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1. Introduction

Gaussian Processes (GP) are data-efficient Bayesian non-parametric models that offer cali-
brated uncertainty quantification and are robust to overfitting, recently finding applicability
in data-scarce domains (Timonen et al., 2019; Wang et al., 2020) or where the uncertainty
is of utmost importance (Chen et al., 2014) .Their drawback resides in the computational
complexity of inverting the covariance matrix, which is cubic in computation and quadratic
in memory. This has motivated research on sparse GP (SGP) methods (Seeger et al., 2003;
Quinonero-Candela and Rasmussen, 2005). Titsias (2009) has addressed this problem by
leaving the prior distribution of the GP unchanged, with sparsity being enforced in the
posterior through inducing points learnt by variational inference. Hensman et al. (2013)
proposed an inducing point framework scalable to large data, obtaining posterior formulas
conditioned on these artificial points. However, this scales supralinearly with regards to in-
ducing point numbers, resulting in O(M2N +M3) computation and O(MN +M2) storage
complexity, where M is the number of inducing points. Therefore, a major obstacle towards
the wider adoption of GP in large scale datasets is related to the computational cost of ma-
trix inversion and log determinants. With this in mind, in van der Wilk et al. (2020) the
authors propose a lower bound that can be computed without computationally expensive
matrix operations such as inversion. Similar in scope, we propose to learn variational ap-
proximations of the covariance matrix, implicitly also over inverses, of inducing and training
points, thereby proposing a computationally efficient approximate posterior over covariance
matrices within the probabilistic framework of Student’s T Processes (STP) (Shah et al.,
2014). Compared to van der Wilk et al. (2020), where the authors solve the issue of inverse-
free predictive equations by using a highly structured posterior over U , we obtain similar
properties by virtue of our Bayesian hierarchical process, with an additional KL divergence
term over our approximation of K−1

uu , thus favouring the retrieval of the exact solution,
alongside showing that it works on large scale datasets, a task which was not tackled in the
latter work due to training instability.

2. Generative process of conditional sparse Student’s T Processes

We follow the hierarchical Bayesian construction in prior space introduced in Shah et al.
(2014) for the non-sparse scenario in a regression scenario:

Σff ∼W−1
n (vp + n+ 1, vpKff ) (1)

f | Σff ∼ N (0,Σff ) (2)

y | f ∼ N
(
f, σ2I

)
(3)
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In Shah et al. (2014), the authors show that the latent function follows a MV T (vp, 0,Kff ),
where MV T stands for multivariate t-distribution, which is a generalization to random
vectors of the Student’s t-distribution. For completeness, we provide in Appendix A a more
detailed proof of this statement.

We adapt the generative process to the sparse scenario. In order to achieve prior condi-
tional matching in the Inverse Wishart prior over covariance matrices we add another layer
in our Bayesian hierarchical generative process, namely:

T ∼Wm

(
v,

1

v
K−1
uu

)
(4)

Σfu,fu | T ∼W−1
n+m

(
vf,p + n, vf,p

(
T−1 Kuf

Kfu Kff ·u +KfuTKuf

))
(5)

U | Σuu ∼ N (0,Σuu) (6)

f | U,Σfu,fu, T ∼ N
(
ΣfuΣ−1

uuU,Σff ·u
)

(7)

y | f ∼ N
(
f, σ2I

)
(8)

, where vf,p = vp + m + 1 for notation purposes. Motivation behind the change of scal-
ing for mean covariance matrices is given in Appendix B. We denote Kff ·u = Kff +
KfuTKuuTKuf −2KfuTKuf ≥ Kff ·u, with equality if and only if T = K−1

uu (Davies, 2015).
As a consequence of Theorem 3 in Bodnar and Okhrin (2008), we can further express Σff ·u |
T ∼W−1

n

(
vf,p + n, vf,pKff ·u

)
and Σ−1

uuΣuf | Σff ·u, T ∼MN
(
TKuf , Σff ·u ⊗ T

vf;p

)
, which

are present in equation (7), where ⊗ denotes the Kronecker product and MN denotes the
matrix variate distribution. Lastly, we notice that f no longer follows a MV T (vp, 0,Kff )
distribution. Instead we have f | T ∼ MV T (vp, 0,Kff ·u + KfuTKuf ), which converges to
MV T (vp, 0,Kff ) as v →∞, implicitly T ≈ K−1

uu .

2.1. Variational Posteriors over Inverse-Wishart Processes

To perform inference over our hierarchical Bayesian model, we need a way of defining a valid
variational mean covariance matrix for the posterior Inverse-Wishart Process over the space

of possibly infinitely large covariance matrices: q (Σfu,fu) = W−1
n+m

(
vf,q + n, vf,q ˜Kfu,fu

)
,

where ˜Kfu,fu � 0 positive definite matrix defined as ˜Kfu,fu =

(
T−1 Kuf

Kfu Kff ·u +KfuTKuf

)
.

To see this is true, we make use of the following proposition.

Proposition 1 (Proposition 2.1 in Gallier et al. (2010)) For any symmetric matrix

M of the form: M =

(
A B
B> C

)
and if C is invertible then M � 0 ⇐⇒ A � 0 and

A−BC−1B> � 0.

We note that T−1 � 0 and Kff ·u � 0 by construction, thereby ˜Kfu,fu � 0, so that it satisfies
the condition for defining mean covariance matrices for Inverse Wishart distributions.
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3. Variational lower bound of conditional inverse free sparse Student's T
Processes

We defer the full derivation of the ELBO to Appendix C.

L IF � CST P = EQ(F;U;� fu;fu ;T ) logp(Y jF; U; � fu;fu ; T)� (9)
Z

q(F; U; � fu;fu ; T) log
q(F; U; � fu;fu ; T)
p(F; U; � fu;fu ; T)

dF dU d� fu;fu dT

, where we de�ne constituent terms of the factorized approximate posterior as follows:

q(T) = Wm

�
vq;

1
vq

~L K � 1
uu

~L K � 1
uu

>
�

(10)

q(� fu;fu j T) = W � 1
n+ m

�
vf;q + n; vf;q

�
T � 1 K uf

K fu K f f �u + K fu TK uf

��
(11)

q(U) = N
�

m; L SL >
S

�
(12)

q(f j U; � fu;fu ) = N
�
� fu � � 1

uu U; � f f �u
�

(13)

Expectation over data �t term in SVI setting. We can re-express expectations over
individual terms as follows:

nX

k=1

Eq(� f k u;f k u )

� Z
logp(Yk jFk )q(Fk ; ~U(� f k u;f k u); ~�(� f k u;f k u)) dFk

�

, where ~U(� f k u;f k u) = � f k u � � 1
uu m and ~�(� f k u;f k u) = � f k f k � � f k u � � 1

uu [� uu � S] � � 1
uu � uf k

de�ne distributions over scalars. Hence, the aforementioned multivariate formulas can now
be rewritten as:

� f k f k �u j T � IG
�

1
2

(vf;q + 1) ;
vf;q

2
K f k f k �u

�
(14)

� � 1
uu � uf k j � f k f k �u ; T � N

�
TK uf k ;

� f k f k �u

vf;q

 T

�
(15)

, where IG represents in the inverse gamma distribution.

Kullback-Leibler Divergences. In the KL term present in our lower bound we can
separate the fraction terms that with respect to integrants that they exclusively depend on:

Eq(F;U;� fu;fu ;T ) log
q(F jU; � fu;fu ; T)
p(F jU; � fu;fu ; T)

+ Eq(� � 1
uu ;T )

Z
q(U) log

q(U)

p(Uj� � 1
uu )

dU (16)

+ Eq(T )Eq(� fu;fu jT ) log
q(� fu;fu j T)
p(� fu;fu j T)

) + Eq(T ) log
q(T)
p(T)

, where the �rst and third terms cancel out due to conditional prior matching. The second
term can be written as:

Eq(T )Eq(� � 1
uu jT )

1
2

h
� log j � � 1

uu j � log j S j � d + T r
�
� � 1

uu S
�

+ m> � � 1
uu m

i
(17)
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We remind ourselves that we can obtain samples from �� 1
uu via following Bayesian hierar-

chical construction:

q(T) = Wm

�
vq;

1
vq

~L K � 1
uu

~L K � 1
uu

>
�

; q
�
� � 1

uu j T
�

= Wm

�
vf;q ;

1
vf;q

T
�

(18)

No matrix inversion is required for this divergence term. Moreover,T is obtained via
the Bartlett decomposition ~L K � 1

uu
AT A>

T
~L >

K � 1
uu

, whereAT is a lower triangular matrix de�ned
in Appendix D. Then, we can apply again the Bartlett decomposition to obtain samples
from � � 1

uu by noticing that ~L K � 1
uu

AT represents a lower triangular matrix. Finally, samples

are obtained via ~L K � 1
uu

AT A � � 1
uu

A>
� � 1

uu
A>

T
~L >

K � 1
uu

Hence, � � 1
uu is a product of lower triangular

matrices L K � 1
uu

AT A � � 1
uu

, with log j� � 1
uu j having an analytic formula.

We now focus onKL [q(T)kp(T)], which has an analytic formula:

�
vp

2

�
log j vpK uu j + log j

1
vq

~K � 1
uu j

�
+

vq

2

�
T r

�
vp

vq
K uu

~K � 1
uu

�
� m

�
+log

� m (vp=2)
� m (vq=2)

+
vq � vp

2
 m (

vq

2
)

(19)
, where  m denotes the multivariate digamma function. From the above equation we
can notice that no matrix inverses are required in the computation of the KL divergence.
Directly computing log j K uu j would incur an O

�
m3

�
computational cost. To bypass it, we

use the following proposition.

Proposition 2 For a p.s.d. matrix K 2 M n� n , x being a conjugate gradient solution to
Kx = g, where g 2 M n� k are independent standard normal samples and~K � 0 we have
the following lower bound on the log determinant ofK :

log j K j� n +
1
k

kX

i =1

� g>
i

~Kx i + logj ~K j (20)

with the bound being tight if and only if ~K � K .

A proof of this proposition can be found in Appendix E. Whereas in current work we use
standard preconditioned conjugate gradients, one could use the Unbiased LInear Systems
SolvEr (ULISSE) (Filippone and Engler, 2015), a randomly truncated CG run, to compute
unbiased estimate ofx i .

Remark 3 Translating Proposition 2 to our case, we havelog j K uu j� m+ 1
k

kP

i =1
� g>

i T � 1x i �

logj T j. In the computation of x i we precondition with T. Hence if T � K � 1
uu the CG rou-

tine will �nish in one step. We empirically prove on UCI datasets that this method is close
to O

�
m2

�
(Appendix F.4).

4. Experiments

Convergence to Matrix Inversion based counterparts. We are interested to �nd
out whether our proposed model (denoted as IF-CSTP) is capable to recover the testing
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