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ABSTRACT

Text-to-Image (T2I) generation models have seen progressive improvements in
their abilities to generate photo-realistic images. However, it has been demon-
strated that they struggle to follow reasoning-intensive textual instructions, partic-
ularly when it comes to generating accurate spatial relationships between objects.
In this work, we present an approach to improve upon the above shortcomings of
these models by leveraging spatially accurate images (LSAI) as grounding refer-
ence to guide diffusion-based T2I models. Given an input prompt containing a
spatial phrase, our method involves symbolically creating a corresponding syn-
thetic image, which accurately represents the spatial relationship articulated in the
prompt. Next, we use the created image alongside the text prompt, in a training-
free manner to condition image synthesis models in generating spatially coherent
images. To facilitate our LSAI method, we create SPADE, a large database1 of
190k text-image pairs, where each image is deterministically generated through
open-source 3D rendering tools encompassing a diverse set of 80 MS-COCO ob-
jects. Variation of the images in SPADE is introduced through object and back-
ground manipulation as well as GPT-4 guided layout arrangement. We evaluate
our method of utilizing SPADE as T2I guidance on Stable Diffusion and Con-
trolNet, and find our LSAI method substantially improves upon existing methods
on the VISOR benchmark. Through extensive ablations and analysis, we analyze
LSAI with respect to multiple facets of SPADE and also perform human studies
to demonstrate the effectiveness of our method on prompts which contain multi-
ple relationships and out-of-distribution objects. Finally, we present our SPADE
Generator as an extendable framework to the research community, emphasizing
its potential for expansion.

1 INTRODUCTION

The emergence of generative models in computer vision and natural language processing (Brown
et al., 2020; OpenAI, 2023) have opened up a plethora of real-world applications. Text-to-image
(T2I) models such as Stable Diffusion (Rombach et al., 2021) and DALL-E 2 (Ramesh et al., 2022)
are one such class of models that generate images given an input text prompt. These models have
attracted significant attention because of their capability to generate intricate and highly realistic
images in response to complex textual prompts. As a result, they have been leveraged for comple-
mentary tasks such as image editing (Hertz et al., 2022) and image-to-image translation (Parmar
et al., 2023).

Despite the plaudits, many studies have shown that these T2I methods fall short in their ability to
precisely follow textual instructions, and fail to maintain compositionality (Feng et al., 2023a; Wang
et al., 2023). In particular, VISOR (Gokhale et al., 2023) benchmarks a commonplace issue found
in these models, which is their inability to consistently generate images that accurately reflect the
spatial relationships mentioned in the input prompts. As shown in Figure 1, existing T2I models
face two significant challenges in this context: a) they frequently struggle to generate all the objects
mentioned in the text, and b) they often produce images with incorrect spatial arrangements. These
failures can be attributed to the models’ inability to generalize to object pairs and arrangements that

1We refer to it as a database and not as a dataset as it is not used for learning in this work.
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Figure 1: Traditional T2I models struggle to generate correct spatial relationships mentioned in
the input prompt, often unable to generate all objects in the prompt. We present a training-free,
guidance-based mechanism to address this shortcoming, outperforming existing methods on the
VISOR benchmark.

are not encountered during training. It is even more difficult for these models to generate images of
rare situations, e.g. “a stop sign to the right of a bed”.

A number of approaches, including Control-GPT (Zhang et al., 2023b) and Layout Guidance (Chen
et al., 2023) have been proposed to address this issue. However, these approaches require either
expensive training, or labeled annotations. Cognizant of these issues, we propose a simple yet ef-
fective approach, LSAI (Leveraging Spatially Accurate Images), that specifically aims at improving
state-of-the art T2I models in their ability to generate spatially faithful images.

Our method first generates a symbolic reference image given an input prompt and then uses that
reference image as additional guidance in a training-free paradigm. Specfically, we parse the input
prompt in order to deterministically synthesize an image that exactly matches the input in terms
of both objects and their spatial arrangement. These reference images are created via the SPADE
(SPAtial FiDElity) Generator, an extendable framework which comprises Blender, a 3D rendering
engine, complemented by additional modules such as the scene synthesizer and position diversifier
to enhance generalization. Using the generator, we introduce SPADE, a large-scale database of 190k
text-image pairs, where each image is spatially accurate to its corresponding text prompt.

Utilizing SPADE as guidance for state-of-the-art models such as Stable Diffusion (Rombach et al.,
2021) and ControlNet (Zhang et al., 2023a), we find that our approach outperforms existing methods
on the VISOR benchmark. Our VISOR Conditional and Unconditional scores are 97.72% and
53.08% respectively, with an Object Accuracy of 54.33%. More interestingly, we find that for a
given text prompt, we are consistently able to produce spatially accurate images; a criterion that the
majority of existing approaches fall short of. Finally, we underline the generalization capabilities of
our approach by evaluating it on out-of-distribution and multi-object settings. To summarize, our
contributions are as follows:

• We propose SPADE, a multi-faceted database of 190k text-image pairs, where each image
is guaranteed to follow the spatial instruction mentioned in the text. The SPADE Gener-
ator is an extendable framework which currently covers 80 MS-COCO objects, 3 diverse
backgrounds, and includes GPT-4 as an additional coordinate generator.
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• We propose LSAI, a training-free T2I method that leverages SPADE as additional guidance
for T2I models. We demonstrate state-of-the art performance in generating spatially faithful
images, outperforming existing open-source methods on the VISOR benchmark.

• We examine the trade-off between diversity and controllability introduced by SPADE on
T2I generation. Through human studies, we discover that our method is able to general-
ize to objects not included in SPADE as well as to prompts that contain multiple spatial
directions.

2 RELATED WORKS

Generative Models for Image Synthesis The high dimensional and complex nature of images has
led to image synthesis being viewed through many lenses over the years. Generative Adversarial
Network (GAN) (Goodfellow et al., 2020; Gulrajani et al., 2017; Metz et al., 2017) based methods
produce images of high quality, but suffer from optimization constraints and are unable to capture
the complete data distribution. Auto-regressive models (ARM) (Chen et al., 2020a) and Variational
Auto-Encoders (VAE) (Sohn et al., 2015) systems suffer from computationally demanding archi-
tectures and sampling quality issues, respectively. AlignDRAW (Mansimov et al., 2016) was the
pioneering work that attempted to generate images from natural language captions. GLIDE (Nichol
et al., 2022) adopts classifier-free guidance in T2I and explores the efficacy of CLIP Radford et al.
(2021) as a text encoder. Compared to GLIDE, Imagen (Saharia et al., 2022) adopts a frozen lan-
guage model as the text encoder, reducing computational overhead, allowing for usage of large
text-only corpus. The emergence of Stable Diffusion and DALL-E has ignited substantial public
curiosity in T2I generation. Therefore, it is imperative to ensure that these models become more
robust and enhance their capacity for advanced reasoning.

Synthetic Images for Vision & Language The flexibility and control provided during creation of
synthetic images have led to researchers exploring them for various visuo-linguistic benchmarks.
CLEVR (Johnson et al., 2017) pioneered the utilization of synthetic objects in simulated scenes for
visual compositionality reasoning. Many variants of CLEVR such as CLEVR-Hans (Stammer et al.,
2021), CLEVR-Hyp (Sampat et al., 2021) and CLEVRER (Yi et al., 2019) probe multiple facets of
visuo-language understanding with synthetic images and videos. PaintSkills introduced in DALL-
EVAL (Cho et al., 2022) is a evaluation dataset that measures multiple aspects of a T2I model, which
includes Spatial Reasoning, Image-Text Alignment and Social Biases. Compared to PaintSkills,
SPADE is primarily leveraged as additional conditioning for better spatial alignment. Furthermore,
we design SPADE to cover all 80 MS-COCO objects in a diverse manner across randomly generated
backgrounds.

Controllable Image Generation To achieve better control over diffusion-based T2I methods, mul-
tiple methods have been proposed. ReCo (Yang et al., 2023) introduces learnable position tokens
as part of its input allowing for precise region level control in the image. SpaText (Avrahami et al.,
2023) takes annotated segmentation maps as additional inputs and learns a CLIP image embed-
ding based spatio-temporal representation for accurate image generation. GLIGEN (Li et al., 2023)
performs open-world grounded image generation by injecting captions and bounding boxes as ad-
ditional grounding information. LayoutGPT (Feng et al., 2023b) uses LLMs to create layouts in
the form of CSS structures, and then uses layout-to-image models to create both 2D and 3D indoor
scenes. Layout Guidance (Chen et al., 2023) provides a test time adaptation by restricting specific
objects to their bounding box location through modification of cross-attention maps. However, a
shortcoming of this approach is the need of annotated bounding box locations which might not al-
ways be available. Control-GPT (Zhang et al., 2023b) first prompts GPT-4 to generate TikZ code
which generates a sketch representation, given an input prompt. Followed by this, a ControlNet
model is finetuned with the sketches, input prompt and grounding tokens to generate images. Al-
though Control-GPT performs well on the VISOR benchmark, their method is expensive to train
and is not always guaranteed to produce the correct TikZ code.

3 THE SPADE DATABASE

We introduce SPADE, a large database of text-image pairs, designed for better spatial relation un-
derstanding of T2I models. SPADE features a diverse collection of synthesized images as references
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Figure 2: Given a text prompt, our SPADE Generator parses the objects and spatial relationship from
it. Next, it deterministically synthesizes a reference image in the 3D scene, by placing the identified
object assets at locations according to the parsed spatial relationship.

for image generation during the T2I process. We also offer the SPADE Generator that creates the
reference images in the SPADE database, by extracting all relevant objects and placing them faith-
fully according to the spatial relation embedded in the given input prompt. In this paper, we study
texts of precisely 2 objects and 1 spatial relation, where the 2 objects are placed either in a horizontal
or vertical manner.

"A car to the left of an apple" / "An apple to the right of a car"

"A chair above a person" / "A person below a chair"

Figure 3: Altered object postures generated by the
Position Diversifier module in the SPADE Gener-
ator. Even when the object assets and the back-
ground are identical, we still end up with visibly
different reference images.

Figure 2 illustrates the SPADE Generator
pipeline. In general, a reference image is a cap-
tured camera view of a synthesized scene in 3D,
where 2 object models are positioned accord-
ing to the spatial relation in the input prompt.
The SPADE Generator consists of the follow-
ing modules to curate and synthesize reference
images for the SPADE database.

Asset Library The Asset Library includes a
pre-set collection of 3D model assets depicting
a wide range of realistic objects, with each ob-
ject having multiple asset variants in textures
and postures. Given an object name extracted
from the input prompt, the Asset Library ran-
domly selects one matching asset to be synthe-
sized into the output. All asset models are re-
scaled to a universal height to ensure they are
sufficiently visible in the final output.

Coordinate Generator Given the objects and the spatial relation from the prompt, the Coordinate
Generator creates sets of corresponding numerical coordinates along the horizontal Y-axis and the
vertical Z-axis to place the objects into a 3D environment. To make sure that the majority of the
two objects can be captured, the coordinate values on the Y and Z axes are within the range of
[−100, 100]. We randomly place one of the objects in the given range, and constrain the positioning
of the other object based on the spatial relationship. The horizontal and vertical relationships are
mapped to the Y and Z-axis respectively, while the objects’ coordinates on X-axis are fixed at 0.

Alternatively, we also experiment with generating the objects’ coordinates using GPT-4. We first
feed GPT-4 a designed context prompt that includes specific example coordinates for each possible
spatial relation. We then feed in an input prompt of 2 objects and 1 spatial relation in order to obtain
the two sets of coordinates for placing the mentioned objects. Example prompts and responses are
provided in Appendix C.

Scene Synthesizer The Scene Synthesizer builds a 3D scene of 4 major components: 2 objects,
a background, and a camera. We place the object assets retrieved from the Asset Library at their
respective coordinates obtained by the Coordinate Generator. We also set up the background using
a 360-degree panorama image, which is a large sphere with interior textures centered at the 0-point
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of origin. The camera component renders the scene from its view into SPADE. We place the camera
along the positive X-axis at a specific distance from the two objects and aim its view at the 0-point.

Edge
Detection

b) ControlNet
Pipeline

a) Stable Diffusion
Pipeline

SPADE
Generator

"A teddy bear
above

an apple"

Input Prompt

Stable
    Diffusion    

ControlNet

Figure 4: Our training-free method LSAI, takes
an user-provided input prompt (T ) and the corre-
sponding reference image x(g) as input. With both
the inputs, we perform diffusion-based image syn-
thesis to generate spatially accurate images.

Position Diversifier We lastly incorporate
generalizability before rendering a synthesized
scene. Figure 3 demonstrates how we intro-
duce diversified appearances to all components
in a scene. To change the orientations of the
object assets, we add random small rotations
along the Z-axis. We slightly alter the distance
in between the objects so that they are not al-
ways symmetric around the 0-origin point. The
background panorama image is freely rotated
along the Z-axis, giving us an infinite number
of static background options. In order to fur-
ther diversify the perspective sizes and tilts of
the object assets within the camera’s view, we
also add minor random nudges to the position
and orientation of the camera.

Database Statistics We incorporate 375 3D
model assets across 80 MS-COCO (Lin et al.,
2014) objects, with each object being linked to
3 to 5 royalty-free assets sourced from Sketchfab 2. For an ordered object pair (A,B), we consider
two types of 2D relations, horizontal and vertical. Prompt sentences are generated in a templatized
manner similar to Gokhale et al. (2023). We utilize 3 background panoramas [Indoor, Outdoor,
White] from Poly Haven 3 and generate 5 text-image variants for every possible object pair, In total,
we yield 80P2 × 2× 5× 3 = 189, 600 text-image pairs.

4 METHOD

We introduce LSAI (Leveraging Spatially Accurate Images) for T2I generation. Our method takes
as input a user-provided input prompt (T ) and the corresponding reference image (x(g)), both of
which are generated via SPADE. Followed by this, we perform image synthesis to generate (I),
i.e. ϕ(I|x(g), T ), where ϕ is the image synthesis module. In our method, we make use of two
independent training-free pipelines based on Stable Diffusion and ControlNet. We illustrate our
method in Figure 4.

x(t) = x(t+∆t) + (σ2(t)− σ2(t+∆t))sθ(x(t), t)) +
√

(σ2(t)− σ2(t+∆t))z, (1)

Standard de-noising diffusion methods such as Stable Diffusion solve the reverse Stochastic dif-
ferential equation (SDE) Anderson (1982); Song et al. (2020) 1 to approximate x(0) by gradually
de-noising x(t), where, σ(t) is a function that denotes the magnitude of the noise z (z ∼ N (0, I))
and sθ(x(t), t)) is the parameterized score function. SDEdit (Meng et al., 2022) approximated the
reverse SDE process from t0 ∈ (0, 1), contrary to other methods that start from t = 1. Specifi-
cally, SDEdit starts from a guide image (x(g), in our case), selects t0, then adds Gaussian noise of
standard deviation σ2(t0) and finally solves 1 to produce the synthesized x(0). We leverage SDEdit
into our Stable Diffusion pipeline, and perform image generation guided by x(g). We measure the
influence of t0 in our experiments and assess the balance it strikes between achieving photo-realism
and maintaining spatial faithfulness.

ControlNet allows for fine-grained control over Stable Diffusion via low-level semantics such as
edges, depth and segmentation maps, by making a trainable copy of the network which learns the
additional conditioning. We leverage this backbone to demonstrate two key points: firstly, our
reference images provide enough spatial information even when extracting low-level features from
them, and secondly, we can mitigate any attribute-related biases present in the assets.

2https://sketchfab.com
3https://polyhaven.com/hdris
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Method OA (%) VISOR (%)

uncond cond 1 2 3 4

GLIDE 3.36 1.98 59.06 6.72 1.02 0.17 0.03
DALLE-mini 27.10 16.17 59.67 38.31 17.50 6.89 1.96
DALLE-v2 63.93 37.89 59.27 73.59 47.23 23.26 7.49
SD 1.4 29.86 18.81 62.98 46.60 20.11 6.89 1.63
Layout Guidance 40.01 38.80 95.95 - - - -
Control-GPT 48.33 44.17 65.97 69.80 51.20 35.67 20.48

SD 1.4 + SPADE 53.96 52.71 97.69 77.79 61.02 44.90 27.15
SD 1.5 + SPADE 54.33 53.08 97.72 78.07 61.27 45.44 27.55
SD 2.1 + SPADE 48.26 47.11 97.61 76.07 55.75 37.10 19.53
ControlNet + SPADE 56.88 55.48 97.54 78.82 62.93 48.58 31.59

Table 1: Results on the VISOR Benchmark. Leveraging SPADE as additional guidance for T2I
models, we are able to achieve state-of-the art performance on the VISOR Benchmark.

Method VISORcond (%) Object Accuracy (%)
left right above below σVc left right above below σOA

GLIDE 57.78 61.71 60.32 56.24 2.46 3.10 3.46 3.49 3.39 0.18
DALLE-mini 57.89 60.16 63.75 56.14 3.29 22.29 21.74 33.62 30.74 5.99
DALLE-v2 56.47 56.51 60.99 63.24 3.38 64.30 64.32 65.66 61.45 1.77
SD 1.4 64.44 62.73 61.96 62.94 1.04 29.00 29.89 32.77 27.80 2.12
Control-GPT 72.50 70.28 67.85 65.70 2.95 49.80 48.27 47.97 46.95 1.18

SD 1.4 + SPADE 97.53 97.45 98.09 97.66 0.29 52.42 52.11 56.93 54.38 2.22
SD 1.5 + SPADE 97.57 97.53 98.05 97.70 0.24 52.99 52.59 56.80 54.92 1.94
SD 2.1 + SPADE 97.81 97.46 97.91 97.28 0.30 46.70 47.94 49.70 48.71 1.27
ControlNet + SPADE 97.51 97.25 97.65 97.72 0.21 55.10 55.14 58.98 58.29 2.05

Table 2: Results on VISORcond and Object Accuracy, split across the 4 spatial relation types.
σVc and σOA denote the respective metric’s standard deviation w.r.t all spatial relations, per method.
We find that regardless of the spatial relation, SPADE enables T2I models to consistently produce
spatially accurate images, a challenge faced by earlier approaches.

5 EXPERIMENTAL RESULTS

5.1 VISOR METRIC AND DATASET

Given an input prompt containing 2 objects and a spatial relationship between them, the VISOR
metric evaluates the accuracy of the generated image. Object Accuracy (OA) calculates if both ob-
jects are present in the generated image. Conditional Visor (Visorcond) quantifies the probability of
relationship correctness, given both objects were correctly generated whereas Unconditional Visor
(Visoruncond) measures if the model can generate both objects and maintain the spatial relationship.
VISORn is the probability that at least n out of N images will have VISOR=1 for a given text
prompt. The VISOR dataset contains 25,280 sentences describing two-dimensional spatial relation-
ships. For each sentence in VISOR, we sample a corresponding image from our SPADE database.

5.2 EXPERIMENTAL SETUP

We perform experiments on 3 variants of Stable Diffusion (SD), versions 1.4 4, 1.5 5 and 2.1 6. We
use the canny edge conditioned checkpoint 7 for ControlNet experiments.

The reference and generated RGB images are of dimension [512, 512]. The number of denoising
steps for Stable Diffusion are varied in the range [20 − 35] , while it is fixed at 20 for ControlNet.

4https://huggingface.co/CompVis/stable-diffusion-v1-4
5https://huggingface.co/runwayml/stable-diffusion-v1-5
6https://huggingface.co/stabilityai/stable-diffusion-2-1
7https://huggingface.co/lllyasviel/sd-controlnet-canny
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Model Background IS (↑) OA (%) VISOR (%)

uncond cond 1 2 3 4

White 16.16 53.96 52.71 97.69 77.79 61.02 44.9 27.15
SD 1.4 Indoor 19.11 48.53 45.12 92.97 74.82 53.79 34.78 17.09

Outdoor 20.16 44.32 41.80 94.31 69.79 49.38 31.86 16.17

White 16.27 54.33 53.08 97.72 78.07 61.27 45.44 27.55
SD 1.5 Indoor 19.11 48.77 45.28 92.85 74.93 53.96 34.77 17.47

Outdoor 19.66 43.99 41.51 94.36 69.48 48.58 31.46 16.52

White 12.79 48.26 47.11 97.61 76.07 55.75 37.10 19.53
SD 2.1 Indoor 11.52 31.08 29.37 94.50 59.80 33.96 17.40 6.34

Outdoor 10.51 36.37 34.67 95.34 65.05 41.23 23.05 9.36

Table 3: The quantitative impact of backgrounds in SPADE images on LSAI methods. We
discover the overall best performance on VISOR is obtained when using the white background,
while using the outdoor background yields the most diverse outputs in term of the Inception Score.

The baselines we compare against are Stable Diffusion (SD 1.4), GLIDE, DALLE-Mini (Dayma
et al., 2021), DALLE-v2 (Ramesh et al., 2022), Control GPT and Layout Guidance. For holistic
evaluation, we also report the Inception Score (IS) (Salimans et al., 2016), wherever applicable.
For all subsequent tables, Bold values denote best performance while underlined values indicate the
second-best performance.

5.3 MAIN RESULTS

Figure 5: Illustrative example depicting the variation of gen-
erated images across the three variants of backgrounds in
SPADE. A positive correlation can be seen between image
diversity and background-level complexity of the initial ref-
erence image.

We summarize our representative re-
sults in Table 1 and Table 2. Re-
sults are shown considering images
from SPADE with a white back-
ground and # of denoising steps =
30 (for SD). Compared against exist-
ing open-source models, we achieve a
∆ improvement of 17.69% and 25%
in OA and Visoruncond, respectively.
The high Visorcond value denotes that
whenever we are able to generate ob-
jects correctly, they are majorly in
the right spatial orientation. More in-
terestingly, through SPADE, we are
able to increase the likelihood con-
sistency of generating spatially cor-
rect images, as can be seen the rel-
atively high value of Visor4. Table
2 depicts that unlike other methods,
we are able to maintain a high and
constant Visorcond score, irrespective
of the spatial direction. For example,
the largest deviation in Visorcond performance for ControlNet + SPADE is 0.21% between below
and left relationships; in comparison Control-GPT deviates as much as 6.8% for the same.

5.4 IMPACT OF BACKGROUND

In Table 3, we enumerate the impact of backgrounds in the SPADE Images and the consequent trade-
off between VISOR performance and model diversity. Utilizing white backgrounds that exclusively
feature the two objects in question minimizes potential distractions for the model. Conversely, when
the model is presented with SPADE images incorporating indoor or outdoor backgrounds, it exhibits
the capacity to identify and leverage distractor objects, resulting in the generation of diverse images.
As depicted in Figure 5, it is evident that, while all the generated images maintain spatial accuracy,
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Figure 6: As additional noise is added, the generated images noticeably diverge from the reference
image. Even with increased noise, our method consistently demonstrates the ability to accurately
position objects. We experiment on SD 1.4 with an indoor background for these results.

reference images with with a higher degree of noise yield a greater degree of distinctiveness in the
generated images.

5.5 CONTROLLABILITY VS PHOTO-REALISM

Figure 7: With an increase in the number of de-
noising steps, controllabillity of the models de-
crease with an increase in the Inception Score ;
through our method we are able to improve the
trade-off and attain better spatial fidelity.

In this setup, we rigorously study the impact of
the # of denoising steps as described in Section
4. We expectantly find that as more noise is
added, the performance on VISOR deteriorates
along with the deviation from the reference im-
age. As shown in Figure 7, we find an inverse
relationship between the model’s ability to be
diverse and maintain spatial relationship. Illus-
tratively in Figure 6 we find that while the refer-
ence image and the generated images progres-
sively diverge, they are able to maintain spatial
relationship throughout.

Through attention activation patterns (Figure
8) during the denoising process, we find that
SPADE enables better localization, at an object
and spatial level. Due to space limitations, we
provide ControlNet, GPT-4 and object-level re-
sults in Appendix A

5.6 HUMAN STUDIES

To understand the generalization of our method, we conduct 2 distinct experiments and perform
human evaluation. We randomly sample 200 generated examples for each setup and average the
scores across 4 workers. We also report unanimous (100%) and majority (75%) agreement between
workers for each setup :

Multi-Object and Directional Prompts - In this setup, our prompt consists of 2 sentences and a
corresponding reference image, covering 3 objects and 2 distinct relationships. For every image, we
ask evaluators to rate if one or both sentences are correctly represented. We achieve an accuracy
of 79.62% when at-least 1 sentence is correct and an accuracy of 46.5% when the entire prompt is
correctly represented. The unanimous and majority agreement between the workers was found to be
64.5% and 86.5% respectively. While these results are comparable to other models’ ability to follow
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"A wine glass
to the left of a

laptop"

"A backpack
above a cow" backpack above cow

wine glass to the left of laptop

Figure 8: Illustration of accurate attention ac-
tivation maps corresponding to a generated
Image. SPADE provides better object local-
ization and spatial guidance during the diffu-
sion denoising step.

"a stop sign is above
an orange. a stop

sign is to the left of a
sandwich."

"a potted plant is
below a carrot. a

carrot is to the right
of a bicycle"

"an umbrella is
above a cup. a

toilet is to the right
of an umbrella."

"a boat is above a
microwave. a boat is to

the left of a baseball
glove."

"a traffic light is below
a  snowboard. a

scissor is to the left of
a snowboard"

"a pizza is above a
bear. a microwave is
to the right of a pizza"

Figure 9: Illustrative example of leveraging
SPADE to generate spatially correct images
with 3 objects and 2 relations.

1 sentence, we emphasize scope of improvement in this regard. Illustrative examples are presented
in Figure 9.

     "An umbrella to the right of a burger " "A donkey to the left of a train"

 "A helicopter above a bicycle"

SPADE
Object

Airplane
Horse Pizza

"A baseball bat to the left of a
boxing glove"

Baseball Glove

Figure 10: We find that our method is able to
correctly generate and position objects not in our
database. OOD Objects are highlighted. For each
pair, left is the reference image and right is the
generated image.

Out-of-Distribution Objects - In this sce-
nario, we consider prompts containing exactly
one object not found in SPADE. For the refer-
ence image, we locate the corresponding MS-
COCO object w.r.t the OOD object by the list
in Appendix D and create a reference image
with the in-distribution substitute. As is shown
in Figure 10, we find that our method is suffi-
ciently able to generate a spatially faithful im-
age using a textual prompt with an OOD object
along with the reference image that has the cor-
responding substitute, e.g. generating for “a he-
licopter above a bicycle” by giving a reference
image of “an airplane above a bicycle”. For hu-
man evaluation, we ask workers to rate 0/1 for
wrongness/correctness respectively. We attain
an accuracy of 63.62% with a unanimous and
majority agreement of 67% and 90.5% respec-
tively.

6 CONCLUSION

In this work we introduce SPADE, a large-scale database to improve the spatial fidelity of Text-
to-Image generative models. We find that by leveraging SPADE, we can achieve state-of-the art
performance on standard benchmarks as well as obtain better generalization and robustness in com-
parison to other methods. Most importantly, our approach is fully automated, inexpensive, and
requires no manual intervention. SPADE can also serve multiple purposes: it can function as a prob-
ing dataset for assessing the spatial reasoning capabilities (Liu et al., 2023b) of multimodal large
language models (Appendix F.1), and it can also serve as a valuable resource for data augmentation
in the context of contrastive learning (Purushwalkam & Gupta, 2020). We also envision expanding
SPADE to serve as a versatile framework capable of generating reference images for a wide range
of computer vision tasks. Finally, we hope that our method is another step in the right direction
towards development of safer and intelligent generative models.
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A APPENDIX - ADDITIONAL RESULTS

A.1 RESULTS ON CONTROLNET + SPADE

Figure 11: Illustrative examples generated with ControlNet + SPADE. In real life, we are more
likely to find cases of “a person above a horse”. However, through our method, we are able to
generate such rare-case images that look genuinely convincing.

Background IS OA (%) VISOR (%)

uncond cond 1 2 3 4

White 18.82 56.88 55.48 97.54 78.82 62.93 48.58 31.59
Indoor 14.75 59.64 58.08 97.39 81.38 66.35 51.27 33.33

Outdoor 16.20 56.54 56.22 99.45 75.97 62.99 50.57 35.37

Table 4: ControlNet + SPADE results on VISOR.

The ControlNet-based results are presented in Table 4. We find that, a) we achieve the best trade-off
between IS and VISOR for ControlNet and b) compared to SD, we are able to achieve higher Visor4
score, indicating correctness over multiple trials. Moreover, we are able to quantify that our SPADE
images have enough low-level information to faithfully represent spatial orientations and not contain
any biases from our original assets, as can be seen in Figure 11.

A.2 GPT-4 GUIDED GENERATION

Method OA VISOR

uncond cond

SD 1.4 + SPADE 43.88 41.18 93.85
SD 1.5 + SPADE 44.35 41.64 93.89
SD 2.1 + SPADE 39.03 36.86 94.43

Table 5: VISOR Results on using GPT-4 as the
Coordinate Generator. The drop in performance
is attributed to the proclivity of GPT-4 to place
both the objects too close to each other in the co-
ordinate space.

Table 5 shows results of performing condition-
ing using GPT-4 as the alternative Coordinate
Generator. Compared to our baseline results in
Table 1, we notice an average of 10-point drop
in performance in both Object Accuracy and
VISORuncond scores. These patterns develop
as a result of GPT-4’s propensity to generate
reference images where the two objects collide
into each other and become indistinguishable.
Hence, T2I models tend to ignore either object,
which correspondingly leads to lower VISOR
scores.
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A.3 OBJECT-WISE SPATIAL ACCURACY ANALYSIS

In Figure 14, we report which objects in MS-COCO are more likely to be correctly generated via our
SPADE-based T2I method. On average, we now have a 61% likelihood that an MS-COCO object
can be faithfully positioned in the output image.
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Figure 12: Average Success Rate of each SPADE object being spatially correct according to the
input prompt in the generated image. We report results using the white background with SD v1.5.

A.4 ADDITIONAL ILLUSTRATIONS

Figure 13: Correctly generated Images from T2I models by leveraging SPADE as additional guid-
ance.
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A.5 FAILURE CASES

"A person below a bench" "A cow above a surf board" A teddy bear above a scissor" "A tennis racket to the right of
a carrot" "A banana above a hair drier"

"A sheep above a surfboard" "A toilet to the left of a
sandwich"

"A scissor to the left of a hair
drier" "A laptop above a suitcase" "A sink to the right of a

suitcase"

"A pizza above a fire hydrant" "A parking meter to the right
of a teddy bear"

"A refrigerator to the right of
a tennis racket" "A truck to the left of a chair" "A sink to the right of a vase"

Figure 14: Images generated from T2I models by leveraging SPADE, which either do not have
correct objects or are spatially incorrect
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B APPENDIX - SPADE DATASET SHOWCASES

Figure 15: Example 3D object assets used in SPADE in categories of MSCOCO.
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Figure 16: Example 3D object assets used in SPADE in categories of MSCOCO, continued.
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Figure 17: The 2 non-solid-white 360-degree panorama images used for square backgrounds in
SPADE - Outdoor (above) and Indoor (below).
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Indoor Outdoor White

"a cow above a boat" / "a boat below a cow"

"a donut above a laptop" / "a laptop below a donut"

"a scissor above a train" / "a train below a scissor"

"a toaster to the left of a car" / "a car to the right of a toaster"

"a person to the left of a baseball bat" / "a baseball bat to the right of a person"

"an umbrella to the left of a sink" / "a sink to the right of an umbrella"

Figure 18: Additional examples of synthesized reference images in SPADE varying in spatial rela-
tions, backgrounds, and object assets.
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C APPENDIX - GPT-4 PROMPTS FOR REFERENCE IMAGE SYNTHESIS

When using GPT-4 as the Coordinate Generator module in the SPADE Generator, we use the System
Prompt in Figure 19 as the global context. It is paired with each individual Input Prompt in Table 6
to generate two sets of coordinates for the two objects mentioned in the Input Prompt.

“I will give you certain sentences, and you will have to generate (Y, Z)
coordinates of the centroid of the objects given in the sentence. Y coordinate
determines left-right and Z coordinate determines above-below.

Rules :
1. Negative Y means left, Positive Y means right.
2. Negative Z means bottom, Positive Z means above.
3. All coordinate values must be between (-100, 100).

For example,
1. An Apple is above a Person = ((3,80),(-10,5))
2. A train is below a cat = ((9, -84), (17, -10))
3. An elephant is to the left of an airplane = ((-97, 1), (89, -7))
4. A bottle is to the right of a bike = ((87, -9), (-18, 1))

Be as varied as possible, and keep in mind the relative sizes of the men-
tioned objects in the sentence. Now, generate output for the following
sentence.”

Figure 19: The global contextual System Prompt for generating coordinates with input text that
describes a scene of 2 objects and 1 spatial relation. We only concern object coordinates on Y and Z
axes, as we view the objects from a point along the positive side of X axis in the SPADE Generator.

Input Prompt GPT-4 Generated Coordinates
Object 1 Object 2

a cow is above a cup cow (5, 79) cup (-6, 0)
a broccoli is above a bus broccoli (15, 90) bus (-50, 10)

a knife is below an airplane knife (-5, 2) airplane (14, 86)
a couch is below an apple couch (-15, 2) apple (6, 90)

a dining table is to the left of a skateboard dining table (-87, 5) skateboard (20, -2)
an elephant is to the left of a hair drier elephant (-85, 2) hair drier (30, 95)

a vase is to the right of a fork vase (10, 20) fork (-70, 3)
a potted plant is to the right of a person potted plant (25, 30) person (-75, 10)

Table 6: Example Input Prompts with their respective object coordinates generated by GPT-4.
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D APPENDIX - OUT-OF-DISTRIBUTION OBJECT SUBSTITUTES

For experiments involving out-of-distribution objects, we swap the one OOD object in the input
prompt with its corresponding MS-COCO substitute object in Table 7 when creating reference im-
ages using the SPADE Generator.

MS-COCO Object OOD Object MS-COCO Object OOD Object

airplane helicopter kite flag
apple pear knife sword
backpack purse laptop tablet
banana mango microwave toaster oven
baseball bat walking stick motorcycle tractor
baseball glove boxing glove mouse webcam
bear monkey orange papaya
bed table oven dishwasher
bench sofa parking meter phone booth
bicycle scooter person mannequin
bird butterfly pizza burger
boat submarine potted plant tree
book magazine refrigerator cabinet
bottle lunchbox remote game controller
bowl plate sandwich salad
broccoli cauliflower scissors pliers
bus tram sheep goat
cake pie sink bathtub
car ambulance skateboard roller skates
carrot sweet potato skis hockey stick
cat rabbit snowboard sled
cell phone landline phone spoon straw
chair barstool sports ball bowling ball
clock wall calendar stop sign parking sign
couch cushion suitcase duffel bag
cow panda surfboard kayak
cup tumbler teddy bear doll
dining table dressing table tennis racket badminton racket
dog fox tie bowtie
donut pudding toaster waffle maker
elephant lion toilet shower
fire hydrant mailbox toothbrush comb
fork chopsticks traffic light streetlight
frisbee basketball train roller coaster
giraffe camel truck crane
hair drier hairbrush tv computer monitor
handbag cardboard box umbrella tent
horse donkey vase pitcher
hot dog burrito wine glass glass jar
keyboard piano zebra llama

Table 7: Substitute OOD object nouns for the original 80 MS-COCO objects used in SPADE.

E APPENDIX - CHOICE OF DENOISING STEPS

We choose the denoising steps in the range [20, 35] as suggested by the authors in the original
SDEDit (Meng et al., 2022) work. The authors empirically find that setting t0 ∈ [0.3, 0.6], (which
translates to the above range) leads to optimal results across a wide range of tasks.
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F APPENDIX - POTENTIAL FUTURE USAGE OF SPADE

F.1 EVALUATION OF MULTIMODAL LLMS

We may explore using SPADE as a benchmark to evaluate Multimodal Large Language Models
(MLLM) on the capability of spatial fidelity. Table 8 demonstrates such a use case where we use
SPADE for the task of Visual Question Answering (VQA). Our preliminary results indicate that the
current state-of-the-art MLLMs may still struggle to extract correct spatial relations given a multi-
object synthetic scene image.

Question: Does the image show a pizza
on the right of a vase?

What is the object on the left? Is the keyboard below the bicy-
cle?

Answer: Yes, the image shows a pizza
on the right of a vase. ✓

The object on the left is a small
airplane. ✓

Yes, the keyboard is below the
bicycle. ✗

Question: Does the image show a vase on
the left of a pizza?

What is the object on the right? Is the bicycle above the key-
board?

Answer: Yes, the image shows a vase on
the left of a pizza. ✓

The object on the right is an ap-
ple. ✓

Yes, the bicycle is above the
keyboard, as it is suspended in
the air. ✗

Question: What is above the car in the im-
age?

Does the image depict a truck
on the left of a clock?

Is there a cat to the right of a
bus?

Answer: Above the car in the image,
there is a TV and a clock. ✓

Yes, the image depicts a truck
on the left of a clock. ✗

Yes, there is a cat to the right
of a bus. ✓

Question: What is on the right of the tv in
the image?

Does the image depict a truck
on the right of a clock?

Is there a cat above a bus?

Answer: There is a car on the right of
the tv in the image. ✗

Yes, the image depicts a truck
on the right of a clock. ✓

Yes, there is a cat above a bus
in the image. ✗

Table 8: Example VQA performance using images created by the SPADE Generator. The textual
answers are generated by LLaVA (Liu et al., 2023a). ✓ indicates the generated answer matches with
its input’s ground truth, while ✗ indicates otherwise.

F.2 CONTRASTIVE LEARNING

SPADE pairs multiple reference image variants with one textual description (input prompt). Taking
advantage of such feature, we may also explore leveraging SPADE for multi-modal tasks that involve
self-supervising contrasive learning. In line with fundamental works such as Siamese Network
(Koch et al., 2015) and SimCLR (Chen et al., 2020b), we are now able to collect positive samples
and negative samples w.r.t an anchor image from the SPADE dataset with ease. We would like to see
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if SPADE helps achieve more robust visual representation extraction by optimizing the constractive
loss (Hermans et al., 2017), thus potentially leading to better performances on downstream tasks
such as object detection, image classification, or more.

G APPENDIX - LIMITATIONS

Although we made every effort to maintain as much diversity as possible while developing SPADE
and gathering the object assets, there may still be misses in this regard. Our current scope consists of
a finite number of MS-COCO objects, backgrounds and 2D relationships; however we believe that
all of the above aspects are easily extendable. Since, our method leverages pre-trained T2I models,
we also inherit their shortcomings in terms of biases and instability.
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