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ABSTRACT

Mixup is a widely used data augmentation technique that constructs new training
examples by interpolating between existing ones. While effective in domains like
vision and language, applying mixup to graph data is challenging. In this paper,
we analyze and empirically explore state-of-the-art graph mixup methods. We
conducted an independent evaluation following established evaluation protocols for
graph classification and found that none of the mixup methods yielded statistically
significant improvements over the no-mixup baseline. To obtain further insights, we
analyzed the graphs generated from existing mixup methods from an interpolation
perspective using the graph edit distance. We found that (i) many mixup methods
failed to interpolate well, (ii) that mixup methods that interpolated well often
outperform methods that did not, (iii) even optimal interpolation did not lead to
performance improvements. Our findings highlight the need for a more rigorous
exploration and evaluation of mixup for graphs.

1 INTRODUCTION

Data augmentation is an essential technique for improving generalization in machine learning and is
particularly useful in domains where training data is scarce. Mixup (Zhang et al., 2018), a popular
data augmentation technique, creates new training examples by interpolating between existing
ones. Originally introduced in computer vision (Zhang et al., 2018), mixup has shown strong
regularization and calibration effects (Thulasidasan et al., 2019) in other domains as well; e.g., in
speech recognition (Meng et al., 2021) and natural language processing (Sun et al., 2020). Mixup is
appealing due to its simplicity and intuitive design, its applicability without requiring domain-specific
knowledge, and since it affects both the input and label space (in contrast to augmentation techniques
such as DropNode (Do et al., 2021) or DropEdge (Rong et al., 2019)). The resulting soft labels
encourage linear separation between classes in the model’s representation space.

In this paper, we revisit mixup for graph classification tasks. Since graphs are complex and irregular,
it is not immediately obvious how mixup should be performed. In the recent years, several alternative
approaches for graph mixup have been proposed to address this question, drawing from domains
such as optimal transport (Villani, 2008), graph theory (Lovász and Szegedy, 2006), and graph
matching networks (Li et al., 2019). However, reproduction issues have been raised for some of the
methods (Omeragic and Duranović, 2023), there are no independent evaluations of graph mixup
methods, and the evaluations that have been performed often focused on empirical performance and
did not analyze the produced mixup graphs directly.

Main contributions (C) and results (R). (C1) We address these gaps by first performing an inde-
pendent evaluation of graph mixup in a unified experimental setup following established evaluation
protocols (Errica et al., 2019). (R1) We found that graph mixup provided no significant improvement
over the no-mixup baseline, which questions the practical benefits of graph mixup. (C2) We then
performed a pooled analysis in weaker statistical setups. (R2) Even after pooling, graph mixup
provided no significant improvement over the no-mixup baseline. (C3) To obtain further insights,
we then systematically analyzed the mixup graphs produced by existing mixup methods from an
interpolation perspective. (R3) We found that most graph mixup methods did not interpolate well,
despite that (R4) good interpolation properties were beneficial for empirical performance.
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Table 1: Overview of graph mixup methods

Method Interpolating? Inputs Alignment Output Learned?

If-Mixup ✓ Adjacency matrices Arbitrary Edge-weighted graph ×
S-Mixup ✓ Adjacency matrices Learned Edge-weighted graph ✓
SubMix ✓ Graphs Random Graph ×
G-Mixup ✓ Graphons Degree Graphon ✓
FGW-Mixup ✓ Graphs FGW coupling Graph ×
GeoMix ✓ Graphs GW coupling Edge-weighted graph ×
Embedding Mixup ✓ Embeddings N.A. Embedding ×
GED-Mixup (Sec. 4.3) ✓ Graphs Optimal Graph ×

2 GRAPH MIXUP

Mixup was originally introduced by Zhang et al. (2018) as a data augmentation technique for
supervised learning tasks, particularly in computer vision and speech recognition. In this paper, we
study mixup for supervised graph classification, where the inputs are graphs (potentially including
node/edge features) and the goal is to learn a classifier for unseen graphs from a set of labeled
examples. Application areas include the biomedical data (Qabel et al., 2022; Wang et al., 2025;
Buterez et al., 2024), bioinformatics (Jang et al., 2024; van der Weg et al., 2025; Jha et al., 2022)),
cybersecurity (Bilot et al., 2024), fraud detection (Motie and Raahemi, 2024), and many more (Cao
et al., 2024; Park et al., 2022; Jin et al., 2025). Training data is often scarce in these applications so
that mixup is a promising approach to combat overfitting.

Linear mixup. Zhang et al. (2018) considered inputs and labels represented as real-valued tensors
(e.g., an image and its one-hot encoded class label) and performed mixup by linear interpolation. More
precisely, given two input examples (x1, y1) and (x2, y2), their linear mixup approach constructs a
synthetic example (xM , yM ) by taking a convex combination of both inputs and labels

xM = x1 + λ(x2 − x1) = (1− λ)x1 + λx2 and yM = (1− λ)y1 + λy2, (1)

where λ ∈ [0, 1] refers to a mixup ratio. Intuitively, λ describes how far the result moves away from
the first towards the second input. Linear mixup improved generalization and robustness in their
experimental study, and mixup methods have been widely adopted and extended since then (Shamsian
et al., 2024; Yun et al., 2019; Touvron et al., 2021; Liu et al., 2021; Verma et al., 2019; Ramé et al.,
2021; Bao et al., 2023; Zou et al., 2023).

Graph mixup. Graph mixup methods formulate graph mixup—in the spirit of linear mixup—as
interpolation between two example graphs and their labels. Conceptually, these methods interpolate
the class labels of their inputs using Eq. (1), but differ in how they interpolate between the input
graphs themselves. Intuitively, most methods use alignments to determine “common parts” between
the two input graphs (Fig. 1, top right, common parts color-coded). Mixup is then performed only on
the “different parts” by including nodes and edges from both graphs proportional to the desired mixup
ratio (see “good mixup” in Fig. 1, λ = 40%). This is similar to linear mixup, in which common
elements of the input tensors are left unchanged and different elements are subject to mixup.

Graph mixup methods. Several graph-specific mixup methods have been introduced in the literature,
including If-Mixup (Guo and Mao, 2023), S-Mixup (Ling et al., 2022), SubMix (Yoo et al., 2022), G-
Mixup (Han et al., 2022), FGW-Mixup (Ma et al., 2023), GeoMix (Zeng et al., 2024), and Embedding
Mixup (Wang et al., 2021). Key differences between these methods include: (i) the inputs to mixup,
(ii) how these inputs are aligned, (iii) the output of mixup, and (iv) whether or not the mixup method
itself is learned. A brief overview along these dimensions is given in Tab. 1; see also App. A.

Inputs to mixup. Mixup can be performed on (i) two graphs, (ii) two adjacency matrices, (iii)
two graphons (each representing the set of graphs associated with a class label), or (iv) two graph
embeddings produced by the downstream network (along the lines of Manifold Mixup (Verma et al.,
2019)). For (ii)–(iv), interpolation is typically done using linear mixup after suitable preprocessing
(e.g., reordering adjacency matrices according to an alignment and adding singleton nodes to match
their sizes), whereas (i) is handled differently. In particular, SubMix (Yoo et al., 2022) adopts a
strategy inspired by CutMix (Yun et al., 2019): given two input graphs, it replaces a subgraph of
one input with a subgraph of the other input. FGW-Mixup (Ma et al., 2023) and GeoMix (Zeng
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Table 2: Test accuracy (%) and standard error (pp) for multiple datasets. Missing entries indicate
cases where FGW-Mixup could not generate mixup graphs. Statistically significant differences over
the no-mixup baseline are marked bold (there are none).

Model Method MUTAG ENZYMES IMDB-BINARY PROTEINS Average

GCN Baseline 78.42 ± 1.71 72.56 ± 1.21 68.80 ± 1.00 71.83 ± 2.94 72.90 ± 2.01
Emb-M. 79.66 ± 1.45 70.89 ± 1.21 66.60 ± 1.85 70.09 ± 2.13 71.81 ± 2.78
FGW-M. 76.82 ± 2.34 – – – –
G-Mixup 82.48 ± 1.33 68.28 ± 2.02 69.40 ± 1.13 74.13 ± 1.05 73.57 ± 3.23
GeoMix 75.63 ± 3.43 74.00 ± 1.19 62.67 ± 2.23 71.65 ± 2.61 70.99 ± 2.89
If-Mixup 81.43 ± 1.56 72.06 ± 0.98 68.53 ± 1.11 74.88 ± 1.06 74.22 ± 2.73
S-Mixup 80.21 ± 1.67 67.29 ± 5.38 70.06 ± 1.61 72.26 ± 1.97 72.46 ± 2.78
SubMix 80.03 ± 1.88 73.39 ± 1.42 68.20 ± 1.27 72.87 ± 2.17 73.62 ± 2.43
GED-M.1 81.64 ± 1.81 72.11 ± 1.39 68.97 ± 1.23 73.44 ± 1.39 74.04 ± 2.70

GIN Baseline 84.41 ± 1.39 70.33 ± 0.98 70.77 ± 0.53 69.91 ± 3.45 73.86 ± 3.52
Emb-M. 81.89 ± 1.34 70.78 ± 1.02 67.77 ± 1.89 71.26 ± 2.59 72.92 ± 3.09
FGW-M. 82.81 ± 1.42 – – – –
G-Mixup 80.49 ± 1.75 69.17 ± 1.11 65.90 ± 2.38 68.62 ± 3.40 71.05 ± 3.23
GeoMix 81.78 ± 2.23 69.00 ± 1.31 70.53 ± 0.60 69.46 ± 2.96 72.69 ± 3.05
If-Mixup 84.09 ± 1.39 70.06 ± 1.38 69.30 ± 0.72 70.12 ± 3.51 73.39 ± 3.57
S-Mixup 80.83 ± 0.90 68.96 ± 1.35 69.29 ± 2.16 62.37 ± 2.24 70.36 ± 3.84
SubMix 84.75 ± 1.64 70.72 ± 1.43 70.40 ± 0.45 71.08 ± 2.70 74.24 ± 3.51
GED-M.1 82.84 ± 1.35 71.17 ± 0.95 70.40 ± 0.76 68.30 ± 3.35 73.18 ± 3.28

1 Introduced in Sec. 4.3.

et al., 2024) rely on the (Fused-)Gromov-Wasserstein distance (Vayer et al., 2020) from the theory of
optimal transport (Villani, 2008). While the former method aims to compute barycenters, the latter
relies on geodesics (Peyré et al., 2016). In both cases, mixup takes place in the Gromov-Wasserstein
space and is computationally expensive so that approximation algorithms are used.

Alignments. Most graph mixup methods (implicitly or explicitly) make use of an alignment between
their inputs. Obtaining a good alignment can be challenging and computationally expensive (Chang
et al., 2023). Different approaches have been explored: (i) arbitrary (i.e., determined by how the
graphs happen to be provided), (ii) learned, (iii) random, (iv) degree-based ordering, (v) a coupling in
the sense of optimal transport (Villani, 2008). We also explore (vi) an optimal alignment in this paper
(for analysis; see Sec. 4.3). Note that Embedding Mixup (Wang et al., 2021) applies mixup on graph
embeddings; here the notion of alignment is not directly applicable.

Outputs. Mixup methods can produce as output: (i) a mixup graph, (ii) an edge-weighted mixup
graph, (iii) a graphon, and (iv) embeddings. Here (i) stays in the input space, (ii) produces graphs in
which edges are labeled with “existence probabilities”, (iii) can be used to sample mixup graphs, and
(iv) stays in the embedding space of the downstream network.

Learned mixup. S-Mixup (Ling et al., 2022) and G-Mixup (Han et al., 2022) use learned mixup, i.e.,
they need to be trained on the training data used for the downstream task beforehand.

3 EMPIRICAL ANALYSIS

We performed an independent experimental study to evaluate the empirical performance of state-
of-the-art graph mixup methods for graph classification in a common setup. Our key goals were to
assess to what extent graph mixup is beneficial in that it increases prediction performance.

Experimental setup. We independently evaluated on four representative datasets from TUDataset
(Morris et al., 2020) commonly used for graph classification tasks (see App. B for dataset statistics),
using GCN (Kipf and Welling, 2017) and GIN (Xu et al., 2018) as backbone models. Our methodology
followed the careful choices of Errica et al. (2019), i.e., nested cross-validation for model selection
and assessment, repeated runs for robustness, and significance testing via Welch’s t-test (Welch,
1947). We report mean test accuracy with standard errors across 5-fold nested CV, with three
repetitions per split. We considered the seven graph mixup variants of Tab. 1 along with GED-Mixup
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Table 3: Pooled average test accuracy (%), pooled standard errors (pp) and p-values for GCN/GIN
and the evaluation datasets under assumptions (A1)–(A3). FGW-Mixup is excluded due to missing
results for some datasets. Statistical significant results over the no-mixup baseline are marked in bold.

Method Accuracy
A1 (standard) A2 (fixed dist.) A3 (fixed data)

SE p SE p SE p

Baseline 73.38 ±0.86 – ±0.67 – ±0.44 –
Emb-M. 72.37 ±0.82 0.40 ±0.62 0.27 ±0.43 0.10
G-Mixup 72.31 ±0.92 0.39 ±0.68 0.27 ±0.39 0.69
GeoMix 71.84 ±0.97 0.24 ±0.80 0.14 ±0.40 0.01
If-Mixup 73.81 ±0.83 0.72 ±0.59 0.63 ±0.36 0.45
S-Mixup 71.41 ±1.12 0.16 ±0.87 0.08 ±0.63 0.01
SubMix 73.93 ±0.83 0.64 ±0.61 0.55 ±0.34 0.32
GED-Mixup (Sec. 4.3) 73.61 ±0.82 0.85 ±0.60 0.80 ±0.26 0.65

(a baseline introduced in Sec. 4.3). Mixup graphs were randomly generated in each training epoch.
Hyperparameters—including model, training, and mixup settings—were tuned individually for each
dataset/method via random search plus Bayesian optimization with TPE (Bergstra et al., 2011) using
Optuna (Akiba et al., 2019). The experimental setup is described in detail in App. C.

Result 1 : Graph mixup provided no significant improvement over the no-mixup baseline.
Tab. 2 shows the results for all methods evaluated on GCN (Kipf and Welling, 2017) and GIN (Xu
et al., 2018), respectively. Although some mixup methods appear to improve over or fall behind the
no-mixup baseline, none of these differences were statistically significant. These results question
whether mixup is beneficial for graph classification tasks.

Pooled analysis. To provide more insight, we performed a pooled analysis in weaker statistical
setups. We make three assumptions of increasing strength: (A1, standard): Treat datasets and model
classes as sampled from a dataset and model class distribution. This allows us to make statements
about empirical performance on new datasets and model classes, which is what we are ultimately
interested in. (A2, fixed distribution): Treat datasets and model class as sampled from fixed data
and model distributions. This allows to make statements about empirical performance of GCN/GIN
when applied to the data distribution underlying our evaluation datasets. (A3, fixed data): Treat the
evaluation data as the entire population (i.e., treat the empirical distribution as the data distribution).
This allows us to make statements about the particular data that is used (but not about their underlying
data distribution). More details are provided in App. D.

Result 2 : Even after pooling, graph mixup provided no significant improvement over the
no-mixup baseline. Our pooled results are shown in Tab. 3. First, under (A1) and (A2), none of the
results were significant even after pooling. For (A3), the strongest set of assumptions, we obtained
statistical significance in that some methods performed worse than the no-mixup baseline. So even in
the most generous point of view (A3), we did not obtain statistically significant results in favor of
mixup. Reasons for this negative result include the suitability of graph mixup in general, potential
flaws in the mixup methods, or insufficient power (e.g., due to small effect sizes).

4 MIXUP AS INTERPOLATION

To investigate the failure of all considered graph mixup methods to produce significant performance
benefits over the no-mixup baseline in our experiments, we now take a closer look at the generated
mixup graphs. Recall from Sec. 2 that the goal of graph mixup is to interpolate between input graphs,
according to a pre-specified mixup ratio λ. In this section, we formalize this interpolation goal and
propose interpolation error metrics to quantify to what extent a mixup graph actually interpolates
between inputs. To the best of our knowledge, such an analysis has not been done before.

In Sec. 5, we will use these results to study relationship between interpolation properties and
empirical performance of graph mixup methods. We also consider an approach called GED-Mixup
that interpolates optimally according to our metrics. While this method may not be practically
viable in some applications due to its high computational costs, it provides a baseline result for the
performance that optimal interpolation can achieve.
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Figure 1: Left: xM (d2, 2/5)-interpolates between inputs x1 and x2, whereas xP does not. The
dotted line indicates xP ’s absolute interpolation error (AIE). Right: Similarly, GM (dGED, 2/5)-
interpolates between G1 and G2, whereas GP does not. We have AIE(GP ) = |2− 2|+ |7− 3| = 4
and IE(GP ) = 4/5. The colors symbolize different node attributes. The mapping f : V1 → V2

constitutes a vertex mapping or alignment between G1 and G2.

4.1 INTERPOLATION CRITERIA AND INTERPOLATION ERROR

We first make the intuition of “interpolation” more precise. Consider two inputs x1 and x2, a mixup
ratio λ ∈ [0, 1], and a mixup result xM . Given a distance metric d(·, ·) between inputs, we say that
xM (d, λ)-interpolates between x1 and x2 if the following interpolation criteria (IC)

IC1: d(xM , x1) = λ · d(x1, x2) and IC2: d(xM , x2) = (1− λ) · d(x1, x2) (2)
are satisfied. We refer to the right-hand sides of IC1 and IC2 as interpolation targets. If both targets
are met, then (i) d(x1, x2) = d(x1, xM ) + d(xM , x2) so that xM lies on a shortest path between x1

and x2 (w.r.t. d and by the triangle equality) and (ii) the position of xM on this shortest path precisely
matches the desired relative contribution of x1 (i.e., 1− λ) and x2 (i.e., λ).

To gain some intuition, observe that linear mixup of Eq. (1) produces the unique point that satisfies
IC w.r.t. the Euclidean distance d2(x1, x2) = ∥x1 − x2∥2 (and others, see Prop. 1 below), for both
inputs and labels. This is visualized in Fig. 1 (left). Here xM is the result of linear mixup and
(d2, 2/5)-interpolates between x1 and x2. In contrast, xP satisfies only IC1 but not IC2. As this
example highlights, both criteria are needed.

As we will see later, graph mixup methods often do not satisfy IC exactly but only approximately. To
quantify the approximation error, we introduce the absolute interpolation error (AIE) given by

AIEd(xM ;x1, x2, λ)
def
=

∣∣d(xM , x1)− λ · d(x1, x2)
∣∣+ ∣∣d(xM , x2)− (1− λ) · d(x1, x2)

∣∣.
For brevity, we often write AIE(xM ) = AIEd(xM ;x1, x2, λ) and consider the remaining quantities
as arbitrary but fixed. Observe that if xM (d, λ)-interpolates between x1 and x2, then AIE(xM ) = 0
(e.g., xM in Fig. 1). If it does not, then AIE(xM ) > 0 (e.g., xP in Fig. 1 w.r.t. d2). Intuitively, the
AIE measures the distance of the mixup result to actual (d, λ)-interpolation targets (cf. Fig. 1). As
this distance can be arbitrarily large, the AIE is not bounded from above.

To be able to compare interpolation errors across input pairs (x1, x2) with different distances d(x1, x2)
in a meaningful way, we normalize AIE w.r.t. d(x1, x2) to obtain the mixup interpolation error (IE):

IEd(xM ;x1, x2, λ)
def
=

AIEd(xM ;x1, x2, λ)

d(x1, x2)
=

∣∣∣∣d(xM , x1)

d(x1, x2)
− λ

∣∣∣∣+ ∣∣∣∣d(xM , x2)

d(x1, x2)
− (1− λ)

∣∣∣∣ . (3)

The following proposition states that linear mixup interpolates optimally.

Proposition 1. For any distance metric d(a, b) = ∥a− b∥ induced by a norm ∥·∥ on the input/label
vector space (over R), linear mixup of Eq. (1) satisfies IC for inputs/labels and we have

AIEd(xM ) = IEd(xM ) = 0 / AIEd(yM ) = IEd(yM ) = 0.

Such distances include, for example, the Manhattan distance (induced by 1-norm) and the Euclidean
distance (induced by 2-norm). See App. E for a proof.
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4.2 ALIGNMENTS, EDIT SETS, AND THE GRAPH EDIT DISTANCE

As discussed in Sec. 2, graph mixup methods rely on alignments to produce mixup graphs. We now
formalize the notion of an alignment, describe how alignments relate to edits sets and graph mixup,
and finally define an optimal alignment based on the graph edit distance.

Alignments. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs where |V1| ≤ |V2| w.l.o.g.
(otherwise swap G1 and G2). Intuitively, an alignment assigns to each node v ∈ V1 a unique
corresponding node u ∈ V2. We formalize an alignment as an injective vertex mapping f : V1 → V2;
see Fig. 1 (top right) for an example. Recall that mixup methods aim to retain the “common parts”
(sub-structures such as nodes, edges, or subgraphs) that exist in both input graphs and to mixup the
remaining “different parts.” An alignment formalizes what is meant by “common parts”: for every
node v ∈ V1 its corresponding node f(v) ∈ V2, and for every edge (v1, v2) ∈ E1 its corresponding
edge (f(v1), f(v2)) ∈ E2 (if present). In the example of Fig. 1, the common part is given by the two
purple nodes and the edge connecting these nodes.

Edit sets. Given an alignment, we can perform mixup by editing G1 to bring it to closer towards G2.
To do so, we make use of edit operations. An edit operation is a node or edge insertion, deletion, or
substitution (i.e., changing features). Let F(G1, G2) denote the set of all edit sets—i.e., sets of edit
operations—that transform G1 into G2,1 i.e.,

F(G1, G2) =
{
F = {e1, e2, . . . , e|F |} : apply(G1, F ) ∼= G2

}
,

where ei denotes an edit operation and apply(G1, F ) denotes the result of applying all edit operations
in F to G1. For any pair of graphs, there is an infinite number of edit sets that transform one into the
other. An alignment f induces a particular edit set Ff ∈ F(G1, G2), which only contains the edit
operations for the “different parts.” The edit set induced by f in Fig. 1 contains five operations: two
node insertion operations (for the orange nodes) and three edge insertion operations (for the edges
incident to these nodes). Given f , edit set Ff is cheap to obtain, i.e., in asymptotically linear time
with respect to the number of nodes and edges (see App. A and Chang et al. (2023)).2

Given an edit set, we can perform mixup by applying a λ-fraction of the operations to G1 (see Sec. 4.3
for details). In Fig. 1, mixup graph GM has been generated in this fashion with λ = 2/5 (and hence
using 2 out of the 5 edit operations).

Optimal alignments and graph edit distance. An alignment is optimal if its induced edit set is as
small as possible. Intuitively, this means that the alignment identifies a large common part. Alignment
f of Fig. 1 is such an optimal alignment. The size of the edit set induced by optimal alignment is
given by the graph edit distance (GED, Sanfeliu and Fu (1983), Chang et al. (2023)):

dGED(G1, G2) = min
F∈F(G1,G2)

|F |.

In what follows, we write d(G1, G2) = dGED(G1, G2) for brevity. An example is given in Fig. 1.

Generally, computing the optimal alignment and/or GED is an NP-hard problem (Zeng et al., 2009).
In fact, graph mixup methods typically do not use optimal alignments (cf. Tab. 1), and hence may
produce problematic mixup graphs. For example, graph GP in Fig. 1 does not interpolate well
between G1 and G2; graph GP has larger distance to G2 than G1 has to G2 so that it does not
interpolate at all. We further explore such questions in Sec. 5.

Interpolation error. The graph edit distance is the natural choice to quantify the interpolation error
of mixup graphs using Eq. (3). In fact, most (all but Embedding Mixup) graph mixup methods
implicitly make use of an alignment and its corresponding induced edit set. With this choice, the
“good mixup” graph GM (“bad mixup” graph GP ) of Fig. 1 has interpolation error of 0 (4/5).

Computational cost. Even though GED computation is NP-hard, its computation can be feasible
in practice. This is due to the availability of high-performance algorithms (e.g., Chang et al. (2020;
2023)) and since in our setting of graph classification, the graphs are comparably small (e.g., see
dataset statistics in App. B). In our experimental study, we did not run into computational bottlenecks.

1Strictly speaking, G1 is transformed into another graph G′
2 that is isomorphic to G2, denoted by G′

2
∼= G2.

2For example, compare the label of each v ∈ V1 with the label of f(v) ∈ V2 and add a substitution operation
when they differ. As another example, for each edge (v1, v2) ∈ E1, check whether (f(v1), f(v2)) ∈ E2 is
present and add an edge insertion operation otherwise.
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Algorithm 1 GED-Mixup

Require: Graphs G1, G2; mixup ratio λ ∈ [0, 1]
Ensure: Mixup graph GM

F ∗ ← a minimal edit set from G1 to G2 (i.e., |F ∗| = dGED(G1, G2))
P ← a valid ordering of the edit operations in F ∗ (e.g., chosen at random)
Pλ ← the first round(λ|P |) edit operations in P
return GM = apply(G1, Pλ)

We modified the code of AStar-BMao (Chang et al., 2023), a state-of-the-art algorithm for exact
GED computation, such that it additionally yielded an optimal alignment f∗ and its induced edit set
F ∗—i.e., |F ∗| = d(G1, G2)—as a by-product without any significant additional compute cost.

4.3 A BASELINE METHOD: GED-MIXUP

Most graph mixup methods rely on alignments when interpolating graphs. This raises the natu-
ral question of whether or not using an optimal alignment (instead of an approximate one) would
benefit graph mixup. To investigate this question, we construct a simple baseline method—coined
GED-Mixup—which uses the optimal alignment and serves as an analysis tool to study its effect on
empirical performance. Without including GED-Mixup in our analyses, the effect of optimal interpo-
lation on empirical performance would remain unclear. The method can be seen as a simplification of
EPIC (Heo et al., 2024).3

The method is described briefly in Alg. 1 and in more detail in App. F. It first computes a minimal
edit set, orders the edit operation in the set, and the applies a fraction of λ of the edit operations to
G1. We only consider valid orderings, in which (i) an edge can only be inserted when its source and
target node are present, (ii) a node can only be removed when it does not have an incident edge, (iii)
label substitutions are only possible for nodes/edges present in the graph, and (iv) when both G1 and
G2 are connected, so is GM . This approach avoids undesirable mixup results.

The following proposition shows that GED-Mixup is optimal in that its interpolation error is as small
as possible (in particular, 0 whenever interpolation targets are integer). A proof is given in App. G.

Proposition 2. GED-Mixup (Alg. 1) interpolates optimally w.r.t. dGED, and it holds

AIE(GM ) = 2 · |round(λ · dGED(G1, G2))− λ · dGED(G1, G2)| ≤ 1.

5 INTERPOLATION ANALYSIS

Equipped with the analysis tools AIE, IE, and GED-Mixup, we empirically investigate in this section
how well existing mixup methods interpolate and how this related to their performance.

Experimental setup. We follow the experimental setup described in Sec. 3, but only considered
methods that produce mixup graphs, i.e., SubMix (Yoo et al., 2022), If-Mixup (Guo and Mao,
2022), S-Mixup (Ling et al., 2022), GeoMix (Zeng et al., 2024), FGW-Mixup (Ma et al., 2023), and
GED-Mixup.4 During training, we collected all generated mixup graphs as well as their inputs and
corresponding value of λ.5 We used this approach because it allows us to analyze the mixup graphs
actually used during training, and because some mixup methods are learned based on training data.
Given a set T = { (G1, G2, GM , λ)i }ni=1 of mixup graphs, we report the mean interpolation error

3EPIC uses learned cost models and GED approximations whereas our approach simply uses unit edit costs
and exact GED. We did not consider EPIC in our experimental study as there is no source code available.

4Methods that produce weighted mixup graphs, in which each edge is annotated with an “existence proba-
bility”, are marked with ∗. To treat these methods appropriately when computing mIE, we account for edge
weights by sampling edges according to their probability. Corresponding mIE scores can hence be interpreted as
an “expected mIE”. Accounting for edge weights in this fashion always decreased the corresponding mIE scores
substantially.

5As λ-values are sampled from a Beta distribution during training or were out of our control (in SubMix), we
allow for a small tolerance of ε = 0.005.
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Table 4: Comparison of mean interpolation error (mIE) obtained by various methods
and datasets (lower is better and ≥ 2 is particularly bad). We were unable to generate
graphs with FGW-Mixup on some datasets (denoted with –). Emb-Mixup and G-
Mixup do not appear here as we only considered methods that perform pairwise
mixup of two examples (required by mIE). More details can be found in App. H.

Method MUTAG ENZYMES IMDB-BINARY PROTEINS Average

GED-Mixup 0.05 0.01 0.01 0.01 0.02
SubMix 0.45 0.28 0.49 0.30 0.38
If-Mixup∗ 1.57 0.69 0.86 1.00 1.03
S-Mixup∗ 3.56 0.95 1.32 0.72 1.64
GeoMix∗ 4.31 1.32 0.66 1.60 1.97
FGW-Mixup 2.76 – – – 2.76

(mIE) given by

mIE(T ) =
1

n

∑
(G1,G2,GM ,λ)∈T

IEdGED(GM ;G1, G2, λ).

An mIE value of 0 indicates that all mixup graphs perfectly interpolate between their inputs; larger
values indicate larger errors. Values greater than 2 generally indicate bad interpolation properties. To
see this, observe that simply setting GM = G1 for an input pair leads to IE ≤ 2 (independently of
λ); hence this clearly flawed approach already leads to an mIE ≤ 2 when used throughout training.

Result 3 : Most graph mixup methods did not interpolate well. We sampled 500 mixup graphs
for each combination of method, dataset, and choice of λ ∈ [0.5±ε], [0.8±ε], [0.9±ε] for ε = 0.005.
Our results are summarized in Tab. 4; more detailed results are given in App. H. As can be seen,
only GED-Mixup and SubMix generally produced graphs that interpolated well. This is expected
for GED-Mixup, since it interpolates optimally by design. SubMix uses random alignments, but
uses a more coherent CutMix approach (i.e., swap entire subgraphs) and thus is less impacted by
sub-optimal alignments. S-Mixup, Geo-Mix, and FGW-Mixup did not produce mixup graphs that
interpolated between their inputs, and If-Mixup fell in between. This suggests that the (approximate)
alignments being used by the latter methods are far from optimal; we provide more detail below.

better

71

72

73

74

0.0 0.5 1.0 1.5 2.0 NA
mIE

A
cc

. (
%

)

GED−M.

SubMix

If−Mixup

S−Mixup

GeoMix

G−Mixup

Emb−M.

Baseline

Figure 2: Mean interpolation error (mIE) and
resulting test accuracy (%) along with stan-
dard errors under (A3, fixed data).

Result 4 : Good interpolation properties were
beneficial for empirical performance. We now
study to what extent interpolation properties corre-
late with empirical performance. Fig. 2 summarizes
our results using (A3). As can be seen, all methods
with high interpolation error as well as Emb-Mixup
and G-Mixup (which do not perform pairwise inter-
polation of graphs) provided clearly inferior results
compared to methods that interpolated better (GED-
Mixup, SubMix, If-Mixup). This statement is statis-
tically significant under all of our assumptions (A1)–
(A3) (p = 6.97×10−03, 3.52×10−04, 1.04×10−09

resp.). These findings provide evidence that bad in-
terpolation properties are detrimental for empirical
performance. Nevertheless, even optimal interpolation did not lead to statistically significant improve-
ments (see also Tab. 2 and Tab. 3), i.e., good interpolation is not sufficient.

Detailed analysis. To shed some light into the graphs produced by each of the methods, we visualize
properties of the mixup graphs on the MUTAG dataset6 for a choice of λ = 0.8 ± ε in Fig. 3,
including the resulting mIE score. The plot represents each augmented pair (G1, G2, GM , λ) by
a (slightly transparent) horizontal line, where the height correspond to the distance between the
input graphs (y = d(G1, G2)) and the start- and endpoint to the distance of the mixup graph to
each input (from x1 = d(G1, GM ) to x2 = d(G2, GM ). The blue targets indicate the points where
d(G1, GM ) = λd(G1, G2) and d(G2, GM ) = (1−λ)d(G1, G2), i.e., IC1 and IC2, resp., are satisfied.
Ideally, all lines start and end at their target. The area marked in red shows particularly troublesome

6The conclusions for the MUTAG dataset are representative for the other datasets as well; see App. I.
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(b) SubMix (mIE = 0.62)
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(c) If-Mixup∗ (mIE = 1.31)
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(d) FGW-Mixup (mIE = 2.51)
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(e) S-Mixup∗ (mIE = 3.37)

0 10 20 30 40
Output-to-input distances d(Gi, GM)

0

5

10

15

20

25

30

35

40

In
pu

t-t
o-

in
pu

t d
ist

an
ce

 d
(G

1,
G

2)

(f) GeoMix∗ (mIE = 4.25)

Figure 3: Visualization of mixup graphs produced on the MUTAG dataset. Each horizontal line
corresponds to an input pair and its mixup graph and should ideally start and end at the blue targets.

cases: if an endpoint falls into this area, the corresponding mixup graph has a larger distance to one of
the inputs than the distance between the inputs themselves. In addition to not hitting the interpolation
targets, such graphs cannot even be interpreted as an interpolation between their inputs (corresponds
to the non-green area in Fig. 1).

As expected, GED-Mixup interpolated well between inputs. For SubMix, which also interpolated
well, we can see that the reason it slightly fell behind GED-Mixup interpolation is that it typically over-
or undershot interpolation targets. If-Mixup, which fell behind considerably, produced results that
roughly satisfied one of the targets (IC2) but not the other one (IC1). The mixup graphs produced by
all other methods could generally not be treated as interpolations (red area is almost always touched).

Related work. Note that some prior work also performed structural analysis of mixup graphs to some
extent. In particular, Zeng et al. (2024) evaluate structural plausibility of their GeoMix method using
the Gromov-Wasserstein distance, i.e., within the Gromov-Wasserstein space rather than the input
space. Their conclusions heavily depend on the suitability of that space, which our results call into
question. Moreover, Ling et al. (2022) analyze their S-Mixup method using a variant of GED (which
ignores distance between inputs, for example); our result indicate that S-Mixup does not exhibit good
interpolation properties even though it optimizes that variant. Both works are limited in that they
analyzed their respective proposed methods only, whereas our work provides a more holistic view.

6 CONCLUSION

We performed an independent evaluation of in a unified experimental setup following established
evaluation protocols and systematically analyzed the mixup graphs produced by existing mixup
methods from an interpolation perspective. While we do believe that mixup can be beneficial for
graph classification tasks, our experimental study did not provide evidence for its efficacy. However,
it also did not provide evidence to the contrary. We did find evidence that high interpolation errors
lead to inferior results, though, which indicates that interpolation properties should be taken into
account in subsequent works.
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REPRODUCIBILITY STATEMENT

All of our work is reproducible. For this, we provided pseudo code for our analysis tool, GED-Mixup,
both in the main text in Sec. 4.3 and in App. F with more details. Our experimental design for the
interpolation analysis is described in Sec. 5, the experimental design for the empirical performance is
summarized in Sec. 3 in the main text and described in detail in App. C. The source code required to
reproduce our experiments is provided alongside this submission.
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c 0 0 1 1
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f 1 1 0 0
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
c d e f

c 0 1 0 1
d 1 0 1 0
e 0 1 0 1
f 1 0 1 0


Figure 4: The vertex mapping f : V1 → V2 (dashed lines) maps the vertices V1 of G1 to the vertices
V2 of G2. The vertex mapping f is a full vertex mapping because f(v1) is well-defined for all
v1 ∈ V1. The adjacency matrix A1 corresponds to G1, and both Aunaligned

2 and Aaligned
2 correspond

to G2. The matrix A1 directly appears as a substructure in Aaligned
2 at the top left of the adjacency

matrix, but not in Aunaligned
2 .

A RELATED WORK

We first discuss vertex mappings and related concepts, and subsequently summarize existing mixup
methods by relating them to vertex mappings.

A.1 PRELIMINARIES: VERTEX MAPPINGS, EDIT SETS, GRAPH EDIT DISTANCE, ADJACENCY
MATRICES

Consider two input graphs G1 and G2, with vertex sets V1 and V2 as well as edge sets E1 and E2,
respectively. Without loss of generality, assume that |V1| ≤ |V2|. Two example graphs are shown
in Fig. 4 (top). Note that the letters shown in the figure do not correspond to vertex labels (the graphs
are unlabeled); we use them for expository reasons only.

A vertex mapping f : V1 → V2 is an injective mapping from the vertices of G1 to the vertices of
G2. Vertex mappings formalize the notion of an alignment of Sec. 2. One such mapping is shown
in Fig. 4 (top).

Every vertex mapping f induces an edit set, which is obtained by performing the edits required
to obtain G2 from G1 by “transforming” each vertex v1 ∈ V1 (along with its neighborhood) to
f(v1) ∈ V2 (likewise). For example, if (v1, u1) /∈ E1 but (f(v1), f(u1)) ∈ E2, we include an
insertion operation of edge (v1, u1) to the edit set. The edit set induced by the vertex mapping shown
in Fig. 4 is given by

{ insert vertex e, insert vertex f, insert edge (b, e), insert edge (a, f), insert edge (e, f) } .
The induced edit set can be computed in asymptotically linear time with respect to the number of
nodes and edges (cf. Alg. 1 in (Chang et al., 2020)).

A vertex mapping is optimal if the size of its induced edit set is as small as possible. The GED
d(G1, G2) is given by the size of the edit sets of optimal vertex mappings. State-of-the-art algorithms
for exact GED computation such as (Chang et al., 2023; 2020; Blumenthal et al., 2020) (sometimes
implicitly) produce an optimal vertex mapping and hence a corresponding edit set as a by-product.
We exploit this fact in our implementation of GED-Mixup.

For example, the computational framework used by Chang et al. (2020) and its improved version
(Chang et al., 2023) starts by constructing a prefix-shared search tree, where each path from the root
to a leaf represents a full vertex mapping f , and each path from the root to a non-leaf represents a
partial vertex mapping fp, in which fp(v1) is undefined for some v1 ∈ V1. Each node is associated
with a cost, which constitutes a lower bound on (or, for leaves, the exact value of) the sizes of the
induced edit sets obtained by all possible completions of the node’s partial vertex mapping. The goal
is to find a minimal-cost leaf, e.g., by using A∗ search. In order to obtain an efficient algorithm, lower
bounds should (i) be as tight as possible so that pruning is effective and (ii) be efficiently computable.
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We can alternatively represent vertex mappings by vertex orderings, i.e., an ordering of the vertices in
V1 and V2, as well as by the corresponding adjacency matrices. For example, Fig. 4 shows adjacency
matrix A1 of G1 for vertex ordering (a, b). Likewise, Aunaligned

2 is the adjacency matrix of G2 for
vertex ordering (c, e, d, f). The corresponding vertex mapping f unaligned is given by f unaligned(a) = c
and f unaligned(b) = e, i.e., the position of every vertex v1 the ordering of V1 matches the position
of f unaligned(v1) in the ordering of V2. Vice versa, we can align the adjacency matrix of G2 to the
adjacency matrix A1 with respect to a vertex mapping f . The corresponding adjacency matrix is
shown as Aaligned

2 .

Given two adjacency matrices A1 and A2, we can obtain an edit set by transforming A1 to A2 using
(i) vertex insertions (inserting a zero row/column at the bottom/right of A1), (ii) edge insertions (flip
a 0 to a 1), (iii) edge deletions (flip a 1 to a 0), and (iv) vertex and edge relabelings (not shown).

We are now ready to describe existing graph mixup methods.

A.2 METHODS FOR GRAPH MIXUP

We continue to use the setup and notation established in the previous section.

If-Mixup (Guo and Mao, 2023). If-Mixup uses adjacency matrices A1 and A2 obtained by a
“default” vertex ordering of V1 and V2 present in the data. In more detail, it first pads A1 (i.e., the
smaller adjacency matrix) with zero rows and columns to obtain A′

1 (now of same size as A2), and
then performs linear mixup. The entries of the resulting adjacency matrix lie in [0, 1] and can be
interpreted as edge weights or edge existence probabilities (which are then fed into the GNN model
as additional features). The result is heavily influenced by the vertex ordering present in the input
data; e.g., for Fig. 4, it is less suitable when A2 = Aunaligned

2 and more suitable when A2 = Aaligned
2 .

S-Mixup (Ling et al., 2022). S-Mixup can be seen as a variant of If-Mixup that aims to obtain
a better alignment between the two adjacency matrices. Observe that the reordering operation
involved in aligning an adjacency matrix A2 to A1 w.r.t. to vertex mapping f can be expressed as
Aaligned

2 = PA2P
⊤, where P is a corresponding alignment matrix (which is a permutation matrix).

S-Mixup uses a soft alignment matrix obtained from a Graph Matching Network (Li et al., 2019),
which is trained on the available data. This soft alignment may not be optimal, but the hope is that it
induces smaller edit sets than the “arbitrary” vertex mapping used by If-Mixup. Another difference is
that S-Mixup, depending on the order of the two inputs, either produces a mixup graph with as many
vertices as G1 or a mixup graph with as many vertices as G2.

SubMix (Yoo et al., 2022). SubMix is a mixup method inspired by CutMix (Yun et al., 2019). In
CutMix, patches of images are cut and pasted between training examples, and the examples labels
are mixed proportionally to the size of the patches. SubMix first samples a partial vertex ordering V ′

1
of V1 with a diffusion process (personalized page rank (Jeh and Widom, 2003)), likewise V ′

2 of V2.
It then replaces the subgraph of G2 induced by V2 by the subgraph of G1 induced by V ′

1 . Since the
partial vertex orderings are obtained from a random diffusion process, the quality of the obtained
mixup graph depends on chance.

G-Mixup (Han et al., 2022). G-Mixup follows a different approach. It first computes
graphons (Lovász and Szegedy, 2006), each corresponding to a class and summarizing all graphs
of that class present in the training data. In more detail, a graphon is a symmetric function
W : [0, 1]2 → [0, 1] and can be interpreted as a “probabilistic adjacency matrix” of graphs of
arbitrary sizes. Each probabilistic graph is represented by a set V of vertex positions (each in [0, 1]),
and the edge existence probability between vertices u, v ∈ V is given by W (u, v). To obtain a
graphon, G-Mixup orders the vertices of the training graphs by degree, i.e., it implicitly uses a
custom vertex ordering. To perform mixup, G-Mixup interpolates the graphons of two classes using
linear mixup, and then samples graphs from the resulting mixed graphon. Note that (Omeragic and
Duranović, 2023) reported reproducibility problems for this method.

FGW-Mixup (Ma et al., 2023) and GeoMix (Zeng et al., 2024). Both FGW-Mixup and GeoMix
rely on the Gromov-Wasserstein distance (Vayer et al., 2020) from the theory of optimal transport (Vil-
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lani, 2008). FGW-Mixup uses the Fused-Gromov-Wasserstein distance, which incorporates graph
structure and features and aims to compute barycenters, wheres GeoMix uses the plain Gromov-
Wasserstein distance and relies on geodesics Peyré et al. (2016). In both cases, mixup takes place in
the Gromov-Wasserstein space. The optimal coupling between the input graphs obtained in the mini-
mization of the (Fused-)Gromov-Wasserstein distance corresponds to a vertex mapping, i.e., these
methods also aim to find a suitable mapping. Both FGW-Mixup and GeoMix are computationally
expensive and hence make use of approximation algorithms.

Embedding Mixup. Mixup can also be performed in the embedding space of the GNN model
(Wang et al., 2021), along the lines of manifold mixup (Verma et al., 2019). To do so, the current
GNN model is used to compute embeddings of the two input graphs, and linear mixup is performed
subsequently. Note that in contrast to the methods discussed before, embedding mixup does not
generate a mixup graph. It also does not use an underlying vertex mapping, as the embeddings being
interpolated are neural representations of entire input graphs.

EPIC (Heo et al., 2024). Edit Path Interpolation via Learnable Cost (EPIC) is based on the GED
and associated edit paths between graphs, akin to our GED-Mixup baseline of Sec. 4.3. EPIC learns
a cost model that aims to quantify the “importance” of specific edit operations from training data.
GEDs are computed using this cost model and approximation algorithms. GED-Mixup is a simplified
variant of EPIC in that it (i) uses unit edit costs (and thus does not require learning) and (ii) uses exact
GED. We did not consider EPIC in our experimental study as there was no source code available.

B DATASET STATISTICS

All datasets are obtained through TUDataset (Morris et al., 2020). Key statistics are shown in Tab. 5.

Table 5: Dataset Statistics

MUTAG ENZYMES IMDB-BINARY PROTEINS
Domain Molecules Bioinformatics Social Networks Bioinformatics
Graphs 188 600 1000 1113
Classes 2 6 2 2
Avg. Nodes 17.93 32.63 19.77 39.06
Avg. Edges 19.79 62.14 96.53 72.82
Node Labels ✓ ✓ – ✓
Edge Labels ✓ – – –
Node Attr. – ✓ (18) – ✓ (1)
Geometry – – – –
Edge Attr. – – – –
References (1991; 2012) (2004; 2005) (2015) (2005; 2003)

C EXPERIMENTAL DETAILS

This section outlines the details of the experimental setup that are summarized in Sec. 3 in the main
text.

Datasets. We considered the datasets discussed in App. B.

Models. We considered the GCN (Kipf and Welling, 2017) and GIN (Xu et al., 2018) models in our
structure. Both are simple, commonly used models and have sufficient representational capacity for
the tasks we consider here. I.e., they did overfit in our experiments, a problem that mixup aims to
alleviate.

Mixup methods. We considered all methods discussed in Sec. 2 for which open-source implementa-
tions were available, i.e., If-Mixup (Guo and Mao, 2023), S-Mixup (Ling et al., 2022), SubMix (Yoo
et al., 2022), G-Mixup (Han et al., 2022), FGW-Mixup (Ma et al., 2023), GeoMix (Zeng et al., 2024),
and Emb-Mixup (Wang et al., 2021).
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Training. Given a labeled training set and a choice of hyperparameters, we trained each model in a
common training pipeline based on PyTorch Geometric (Fey and Lenssen, 2019) and Optuna (Akiba
et al., 2019), using cross entropy loss. To perform mixup, we used the original implementations from
prior work as well as our implementation of GED-Mixup. In each epoch, we generated a fixed number
of mixup graphs (a hyperparameter) and added them to the training data for this epoch. We followed
the common approach of producing mixup graphs by mixing two randomly chosen graphs/labels
from the training data, using mixup ratio λ ∼ Beta(α, α) (for hyperparameter α ∈ R+).

Methodology. We followed Errica et al. (2019), who describe key criteria for evaluating methods for
graph classification tasks. This includes (i) nested cross-validation (CV) for model selection (inner CV
for hyperparameter search) and model assessment (outer CV for test), (ii) repeat model assessment
multiple times to account for training randomness (e.g., model initialization), and (iii) publish source
code and ensure reproducibility. These criteria are well-established in machine learning (Cawley
and Talbot, 2010; Bengio, 2012; Bengio and Grandvalet, 2004) and particularly important for graph
classification tasks due to small dataset sizes and a lack of predefined train-test splits.

We emphasize these points because we found that prior studies often did not fully adhere to such
evaluation standards. For instance, some studies (Guo and Mao, 2023; Yoo et al., 2022; Wang et al.,
2021) followed the evaluation protocol of Xu et al. (2018), despite its problematic use of validation
rather than test performance (Errica et al., 2019). Other studies (Ling et al., 2022; Han et al., 2022)
used holdout validation instead of a cross-validation or use cross-validation only for model selection
but not for model assessment (Ma et al., 2023). While most methods provide source code of the
proposed method (except for (Guo and Mao, 2023; Heo et al., 2024)), source code for other key
aspects such as model selection is missing. Adding to these points, statistical significance was rarely
assessed so that it is not clear whether reported improvements are real. As we will see, our study
answers this negatively, i.e., most methods failed to produce statistically significant improvements
under a rigorous evaluation.

Hyperparameters. We used training hyperparameters (such as the learning rate or optimizer), model
architecture hyperparameters (such as the number of layers, hidden dimensionalities, or dropout
probability), and mixup hyperparameters (such as the number of added mixup graphs or sampling
distribution of the mixup ratio λ). Tab. 6 summarizes our hyperparameters and search space. For
GCN/GIN, we followed You et al. (2020). For specific mixup methods, we used the hyperparameter
values or search spaces suggested in the code or the publication. Descriptions and rationales are given
below the table.

Tuning. Given a training and a validation split, we sampled 10 hyperparameter configurations
randomly and subsequently n configurations using Bayesian optimization with TPE (Bergstra et al.,
2011). Model selection was performed by mean validation accuracy (over the inner CV folds). We
first tuned strong baseline models without mixup in this fashion (using n = 90), and subsequently
tuned just the mixup hyperparameters (separately for each mixup method, using n = 10) in the same
way. This ensures fairness, as all mixup methods used the same, well-performing model architecture.

Metrics. We used 5-fold nested cross-validation throughout, three repeated training runs for model
assessment, and report mean classification accuracy on the test splits as a metric. We also report
standard errors and statistical significance compared to the no-mixup baseline using Welch’s two-sided
t-test (Welch, 1947) with a significance level of 0.05.

Hardware and computational cost. We required approximately 144 GPU hours per model and
dataset to determine the GNN hyperparameters and performance. We required approximately 96
GPU hours to determine hyperparameters and performance for each mixup method and dataset. We
used NVIDIA RTX 2080Ti and NVIDIA RTX A6000 GPUs supported by various generations of
either Intel Xeon CPUs (such as E2640 v2, E5-2640 v3, E5-2698 v4, and Silver 4114) or various
generations of AMD EPYC CPUs (such as 7413, 9474F, and 7713P).

Software. Our experimental pipeline is implemented with PyTorch Geometric (Fey and Lenssen,
2019) (MIT License) and Optuna (Akiba et al., 2019) (MIT License). We used the original mixup
implementations whenever available:

• Emb-Mixup: (own implementation)
• FGW-Mixup: https://github.com/ArthurLeoM/FGWMixup (no license)
• GED-Mixup: (own implementation)
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Table 6: Hyperparameter search space

Hyperparameter Search space
Training Optimizer Adam (2015), SGD (1951)

Learning rate 10−5 to 10−1 (log scale)
Batch size {8, 16, 32, 64, 128, 256}
Dropout probability (2014) [0, 0.5]
Early stopping1 { 1, . . . , 1000 }

GCN/GIN No. pre-processing layers 1, 2, 3
No. convolutional layers 2, 4, . . . , 8
No. post-processing layers 1, 2, 3
Embedding size 32 to 256 (log scale)
Readout Mean, Max, Sum
Normalization None, Batch norm (2015)

Mixup* Augmentation ratio2 [0.2, 2.0]
Keep original graphs?3 Yes or no
Mixup ratio parameter α4 {0.1, 0.3, 0.5, 1.0, 5.0}

FGW-Mixup FGW-alpha5 {0.05, 0.5, 0.95}
ρ6 {0.1, 1, 10}

S-Mixup GMNet batch size7 {8, 64, 128}
No. GMNet layers7 {4, 5, 6}

SubMix Subgraph size8 {0.2, 0.4, 0.6}
* Used by all mixup methods unless stated otherwise.
1 We determine the number of “early-stopping” epochs that leads to the best val-

idation result, and use it when we retrain on the entire four folds for testing on
the remaining fold. We do this so that test data is not used for early stopping and
hence not leaked.

2 Fraction of generated mixup graphs per epoch w.r.t. the size of the training data.
Here we force each mixup method to add a non-trivial fraction (20%) of mixup
graphs during training. We do this since we are primarily interested in whether
mixup is effective and not in hyperparameter choices that do not actually add
mixup graphs.

3 Whether to include non-mixup graphs during training.
4 Mixup ratio λ is sampled from Beta(α, α). Does not apply to SubMix.
5 Trade-off parameter between Gromov-Wasserstein cost on graph structure and

Wasserstein cost on node features (cf. (Ma et al., 2023)).
6 Step size hyperparameter in mirror descent (cf. (Ma et al., 2023)).
7 Hyperparameter of the graph matching network (cf. (Li et al., 2019)).
8 Relative size of the selected subgraphs (cf. (Yoo et al., 2022)).
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• GeoMix: https://github.com/zhichenz98/GeoMix-ICML24 (no license)

• G-Mixup: https://github.com/ahxt/g-mixup (no license)

• If-Mixup: (own implementation)

• SubMix: https://github.com/snudatalab/GraphAug (custom license available under the
specified URL)

• S-Mixup: https://github.com/divelab/DIG (GPL-3.0 license)

• GED and edit set computation: AStar-BMao (Chang et al., 2023) available from GitHub
https://github.com/LijunChang/Graph_Edit_Distance (MIT License). We modified the code
to additionally provide vertex mappings.

D POOLED ANALYSIS

We estimate standard errors under assumptions (A1)–(A3) discussed in Sec. 3. We start with (A1)
and subsequently discuss (A2)–(A3).

Observations. Consider an arbitrary but fixed mixup method. In our evaluation, we considered

• Two model architecturesM = {GCN,GIN },
• Four data distributions D = {MUTAG,ENZYMES, IMDB-BINARY, PROTEINS },
• Five folds Fd = { fd

1 , . . . , f
d
5 } per data distribution d ∈ D, each consisting of a training

and a test split, and

• Three runsRmdf = { rmdf
1 , rmdf

2 , rmdf
3 } per model architecture m ∈M, data distribution

d ∈ D, and fold f ∈ Fd.

We then observe the accuracies Amdfr ∈ [0, 1] of run r on fold f for data distribution d and model
architecture m.

Assumption (A1, standard). In what follows, we use capital letters to refer to random variables
(e.g., D for a random data distribution) and small as well as calligraphic letters to refer to concrete
realizations (e.g., d for a concrete realization of D and D for multiple such realizations). Under (A1),
we assume that

(A1-M) model architectures are drawn from a distribution p(M) of “real-world” model architectures,

(A1-D) data distributions are drawn from a distribution p(D) of “real-world” data distributions,

(A1-F) folds F are drawn from a fold distribution p(FD) obtained by sampling each element of
each of the training/test splits independently from data distribution D,

(A1-R) runs R are drawn from a run distribution p(RMDF ) determined by the random choices
made during training (such as randomness in initialization, batch construction, or mixup).

These assumptions allow us to estimate the impact of mixup beyond the concrete datasets and model
architectures used in this study.

Note that we make a key simplifying assumption here: we treat each observation Amdfr as an
independent realization of AMDFR. By doing so, we ignore that in our implementation, (i) all 3 runs
use the same fold and hyperparameters, and (ii) all 5 folds are obtained by cross-valuation and from a
single dataset. This may lead to an underestimation of variance Bengio and Grandvalet (2004). We
proceed this way to keep the cost of the experimental study controlled, and we need this simplifying
assumption to make analysis feasible.

Estimators. We estimate the expected accuracy Amdf = ER∼p(Rmdf )[AmdfR] of model architec-
ture m on fold f for data distribution d by the sample mean, i.e.,

Âmdf =
1

|Rmdf |
∑

r∈Rmdf

Amdfr.
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Likewise, the expected accuracy Amd = EF∼p(Fd)[AmdF ] of model architecture m on data distribu-
tion d is estimated as

Âmd =
1

|Fd|
∑
f∈Fd

Âmdf .

This estimate is shown in Tab. 2 for various mixup methods. Finally, the estimates for the expected
performance Am ∼ ED∼p(D)[AmD] of model architecture m and expected overall performance
A = EM∼p(M)[AM ] are obtained similarly, i.e.,

Âm =
1

|D|
∑
d∈D

Âmd

Â =
1

|M|
∑

m∈M
Âm.

The latter estimate is shown in Tab. 3 for various mixup methods.

Standard errors. We now derive the standard errors of each of the above estimators under (A1).
First, we estimate the variance σ2

mdf = VarR∼p(Rmdf )[AmdfR] by the sample variance, i.e.,

σ̂2
mdf =

1

|Rmdf | − 1

∑
r∈Rmdf

(Amdfr − Âmdf )
2.

For the variance σ2
md = VarF∼p(Fd)[AmdF ], we use the law of total variance to obtain

σ2
md = EF∼p(Fd)[Var(AmdF |F )]︸ ︷︷ ︸

“within-fold”

+VarF∼p(Fd)(E[AmdF |F ])︸ ︷︷ ︸
“between-folds”

.

We estimate the first part by the mean within-fold variance estimate and the second part by the sample
variance of estimates across folds:

σ̂2
md =

1

|F|
∑
f∈Fd

σ̂2
mdf︸ ︷︷ ︸

“within-fold”

+
1

|F| − 1

∑
f∈Fd

(Âmdf − Âmd)
2

︸ ︷︷ ︸
“between-folds”

.

Using the simplifying assumption of independent observations discussed above, we estimate the
standard error of Âmd by

ŜE(Âmd) =

√
σ̂2
md

nmd
,

where nmd =
∑

f∈Fd

∑
r∈Rmdf

1 = 15. This standard error is shown in Tab. 2.

Using the same approach, we obtain an estimate of the variance σ2
m = VarD∼p(D)[AmD] as

σ̂2
m =

1

|D|
∑
d∈D

σ̂2
md︸ ︷︷ ︸

“within-dataset”

+
1

|D| − 1

∑
d∈D

(Âmd − Âm)2︸ ︷︷ ︸
“between-datasets”

and of variance σ2 = VarM∼p(M)[AM ] as

σ̂2 =
1

|M|
∑

m∈M
σ̂2
m︸ ︷︷ ︸

“within-model”

+
1

|M| − 1

∑
m∈M

(Âm − Â)2︸ ︷︷ ︸
“between-models”

.

We estimate the standard error of Â by

ŜE(Â) =

√
σ̂2

n
,

where n =
∑

m∈M
∑

d∈D
∑

f∈Fd

∑
r∈Rmdf

1 = 120. This standard error is shown in the (A1)
column of Tab. 3.
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Assumption (A2, fixed distribution). For (A2), we make the stronger assumption thatM and D
are not samples (from a distribution of model architectures and a distribution of data distributions, re-
spectively) but the entire population of interest. Then Am = 1

|D|
∑

d Amd and A = 1
|M|

∑
m∈M Am

become means (instead of being expected values). As a consequence, the “between-datasets” and
the “between-models” terms in our estimate of σ̂2

m and σ̂2, respectively, vanish. The corresponding
standard errors are shown in the (A2) column of Tab. 3.

Assumption (A3, fixed data). For (A3), we make assumption (A2) plus the additional assumption
that the folds in Fd are not samples (from the data distribution d) but the entire population of
interest. Then Amd = 1

|Fd|
∑

f∈Fd
Amdf becomes a mean (instead of being an expected value). As a

consequence, the “between-folds” term in our estimate of σ̂2
md vanishes as well. The corresponding

standard errors are shown in the (A3) column of Tab. 3.

E PROOF OF PROP. 1

Proposition 1. For any distance metric d(a, b) = ∥a− b∥ induced by a norm ∥·∥ on the input/label
vector space (over R), linear mixup of Eq. (1) satisfies IC for inputs/labels and we have

AIEd(xM ) = IEd(xM ) = 0 / AIEd(yM ) = IEd(yM ) = 0.

Proof. Consider inputs x1 and x2, any λ ∈ [0, 1], and any norm ∥·∥ on the input space. Linear mixup
produces the result

xM = x1 + λ(x2 − x1).

We have

d(x1, xM ) = ∥x1 − xM∥
= ∥x1 − (x1 + λ(x2 − x1))∥
= ∥−λ(x2 − x1)∥
= λ ∥(x2 − x1)∥
= λ · d(x1, x2),

which proves IC1. The same arguments can be made for IC2 and as well as yM so that all interpolation
errors are zero as claimed.

F DETAILS OF GED-MIXUP

Alg. 2 shows a slightly more detailed version of Alg. 1. In our implementation, we use AStar-
BMao (Chang et al., 2023), an algorithm for GED computation, and modified it to also output a
corresponding edit set F .

In contrast to Alg. 1, Alg. 2 does not first sample an edit path and subsequently generate a mixup
graph. Instead, it generates GM directly.

Akin to the discussion in Sec. 4.3, we consider an edit path as valid if its operations (when applied in
order) each satisfy: (i) an edge can only be inserted when its source and target vertex are present,
(ii) a vertex can only be removed when it does not have an incident edge, (iii) label substitutions are
only possible for vertices/edges present in the graph, and (iv) when both G1 and G2 are connected,
so is GM . We check for conditions (i)—(iii) as we go: ADMISSIBLEMIXUP repeatedly samples a
not-yet-used and admissible operation—i.e., an operation satisfying (i)—(iii)—from F and returns
the resulting mixup graph. If the mixup graph also satisfies (iv), we output it, otherwise we repeat the
sampling process.7

7Assume G1 and G2 are connected. For some edit sets, every admissible edit path of length round(λ|F |)
produces a mixup graph that is not connected. This problem can be fixed by allowing one more or one less edit
operation. In our implementation, we use a simpler approach and abort generation if we do not obtain a valid
mixup graph after 10 repetitions. This is not a problem in practice, as we can simply sample a new value for λ or
a new set of graphs to mixup.
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Algorithm 2 GED-Mixup of Alg. 1 in more detail

Require: Graphs G1, G2; mixup ratio λ ∈ [0, 1]
Ensure: Mixup graph GM

1: F ∗ ← a minimal edit set between G1 and G2, obtained by AStar-BMao (Chang et al., 2023)
2: repeat
3: GM ← ADMISSIBLEMIXUP(G1, F

∗, round(λ|F |))
4: until GM is connected or G1 is not connected or G2 is not connected
5: return GM

6:
7: function ADMISSIBLEMIXUP(G1, F , n)
8: GM ← G1

9: for i← 1, . . . , n do
10: f ← sample an edit operation from F that is admissible on GM ▷ App. F
11: GM ← apply(GM , f)
12: F ← F \ { f }
13: end for
14: return GM

15: end function

Note that our approach to obtain an edit paths is rather naive: The obtained path is “random” and
largely ignores locality of edit operations. Since we view GED-Mixup as a baseline, however, we did
not explore this further.

G PROOF OF PROP. 2

Proposition 2. GED-Mixup (Alg. 1) interpolates optimally w.r.t. dGED, and it holds

AIE(GM ) = 2 · |round(λ · dGED(G1, G2))− λ · dGED(G1, G2)| ≤ 1.

Proof. Consider inputs G1 and G2, let P be the edit path chosen by Alg. 1. By construction, we have

apply(G1, P ) ∼= G2 and d12
def
= dGED(G1, G2) = |P |.

Denote by
dM1 = λ · |P | = λ · d12

the interpolation target (IC1) and by Pλ the first round(dM1) edit operations in P . Alg. 1 produces

GM = apply(G1, Pλ)

and it holds that
d(GM , G1) = round(dM1)

To see this, first observe that Pλ contains round(dM1) edit operations so that d(G1, GM ) ≤
round(dM1). Now suppose for contradiction that d(G1, GM ) < round(dM1) and let P ′

λ be a
corresponding edit path. By replacing Pλ by P ′

λ in P , we obtain an edit path P ′ with |P ′| < |P | and
apply(G1,P’) ∼= G2, contradicting P ’s property of being a shortest edit path from G1 to G2.

Denote by
dM2 = (1− λ) · |P | = (1− λ) · d12

the interpolation target (IC2). Using a similar argument as above, we obtain

d(GM , G2) = round(dM2)

Optimality now follows since GEDs are always integer-valued and the GEDs of round(dM1) and
round(dM2) obtained by Alg. 1 are the integer values closest to their targets dM1 and dM2, respec-
tively.
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Using the facts that 0 ≤ dM1 ≤ d12 and dM2 = d12 − dM1, we obtain

AIE(GM ) = |dGED(GM , G1)− λ · dGED(G1, G2)|+ |dGED(GM , G2)− (1− λ) · dGED(G1, G2)|
= |round(dM1)− dM1|+ |round(dM2)− dM2|
= |round(dM1)− dM1|+ |round(d12 − dM1)− (d12 − dM1)|
= |round(dM1)− dM1|+ |d12 − round(−dM1)− d12 + dM1|
= |round(dM1)− dM1|+ |round(−dM1) + dM1|
= 2 · |round(dM1)− dM1|
≤ 1,

where the last equality is obtained by considering the two cases (a) dM1 is rounded down and (b)
dM1 is rounded up separately. This proves the claimed interpolation error.

H ADDITIONAL RESULTS FOR MEAN INTERPOLATION ERROR

Tab. 7 contains results for multiple mixup ratios (in comparison to Tab. 4 from the main section
which only includes a summary). We found that for GED-Mixup, the mIE was stable across different
mixup ratios, whereas for other methods (such as If-Mixup, SubMix or S-Mixup), the mIE decreased
with increasing mixup ratio.

Table 7: Detailed comparison of mean interpolation error (mIE) obtained by various methods and
datasets (lower is better and ≥ 2 is particularly bad). We were unable to generate graphs with
FGW-Mixup on some datasets (denoted with –).

Method λ MUTAG ENZYMES IMDB-BINARY PROTEINS Average
GED-Mixup Avg. 0.05 0.01 0.01 0.01 0.02

0.5 0.06 0.01 0.02 0.02 0.03
0.8 0.04 0.01 0.01 0.01 0.02
0.9 0.04 0.01 0.01 0.01 0.02

SubMix Avg. 0.45 0.28 0.49 0.30 0.38
0.5 – 0.53 0.94 0.57 0.68
0.8 0.62 0.21 0.35 0.22 0.35
0.9 0.28 0.11 0.18 0.10 0.17

If-Mixup∗ Avg. 1.57 0.69 0.86 1.00 1.03
0.5 1.91 0.74 1.64 1.26 1.39
0.8 1.31 0.72 0.61 0.91 0.89
0.9 1.49 0.61 0.33 0.82 0.81

S-Mixup∗ Avg. 3.56 0.95 1.32 0.72 1.64
0.5 4.03 1.17 1.52 1.16 1.97
0.8 3.37 0.97 1.10 0.56 1.50
0.9 3.28 0.69 1.34 0.44 1.44

GeoMix∗ Avg. 4.31 1.32 0.66 1.60 1.97
0.5 4.85 1.54 0.81 1.67 2.22
0.8 4.25 1.24 0.55 1.80 1.96
0.9 3.85 1.19 0.61 1.34 1.75

FGW-Mixup Avg. 2.76 – – – 2.76
0.5 1.95 – – – 1.95
0.8 2.51 – – – 2.51
0.9 3.82 – – – 3.82
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I ADDITIONAL EXAMPLES OF INTERPOLATION ERRORS

This section contains plots that visualize the interpolation error mIE for further datasets and mixup
ratios λ. In line with the discussion of Fig. 3 in the main paper, GED-Mixup interpolates well between
inputs. The second best results are often obtained by SubMix, If-Mixup, or S-Mixup (except on
MUTAG). Tab. 4 in the main section and Tab. 7 provide summaries beyond the example mixup graphs
shown in the plots.
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(a) GED-Mixup (mIE = 0.04)

0 10 20 30 40 50
Output-to-input distances d(Gi, GM)

0

10

20

30

40

50

In
pu

t-t
o-

in
pu

t d
ist

an
ce

 d
(G

1,
G

2)

(b) SubMix (mIE = 0.28)
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(c) If-Mixup∗ (mIE = 1.49)
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(d) FGW-Mixup (mIE = 3.82)
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(e) S-Mixup∗ (mIE = 3.28)
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(f) GeoMix∗ (mIE = 3.85)

Figure 5: Visualization of mixup graphs produced on the MUTAG dataset (λ = 0.9± ε).
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(a) GED-Mixup (mIE = 0.01)
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(b) SubMix (mIE = 0.21)
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(c) If-Mixup∗ (mIE = 0.72)
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(d) FGW-Mixup
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(e) S-Mixup∗ (mIE = 0.97)
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(f) GeoMix∗ (mIE = 1.24)

Figure 6: Visualization of mixup graphs produced on the ENZYMES dataset (λ = 0.8± ε). Results
for FGW-Mixup are missing since we were not able to generate graphs for ENZYMES.
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(a) GED-Mixup (mIE = 0.01)
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(b) SubMix (mIE = 0.11)
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(c) If-Mixup∗ (mIE = 0.61)
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(d) FGW-Mixup

0 50 100 150
Output-to-input distances d(Gi, GM)

0

20

40

60

80

100

120

140

160

In
pu

t-t
o-

in
pu

t d
ist

an
ce

 d
(G

1,
G

2)

(e) S-Mixup∗ (mIE = 0.69)
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(f) GeoMix∗ (mIE = 1.19)

Figure 7: Visualization of mixup graphs produced on the ENZYMES dataset (λ = 0.9± ε). Results
for FGW-Mixup are missing since we were not able to generate graphs for ENZYMES.
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Figure 8: Visualization of mixup graphs produced on the IMDB-BINARY dataset (λ = 0.8 ± ε).
Results for FGW-Mixup are missing since we were not able to generate graphs for IMDB-BINARY.
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Figure 9: Visualization of mixup graphs produced on the IMDB-BINARY dataset (λ = 0.9 ± ε).
Results for FGW-Mixup are missing since we were not able to generate graphs for IMDB-BINARY.
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Figure 10: Visualization of mixup graphs produced on the PROTEINS dataset (λ = 0.8± ε). Results
for FGW-Mixup are missing since we were not able to generate graphs for PROTEINS.
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(b) SubMix (mIE = 0.10)
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Figure 11: Visualization of mixup graphs produced on the PROTEINS dataset (λ = 0.9± ε). Results
for FGW-Mixup are missing since we were not able to generate graphs for PROTEINS.
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