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1. Introduction

Gaussian Processes (GP) are data-efficient Bayesian non-parametric models that offer cali-
brated uncertainty quantification and are robust to overfitting, recently finding applicability
in data-scarce domains (Timonen et al., 2019; Wang et al., 2020) or where the uncertainty
is of utmost importance (Chen et al., 2014) .Their drawback resides in the computational
complexity of inverting the covariance matrix, which is cubic in computation and quadratic
in memory. This has motivated research on sparse GP (SGP) methods (Seeger et al., 2003;
Quinonero-Candela and Rasmussen, 2005). Titsias (2009) has addressed this problem by
leaving the prior distribution of the GP unchanged, with sparsity being enforced in the
posterior through inducing points learnt by variational inference. Hensman et al. (2013)
proposed an inducing point framework scalable to large data, obtaining posterior formulas
conditioned on these artificial points. However, this scales supralinearly with regards to in-
ducing point numbers, resulting in O(M2N +M3) computation and O(MN +M2) storage
complexity, where M is the number of inducing points. Therefore, a major obstacle towards
the wider adoption of GP in large scale datasets is related to the computational cost of ma-
trix inversion and log determinants. With this in mind, in van der Wilk et al. (2020) the
authors propose a lower bound that can be computed without computationally expensive
matrix operations such as inversion. Similar in scope, we propose to learn variational ap-
proximations of the covariance matrix, implicitly also over inverses, of inducing and training
points, thereby proposing a computationally efficient approximate posterior over covariance
matrices within the probabilistic framework of Student’s T Processes (STP) (Shah et al.,
2014). Compared to van der Wilk et al. (2020), where the authors solve the issue of inverse-
free predictive equations by using a highly structured posterior over U , we obtain similar
properties by virtue of our Bayesian hierarchical process, with an additional KL divergence
term over our approximation of K−1

uu , thus favouring the retrieval of the exact solution,
alongside showing that it works on large scale datasets, a task which was not tackled in the
latter work due to training instability.

2. Generative process of conditional sparse Student’s T Processes

We follow the hierarchical Bayesian construction in prior space introduced in Shah et al.
(2014) for the non-sparse scenario in a regression scenario:

Σff ∼W−1
n (vp + n+ 1, vpKff ) (1)

f | Σff ∼ N (0,Σff ) (2)

y | f ∼ N
(
f, σ2I

)
(3)
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Inverse Free Conditional Student-T Processes

In Shah et al. (2014), the authors show that the latent function follows a MV T (vp, 0,Kff ),
where MV T stands for multivariate t-distribution, which is a generalization to random
vectors of the Student’s t-distribution. For completeness, we provide in Appendix A a more
detailed proof of this statement.

We adapt the generative process to the sparse scenario. In order to achieve prior condi-
tional matching in the Inverse Wishart prior over covariance matrices we add another layer
in our Bayesian hierarchical generative process, namely:

T ∼Wm

(
v,

1

v
K−1
uu

)
(4)

Σfu,fu | T ∼W−1
n+m

(
vf,p + n, vf,p

(
T−1 Kuf

Kfu Kff ·u +KfuTKuf

))
(5)

U | Σuu ∼ N (0,Σuu) (6)

f | U,Σfu,fu, T ∼ N
(
ΣfuΣ−1

uuU,Σff ·u
)

(7)

y | f ∼ N
(
f, σ2I

)
(8)

, where vf,p = vp + m + 1 for notation purposes. Motivation behind the change of scal-
ing for mean covariance matrices is given in Appendix B. We denote Kff ·u = Kff +
KfuTKuuTKuf −2KfuTKuf ≥ Kff ·u, with equality if and only if T = K−1

uu (Davies, 2015).
As a consequence of Theorem 3 in Bodnar and Okhrin (2008), we can further express Σff ·u |
T ∼W−1

n

(
vf,p + n, vf,pKff ·u

)
and Σ−1

uuΣuf | Σff ·u, T ∼MN
(
TKuf , Σff ·u ⊗ T

vf,p

)
, which

are present in equation (7), where ⊗ denotes the Kronecker product and MN denotes the
matrix variate distribution. Lastly, we notice that f no longer follows a MV T (vp, 0,Kff )
distribution. Instead we have f | T ∼ MV T (vp, 0,Kff ·u + KfuTKuf ), which converges to
MV T (vp, 0,Kff ) as v →∞, implicitly T ≈ K−1

uu .

2.1. Variational Posteriors over Inverse-Wishart Processes

To perform inference over our hierarchical Bayesian model, we need a way of defining a valid
variational mean covariance matrix for the posterior Inverse-Wishart Process over the space

of possibly infinitely large covariance matrices: q (Σfu,fu) = W−1
n+m

(
vf,q + n, vf,q ˜Kfu,fu

)
,

where ˜Kfu,fu � 0 positive definite matrix defined as ˜Kfu,fu =

(
T−1 Kuf

Kfu Kff ·u +KfuTKuf

)
.

To see this is true, we make use of the following proposition.

Proposition 1 (Proposition 2.1 in Gallier et al. (2010)) For any symmetric matrix

M of the form: M =

(
A B
B> C

)
and if C is invertible then M � 0 ⇐⇒ A � 0 and

A−BC−1B> � 0.

We note that T−1 � 0 and Kff ·u � 0 by construction, thereby ˜Kfu,fu � 0, so that it satisfies
the condition for defining mean covariance matrices for Inverse Wishart distributions.
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3. Variational lower bound of conditional inverse free sparse Student’s T
Processes

We defer the full derivation of the ELBO to Appendix C.

LIF−CSTP = EQ(F,U,Σfu,fu,T ) log p(Y |F,U,Σfu,fu, T )− (9)∫
q(F,U,Σfu,fu, T ) log

q(F,U,Σfu,fu, T )

p(F,U,Σfu,fu, T )
dF dU dΣfu,fu dT

, where we define constituent terms of the factorized approximate posterior as follows:

q (T ) = Wm

(
vq,

1

vq
˜LK−1
uu

˜LK−1
uu

>
)

(10)

q (Σfu,fu | T ) = W−1
n+m

(
vf,q + n, vf,q

(
T−1 Kuf

Kfu Kff ·u +KfuTKuf

))
(11)

q (U) = N
(
m,LSL

>
S

)
(12)

q (f | U,Σfu,fu) = N
(
ΣfuΣ−1

uuU,Σff ·u
)

(13)

Expectation over data fit term in SVI setting. We can re-express expectations over
individual terms as follows:

n∑
k=1

Eq(Σfku,fku)

[∫
log p(Yk|Fk)q(Fk; Ũ(Σfku,fku), Σ̃(Σfku,fku)) dFk

]
, where Ũ(Σfku,fku) = ΣfkuΣ−1

uum and Σ̃(Σfku,fku) = Σfkfk − ΣfkuΣ−1
uu [Σuu − S] Σ−1

uuΣufk

define distributions over scalars. Hence, the aforementioned multivariate formulas can now
be rewritten as:

Σfkfk·u | T ∼ IG
(

1

2
(vf,q + 1) ,

vf,q
2
Kfkfk·u

)
(14)

Σ−1
uuΣufk | Σfkfk·u, T ∼ N

(
TKufk ,

Σfkfk·u
vf,q

⊗ T
)

(15)

, where IG represents in the inverse gamma distribution.

Kullback-Leibler Divergences. In the KL term present in our lower bound we can
separate the fraction terms that with respect to integrants that they exclusively depend on:

Eq(F,U,Σfu,fu,T ) log
q(F |U,Σfu,fu, T )

p(F |U,Σfu,fu, T )
+ Eq(Σ−1

uu ,T )

∫
q(U) log

q(U)

p(U |Σ−1
uu )

dU (16)

+ Eq(T )Eq(Σfu,fu|T ) log
q(Σfu,fu | T )

p(Σfu,fu | T )
) + Eq(T ) log

q(T )

p(T )

, where the first and third terms cancel out due to conditional prior matching. The second
term can be written as:

Eq(T )Eq(Σ−1
uu |T )

1

2

[
− log | Σ−1

uu | − log | S | − d+ Tr
[
Σ−1
uuS

]
+m>Σ−1

uum
]

(17)
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We remind ourselves that we can obtain samples from Σ−1
uu via following Bayesian hierar-

chical construction:

q (T ) = Wm

(
vq,

1

vq
˜LK−1
uu

˜LK−1
uu

>
)

; q
(
Σ−1
uu | T

)
= Wm

(
vf,q,

1

vf,q
T

)
(18)

No matrix inversion is required for this divergence term. Moreover, T is obtained via

the Bartlett decomposition ˜LK−1
uu
ATA

>
T

˜L>
K−1

uu
, where AT is a lower triangular matrix defined

in Appendix D. Then, we can apply again the Bartlett decomposition to obtain samples
from Σ−1

uu by noticing that ˜LK−1
uu
AT represents a lower triangular matrix. Finally, samples

are obtained via ˜LK−1
uu
ATAΣ−1

uu
A>

Σ−1
uu
A>T

˜L>
K−1

uu
Hence, Σ−1

uu is a product of lower triangular

matrices LK−1
uu
ATAΣ−1

uu
, with log |Σ−1

uu | having an analytic formula.
We now focus on KL [q(T )‖p(T )], which has an analytic formula:

−vp
2

[
log | vpKuu |+ log | 1

vq

˜K−1
uu |

]
+
vq
2

[
Tr

[
vp
vq
Kuu

˜K−1
uu

]
−m

]
+log

Γm(vp/2)

Γm(vq/2)
+
vq − vp

2
ψm(

vq
2

)

(19)
, where ψm denotes the multivariate digamma function. From the above equation we
can notice that no matrix inverses are required in the computation of the KL divergence.
Directly computing log | Kuu | would incur an O

(
m3
)

computational cost. To bypass it, we
use the following proposition.

Proposition 2 For a p.s.d. matrix K ∈ Mn×n, x being a conjugate gradient solution to
Kx = g, where g ∈ Mn×k are independent standard normal samples and K̃ � 0 we have
the following lower bound on the log determinant of K:

log | K |≥ n+
1

k

k∑
i=1

−g>i K̃xi + log| K̃ | (20)

with the bound being tight if and only if K̃ ≈ K.

A proof of this proposition can be found in Appendix E. Whereas in current work we use
standard preconditioned conjugate gradients, one could use the Unbiased LInear Systems
SolvEr (ULISSE) (Filippone and Engler, 2015), a randomly truncated CG run, to compute
unbiased estimate of xi.

Remark 3 Translating Proposition 2 to our case, we have log | Kuu |≥ m+ 1
k

k∑
i=1
−g>i T−1xi−

log| T |. In the computation of xi we precondition with T . Hence if T ≈ K−1
uu the CG rou-

tine will finish in one step. We empirically prove on UCI datasets that this method is close
to O

(
m2
)

(Appendix F.4).

4. Experiments

Convergence to Matrix Inversion based counterparts. We are interested to find
out whether our proposed model (denoted as IF-CSTP) is capable to recover the testing
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(a) Student’s T Process (b) Collapsed SGPR (c) IF-CSTP

Figure 1: Predictive mean and distributional variance for models trained on “snelson”
dataset. Likelihood variance is not added.

time prediction behaviour of Student’s T Processes (STP) (Shah et al., 2014) and of SVGP
(Hensman et al., 2013).

IF-STP is capable of almost recovering the testing time predictive behaviour of both
STP and SVGP on the “snelson” dataset (Snelson and Ghahramani, 2006) (Figure 1).

Figure 2: Effects on predictive mean of increasing number of inducing points for the “ba-
nana” dataset. With dark orange we plot the optimization trajectory of Z.

Increasing the number of inducing points. We train IF-CSTP and SVGP for varying
number of inducing points on “banana” dataset (Figure 2). Whereas SVGP brings the
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inducing points’ locations Z exactly on the classes’ demarcation lines, IF-CSTP does not
exhibit similar behaviour.

Initial results on large-scale datasets. We evaluate our proposed model on selected
UCI datasets (Figure 3). The gap between ELBOs is predominantly caused by the KL-
divergence pertaining to T (eqn. 19). IF-CSTP’s testing time behaviour almost approaches
SVGP. However, in some cases, such as on “Protein” for 250 inducing points, the gap
widens.

Figure 3: ELBO, Testing log-likelihood and mean absolute error values during optimization
for varying inducing points numbers.

5. Discussion

Using our matrix inversion-free variational lower bound we showed similar behaviour to ma-
trix inversion-dependent counterparts on toy tasks. However, scaling our proposed method
to work on large-scale data still remains a research avenue as there is a tendency of over-
stability of Z for large numbers of inducing points due to large penalty stemming from
KL [q(T )‖p(T )]. Imposing low tolerance for Proposition 2 does not guarantee that our
objective remains a lower bound. Nevertheless, we have empirically shown that it’s not a
problem in practice. Moreover, a drawback is the lack of competitiveness in terms of speed
with SVGP. For Proposition 2 we used the standard implementation of PCG, which was
shown to not be optimal on GPU hardware (Gardner et al., 2018). Truncated conjugate
gradients (Filippone and Engler, 2015; Potapczynski et al., 2021) should be used in future
work to provide bias-free solutions.
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Appendix A. LATENT FUNCTIONS F ARE STUDENT-T
DISTRIBUTED

In Shah et al. (2014), the authors provide a derivation showing that by marginalizing out
Σzz one obtains a multivariate t-distribution. We provide here a more detailed derivation
taking into consideration that we have the general result:∫

p(y|0,Σ)p(Σ|v, ψ)d Σ =
|ψ|v/2γp(v+n

2 )

πnp/2|ψ +A|
v+n
2 γp(

v
2 )

(21)

where A = XX>. Adapting this result to our scenario we get that:

p(Kzz) =
|vKzz|v/2γp(v+m

2 )

πm2/2|vKzz + ZZ>|
v+m

2 γp(
v
2 )

(22)

Focusing on the determinant terms we can rearrange:

|vKzz|
v
2

|vKzz + ZZ>|
v+m

2

=
|vKzz|−

m
2

|I + 1
vK
−1
zz ZZ>|

v+m
2

(23)

We remind the matrix determinant lemma : |A+ uv>| = (I + v>A−1u)|A|. We apply it to
the denonimator of the previous equation:

|I +
1

v
K−1
zz ZZ

>|
v+m

2 =

[
1 +

1

v
ZK−1

zz Z
>
]v+m

2

(24)

Plugging this into equation 22 we get that:

γp(
v+m

2 )

πm2/2γp(
v
2 )v

m2

2 |Kzz|
m
1

2

[
1 +

1

v
Z>K−1

zz Z

]−v+m
2

(25)

which we can now recognize as a MV T (v, 0,Kzz), where MV T stands for multivariate t-
distribution, which is a generalization to random vectors of the Student’s t-distribution. The

p.d.f. of this distribution is defined as
Γ(v+m

2
)

Γ(v
2

)vm/2πm/2|Σ|1/2)

[
1 + 1

v (x− µ)>Σ−1(x− µ)
]−(v+m)/2

,

where µ is the location, Σ is a positive-definite m∗m matrix and v represent the degrees of
freedom. For v ≥ 1 the mean is µ and for v ≥ 2 the variance is defined as v

v−2Σ. Therefore,
by starting from a Inverse-Wishart distributed prior over the covariance of a GP evaluated
at X, we have implicitly imposed a Student-t distribution over our latent function.

Appendix B. Properties of different mean covariance matrix scalings

Under the parametrization introduced in Shah et al. (2014), respectively:

Σfu,fu ∼W−1
n+m (vp + n+ 1, vpKfu,fu) (26)
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which implies the following probabilistic formulas and their expectations:

Σuu ∼W−1
m (vp +m+ 1, vpKuu) E [Σuu] = Kuu (27)

Σ−1
uu ∼Wm

(
vp +m+ 1,

1

vp
K−1
uu

)
E
[
Σ−1
uu

]
=
m+ 1 + vp

vp
K−1
uu (28)

Σfkfk·u ∼ IG
(

1

2
(vp +m+ 2) ,

vp
2
Kfkfk·u

)
E [Σfkfk·u] =

vp
vp +m

Kfkfk·u (29)

We can notice that for increasingly larger number of inducing points, the expectations over
Σ−1
uu and Σff ·u get increasingly upscaled, respectively downscaled with respect to their true

solution. For vp → ∞, the expectations will converge towards the real solution and their
variance will collapse to zero.

Under the parametrization introduced in section 2:

Σfu,fu ∼W−1
n+m (vp +m+ n+ 1, (vp +m+ 1)Kfu,fu) (30)

we have:

Σuu ∼W−1
m (vp +m+ 1, (vp +m+ 1)Kuu) E [Σuu] =

vp +m+ 1

vp
Kuu (31)

Σ−1
uu ∼Wm

(
vp +m+ 1,

1

vp +m+ 1
Kuu

)
E
[
Σ−1
uu

]
= K−1

uu (32)

Σfkfk·u ∼ IG
(

1

2
(vp +m+ 2) ,

vp +m+ 1

2
Kfkfk·u

)
E [Σfkfk·u] =

vp +m+ 1

vp +m
˜Kfkfk·u

(33)

In stark contrast to the parameterization introduced in Shah et al. (2014), we now have an
upscaling of expectations over covariance matrices, which only reverts to the real solution
for very large values of vp. However, in the interest of obtaining predictions at testing time
from our sparse Student’s T Process, we are only interested in obtaining unbiased samples
from Σ−1

uu and Σfkfk·u, for which we can notice that our scaling factor is more appropiate.

Appendix C. Derivation of evidence lower bound

We consider our training data D = {Xi, Yi}i=1,··· ,n. Our goal is to approximate the true
posterior distribution p(F,U,Σfu,fu, T |D) by utilising the following approximate posterior
q(F,U,Σfu,fu, T ) = p(F |U,Σfu,fu, T )q(U)p(Σfu,fu | T )q(T ). Our minimization goal can be
expressed as:

=

∫
q(F,U,Σfu,fu, T ) log

q(F,U,Σfu,fu, T )

p(F,U,Σfu,fu, T |D)
dF dU dΣfu,fu dT (34)

=

∫
q(F,U,Σfu,fu, T )

[
log

q(F,U,Σfu,fu, T )

p(F,U,Σfu,fu, T,D)
+ log p(D)

]
dF dU dΣfu,fu dT (35)

=Eq(F,U,Σfu,fu,T )

[
log

q(F,U,Σfu,fu, T )

p(D|F,U,Σfu,fu, T )p(F,U,Σfu,fu, T )
+ log p(D)

]
(36)
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which after some rearrangements becomes:

log p(D)−
[
Eq(F,U,Σfu,fu,T ) log p(D|F,U,Σfu,fu, T )−KL [q(F,U,Σfu,fu, T ) | p(F,U,Σfu,fu, T )]

]
(37)

We can now re-express this derivation as:

log p(D)−KL [q(F,U,Σfu,fu, T | p(F,U,Σfu,fu, T ))] = (38)

Eq(F,U,Σfu,fu,T ) log p(D|F,U,Σfu,fu, T )−KL [q(F,U,Σfu,fu, T ) | p(F,U,Σfu,fu, T )]

Hence, minimizing the intractable KL [q(F,U,Σfu,fu, T ) | p(F,U,Σfu,fu, T |D)] translates
to maximizing a tractable lower bound on the log marginal likelihood, respectively the
r.h.s. of the previous equation, which can be expressed as follows:

= EQ(F,U,Σfu,fu,T ) log p(Y |F,U,Σfu,fu, T )− (39)∫
q(F,U,Σfu,fu, T ) log

q(F,U,Σfu,fu, T )

p(F,U,Σfu,fu, T )
dF dU dΣfu,fu dT

Appendix D. Sampling Wishart Distributions

For this operation we use the Bartlett decomposition of the matrix R ∼Wp (v,Σ), which can
be written in the following factorized manner K−1

zz = LAA>L>, where A has the following

matrix form A =

 c1 . . . 0
...

. . .
...

np1 . . . cp

, where nij ∼ N (0, 1) and c2
i ∼ χ2

v−i+1 is the chi-squared

distribution and LL> = Σ.

Appendix E. Proof of Proposition 1

We start with a lower bound on log | K |, which can be expressed as:

log | K |≥ Tr
[
I−K−1

]
(40)

Hutchinson (1989) introduced a stochastic estimation method for computing matrix traces.
It is defined as follows:

Hm(A) =
1

m

m∑
i=1

g>i Agi (41)

which was shown to converge towards Tr(A) as m → ∞, where A ∈ Mn×n. Earlier
work by Girard (1987) suggests taking gi ∈ Mn×1 with individual elements of the column
matrix stemming from standard normal, whereas Hutchinson (1989) advocated for taking
the individual elements as Rademacher random variables, which translates into equally
probable {−1, 1} splits.

We can rewrite our objective as follows log | K | = log | KK̃−1 | + log | K̃ | for any
arbitrary p.s.d. matrix K̃. We are interested in obtaining reliable estimates of the following

11



Inverse Free Conditional Student-T Processes

bound without performing the matrix inversion operation:

log | KK̃−1 | +log | K̃ |≥ Tr [I]− Tr
[(
KK̃−1

)−1
]

+ log| K̃ | (42)

≥ Tr [I]− 1

m

m∑
i=1

g>i

(
KK̃−1

)−1
gi + log | ˜Kfu,fu | (43)

Rather than obtaining lower/upper bounds on the part in involving matrix inversion, we
can reliably estimate the solution via conjugate gradients. The solution will converge in
one iteration if the condition number is close to 1, which will happen if K̃−1 is an accurate
estimate of K−1.

We briefly summarize the theory behind conjugate gradients and how to compute them.
We are interested in solution to Kx = y, where the optimal solution xopt = K−1y, where
K ∈ Mn×n and y ∈ Mn×1. Conjugate gradients start with an initial solution x0, which
progressively gets refined and is guaranteed to converge in the worst case scenario in n
iterations. We provide the algorithm in pseudocode 1.

Algorithm 1: Preconditioned Conjugate Gradient routine

Input: K ∈Mn×n, y ∈Mn×1

Preconditioning matrix: M ∈Mn×n

Initial estimate: x0 ∈Mn×1

Compute first search direction and basis

r0 = Kx0 − y
z0 = M−1r0

p0 = z0

1. For i = 1 to n

(a) Alpha: αi =
r>i ri
p>i Kpi

(b) Solution update: xi+1 = xi + αipi

(c) if i=n; return xi

(d) zi+1 = M−1ri−1

(e) Beta: βi =
r>i+1ri+1

r>i ri

(f) Search direction update: pi+1 = zi+1 − βipi

For the purposes of our problem at hand, we have y = gi and the CG-based solution
xi ≈ K−1gi. Then, the lower bound translates to:

log | K |≥ Tr [I]− 1

m

m∑
i=1

g>i K̃xi + log | K̃ | (44)

12
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The tightness of the lower bound in the case K̃ ≈ K can be shown as follows:

log | K | ≥ Tr [I]− 1

m

m∑
i=1

g>i K̃xi + log | K̃ | (45)

log | K | ≥ Tr [I]− 1

m

m∑
i=1

g>i K̃K
−1gi + log | K̃ | (46)

log | K | ≥ Tr [I]− Tr [I] + log | K̃ | (47)

log | K | = log | K̃ | (48)

where we used the fact that xi = K−1gi since the condition number is 1 in this scenario.

Appendix F. Additional results

F.1. Lower bound recovers true approximate posteriors despite erroneous
initialization

We aim to quantify the influence of ”accurate” initializations of variational parameters on
the converged solution. Whereas one would expect to initialize LΣ−1

uu
with their respective

values given initial estimates of Z and kernel hyperparameters θ, we instead initialize them
with identity matrices to determine if the bound can recover optimal posteriors. The lower

(a) Initial (b) Optimized

Figure 4: Predictive mean and variance plots at initialization and after optimization. Vari-
ational parameters are badly initialized.

bound manages to recover an accurate estimate of ˜Kfu,fu ≈ Kfu,fu.
The influence of the initial values of vq is of paramount importance as it can make any

change to Kfu,fu impossible to take, possibly leading to scenarios where the optimization
prefers to keep Z and kernel hyperparamters fixed. We explore this scenario and see if

13
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the inducing points’ locations Z will get optimized to ideal locations despite starting from
values outside the training set range. From Figure 5 we can easily notice that the optimized
Z values are brought back to locations similar to ones obtained from running k-means.

(a) Initial (b) Optimized

Figure 5: Predictive mean and variance plots at initialization and after optimization, split
in parametric and non-parametric components. Inducing points’ location is badly
initialized.

F.2. Reliability of uncertainty estimates

We are interested to stress test our proposed model in three different scenarios, which
will individually point towards biases or discrepancies in the final estimates for Σff ·u and
ΣfuΣ−1

uu . For this we use the “snelson” dataset, with the training set taken to comprise
the intervals between 0.0 and 2.0, respectively 4.0 and 6.5. Thereby, in an ideal scenario
we would expect our model to offer high uncertainty estimates between 2.0 and 4.0. From
Figure 6 we can notice that indeed IF-STP does not suffer from pathologies.

Subsampling the “snelson” dataset allows us to discern if our method is capable to
increase its uncertainty. For this we only subsample data between 0.0 and 2.5. Naturally,
one should expect an increase in uncertainty just in that interval, with the remainder of the
data range reverting back to levels seen for the full “snelson” dataset (Figure 7).

14
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(a) Student’s T Process (b) IF-CSTP

Figure 6: Predictive mean and distributional variance for models trained on ”snelson with
gap” dataset. Likelihood variance is not added.

(a) Student’s T Process (b) IF-CSTP

Figure 7: Predictive mean and distributional variance for models trained on locally sub-
sampled “snelson” dataset. Likelihood variance is not added.
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F.3. Additional figures for “snelson” and “banana”

Figure 8: ELBO and Testing log-likelihood values during optimization for 10 inducing
points on “snelson”.

Figure 9: ELBO and Testing log-likelihood values during optimization for varying inducing
points on “banana”.

Figure 10: In optimal scenario, TKuu should equate an identity matrix.
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F.4. Conjugate Gradient steps during optimization

Figure 11: Number of CG steps needed to satisfy a tight tolerance for IF-CSTP trained on
various datasets with 250 inducing points.
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