1], and any norm ||-|| on the input space. Linear mixup
produces the result

Ty =21+)\(IQ — Il).
‘We have

d(z1,20m) = [lz1 — 2|
= [lz1 — (21 + AMx2 — 21))]|
= [|[=A(z2 — z1)||
= A|(z2 — 1)
= A-d(x1,x2),

which proves IC;. The same arguments can be made for IC, and as well as y, so that all interpolation
errors are zero as claimed. O

F DETAILS OF GED-MIXUP

Alg. 2 shows a slightly more detailed version of Alg. 1. In our implementation, we use AStar-
BMao (Chang et al., 2023), an algorithm for GED computation, and modified it to also output a
corresponding edit set F.

In contrast to Alg. 1, Alg. 2 does not first sample an edit path and subsequently generate a mixup
graph. Instead, it generates G directly.

Akin to the discussion in Sec. 4.3, we consider an edit path as valid if its operations (when applied in
order) each satisfy: (i) an edge can only be inserted when its source and target vertex are present,
(ii) a vertex can only be removed when it does not have an incident edge, (iii) label substitutions are
only possible for vertices/edges present in the graph, and (iv) when both G; and G are connected,
so is GG ;. We check for conditions (i)—(iii) as we go: ADMISSIBLEMIXUP repeatedly samples a
not-yet-used and admissible operation—i.e., an operation satisfying (i)—(iii)—from F’ and returns
the resulting mixup graph. If the mixup graph also satisfies (iv), we output it, otherwise we repeat the
sampling process.’

"Assume G4 and G are connected. For some edit sets, every admissible edit path of length round(\|F|)
produces a mixup graph that is not connected. This problem can be fixed by allowing one more or one less edit
operation. In our implementation, we use a simpler approach and abort generation if we do not obtain a valid
mixup graph after 10 repetitions. This is not a problem in practice, as we can simply sample a new value for A or
a new set of graphs to mixup.

23

Under review as a conference paper at ICLR 2026

Algorithm 2 GED-Mixup of Alg. | in more detail

Require: Graphs G1, Go; mixup ratio A € [0, 1]
Ensure: Mixup graph G,
: F* + a minimal edit set between G; and (G5, obtained by AStar-BMao (Chang et al., 2023)

1:

2: repeat

3: G < ADMISSIBLEMIXUP(G1, F*, round(A| F))

4: until GG, is connected or (G is not connected or G5 is not connected
5: return Gy

6:

7: function ADMISSIBLEMIXUP(G1, F, n)

8: Gy +— Gy

9: fori < 1,...,ndo
10: f < sample an edit operation from F’ that is admissible on G s > App. F
11: Gy apply (G, f)
12: F+«F\{f}
13: end for
14: return G

15: end function

Note that our approach to obtain an edit paths is rather naive: The obtained path is “random” and
largely ignores locality of edit operations. Since we view GED-Mixup as a baseline, however, we did
not explore this further.

G PROOF OF PrOP. 2

Proposition 2. GED-Mixup (Alg. 1) interpolates optimally w.r.t. dggp, and it holds
AIE(G}\/[) =2 |r0und()\ . dGED(Gl, Gg)) - A dGED(Gl, Gg)‘ S 1.

Proof. Consider inputs G and G, let P be the edit path chosen by Alg. 1. By construction, we have

apply(G1, P) = Go and diz ® deen (G, Gs) = |P).
Denote by
dyn =X [Pl =X-di2
the interpolation target (IC;) and by Py the first round(d ;1) edit operations in P. Alg. 1 produces
Gwm = apply(G1, Py)
and it holds that
d(Gpr, G1) = round(dp)

To see this, first observe that Py contains round(dysq) edit operations so that d(G1,Gpr) <
round(dar1). Now suppose for contradiction that d(G1,G) < round(das) and let P; be a
corresponding edit path. By replacing Py by P4 in P, we obtain an edit path P’ with |P’| < |P| and
apply(G1, P’) = Gs, contradicting P’s property of being a shortest edit path from G to Gs.

Denote by
dys=(1—N)-|P|=(1—\)-dis

the interpolation target (IC2). Using a similar argument as above, we obtain

d(GM, Gg) = I’Ollnd(dMg)

Optimality now follows since GEDs are always integer-valued and the GEDs of round(d 1) and
round(dys2) obtained by Alg. 1 are the integer values closest to their targets dps1 and dpy2, respec-
tively.

24

Under review as a conference paper at ICLR 2026

Using the facts that 0 < dps1 < dy2 and dps2 = dy2 — dpr1, We obtain

AIE(Gr) = |deep(Gar, G1) — A - dgep(G1, G2)| + |dgep (G, G2) — (1 — A) - dgep(G1, G2))|
= |round(dps1) — das1] + [round(dps2) — dass]
= |round(dM1) — dMl‘ + |round(d12 — dMl) — (d12 — dM1)|
= |round(dps1) — dpar1| + |d12 — round(—dpr1) — di2 + da |
= |round(das1) — da1| + |round(—dar1) + daa|
=2 |round(dps1) — das]
<1,

where the last equality is obtained by considering the two cases (a) dj;; is rounded down and (b)
dpr1 s rounded up separately. This proves the claimed interpolation error. O

H ADDITIONAL RESULTS FOR MEAN INTERPOLATION ERROR

Tab. 7 contains results for multiple mixup ratios (in comparison to Tab. 4 from the main section
which only includes a summary). We found that for GED-Mixup, the mIE was stable across different
mixup ratios, whereas for other methods (such as If-Mixup, SubMix or S-Mixup), the mIE decreased
with increasing mixup ratio.

Table 7: Detailed comparison of mean interpolation error (mIE) obtained by various methods and
datasets (lower is better and > 2 is particularly bad). We were unable to generate graphs with
FGW-Mixup on some datasets (denoted with —).

Method A MUTAG ENZYMES IMDB-BINARY PROTEINS Average
GED-Mixup Avg. 0.05 0.01 0.01 0.01 0.02
0.5 0.06 0.01 0.02 0.02 0.03
0.8 0.04 0.01 0.01 0.01 0.02
0.9 0.04 0.01 0.01 0.01 0.02
SubMix Avg. 0.45 0.28 0.49 0.30 0.38
0.5 - 0.53 0.94 0.57 0.68
0.8 0.62 0.21 0.35 0.22 0.35
0.9 0.28 0.11 0.18 0.10 0.17
If-Mixup* Avg. 1.57 0.69 0.86 1.00 1.03
0.5 1.91 0.74 1.64 1.26 1.39
0.8 1.31 0.72 0.61 091 0.89
0.9 1.49 0.61 0.33 0.82 0.81
S-Mixup* Avg. 3.56 0.95 1.32 0.72 1.64
0.5 4.03 1.17 1.52 1.16 1.97
0.8 3.37 0.97 1.10 0.56 1.50
0.9 3.28 0.69 1.34 0.44 1.44
GeoMix* Avg. 431 1.32 0.66 1.60 1.97
0.5 4.85 1.54 0.81 1.67 222
0.8 4.25 1.24 0.55 1.80 1.96
0.9 3.85 1.19 0.61 1.34 1.75
FGW-Mixup Avg. 2.76 - - - 2.76
0.5 1.95 - - - 1.95
0.8 2.51 - - - 2.51
0.9 3.82 - - - 3.82

25

Under review as a conference paper at ICLR 2026

I ADDITIONAL EXAMPLES OF INTERPOLATION ERRORS

This section contains plots that visualize the interpolation error mIE for further datasets and mixup
ratios A. In line with the discussion of Fig. 3 in the main paper, GED-Mixup interpolates well between
inputs. The second best results are often obtained by SubMix, If-Mixup, or S-Mixup (except on
MUTAG). Tab. 4 in the main section and Tab. 7 provide summaries beyond the example mixup graphs
shown in the plots.

v
=]
u
=]

« TARGETS - 50
40 40

40
30 30

N
o

N

o

Non-interpolation area
(d(Gj, Gm) > d(G1, G2))

=
o

S -||||||”

i
o

Input-to-input distance d(G1, G,)
Input-to-input distance d(G, G2)
Input-to-input distance d(G;, G2)

0 10 20 30 40 50 0O 10 20 30 40 50 OO 10 20 30 40 50
Output-to-input distances d(G;, Gu) Output-to-input distances d(G;, Gu) Output-to-input distances d(G;, Gm)
(a) GED-Mixup (mIE = 0.04) (b) SubMix (mIE = 0.28) (c) If-Mixup* (mIE = 1.49)
60

—~60 - 35

O V) O

o =50 3

&'50 Q @30

]]]

(V) i3 ()

240 240 225

8 8 8

3 30 230 520

T20 T20 iy _

2 2 210 T

> > > —_—

g0 g ERS—

G0 20 40 60 00 20 40 60 00 10 20 30
Output-to-input distances d(Gj, Gm) Output-to-input distances d(G;, Gum) Output-to-input distances d(G;, Gm)
(d) FGW-Mixup (mIE = 3.82) (e) S-Mixup* (mIE = 3.28) (f) GeoMix* (mIE = 3.85)

Figure 5: Visualization of mixup graphs produced on the MUTAG dataset (A = 0.9 + €).

26

Under review as a conference paper at ICLR 2026

180
« TARGETS - 175 200
g 3 3
5140 ’ 5150 17
S 7 S o -
5 3 z 3 150 -
120 5125 5
e g 7 2125 —l
g 100 g 100 i g S——
o] : = S 100 S
= 80 2 : - s
a g- el ——= EL =
£ 60 £ ——— o IR ———
é é NE é —
£ 40 Non-interpolation area | £ =~ |== L 50
I (d(G;, Gu) > d(G1,G2)) | B 25| == 2 o
0, 0 0,
0 50 100 150 0 50 100 150 0 50 100 150 200
Output-to-input distances d(Gj, Gu) Output-to-input distances d(G;, Gu) Output-to-input distances d(Gj, Gu)
(a) GED-Mixup (mIE = 0.01) (b) SubMix (mIE = 0.21) (c) If-Mixup® (mIE = 0.72)
90
X80
<160 5
G140 §70
s 60
9120]
[=4 - — -
RL—— £50 —_
5 —_— kel
N/A g 80— 540
a ——— e
£ 60 —— £30
5 — 28
> 3 —
Q Q
£ 20f = £10{ ~
0 0,
0 50 100 150 0 20 40 60 80
Output-to-input distances d(G;, Gu) Output-to-input distances d(G;, Gm)
(d) FGW-Mixup (e) S-Mixup* (mIE = 0.97) (f) GeoMix™ (mIE = 1.24)

Figure 6: Visualization of mixup graphs produced on the ENZYMES dataset (A = 0.8 &£ €). Results
for FGW-Mixup are missing since we were not able to generate graphs for ENZYMES.

200
- « TARGETS - ~160 -
© 175 © © 200
L5150 g g
3 E 1 = T —Z
g e P 1201 = p 150 —
c 1257 | = c » c —
E | — 31— g e
[%) (%) w —_—
5 100 5 a9 5 ——
E] E] S 5100 A
g 2 60 g S
. 4 s s | =
L3 Non-interpolation area | & 40 % 50| =
2 5 (d(Gi,Gm) > d(G1,G2)) | B 4 g i
ok 0 0
0 50 100 150 200 0 50 100 150 0 50 100 150 200
Output-to-input distances d(G;, Gu) Output-to-input distances d(G;, Gu) Output-to-input distances d(Gj, Gu)
(a) GED-Mixup (mIE = 0.01) (b) SubMix (mIE = 0.11) (c) If-Mixup® (mIE = 0.61)
160 140
© 140 ©120
9120 g
s e — S
() e ——— Q 100
£100] — ——e |5
© ©
bt e b 80
SR e————)
N/A = —— = 60 - —
2 60 g
$ 40 £ 40 f_-_
= 5
2 3 50 =
£ 200 = £ =
0 0,
0 50 100 150 0 25 50 75 100 125
Output-to-input distances d(Gj, Gu) Output-to-input distances d(Gj, Gu)
(d) FGW-Mixup (e) S-Mixup® (mIE = 0.69) (f) GeoMix™ (mIE = 1.19)

Figure 7: Visualization of mixup graphs produced on the ENZYMES dataset (A = 0.9 &£ ¢). Results
for FGW-Mixup are missing since we were not able to generate graphs for ENZYMES.

Under review as a conference paper at ICLR 2026

- < TARGETS - 500 500
L:;BOO © 5
% %400 §400 :=_,'
3 —

3600 3 g r——
c c —_—
s | — 300 5 300 _—
5 [— S 2 [r—
ey = s
g - ’ 2200 2
LR — : $ $
2001 &/ Non-interpolation area | £ Z

I— 3
2 = (d(G},Gu)>d(G1,G2)) g g

% 200 400 600 800 % 100 200 300 400 500 % 100 200 300 400 500

Output-to-input distances d(Gj, Gu)

(a) GED-Mixup (mIE = 0.01)

N/A

(d) FGW-Mixup

Output-to-input distances d(Gj, Gu)

(b) SubMix (mIE = 0.35)

Output-to-input distances d(Gj, Gm)

(c) If-Mixup* (mIE = 0.61)

800) §250
S T 200
8 600 g
C f=
© ©
@ £ 150
e _—om e
£ 400 | —— :
s === £100
8 s | —=
£200{ | =
3 — 3 501 —
= £ I
% 200 400 600 800 % 50 160 150 200 250

Output-to-input distances d(G;, Gu)

(e) S-Mixup® (mIE = 1.10)

Output-to-input distances d(Gj, Gu)

(f) GeoMix™ (mIE = 0.55)

Figure 8: Visualization of mixup graphs produced on the IMDB-BINARY dataset (A = 0.8 & ¢).
Results for FGW-Mixup are missing since we were not able to generate graphs for IMDB-BINARY.

< TARGETS -

500

&'800 $800 ~
© 9 5400
5 ! < 3 e e———————
g 600 g 600 g —
© © < 300 e —
2] S —
I 2 g
=400 + 400 1;
Q = ——— Q a
£ ————4 £ g
k) |———4 S ! £
£200{5==> Non-interpolation area | & 200 L
g2 B (dG,Gw)>dG1,G)) | 2 H
% 200 400 600 800 % 200 400 600 800 % 100 200 300 400 500

Output-to-input distances d(G;, Gy)

(a) GED-Mixup (mIE = 0.01)

N/A

(d) FGW-Mixup

Output-to-input distances d(G;, Gu)

(b) SubMix (mIE = 0.18)

Output-to-input distances d(G;, Gu)

(c) If-Mixup® (mIE = 0.33)

5 800 600
=700 K
S O 500
T 600 3
(] ()
]) 3
S 500 — - 400
o —— k
D 400| S 300
=] -——— =]
2300 = 2
3 I 7 3200
£200{ ——— b Ll
g 2 100—
£100 £V —
(] 200 400 600 800 (] 200 400 600

Output-to-input distances d(G;, Gu)

(e) S-Mixup® (mlIE = 1.34)

Output-to-input distances d(G;, Gu)

(f) GeoMix* (mIE = 0.61)

Figure 9: Visualization of mixup graphs produced on the IMDB-BINARY dataset (A = 0.9 + ¢).
Results for FGW-Mixup are missing since we were not able to generate graphs for IMDB-BINARY.

28

Under review as a conference paper at ICLR 2026

_300 « TARGETS - __300 _
g § 400
§250 9" 250 é‘
3 S S
g 200 £ 200 g 300
8 8 8
o o o)
© 150 © 150 °
2 = 5200
g 3 g
< 100 w < 100 T -
8)) 8 = —
& E= Non-interpolation area | 21001 | =
g 507 (d(Gi, Gm) > d(G1,G2)) | B 501 = g ir
0, 0 0,
0 100 200 300 0 100 200 300 0 100 200 300 400
Output-to-input distances d(Gj, Gu) Output-to-input distances d(G;, Gu) Output-to-input distances d(Gj, Gu)
(a) GED-Mixup (mIE = 0.01) (b) SubMix (mIE = 0.22) (c) If-Mixup* (mIE = 0.91)
60
300)
- 6 50
2250 a 5
9 Y40
<200 & -—
@] —
© 5 30
N/A 5 5
a Qo
£ £20
$ $
5 5
o 2 10
j=s -
0 0,
0 100 200 300 0 20 40 60
Output-to-input distances d(G;, Gu) Output-to-input distances d(G;, Gm)
(d) FGW-Mixup (e) S-Mixup® (mIE = 0.56) (f) GeoMix™ (mIE = 1.80)

Figure 10: Visualization of mixup graphs produced on the PROTEINS dataset (A = 0.8 & ¢). Results
for FGW-Mixup are missing since we were not able to generate graphs for PROTEINS.

500 500
<« TARGETS -

N
o
o

N

o

o

300 300

N
=]
o

N

[=]

o

Non-interpolation area 100{ ==
(d(Gj, Gu) > d(G1, G2))

| 4 ¥ 4

0 100 200 300 400 500 0 100 200 300 00 100 200 300 400 500
Output-to-input distances d(G;, Gum) Output-to-input distances d(G;, Gu) Output-to-input distances d(Gj, Gu)

(a) GED-Mixup (mIE = 0.01) (b) SubMix (mIE = 0.10) (c) If-Mixup* (mIE = 0.82)
70

=
=3
o

Input-to-input distance d(Gy, G,)
Input-to-input distance d(G;, G3)
S
o
Input-to-input distance d(G;, G2)

u
o
=]

Input-to-input distance d(G;, G3)
3
o

Input-to-input distance d(G;, G2)

w [=)]
o o

N
o

N/A

w
o

200{7 ——d

N
o

—

100 ?’
0

0 100 200 300 400 500 O() 20 40 60
Output-to-input distances d(Gj, Gu) Output-to-input distances d(Gj, Gu)

(d) FGW-Mixup (e) S-Mixup* (mIE = 0.44) (f) GeoMix* (mIE = 1.34)

=
o

Figure 11: Visualization of mixup graphs produced on the PROTEINS dataset (A = 0.9 &). Results
for FGW-Mixup are missing since we were not able to generate graphs for PROTEINS.

29

	Introduction
	Graph Mixup
	Empirical Analysis
	Mixup as Interpolation
	Interpolation Criteria and Interpolation Error
	Alignments, Edit Sets, and the Graph Edit Distance
	A Baseline Method: GED-Mixup

	Interpolation Analysis
	Conclusion
	Related Work
	Preliminaries: Vertex Mappings, Edit Sets, Graph Edit Distance, Adjacency Matrices
	Methods for Graph Mixup

	Dataset Statistics
	Experimental Details
	Pooled Analysis
	Proof of Prop. 1
	Details of GED-Mixup
	Proof of Prop. 2
	Additional Results for Mean Interpolation Error
	Additional Examples of Interpolation Errors

