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Consistencies are All You Need for Semi-supervised
Vision-Language Tracking

Anonymous Author(s)∗

ABSTRACT
Vision-Language Tracking (VLT) requires locating a specific target
in video sequences, given a natural language prompt and an initial
object box. Despite recent advancements, existing approaches heav-
ily rely on expensive and time-consuming human annotations. To
mitigate this limitation, directly generating pseudo labels from raw
videos seems to be a straightforward solution; however, it inevitably
introduces undesirable noise during the training process. Moreover,
we insist that an efficient tracker should excel in tracking the target,
regardless of the temporal direction. Building upon these insights,
we propose the pioneering semi-supervised learning scheme for
VLT task, representing a crucial step towards reducing the depen-
dency on high-quality yet costly labeled data. Specifically, drawing
inspiration from the natural attributes of a video (i.e., space, time,
and semantics), our approach progressively leverages inherent con-
sistencies from these aspects: (1) Spatially, each frame and any
object cropped from it naturally form an image-bbox (bounding
box) pair for self-training; (2) Temporally, bidirectional tracking
trajectories should exhibit minimal differences; (3) Semantically,
the correlation between visual and textual features is expected to
remain consistent. Furthermore, the framework is validated with a
simple yet effective tracker we devised, named ATTracker (Asym-
metrical Transformer Tracker). It modifies the self-attention oper-
ation in an asymmetrical way, striving to enhance target-related
features while suppressing noise. Extensive experiments confirm
that our ATTracker serves as a robust baseline, outperforming fully
supervised base trackers. By unveiling the potential of learning with
limited annotations, this study aims to attract attention and pave
the way for Semi-supervised Vision-Language Tracking (SS-VLT).

CCS CONCEPTS
• Computing methodologies→ Tracking.

KEYWORDS
Vision-Language tracking, Semi-supervised learning

1 INTRODUCTION
Vision-Language Tracking (VLT), a fundamental and challenging
task in multi-modal video understanding, has drawn increasing
attention due to its vast applications in intelligent surveillance [40],
autonomous driving [37], human-computer interaction [19] and
other fields. The primary objective of this task is to localize target
within video frames (termed search images), guided by semantic
provided by the language prompt and visual cues dubbed template.

To date, all previously proposed methods for VLT are trained
under a fully-supervised setting. Despite the remarkable success
achieved by these deep learning-based trackers, their data-hungry
nature demands a substantial amount of fully annotated data for
effective training. Moreover, VLT distinguishes itself significantly
from other tasks (e.g., object detection, semantic segmentation),
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(a) Unsupervised Visual Tracking

(b) Semi-supervised Vision-Language Tracking

Figure 1: The comparison between the learning scheme of
unsupervised visual tracking and our framework for Vision-
Language Tracking. The former treats the region randomly
cropped from the frame as the target, which is unlikely to
contain an object with meaningful context. It then utilizes
the prediction deviations of bi-directional tracking in the
first frame as supervision signals for training. In contrast,
our approach identifies the object with the most relevant
semantic to the language prompt as the pseudo target. By
further leveraging multi-consistences errors during tracking
in raw videos, we train the tracker without heavyweight
annotations.

as categories of the target are not restricted to a pre-defined set,
naturally introducing an open-world setting [2, 17]. Hence, training
a robust tracker requires more than one large dataset to enhance
performance in open-world scenarios. For instance, the widely used
TNL2k[53] dataset comprises 1,240,000 video frames along with
corresponding bounding boxes, and 2,000matched natural language
descriptions. The manual annotation of such vast amounts of data
is time-consuming and labor-intensive.

To tap into the wealth of unlabeled videos available on the In-
ternet, several attempts have been made to explore visual tracking
without direct supervision [50, 58]. Generally, these efforts strive
to extract self-supervision signals from the temporal dimension of
videos (shown in Fig. 1(a)). They assume that a robust tracker can
accurately predict both forward and backward tracking, even when
the target is a randomly cropped region from the search image.
Consequently, differences between the bi-directional predictions of
the target in the initial frame can serve as a source of supervision.

However, we argue that such a learning framework is unsuitable
for training a VL tracker. In contrast to vision-only tracking, the
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crux of VLT lies in the integration of an additional natural language
prompt. This linguistic input contributes a more precise expres-
sion to the target by incorporating high-level semantic information
(e.g., attributes, categories, and structural relationships with other
objects). Yet, these advantages are valid only when the visual in-
formation and linguistic prompt are properly aligned and fused
[13]. A randomly selected region in the search image is unlikely
to contain an object with meaning, let alone provide multi-modal
semantics to facilitate VL representation learning for tracking. On
the other hand, random samples lack clear object edges, hindering
the regression learning for coordinates prediction. Moreover, un-
supervised methods solely rely on visual cues and treat tracking
as a template-matching problem in each frame. Without an under-
standing of the language instruction, these methods struggle in
situations such as the ambiguity of bounding box (bbox) and the
extensive appearance variation of the target. Therefore, challenges
persist in discovering supervision signals from unlabeled data that
are beneficial for cross-modal learning in VLT.

In this paper, we concentrate on training a Vision-Language
tracker with minimal manual intervention, aiming to bridge the
research gap between fully-supervised and unsupervised tracking.
We insist that an efficient VL tracker should first understand what to
track, and then follow closely to the target regardless of its changes
or the direction of the time. To achieve this, the tracker must per-
ceive the semantic from both modalities and align multi-modal
information to estimate trajectories in subsequent frames, over-
coming challenges such as occlusions and appearance variations.
Therefore, we propose a learning scheme (shown in Fig. 1(b)) for
VLT that generates high-quality pseudo labels and explores mul-
tiple consistencies inherent in raw videos, achieving competitive
performances with limited annotations. Specifically,

(1) To equip the trackerwith the ability to perceivemulti-modal
semantic and accurately locate the target, we leverage spa-
tial consistency in each frame, since an image and any
object cropped within it naturally form an image-bbox pair
for self-training. To ensure the cropped object contains rich
semantic and is highly related to the linguistic description,
we fine-tune a Vision-Language Pre-trained Model (VLPM)
to discover an object with clear edges as pseudo label. Ide-
ally, the identified object is the target of interest. Hence,
valuable Vision-Language knowledge are transferred from
VLPM via the generated image-bbox-text triplets.

(2) Leveraging the reversibility inherent in the video, we ex-
ploit temporal consistency by conducting tracking in both
forward and backward directions. Given the initial state of
the target, we first track it forwardly across frames. Subse-
quently, we treat the predicted object in the last frame as the
new target and proceed to trace it backward to the initial
frame. Ideally, predictions should be identical regardless
of the temporal direction. Hence, the differences between
the forward and backward trajectories serve as valuable
supervision signals.

(3) From a semantic standpoint, the correlation of visual and
linguistic features represents the highlights of the tracker’s
attention, which should remain consistent in bidirectional
tracking, mainly focusing on the target.

We integrate the consistencies-based learning framework into
a baseline method we devised, named Asymmetrical Transformer
Tracker (ATTracker). ATTracker is a simple yet efficient real-time
tracker, only consisting of an Asymmetrical Multi-source Encoder
(AME) and an MLP-based Decoder. It first tokenizes Multi-source
information (i.e., template, search, and language prompt) and sends
them to the Asymmetrical Multi-source Encoder, which modifies
the conventional Multi-Head Attention [48] in an asymmetrical
way. Through this adjustment, AME reinforces the representation
of target-related features while effectively suppressing irrelevant
background information. Additionally, we introduce a special learn-
able prediction token, denoted as [REG], and concatenate it with
the original tokens from the template, search, and language prompt.
It aims to capture the complex relation between multi-modal fea-
tures for subsequent regression in MLP-based Decoder, functioning
similarly to the [CLS] token in standard ViT. Extensive experimen-
tal results indicate that without bells and whistles, the proposed
semi-supervised tracker achieves comparable performance with
the baseline fully supervised VL trackers [31, 53].

To sum up, our main contributions are as follows:

• To the best of our knowledge, we propose the first semi-
supervised learning scheme for Vision-Language Tracking,
which provides robust supervision signals via mining con-
sistencies inherent in unlabeled videos.

• We devise a simple yet efficient Asymmetrical Transformer
Tracker to verify the effectiveness of our framework, serv-
ing as a strong baseline for SS-VLT.

• Extensive experiments demonstrate the favorable perfor-
mance of the proposed method and highlight the potential
of learning a VL tracker with limited annotations.

2 RELATEDWORK
2.1 Unsupervised Visual Tracking
The pursuit of training a tracker without annotated data has been a
longstanding objective since the inception of this task. As a video-
centric task, exploring the temporal reversibility and leveraging
the consistencies in bidirectional trajectories become a natural av-
enue for obtaining supervision signals. Kalal et al. [18] explicitly
decompose the long-term tracking task into sub-tasks, and then
detect tracking failures via forward-backward matching. Lee et al.
[24] analyze geometric consistencies between a pair of forward-
backward trajectories to measure the robustness of a base tracker.
To harness the capabilities of deep learning, Wang et al. [50] re-
visit this scheme and train UDT, a Discriminative Correlation Fil-
ters (DCF)-based tracker, with the supervision of consistency loss.
Subsequently, Zheng et al. [58] propose an unsupervised train-
ing approach by initially training from a single frame in the first
stage and then adopting cycle training to learn temporal corre-
spondences. Similar ideas can also be found in data annotation and
tracker evaluation for TrackingNet [39]. In summary, the success
achieved by the aforementioned works confirms the effectiveness
of utilizing bidirectional tracking to train robust trackers. However,
these approaches merely utilize visual cues and treat tracking as a
template-search matching task, relying heavily on the localization
ability brought by the correlation filters or CNNs within. Without
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understanding the semantic of the target, their performances de-
grade significantly when encountering vast appearance variations
of the target. Different from these works, our method focuses on
multi-modal perception with limited labels, leveraging multiple
consistencies inherent in videos to achieve superior performance
in long-term tracking.

2.2 Supervised Vision-Language Tracking
The integration of vision and language presents promising opportu-
nities for enhancing the robustness and addressing inherent limita-
tions in vision tasks [42], including tracking [10, 55]. Compared to
initializing a tracker only with a bounding box (bbox), employing a
language prompt emerges as a more user-friendly and straightfor-
ward mode of communication for humans. This approach not only
allows for a precise description of the target but also provides com-
prehensive semantic details such as attributes and category. With
the aid of such abundance information, the tracker can effectively
tackle the inherent ambiguity caused by bbox and properly handle
the extensive appearance variations of the target. As a pioneering
work, Li et al. [31] define the task of Vision-Language Tracking and
lay the foundation for subsequent researches. Ma et al. [38] intro-
duce the CapsuleTNL, which utilizes the Capsule Network and two
interaction routing modules to effectively integrate image and text
features.Wang et al. [53] introduce TNL2K, a new large-scale bench-
mark for VLT, which stands out due to several desirable features:
high quality, adversarial samples and significant appearance varia-
tion. SNLT [11] improve tracking performance with their Dynamic
Aggregation Module to combine both modalities. JointNLT [60]
propose a novel framework that reformulates grounding and track-
ing as a unified task, focusing on the alignment of multi-modal
semantic. Nonetheless, these works rely on separate visual and
textual encoders to extract features, without direct interactions
between modalities during representation learning. In contrast to
these approaches, Guo et al. [13] introduce ModaMixer, a novel
module aiming to learn a unified visual-language representation for
tracking. SATracker [12] further validates the importance of uni-
fied feature extraction and interaction. Despite these advancements,
all of them require a large amount of human-annotated data for
training. Consequently, we propose a pioneering semi-supervised
method for the VLT task, aiming to mitigate the dependency on
high-quality yet costly labeled data.

2.3 Vision-Language Pre-Trained Models
Vision-Language Pre-Trained Models (VLPMs) have established a
dominant presence across vast multi-modal tasks [6, 15, 25, 26],
e.g., visual question answering, cross-modal reasoning, and visual
grounding. These VLPMs can be generally divided into two cate-
gories according to their training frameworks: coarse-grained and
fine-grained. Coarse-grained approaches concentrate on extracting
and encoding overall image features with convolutional network
[16] or vision transformer [20, 35]. While effective, these methods
may not perform as well as fine-grained approaches on object-
level tasks due to the lack of region-centric features. In contrast,
the fine-grained methods [6, 29, 36, 46] utilize a pre-trained ob-
ject detector [1, 44] as the image encoder. Trained on annotations
of common objects [22, 32], these detectors can identify regions

likely to contain objects and perform object classification on each
region. However, these methods can only recognize objects within
the given categories, such as the 80 object categories in the COCO
dataset. There are also some methods [34, 54, 56] attempting to
learn both object-level and image-level alignments. In this work,
we choose to fine-tune 𝑋 2-VLM [56] for generating pseudo-labels
of objects in each frame based on the language prompt. Notably,
𝑋 2-VLM distinguishes itself by not relying on a closed-set object
detector and learning vision-language alignments in a unified man-
ner, which caters well to our demands of obtaining supervision
signals beneficial for multi-modal perception in VLT.

3 THE PROPOSED METHOD
3.1 Overview
As illustrated in Fig. 2, our semi-supervised learning scheme frame-
work can be generally divided into two stages: data generation
and consistences-based training. The first stage in section 3.2 aims
to discover the object with semantic that is highly related to the
given language prompt. To accomplish this, we fine-tune a Vision-
Language Pre-trained Model (VLPM) 𝑋 2-VLM to visually ground
the desire object in each frame, effectively transferring the off-
the-shelf Vision-Language knowledge from VLPM to our tracker.
The details of the training framework in the second stage are pre-
sented in section 3.3, where multi-consistencies from raw videos
are exploited to serve as supervision signals. Finally, the baseline
Asymmetrical Transformer Tracker (ATTracker) and its learning
objective are introduced in section 3.4.

Notably, the semi-supervised training setting [47] in Vision-
Language Tracking falls conceptually between supervised and un-
supervised learning. This setting allows the utilization of large
amounts of unlabeled data, commonly available in many scenarios,
along with typically smaller sets of labeled data. We adopt the parti-
tion setting employed in similar tasks [5, 49], where the proportion
of labeled data remains below 50%. In addition, we introduce a novel
partition setting of labeled data for VLT, considering the initializa-
tion of the VL tracker. In this setting, the tracker can only leverage
the initial information—comprising visual cues and the language
prompt in the first frame—apart from the raw video data.

3.2 VLPM-driven Data Generation
When the precise location of the target in each frame is unavail-
able, the most straightforward and efficient approach for training
a Vision-Language (VL) tracker is to generate pseudo bounding
boxes that, if possible, closely align with the ground truth [23].
Unlike unsupervised tracking methods that treat randomly cropped
regions as pseudo labels [50, 58], we propose to discover the ob-
ject of interest in each frame of unlabeled videos. To achieve this,
we employ 𝑋 2-VLM [56] to identify the object most relevant to
the given language prompt. It is an open-source Vision-Language
Pre-trained Model that is designed to image-level and region-level
vision-language alignments in a unified manner. Ideally, it can di-
rectly predict the location of the target. 𝑋 2-VLM mainly consists
of a visual encoder built on BEiT2 [41], a textual encoder adopted
from BERT [8], and a multi-modal fusion module. Trained on vast
amounts of datasets and pre-tasks, 𝑋 2-VLM possesses abundant VL
knowledge that can be harnessed for pseudo-label generation.

3
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Figure 2: Overview of the proposed semi-supervised tracking framework. Left: The pseudo label generation pipeline. Right: The
detailed structure of the consistencies-based training framework. The ATTracker is first trained to learn spatial consistency
from the same frame. Then, we utilize the supervision signals brought by bidirectional tracking to mine temporal consistency
and enhance semantical correlation.

The detailed pipeline of VLPM-driven data generation is illus-
trated in the left part in Fig. 2. During fine-tuning, we leverage the
static information for initializing the VL tracker, i.e., the bbox 𝐵𝑔𝑡0 of
the template𝑇0, the search image 𝑆0, and the language prompt 𝐿 in
the first frame. To prevent high-quality vision-language knowledge
of 𝑋 2-VLM from being disturbed by limited data, we only fine-tune
the fusion module for task adaptation while keeping the encoders
frozen. Subsequently, the output [CLS] token 𝑋𝑐𝑙𝑠 from 𝑋 2-VLM
is processd by an MLP to predict the bbox 𝐵0 of the object. For
fine-tuning the entire model, we use a linear combination of the
classic 𝐿1 loss and the scale-invariant Generalized IoU loss [28]:

𝐵0 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑀𝐿𝑃 (𝑋𝑐𝑙𝑠 ),

L𝑓 = L𝐺𝐼𝑜𝑈 (𝐵0, 𝐵𝑔𝑡0 ) + L1 (𝐵0, 𝐵𝑔𝑡0 ).
(1)

After fine-tuning, the model predicts the bbox 𝐵𝑝𝑔𝑡 of the most
relevant object as pseudo target𝑇𝑝 frame by frame, according to the
language prompt of the video. Therefore, we are able to effortlessly
collect a substantial quantity of noisy yet valuable image-bbox-
text triplets that is beneficial for the subsequent training of the VL
tracker.

3.3 Progressive Training Framework based on
Multiple Consistencies

Despite the abundance of pseudo labels generated in section 3.2, the
presence of noise within these training triplets cannot be ignored.

Therefore, directly employing the normal training procedure used
by fully-supervised trackers is harmful. To mitigate the negative in-
fluence brought by noisy labels, we introduce a training framework
that progressively exploit multiple consistencies inherent in raw
videos. As depicted in Fig. 2(b), our framework primarily consists
of three phases, each focusing on different aspects based on the
inherent attributes of a video: space, time, and semantics. By con-
ducting progressive training under this framework, the differences
measured in each phase will altogether formulate a multiple consis-
tencies loss. Optimized by this loss, the asymmetrical transformer
tracker can make robust predictions of the target’s location with
limited ground-truth annotations.

3.3.1 Learning Spatial Consistency. Inspired by the strategy of
curriculum learning [52], we decouple the tracking task into sub-
tasks from easy to hard: image-level perception and video-level
trajectory prediction. To grasp image-level semantics, the tracker
must align multi-modal information to understand what to track
in the first place, then regresses the coordinates of the desired
object in each frame based on the multi-modal instructions. In an
ideal scenario where the target remains stable, exhibiting minimal
appearance variations and no occlusions from the initial state, a
VL tracker should be able to locate the target without relying on
previous contextual information.

To extract supervision signals from each image, we propose lever-
aging spatial consistency by instructing the VL tracker to self-track
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in the current frame 𝑆𝑖 . This self-supervised task is based on the
observation that an image and any of its sub-regions naturally form
a training pair for visual tracking [45]. Specifically, the VL tracker
𝐴𝑇𝑇𝑟𝑎𝑐𝑘𝑒𝑟 (illustrated in section 3.4) can only use the language
prompt 𝐿𝑖 and the pseudo target 𝑇𝑝

𝑖
in frame 𝑖 to perform tracking.

Subsequently, the differences between the prediction 𝐵𝑖 and the
bbox 𝐵𝑝𝑔𝑡

𝑖
of pseudo target 𝑇𝑝

𝑖
can be measured:

𝐵𝑖 = 𝐴𝑇𝑇𝑟𝑎𝑐𝑘𝑒𝑟 (𝑇𝑝

𝑖
, 𝑆𝑖 , 𝐿𝑖 ),

L𝑠𝑝𝑎𝑐𝑒 = 𝜆𝑔𝑖𝑜𝑢L𝐺𝐼𝑜𝑈 (𝐵𝑖 , 𝐵𝑝𝑔𝑡𝑖
) + 𝜆𝐿1L1 (𝐵𝑖 , 𝐵𝑝𝑔𝑡𝑖

).
(2)

Optimized with a loss function emphasizing spatial consistency
during Phase I training, the ATTracker acquires the fundamental
ability to align and perceive information from both visual and
textual modalities for Vision-Language Tracking.

3.3.2 Mining Temporal Consistency. To enable video-level trajec-
tory predictions, a robust VL tracker needs to address challenges
like large motion and appearance variations. Relying solely on
spatial consistency for training is insufficient, as it may result in
failures to track objects over long temporal spans or in complex
scenes. Therefore, we propose to further train the ATTracker by
leveraging temporal consistency inherent in the video.

The overall process of Phase II training is illustrated in Fig. 2(b).
Given that the direction of time flow in a video is reversible, a
robust tracker should be capable of tracking the target efficiently
in both forward and backward directions. Therefore, supervision
signals are derived from the discrepancies between the trajectories
obtained from forward and backward tracking. Specifically, we
initiate forward tracking from a template 𝑇0 in the initial frame up
to frame 𝑘 , with a frame interval of 𝑑 . At each tracking step, we
simultaneously crop the predicted object as an online target𝑇𝑜 and
concatenate it with the template𝑇0 to capture long-term variations
of the target. Here, we illustrate the forward tracking process in
frame 𝑖 as an example:

ˆ
𝐵
𝑓

𝑖
= 𝐴𝑇𝑇𝑟𝑎𝑐𝑘𝑒𝑟 ( [𝑇0;𝑇𝑜𝑖−𝑑 ], 𝑆𝑖 , 𝐿𝑖 ), 𝑑 ≤ 𝑖 ≤ 𝑘. (3)

Then the predicted bbox of forward tracking in frame 𝑘 are re-
garded as the new target𝑇𝑘 . Likewise, we further conduct backward
tracking to the original search area 𝑆0 in the first frame:

𝐵𝑏
𝑖
= 𝐴𝑇𝑇𝑟𝑎𝑐𝑘𝑒𝑟 ( [𝑇𝑘 ;𝑇𝑜𝑖+𝑑 ], 𝑆𝑖 , 𝐿𝑖 ), 0 ≤ 𝑖 ≤ 𝑘 − 𝑑. (4)

Finally, the distinctions between the trajectories obtained from
forward and backward tracking in each frame are accumulated,
forming the loss function across the temporal dimension:

L𝑡𝑖𝑚𝑒 =

𝑘∑︁
𝑖=0

𝜆𝑔𝑖𝑜𝑢L𝐺𝐼𝑜𝑈 ( ˆ
𝐵
𝑓

𝑖
, 𝐵𝑏𝑖 ) + 𝜆𝐿1L1 (

ˆ
𝐵
𝑓

𝑖
, 𝐵𝑏𝑖 ). (5)

By incorporating temporal consistency and the simple online
updating strategy into the training process, the ATTracker can
effectively follow the target across multiple frames in both direc-
tions, thereby enhancing its ability to handle challenges brought
by long-term tracking.

3.3.3 Enhancing Semantical Consistency. Recent studies [33, 43, 59]
have revealed that the correlation between visual and linguistic fea-
tures plays a crucial role in directing attention within their models
and improving the performance of dense prediction tasks. Moti-
vated by this, we believe that the region of the target should also be
strongly correlated with the textual description in VLT. Moreover,
such correlation should remain consistent in bidirectional tracking.
Thus, we compute the semantical response map using the search
feature 𝑓 𝑆 and the language prompt feature 𝑓 𝐿 in the final layer:

𝑚𝑎𝑝 = 𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝑓 𝑆
′
𝑓 𝐿

′⊤
) . (6)

Here 𝑓 𝑆
′
and 𝑓 𝐿

′
are L2 Normalized along the channel, 𝑚𝑎𝑝 ∈

𝑅𝐻𝑢𝑝×𝑊𝑢𝑝 , 𝐻𝑢𝑝 and𝑊𝑢𝑝 are hyperparameters.
To prevent a significant shift of the attention in backward track-

ing, we treat the response map 𝑚𝑎𝑝 𝑓0 in the initial frame as the
pseudo ground truth and compute the consistency of semantic with
a binary cross-entropy (BCE) loss:

L𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 = 𝐵𝐶𝐸 (𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑚𝑎𝑝 𝑓0 /𝜏),𝑚𝑎𝑝
𝑏
0/𝜏)) . (7)

Here 𝜏 represents the temperature coefficient.

3.4 Asymmetrical Transformer Tracker
Previous unsupervised trackers are constructed either with dis-
criminative correlation filters (DCFs) or CNNs, where the matching
operation between the template and search areas plays a critical role
in fusing visual features. However, the linear nature of thismatching
operation often limits the tracker’s ability to capture the complex
nonlinear interactions among features [4]. Moreover, advancements
with the transformer architecture has demonstrated its remarkable
efficiency in fusing multi-modal representations, particularly for
integrating information from both vision and language modalities
[42]. Therefore, we propose the first fully transformer tacker for
semi-supervised vision-language tracking (SS-VLT), named Asym-
metrical Transformer Tracker (ATTracker). The overall architecture
is depicted in Fig. 3. ATTracker takes four types of information as
input: static and dynamic templates, search area, natural language,
and the learnable prediction token [REG]. The static template rep-
resent the state of the target in the initial frame while the dynamic
one is periodically updated online at fixed intervals.

Its Asymmetrical Multi-source Encoder (AME) primarily com-
prises 𝑁 layers of asymmetrical attention modules (AAMs), where
template tokens are restricted to self-attention (𝑆𝐴) to mitigate
noise disruption. Meanwhile, it facilitates the interaction of other to-
kens for multi-modal feature learning through asymmetrical cross-
attention (𝐶𝐴). To elaborate, we begin by applying a linear projec-
tion to generate queries, keys, and values following the standard
transformer procedure, which are subsequently concatenated for
the asymmetrical attention operation. Herewe denote the static tem-
plate as 𝑄𝑡𝑠 , 𝐾𝑡𝑠 ,𝑉𝑡𝑠 , the dynamic online template as 𝑄𝑡𝑜 , 𝐾𝑡𝑜 ,𝑉𝑡𝑜 ,
search areas as 𝑄𝑠 , 𝐾𝑠 ,𝑉𝑠 , the language prompt as 𝑄𝑙 , 𝐾𝑙 ,𝑉𝑙 , and
the [REG] token as 𝑄𝑟 , 𝐾𝑟 ,𝑉𝑟 . The queries are concatenated as fol-
lows: 𝑄𝑡 = Concat(𝑄𝑡𝑠 , 𝑄𝑡𝑜 ), 𝑄𝑜𝑡ℎ𝑒𝑟𝑠 = Concat(𝑄𝑠 , 𝑄𝑙 , 𝑄𝑟 ), and
𝑄𝑎𝑙𝑙 = Concat(𝑄𝑡 , 𝑄𝑜𝑡ℎ𝑒𝑟𝑠 ). Same for the formulation of keys and
values (𝐾𝑡 , 𝐾𝑜𝑡ℎ𝑒𝑟𝑠 , 𝐾𝑎𝑙𝑙 ,𝑉𝑡 ,𝑉𝑜𝑡ℎ𝑒𝑟𝑠 ,𝑉𝑎𝑙𝑙 ). In each layer of AAM:
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Figure 3: ATTracker is a fully transformer tracking framework, composed of a transformer backbone and one simple MLP
head on the learnable region token. The Asymmetrical Attention Module within it restricts template tokens to performing
self-attention to prevent noise. Meanwhile, it facilitates the interaction of other tokens for multi-modal feature learning.

𝐴𝑡𝑡𝑒𝑛𝑡 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥

(
𝑄𝑡𝐾

𝑇
𝑡√
𝐶

)
𝑉𝑡

= 𝑆𝐴𝑡𝑉𝑡 ,

𝐴𝑡𝑡𝑒𝑛𝑜𝑡ℎ𝑒𝑟𝑠 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥

(
𝑄𝑜𝑡ℎ𝑒𝑟𝑠𝐾

𝑇
𝑎𝑙𝑙√

𝐶

)
𝑉𝑐

= 𝐶𝑜𝑛𝑐𝑎𝑡 (𝑆𝐴𝑜𝑡ℎ𝑒𝑟𝑠 ,𝐶𝐴𝑜𝑡ℎ𝑒𝑟𝑠 )𝑉𝑎𝑙𝑙 ,

(8)

where

𝑆𝐴𝑜𝑡ℎ𝑒𝑟𝑠 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥

(
𝑄𝑜𝑡ℎ𝑒𝑟𝑠𝐾

𝑇
𝑜𝑡ℎ𝑒𝑟𝑠√

𝐶

)
,

𝐶𝐴𝑜𝑡ℎ𝑒𝑟𝑠 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥

(
𝑄𝑜𝑡ℎ𝑒𝑟𝑠𝐾

𝑇
𝑡√

𝐶

)
.

(9)

Here𝐶 denotes the dimension of the𝑘𝑒𝑦, and𝐴𝑡𝑡𝑒𝑛𝑡 and𝐴𝑡𝑡𝑒𝑛𝑜𝑡ℎ𝑒𝑟𝑠
represent the attention maps for the targets and others, respectively.
The attentionmaps are then passed through a linear layer and added
to their respective original tokens using a residual connection.

Afterwards, similar to the [CLS] token used in standard ViT, the
outputted [REG] token is sent to a simple MLP to decode the box
coordinates. Additionally, the visual and linguistic features of the
last layer in AME are leveraged in learning semantical consistency.

Overall, the ATTracker is trained progressively with the combi-
nation of multiple consistencies-based losses:

L𝑡𝑜𝑡𝑎𝑙 = L𝑠𝑝𝑎𝑐𝑒 + L𝑡𝑖𝑚𝑒 + 𝜆𝑠L𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 , (10)

where 𝜆𝑠 is a hyperparameter.

4 EXPERIMENTS
4.1 Experiment Setup
ImplementationDetails.The proposed semi-supervised approach
is implemented using PyTorch 1.9, running on two NVIDIA RTX
3090 GPUs. We only use the training split of TNL2K [53], OTB99

[31], and LaSOT [9] datasets through the experiments. For optimiza-
tion, we use ADAM [21] with weight decay of 0.1. Initially, we train
the ATTracker following the training procedure outlined in Phase I,
which spans 200 epochs. The learning rate for the backbone encoder
is set to 4 × 10−5, while for the MLP-based decoder, it is 4 × 10−4.
The learning rates are reduced to one-tenth after the 160th epoch.
Subsequently, we fine-tune the model during Phases II and III for
an additional 100 epochs each. The learning rate for the backbone
encoder is adjusted to 2×10−6, and for the MLP-based decoder, it is
2×10−5. Similarly, the learning rates decrease to one-tenth after the
60th epoch. For hyperparameters, the batch size is set to 64 during
Phase I and reduced to 16 for Phases II and III. The 𝜆𝑔𝑖𝑜𝑢 , 𝜆𝐿1 and 𝜆𝑆
are set to 2,5,0.1. The length of search frames is 4 with an interval
of 10. in Phase II. The upsample size of the semantical response
map is 40 × 40. We set the temperature parameter 𝜏 = 0.07.
Datasets and metrics. We assess the effectiveness of our ap-
proach on mainstream benchmarks specifically tailored for Vision-
Language (VL) tracking: TNL2K and OTB99. Additionally, we eval-
uate our method on LaSOT, a long-term visual tracking benchmark
that includes natural language descriptions. These datasets employ
success (SUC), precision (PRE), and normalized precision (Norm.
PRE) metrics to measure tracking performance.

4.2 Comparison with the State-of-the-art
Trackers

We conduct a thorough comparison of our semi-supervised learn-
ing approach with baseline methods and state-of-the-art (SOTA)
trackers under various initialization and supervision settings, as
summarized in Table 1.
TNL2K. TNL2K, a dataset comprising 2,000 video sequences, presents
significant challenges for VLT due to its high-quality content, pres-
ence of adversarial samples, and substantial appearance variations.
As shown in Table 1, we evaluate the proposed ATTracker with
SOTA trackers including JointNLT [60], CTRNLT [30], SNLT [11],
TNL2K-2 [53], AutoMatch [57], USOT [58], and LUDT [51].
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Table 1: Success (SUC), Precision (PRE), and Normalized Precision (Norm.PRE) of different trackers on the TNL2K, OTB99, and
LaSOT. The best and second-best results are marked in bold and underline accordingly. BBox and NL represent the Bounding
Box and Natural Language, respectively. We add the symbol * over baseline methods for fair comparisons with our base tracker.

Algorithms Published Supervised Initialize TNL2K OTB99 LaSOT
SUC Norm.PRE PRE SUC PRE SUC PRE

SiamFC [3]* CVPR16 Yes BBox 29.0 35.0 30.0 — 40.0 34.0
GradNet [27] CVPR19 Yes BBox 32.0 40.0 32.0 — 35.0 37.0

AutoMatch [57] ICCV21 Yes BBox 47.2 - 43.5 — 58.3 59.9
TNLS-III [31] * CVPR17 Yes NL+BBox —— 55.0 72.0 —
RTTNLD [10] WACV20 Yes NL+BBox —— 61.0 79.0 35.0 35.0
TNL2K-2 [53]* CVPR21 Yes NL+BBox 42.0 50.0 42.0 68.0 88.0 51.0 55.0
SNLT [11] CVPR21 Yes NL+BBox 27.6 - 41.9 66.6 80.4 54.0 57.6

CTRNLT [30] CVPRW22 Yes NL+BBox 44.0 52.0 45.0 53.0 72.0 52.0 51.0
JointNLT [60] CVPR23 Yes NL+BBox 56.9 73.6 58.1 65.3 85.6 60.4 63.6
ATTracker * Ours Yes NL+BBox 56.9 75.0 64.7 69.3 90.3 63.7 67.3

KCF [14] T-PAMI15 No BBox —— — 17.8 16.6
ECO [7] CVPR17 No BBox —— — 32.4 30.1
UDT [50] CVPR18 No BBox 27.0 37.0 31.4 59.4 76.0 - -
LUDT [51] IJCV21 No BBox - - - 60.2 76.9 26.2 23.4
USOT [58] ICCV21 No BBox 30.0 44.1 35.7 58.9 80.6 33.7 32.5

Init. Info. (0.07%) 40.6 56.7 40.9 55.5 77.5 48.9 47.5ATTracker Ours Semi (40%) NL+BBox 52.2 69.6 56.1 67.6 88.6 60.4 60.5

Despite only utilizing labels from the first frame in each video
(0.07% of labeled data), our proposed method achieves competitive
performance with fully-supervised baselines (i.e., SiamFC [3], TNLS-
III [31], and TNL2K-2 [53]). Moreover, when the proportion of
labeled data reaches 40%, the proposed ATTracker outperforms
all other algorithms except JointNLT by a significant margin (at
least 5% in SUC and 11.1% in PRE), irrespective of whether they
are supervised or not. These results demonstrate the effectiveness
of our approach for SS-VLT, establishing ATTracker as a strong
baseline for future comparisons.
OTB99. The size of the OTB99 dataset is relatively small, with
only 51 videos for training and 48 videos for testing. Compared
with unsupervised visual trackers, our method ranks the top among
them, surpassing LUDT by 7.4% in SUC and 11.7% in PRE. Mean-
while, the performance of our ATTracke is comparable to that of
fully-supervised trackers such as TNL2K-2, SNLT, and JointNLT.
LaSOT. LaSOT provides a comprehensive benchmark for visual
tracking, focusing on maintaining tracking accuracy over long
sequences. With access to 40% labeled data, our semi-supervised
tracker performs favorably against fully-supervised SOTA trackers
including JointNLT, AutoMatch and SNLT. Notably, among unsu-
pervised trackers, our ATTracker stands out as the top-performing
method with only the label of the initial frame (0.07%), surpassing
USOT by 15.2% and 15.0% in terms of the SUC and PRE.
Qualitative Evaluation. We conduct a visual comparison between
the proposed ATTracker and several supervised trackers (such as
JointNLT and SNLT), as well as the leading unsupervised method
USOT, across four challenging sequences. These videos involve
difficulties such as vast appearance variations, view-point changing,
semantic understanding, and occlusions. As demonstrated in Fig.

Ground TruthOurs USOTSNLTJointNLT

NL: “the blue cat.”

# 0672 # 0718 # 0748

NL: “the little mouse.”

# 0225 # 0392 # 0771

NL: “head of the man who is riding white horse.”

# 0314 # 1303 # 1505

NL: “the girl in red on the stairs.”

# 0043 # 0267 # 1662

Figure 4: Qualitative evaluation of our proposed ATTracker
on 4 challenging videos from TNL2K. Each sub-figure, ar-
ranged from top to bottom, is composed of the textual de-
scription, visualized localization results of key frames, and
the IoU variation curves corresponding to different trackers.
Best viewed in color and zoom in.

4, our approach performs competitively compared to supervised
trackers, even with limited labels.

4.3 Ablation Study and Analysis
Wefirst perform ablation studies to comprehensively analyze the im-
pact of main phases within the consistencies-based training frame-
work. Then, explorations of key designs within our approach for
semi-supervised vision-language tracking are provided.
Ablation ofMain Phases. To verify the contribution of each phase
during training, we conduct ablation studies on six variants of our
approach and fix the proportion of labels to 40%. The experimental
results of these variants on all datasets are presented in Tab. 2.

• In Setting ①, we mainly rely on the pseudo label gener-
ated by the 𝑋 2-VLM for learning spatial consistency in
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Table 2: Ablation of main phases in the consistencies-based training framework.(%). SUC for Success and PRE for Precision.

Exp. Setup Spatial Temporal Semantical TNL2K OTB99 LaSOT
SUC Norm.PRE PRE SUC PRE SUC PRE

①
√

- - 39.4 49.1 32.3 51.7 68.8 45.9 34.7
② -

√
- 36.5 39.6 25.4 48.5 57.5 38.2 21.0

③
√

-
√

43.6 57.0 41.7 55.8 76.6 52.3 47.7
④ -

√ √
38.5 48.4 29.0 50.7 59.7 42.5 29.1

⑤
√ √

- 45.7 61.9 47.0 62.1 83.6 54.5 54.1
⑥

√ √ √
52.2 69.6 56.1 67.6 88.6 60.4 60.5
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TNL2K

OTB99

LaSOTSemi-supervised Settings

Figure 5: The impact of the portion of ground truth labels
used in our semi-supervised learning method (%).

Phase I. In this variant, the ATTracker is trained via self-
tracking within the same frame, aiming to acquire funda-
mental image-level perception ability.

• In contrast, Setting ② focuses solely on mining tempo-
ral consistency via bi-directional tracking in Phase II. The
performance significantly degrades across all datasets com-
pared to that of Setting ①, indicating that spatial modeling
ability is more crucial for a transformer-based tracker.

• Setting③ incorporates Phase III training to enhance seman-
tical consistency of Setting ①. With proper optimization,
the tracker can better perceive target from both modalities.

• Similarly, Setting ④ further utilizes the semantical consis-
tency loss on the base of Setting ②, unleashing the power
of VL representation learning for VLT.

• Setting ⑤ concentrates on utilizing supervision signals
from both spatial and temporal aspects. However, without
semantic guidance to redirect the tracker’s attention, its
performance is inferior compared to that of Setting ⑥.

• Our approach (Setting ⑥) leverages multi-consistencies
from raw videos, achieving outstanding results compared
to fully-supervised baselines and unsupervised methods.

Impact of Portion of Labeled Data. We follow the partition
setting utilized in similar tasks [5, 49], where the proportion varies
from 10% to 50%. Additionally, we introduce a novel partition set-
ting for labeled data, considering how the VL tracker is initialized.
In this setting, only the information from the initial frame is pro-
vided (0.07% of labeled data). As depicted in Fig. 5, with the increase

Table 3: Ablation of key designs within our approach.(%).

Setting TNL2K OTB99 LaSOT
SUC PRE SUC PRE SUC PRE

𝑋 2-VLM 41.6 47.7 51.4 76.3 42.7 45.7
plain 46.7 48.2 63.3 84.2 55.6 55.7

w/o. fine-tuned 44.2 46.5 60.2 79.7 51.9 51.9

ours 52.2 56.1 67.6 88.6 60.4 60.5

of annotation proportion, the performance of the tracker gradually
improves. When the proportion of labeled data reaches 40%, the
tracker achieves its best performance, which is comparable to that
under full supervision. Even with the initial information, our ap-
proach achieves competitive results compared with supervised base
trackers and significantly surpassing the unsupervised methods.
Impact of Pseudo Label Generation. To ensure that the gener-
ated pseudo bbox in each frame contains meaningful content (i.e.,
the object highly related to the given language prompt), we fine-
tune a large VLPM with the initial information in each video. The
performance of the fine-tuned 𝑋 2-VLM shown in Tab. 3 indicates
that it indeed possesses abundant VL knowledge that is beneficial
for VLT task. Additionally, we employ the original 𝑋 2-VLM to gen-
erate pseudo labels in the Setting without fine-tuning, thereby
evaluating the necessity of fine-tuning the VLPM.
Impact of Designs in the ATTracker. In the Setting plain
outlined in Tab. 3, our asymmetrical attention layers within AT-
Tracker are replaced with vanilla transformer layers, allowing other
information to interrupt the template tokens. Consequently, this
modification results in inferior performances across all datasets.

5 CONCLUSION
In this paper, we present a pioneering semi-supervised learning
approach for vision-language tracking, which harnesses inherent
consistencies in spatial, temporal, and semantical aspects of raw
videos.We then propose the ATTracker, a simple yet effectivemodel,
to validate the effectiveness of our training pipeline. Extensive
experiments confirm that the devised ATTracker serves as a solid
baseline, outperforming both fully-supervised base trackers and
unsupervised methods. By showcasing the potential of training a
tracker with limited labels, we seek to draw interest and lay the
groundwork for further exploration into semi-supervised vision-
language tracking.
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