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Manel Gil-Sorribes1, Álvaro Ciudad1,2, Alexis Molina1,2∗

1Nostrum Biodiscovery, Barcelona, 08029, Spain
2ATLAS Labs, Barcelona, Spain
*alexis.molina@nostrumbiodiscovery.com, @theatlaslabs.com

ABSTRACT

Accurate drug-target interaction (DTI) prediction is essential for computational
drug discovery, yet existing models often rely on pre-defined molecular descriptors
or sequence-based embeddings with limited generalizability. We propose Tensor-
DTI, a contrastive learning framework that integrates multimodal embeddings
from molecular graphs, protein language models, and binding site predictions
to improve interaction modeling. Tensor-DTI employs a Siamese Dual Encoder
architecture, enabling it to capture both chemical and structural interaction features
while distinguishing interacting from non-interacting pairs. Evaluations on multi-
ple DTI benchmarks, including BIOSNAP, BindingDB, DAVIS, and PLINDER,
demonstrate that Tensor-DTI outperforms existing sequence-based and graph-based
models. Additionally, we assess its generalization to unseen drugs and proteins
and explore its applicability to protein-RNA and peptide-protein interactions. Our
findings highlight the benefits of integrating structural information with contrastive
objectives to enhance interaction prediction accuracy and model interpretability.

1 INTRODUCTION

The vast chemical space, estimated at up to 1060 small molecules (Restrepo, 2022), presents a major
challenge for drug discovery, as practical exploration is constrained by synthesizability, stability,
and biological relevance. Even after applying physicochemical filters such as Lipinski’s Rule of
Five (Lipinski et al., 1997), the number of feasible drug-like molecules remains in the range of
1012 to 1023, making exhaustive experimental screening impractical. High-throughput screening
(HTS) and virtual screening (HTVS) help navigate this space, but HTS is costly and limited to
predefined libraries, while HTVS, particularly molecular docking, remains computationally intensive.
The purchasable chemical space, bolstered by combinatorial chemistry, has grown exponentially,
with ENAMINE REAL (Enamine) containing over 1.4 trillion readily synthesizable compounds
and ZINC22 (Tingle et al., 2023) offering access to more than 2 billion purchasable molecules.
Despite these advances, screening approaches remain constrained by computational limitations and
the reliance on pre-existing receptor-ligand conformations, limiting generalizability.

Machine learning-based approaches have emerged as an alternative, accelerating docking predictions
while bypassing the need for exhaustive sampling. Models such as DiffDock (Corso et al., 2023) and
TankBind (Lu et al., 2022) leverage transformer-based architectures and generative models to predict
binding poses with high efficiency. However, their reliance on large co-crystal datasets presents a
bottleneck, as structural data for diverse ligand-protein interactions remain scarce. Molecule-protein
interaction datasets, including ChEMBL (Gaulton et al., 2012), PDBBind (Wang et al., 2004), and
DUD-E (Mysinger et al., 2012), provide a foundation for training predictive models, but data quality
issues and information leakage between training and test sets hinder model robustness (Li et al.,
2024). As a result, modern drug-target interaction (DTI) models have focused on leveraging protein
language models such as ESM (Rives et al., 2019) and SaProt (Su et al., 2023), as well as graph-based
representations like GraphDTA (Nguyen et al., 2021) and HyperAttentionDTI (Zhao et al., 2022), to
enhance interaction prediction.
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However, current DTI models still face fundamental challenges in capturing the full complexity of
biomolecular interactions. Many existing approaches rely on whole-protein embeddings, overlooking
the importance of localized binding site information, which plays a critical role in molecular recog-
nition and selectivity. While graph neural networks (GNNs) and transformer-based architectures
have improved interaction modeling (Tsubaki et al., 2019; Chen et al., 2020), they often struggle to
generalize to unseen drugs and targets due to their dependence on fixed molecular representations (Yu
et al., 2012). Contrastive learning frameworks such as ConPLex (Singh et al., 2023) and PocketDTA
(Zhao et al., 2024) have attempted to refine feature spaces by embedding proteins and drugs in a
shared representation, but most fail to explicitly incorporate multimodal structural information, which
is essential for capturing the nuances of binding affinities and selectivity. Additionally, generalization
remains a major concern, as existing models often perform poorly on interactions beyond their
training distribution, limiting their real-world applicability.

Building on these advances, we introduce Tensor-DTI, a deep learning framework that integrates
multimodal embeddings and a Siamese Dual Encoder with contrastive learning to enhance DTI pre-
diction. Unlike traditional sequence-based models, Tensor-DTI incorporates both global and localized
structural features, leveraging pocket embeddings alongside protein and ligand representations to
refine binding-site specificity. The model combines structural, chemical, and contextual information,
enabling it to generalize across diverse biomolecular interactions, including peptide-protein and
RNA-protein binding. By explicitly modeling binding pockets using ESM-GearNet (Zhang et al.,
2023a), a hybrid approach that integrates protein language models with structural message-passing
networks (Zhang et al., 2023b), Tensor-DTI provides a more interpretable and biologically relevant
representation of molecular interactions. This architecture allows Tensor-DTI to outperform existing
models on standard benchmarks while offering insights into interaction specificity, making it a
scalable and generalizable tool for drug discovery.

2 TENSOR-DTI

Tensor-DTI is a deep learning framework for DTI prediction that integrates multimodal molecular
representations with contrastive learning. The model employs a Siamese Dual Encoder architecture,
where separate encoder branches process drug and protein representations, projecting them into a
shared latent space. A contrastive loss function encourages the embeddings of interacting pairs to
cluster while pushing non-interacting pairs apart, enabling generalization to unseen drug-target pairs.
For binary interaction classification, a binary cross-entropy loss is applied, ensuring the model learns
a probabilistic interaction score.

Figure 1: Tensor-DTI architecture with pocket embeddings. The model extends the base architecture
by incorporating binding pocket representations, enabling site-specific interaction modeling. The
protein shown is PDBID: 5ISX. The SaProt image is adapted from (Su et al., 2023), and the GearNet
image is adapted from (Zhang et al., 2023b).

Small molecules are represented as molecular graphs, and Tensor-DTI extracts drug embeddings
using a Graph Convolutional Network (GCN) trained on PCBA 1328, a dataset of 1.6M molecules
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with 1,328 binary activity labels from PubChem (Kim et al., 2023). The GCN iteratively aggregates
local structural features, encoding bioactivity-relevant molecular patterns into a single graph-level
embedding via sum pooling. Proteins are primarily represented using transformer-based embeddings
from SaProt, a language model that integrates sequence and structural information. In a specific
case, we also used ESM-2, which encodes high-resolution sequence features from large-scale protein
corpora. These embeddings provide rich contextualized representations of proteins, enabling the
model to learn functionally relevant interaction patterns.

To refine binding-site specificity, Tensor-DTI incorporates pocket embeddings, allowing it to distin-
guish between global protein interactions and site-specific binding events. These embeddings are
derived using ESM-GearNet (Zhang et al., 2023a), which refines protein language model embeddings
with structural information via GearNet (Zhang et al., 2023b), a graph-based message-passing network
that captures residue-residue interactions. To enhance spatial awareness, a multi-layer perceptron is
trained on the SC-PDB dataset (Kellenberger et al., 2006) for node classification, enabling the model
to differentiate functionally relevant binding sites from non-binding regions. Pocket embeddings are
combined with full-protein representations, ensuring that the model effectively captures ligand-pocket
interactions while maintaining contextual protein information. A full visualization of the model
architecture, including the integration of pocket embeddings, is provided in Appendixes A and B.

Beyond small-molecule interactions, Tensor-DTI extends to RNA-protein and peptide-protein inter-
actions, broadening its applicability to biomolecular modeling. Peptide representations are extracted
from PeptideBERT (Guntuboina et al., 2023), a transformer-based model trained on peptide se-
quences, while RNA embeddings are generated using ChaRNABERT (Morales-Pastor et al., 2024),
which employs gradient-based subword tokenization to dynamically segment RNA sequences, cap-
turing both nucleotide-level interactions and higher-order structural dependencies. These additional
representations allow the model to generalize beyond conventional drug-protein interactions and
accommodate alternative therapeutic modalities.

For drug-target affinity (DTA) prediction, Tensor-DTI is adapted to a regression framework by
replacing contrastive loss with mean squared error loss. This modification allows the model to
predict continuous affinity values rather than binary interactions. Drug and protein embeddings
remain consistent with those used in classification tasks, ensuring a unified approach across predictive
settings. The model is optimized using the Adam optimizer, with early stopping applied to prevent
overfitting based on validation performance. By leveraging contrastive learning for classification and
adapting seamlessly to affinity prediction, Tensor-DTI provides a flexible and scalable approach for
modeling molecular interactions across diverse biological contexts. Details on the hyperparameters
used for different settings can be found in Appendix C.

Additionally, we develop a confidence model, which, although not used for the presented benchmarks,
we consider essential for applying Tensor-DTI in prospective scenarios where ground truth data is
unavailable. See Appendix D for further details.

3 RESULTS AND DISCUSSION

We evaluate Tensor-DTI across multiple DTI benchmarks, comparing it to competitive methods in
both classification and affinity prediction tasks. Additionally, we assess its prospective applicability
in real-world inference scenarios using recent leak-proof datasets.

Ablation studies (see Appendix E) identified pretrained GCN for drugs and SaProt for proteins as
the best combination for DTI, while the optimal embeddings for DTA varied by dataset. A full
description of all datasets, including preprocessing, splitting strategies, and dataset-specific details, is
in Appendix F, while dataset volumes are in Appendix G.

3.1 BENCHMARKING TENSOR-DTI

To evaluate the predictive performance of Tensor-DTI in DTI modeling, we conducted benchmarking
experiments on multiple standard datasets, including BIOSNAP, BindingDB, and DAVIS, alongside
two additional BIOSNAP splits assessing generalization to unseen drugs and unseen targets. The
results, summarized in Table 1, provide a comparative assessment against established deep learning
baselines and classical machine learning methods.
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Table 1: Model Performance on standard DTI datasets. Each model for each dataset has been run 5
times. Performance is reported as the Area Under Precision Recall (AUPR) of the prediction. Metrics
for models with † are taken from ref. (Huang et al., 2020). Ridge regression is not applicable to the
Unseen Drugs dataset split because a distinct model is trained for each drug in the training set.

Model BIOSNAP BindingDB DAVIS Unseen Drugs Unseen Targets
Tensor-DTI 0.903± 0.003 0.699± 0.002 0.547± 0.006 0.888± 0.002 0.839± 0.003
ConPLex 0.897± 0.001 0.628± 0.012 0.458± 0.016 0.874± 0.002 0.842± 0.006
EnzPred-CPI 0.866± 0.003 0.602± 0.006 0.277± 0.009 0.844± 0.005 0.795± 0.004
MolTrans 0.885± 0.005 0.598± 0.013 0.335± 0.017 0.863± 0.005 0.668± 0.045
GNN-CPI† 0.890± 0.004 0.578± 0.015 0.269± 0.020 − −
DeepConv-DTI† 0.889± 0.005 0.611± 0.015 0.299± 0.039 0.847± 0.009 0.766± 0.022
Ridge 0.641± 0.000 0.516± 0.000 0.320± 0.000 N/A 0.617± 0.000

Tensor-DTI achieved the highest predictive performance across all datasets, with mean AUPR scores
of 0.903±0.003 on BIOSNAP, 0.699±0.002 on BindingDB, and 0.547±0.006 on DAVIS. Notably,
BIOSNAP exhibits a relatively well-characterized interaction landscape, primarily comprising known,
high-confidence drug-target interactions. The model’s superior performance on BIOSNAP suggests its
ability to effectively capture high-level interaction patterns, likely facilitated by contrastive embedding
learning, which optimizes the separation of interacting and non-interacting pairs.

The more challenging BindingDB dataset, which encompasses a broader range of experimentally
validated interactions across diverse molecular classes, results in lower overall predictive performance
for all models. Tensor-DTI maintains a robust performance margin over alternative deep learning
models such as ConPLex (+7.1%), MolTrans (Huang et al., 2020) (+10.1%), and EnzPred-CPI
(Goldman et al., 2022) (+9.7%). The relatively lower performance on DAVIS, where binding
interactions are limited to kinase inhibitors, highlights the inherent challenge of predicting selective
interactions within structurally conserved protein families.

Among competing methods, ConPLex performs well on BIOSNAP (0.897± 0.001) but exhibits a
significant drop on BindingDB (0.628± 0.012) and DAVIS (0.458± 0.016), suggesting a sensitivity
to data heterogeneity and potential limitations in generalization beyond the training distribution.
EnzPred-CPI and MolTrans show comparatively lower performance, particularly on DAVIS (0.277
and 0.335, respectively), where kinase inhibitors exhibit complex binding profiles that are difficult to
capture with purely sequence-based representations. Ridge regression, as expected, exhibits the lowest
performance across all datasets, reinforcing the necessity of deep-learning-based representations for
capturing the non-linear and high-dimensional features governing biomolecular interactions.

Beyond in-distribution benchmarking, we assessed Tensor-DTI’s capacity to generalize to novel
drug-like molecules and previously unobserved protein targets. The unseen drug split evaluates the
model’s ability to infer interactions for chemical entities that do not appear in the training set, whereas
the unseen target split assesses generalization to proteins with no direct training exposure.

Tensor-DTI exhibits superior performance in the unseen drug scenario, with an AUPR score of
0.888 ± 0.002, and achieves 0.839 ± 0.003 in the unseen target scenario, showing comparable
performance to ConPLex (0.842 ± 0.006) as the difference lies within the margin of error. These
results indicate that Tensor-DTI captures meaningful chemical and protein features, enabling it to
extend beyond memorized interactions. ConPLex follows with 0.874 ± 0.002 for unseen drugs,
further highlighting its competitive performance in generalization tasks.

MolTrans and DeepConv-DTI (Lee et al., 2019) show greater variability, particularly in the unseen
target setting (0.668±0.045 and 0.766±0.022, respectively), suggesting higher sensitivity to dataset
distribution shifts. The relatively lower performance of MolTrans across both unseen drug and target
scenarios underscores the challenge of extrapolating to novel chemical or protein scaffolds.
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3.2 EFFECTIVENESS OF THE CONTRASTIVE LEARNING APPROACH AND EVALUATION ON
DUD-E DATASET

To further assess the effectiveness of the contrastive learning approach employed in Tensor-DTI, we
evaluated the model on the DUD-E dataset (Mysinger et al., 2012), focusing on the kinase family.

The performance of Tensor-DTI on this task is illustrated through a t-SNE visualization of the learned
embeddings, with an example for one of the test proteins shown in Figure 2. Prior to contrastive
training, the embeddings of proteins and drugs lack clear separation between actives and decoys.
After training, the model successfully clusters active drugs closer to their corresponding protein
targets in the latent space, demonstrating improved discrimination between true binders and decoys.
This structured embedding space suggests that the model effectively captures interaction-relevant
molecular features. Tensor-DTI achieved an average AUPR of 0.686 ± 0.006, for all the test set,
across five independent executions, confirming its strong capability in distinguishing actives from
decoys.

Figure 2: t-SNE visualization of protein and drug embeddings before (left plot) and after (right plot)
applying Tensor-DTI with contrastive learning. The visualization corresponds to the B-raf Kinase
protein, one of the targets from the test split.

These results reinforce the generalizability of Tensor-DTI, showing that contrastive learning not only
improves predictive performance but also enhances interpretability. The structured latent space could
be further leveraged for generative modeling, enabling the exploration of new active compounds
based on proximity in the learned representation space.

3.3 TENSOR-DTI PERFORMS WELL ON AFFINITY PREDICTION DATASETS

We tested Tensor-DTI on the Therapeutics Data Commons (TDC) DTI Domain Generalization
(Huang et al., 2021) (TDC-DG) benchmark, a challenging dataset for binding affinity prediction. The
benchmark includes IC50 values from interactions patented between 2013 and 2018 as training data,
while test interactions are from patents filed in 2019 and 2021. This setup demands strong out-of-
domain generalization, simulating real-world applications where models predict unseen interactions
based on historical data. Following the data split strategy outlined in (Singh et al., 2023), we trained
and evaluated Tensor-DTI, which achieved a Pearson Correlation Coefficient (PCC) of 0.580± 0.004,
demonstrating that our model is competitive with several state-of-the-art methods (Table 2).

To ensure robust performance, we experimented with multiple molecular and protein representations.
Our findings showed that using Morgan Fingerprints (MFPS) for small molecules and ESM-2
embeddings for proteins yielded the best results (see Appendix E).

3.4 DTI AND DTA ASSESSMENTS ON LOW-LEAKAGE DATASETS

In order to evaluate drug–target interaction and affinity prediction models under minimized data
leakage, we assessed performance across two curated datasets: PLINDER (Durairaj et al., 2024) and
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Table 2: Comparison of Tensor-DTI performance on the TDC-DG benchmark.

Model PCC
Tensor-DTI 0.580± 0.004
ConPLex 0.538± 0.008
MMD 0.433± 0.010
CORAL 0.432± 0.010
ERM 0.427± 0.012
MTL 0.425± 0.010

LP-PDBBind (Li et al., 2024). These datasets were designed to reduce structural redundancy and
prevent information leakage between training and test sets, making them valuable for assessing the
generalization capacity of modern predictive models. Performance comparisons across these datasets
are provided in Appendix H.

For PLINDER, we conducted two classification-based evaluations with different negative sampling
strategies. In the first split, using only drug and protein embeddings, negative pairs were randomly
selected from the same pool of drugs and proteins within each respective split, ensuring that only
molecules present in that specific split were used for constructing non-interacting pairs. This approach
resulted in a classification AUPR of 0.779 ± 0.001. In contrast, a more challenging split, which
incorporated pocket embeddings and enforced high pocket dissimilarity for negative examples,
resulted in a reduced AUPR of 0.698± 0.005. This discrepancy highlights a key observation: many
existing DTI models implicitly rely on pocket similarity rather than learning fundamental binding
principles. The more diverse pocket-based negatives force the model to differentiate interactions
beyond simple sequence or structure similarity, revealing potential overfitting issues in conventional
approaches.

For LP-PDBBind, which focuses on binding affinity prediction, we tested the model respecting the
splits proposed by the authors in (Li et al., 2024). Our model, which predicts the Kd, resulted in a
PCC of 0.565±0.004 with a Root Mean Square Error (RMSE) of 1.620±0.024. The model achieved
lower PCC (0.528±0.013) and higher RMSE (2.122±0.032) for ∆G than for Kd, indicating greater
noise and complexity in free energy predictions. To further investigate ligand-specific effects, we
used the PDBBind-Opt (Wang et al., 2024) dataset separately to peptides and small molecules. For
peptides, the PCC reached 0.679±0.014, with a corresponding RMSE of 1.175±0.020. Meanwhile,
for molecule-protein interactions, Tensor-DTI achieved a PCC of 0.750 ± 0.005 with a RMSE of
1.335± 0.011 on a random PDBBind-Opt split. However, when evaluated on Li et al. (2024), which
ensures no structural or sequence leakage between training and test sets, performance for molecule-
protein interactions decreased to a PCC of 0.493 ± 0.005 with a RMSE of 1.545 ± 0.006. This
decline reflects the increased difficulty of generalizing to entirely novel protein-ligand interactions,
emphasizing the importance of evaluating models under challenging, low-leakage conditions.

3.5 TENSOR-DTI ALLOWS POCKET SPECIFICITY WITH THE ADDITION OF POCKET
EMBEDDINGS

Traditional drug discovery often targets entire proteins, but modulating specific binding sites, in-
cluding allosteric and cryptic pockets, offers greater therapeutic potential. Tensor-DTI enhances
site-specific predictions by integrating pocket embeddings derived from ESM-GearNet trained on
binding site data, which refines protein binding site representations using ESM-2 embeddings and
GearNet-based structural message passing. These embeddings are concatenated with full-protein rep-
resentations, improving the model’s ability to differentiate functionally relevant binding interactions
from nonspecific contacts.

3.5.1 ASSESSMENT OF ATP AND AMP BINDING ALONGSIDE CRYPTIC SITE INHIBITOR
BINDING PREDICTIONS IN CDK2α AND RET KINASES

CDK2 is a key regulator of the G1-to-S phase transition and is frequently hyperactivated in cancers
such as breast, ovarian, and certain leukemias (Knudsen et al., 2022). Traditional ATP-competitive in-
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(a) Left. CDK2 with ATP binding site (red) and closed
cryptic site (orange). Right. Open cryptic cavity merg-
ing with ATP binding site (red). Structural configu-
ration of the three binding compounds to the cryptic
site.

(b) Left. RET with cryptic binding site in apo state
(red). Right. Open cryptic cavity (red). Structural
configuration of the two binding compounds to the
cryptic site.

Figure 3: Structural arrangements from CDK2 and RET kinases in holo and apo states for their
correspondent cryptic pockets.

hibitors struggle with selectivity and resistance mechanisms, making alternative binding site targeting
an attractive approach. Cryptic binding sites (CBSs) offer a promising avenue for kinase inhibitor de-
velopment, particularly in overcoming resistance to conventional ATP-competitive inhibitors (Figure
3a). To evaluate Tensor-DTI’s ability to distinguish cryptic sites from canonical ATP-binding pockets,
we assessed ATP and two well-characterized CBS inhibitors, CX-4945 and CX-5279, across multiple
conformational states of CDK2. While the model effectively differentiated between closed ATP
sites and open cryptic sites, inconsistencies in ATP binding predictions across cryptic conformations
suggested a bias in generalizing ATP’s flexibility in alternative binding modes.

The model correctly rejected ATP binding to the closed ATP site in 3FWQ, reinforcing its ability to
recognize steric constraints. However, in cryptic conformations where CAM4066 had been removed
(5CLP and 5CU3), ATP predictions were inconsistent: while ATP was correctly classified as a binder
in 5CLP, it was incorrectly rejected in 5CU3, indicating a limitation in recognizing subtle structural
changes affecting pocket accessibility. This discrepancy may stem from a training bias favoring
ATP-competitive interactions. In contrast, CX-4945 and CX-5279 were consistently classified as
cryptic site binders across CBS structures, highlighting their adaptability and the model’s ability to
capture non-ATP-competitive interactions. The results align with experimental findings that cryptic
site inhibitors generalize better across structural variations than ATP, underscoring their potential in
kinase-targeted therapies, particularly for overcoming resistance to ATP-competitive drugs.

Rearranged during transfection (RET) kinase is a critical target in thyroid and lung adenocarcinoma
(Liu et al., 2020), but despite the approval of multi-tyrosine kinase inhibitors (MKIs) such as LOXO-
292 (selpercatinib) and BLU-667 (pralsetinib), their long-term efficacy is often hindered by secondary
mutations, off-target toxicity, and acquired resistance. To address these challenges, researchers have
identified a cryptic binding site near the active site as a promising target for next-generation inhibitors
(Figure 3b). We evaluated Tensor-DTI’s ability to differentiate between the active site and CBS by
predicting the binding of AMP, LOXO-292, and BLU-667 across multiple RET conformations. While
the model correctly identified cryptic site inhibitors, inconsistencies in ATP-competitive binding
predictions suggested areas for improvement in handling binding site transitions.

The model struggled to correctly classify AMP, a known binder to the RET active site (2IVS),
suggesting a potential underestimation of ATP-competitive interactions when the CBS is closed.
However, it accurately predicted LOXO-292 and BLU-667 binding to the CBS in an open cryptic
conformation (7JU5), demonstrating reliable recognition of cryptic site accessibility. Interestingly,
in 2IVS, where the active site is open but the CBS remains closed, the model incorrectly predicted
CBS binding for these inhibitors, indicating an overgeneralization of cryptic site accessibility. These
discrepancies suggest a model bias favoring cryptic site interactions over ATP-competitive binding,
highlighting the need for refinements in understanding structural transitions between active and
cryptic conformations (Yang et al., 2023).
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3.6 BROADENING THE SCOPE OF BIOMOLECULAR INTERACTION PREDICTIONS

Beyond small molecules, Tensor-DTI models peptide-protein, protein-RNA, and drug-RNA interac-
tions, expanding its applicability to biologics and RNA therapeutics. For peptide-protein interactions,
Tensor-DTI captures the physicochemical and sequence-dependent features governing peptide bind-
ing, achieving an AUPR of 0.953± 0.001 on the Propedia (Martins et al., 2023) dataset (Table 14 in
Appendix I).

Similarly, for protein-RNA interactions, which are central to post-transcriptional regulation, the model
achieves an AUPR of 0.916± 0.008 on CoPRA (Han et al., 2024) (Table 15 in Appendix I). When
evaluated on PRA310, which provides affinity measurements for protein-RNA pairs, Tensor-DTI
achieves a PCC of 0.631± 0.111 for Kd (binding constant) and 0.621± 0.052 for ∆G (free energy),
with corresponding RMSE values of 1.443 ± 0.232 and 1.910 ± 0.212 (Table 16 in Appendix I).
While a one-hot encoding baseline performed similarly in RMSE, Tensor-DTI exhibited stronger
correlation with true affinities, indicating better predictive accuracy.

For drug-RNA interactions, Tensor-DTI was trained on drug-RNA pairs from PDBBind, achieving a
PCC of 0.792± 0.015 and an RMSE of 1.684± 0.038, outperforming the one-hot encoding baseline,
which obtained a PCC of 0.633± 0.018 and an RMSE of 1.738± 0.036 (Table 17 in Appendix I).
Although RMSE values remained comparable, Tensor-DTI’s higher PCC suggests superior learning of
structure-function relationships, capturing meaningful interaction patterns that conventional encoding
methods fail to generalize.

These results demonstrate Tensor-DTI’s ability to generalize beyond small-molecule interactions,
making it a versatile tool for modeling peptide and RNA interactions in therapeutic applications.

4 CONCLUSION

Accurate drug-target interaction prediction remains a challenge in computational drug discovery,
requiring models that effectively capture the biochemical and structural determinants of molecular
recognition. Tensor-DTI enhances DTI prediction by integrating multimodal embeddings from
molecular graphs, protein language models, and binding site predictions within a contrastive learning
framework. By leveraging a Siamese Dual Encoder architecture, Tensor-DTI not only improves
predictive accuracy across diverse DTI benchmarks, including BIOSNAP, BindingDB, DAVIS, and
PLINDER, but also demonstrates strong generalization to unseen drugs and proteins.

A key strength of Tensor-DTI is its explicit incorporation of pocket embeddings, refining binding-site
specificity and offering a structured, interpretable approach that moves beyond traditional sequence-
based DTI models. By capturing both global and localized molecular features, the model enhances
interaction modeling while maintaining flexibility for different molecular modalities. The inclusion
of contrastive learning objectives ensures the formation of robust, generalizable representations,
reducing the risk of overfitting and improving performance in low-data scenarios.

Beyond small-molecule interactions, Tensor-DTI exhibits versatility in biomolecular interaction
modeling, extending its applicability to peptide-protein and RNA-associated interactions. This broader
scope makes Tensor-DTI particularly valuable for structure-based drug design, RNA therapeutics,
and the development of therapeutic agents beyond small molecules. Furthermore, its ability to operate
without reliance on explicit structural interaction data enables its use in large-scale virtual screening
pipelines, where conventional docking methods remain computationally prohibitive.

Overall, Tensor-DTI represents a scalable and generalizable framework for interaction modeling,
balancing accuracy, interpretability, and computational efficiency. Future work will focus on refining
its ability to model multi-specific interactions and integrating active learning strategies to further
improve predictive robustness and real-world applicability.
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MEANINGFULNESS STATEMENT

A meaningful representation of life in DTI modeling should reflect the structural, biochemical, and
contextual determinants that drive molecular recognition. Tensor-DTI advances this direction by
integrating contrastive multimodal embeddings from molecular graphs, protein language models, and
binding site representations, allowing for precise and generalizable interaction modeling. By encoding
both global and pocket-level features, Tensor-DTI moves beyond sequence-level heuristics, offering a
scalable framework that enhances binding site specificity and interaction prediction. This approach
not only improves DTI accuracy but also deepens our understanding of molecular interactions,
accelerating data-driven drug discovery and rational molecular design.
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A DTI MODEL VISUALIZATION

Figure 4: Tensor-DTI architecture. A Siamese Dual Encoder processes multimodal embeddings from
drugs and proteins, using contrastive learning to refine the interaction space. The protein shown is
5ISX. The SaProt image is adapted from (Su et al., 2023).

Figure 5: Tensor-DTI architecture with pocket embeddings. The model extends the base architecture
by incorporating binding pocket representations, enabling site-specific interaction modeling. The
protein shown is 5ISX. The SaProt image is adapted from (Su et al., 2023), and the GearNet image is
adapted from (Zhang et al., 2023b).
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B LEARNING POCKET REPRESENTATIONS

Our model combines the strengths of protein language models and geometric learning. Evolutionary
embeddings from ESM-2 capture functional conservation, while GearNet processes residue-level
spatial interactions. The model operates as follows:

B.1 SEQUENCE ENCODING

ESM-2 generates residue embeddings via transformer layers. Each residue is transformed into a
feature vector:

h
(0)
i = Embedding(ri) ∈ Rd, (1)

where d is the embedding dimension. The embeddings are refined through multiple transformer
layers:

α
(l)
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B.2 STRUCTURAL GRAPH REPRESENTATION

GearNet constructs a residue graph, where nodes represent residues and edges define relationships.
Each node is initialized with its corresponding ESM-2 sequence embedding:

u
(0)
i = h

(L)
i (5)

The structural information is integrated through message-passing layers:

u
(l+1)
i = u

(l)
i + σ

∑
r∈R

∑
j∈Nr(i)

Wru
(l)
j

 (6)

where Nr(i) represents neighbors of node i connected by edge type r.

B.3 PREDICTION ARCHITECTURE

The combined embeddings are processed through a multilayer perceptron (MLP) classifier:

hi = GELU(W1xi + b1) (7)

yi = W2hi + b2 (8)
where yi represents the predicted binding probability for residue i.

B.4 POCKET EXTRACTION

High-confidence residues (binding probability > 0.5) are clustered using DBSCAN, with distance
threshold ϵ = 5Å and minimum cluster size 3.

B.5 PERFORMANCE AND GENERALIZATION

We evaluated our model on the LIGYSIS benchmark, achieving the highest F1 score (0.42) and
competitive MCC (0.37), surpassing established methods such as P2Rank, PUResNet, and GrASP.
Our model also excels in cryptic pocket detection, outperforming PocketMiner on apo structures
without explicit cryptic pocket training.
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C HYPERPARAMETER CONFIGURATIONS AND MODEL ARCHITECTURES

C.1 DTI

We trained the DTI model with a combination of contrastive loss and binary cross-entropy (BCE)
loss. The contrastive loss encourages positive drug–target pairs to cluster together in latent space
while pushing negative pairs apart. Specifically, for a positive pair (d, p) and corresponding negative
pairs, we minimized:

Lcontrastive =
∑
(d,p)

max
(
0, α+ ∥fd(hG)− fp(hP )∥2

−∥fd(hG)− fp(h
−
P )∥2

)
, (9)

where α is a margin hyperparameter and h−
P denotes a non-interacting protein embedding. The BCE

loss is:
LBCE = −

∑
(d,p)

[ydp log(ŷdp) + (1− ydp) log(1− ŷdp)], (10)

where ydp is the ground-truth interaction label. We combined these losses to achieve robust, discrimi-
native embeddings suited for both classification and interpretability.

We optimized the parameters using the Adam optimizer with a learning rate of 5 × 10−5 for DTI
tasks, weight decay of 1× 10−5, and early stopping based on validation performance. Multiple runs
ensured statistical robustness, and final reported metrics were averaged across runs.

Tensor-DTI integrates pocket embeddings to refine binding-site specificity. These embeddings,
derived using ESM-GearNet (Zhang et al., 2023a), capture residue-residue interactions within
functional binding sites. To combine protein and pocket representations, we apply a weighted
aggregation:

combined protein pocket = α · encoded protein + β · encoded pocket (11)

For all results reported in this study, we set α = 1 and β = 2. This weighting emphasizes the binding
site information while retaining global protein context.

Table 3: Hyperparameters used for DTI models in protein-drug interaction benchmarks.

Benchmark Emb. Dim Hidden Dim Output Dim
BIOSNAP, BindingDB, DAVIS (64, 1280) 512 256
DUD-E (64, 1280) 512 256
SMPBind (64, 1280) 1024 512
PLINDER (No Pocket) (64, 1280) 512 256

Benchmark LR Epochs
BIOSNAP, BindingDB, DAVIS 0.00005 1000
DUD-E 0.000005 300
SMPBind 0.00001 100
PLINDER (No Pocket) 0.00001 1000
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Table 4: Hyperparameters used for DTI models in alternative biomolecular interaction benchmarks,
including RNA, peptides, and pocket embeddings.

Benchmark Emb. Dim Hid. Dim Out. Dim
PLINDER (With Pocket) (64, 1280, 1536) 512 256
CoPRA (Protein-RNA) (480, 1280) 512 256
Propedia (Peptide-Protein) (480, 1280) 512 256

Benchmark LR Epochs
PLINDER (With Pocket) 0.00001 1000
CoPRA (Protein-RNA) 0.00001 1000
Propedia (Peptide-Protein) 0.00001 1000

C.2 DTA

Table 5: Hyperparameters used for DTA models.

Benchmark Emb. Dim Hidden Dim Output Dim
TDC-DG (Molecule-Protein) (2048, 1280) 4096 1024
LP-PDBBind (Leakproof) (64, 1280) 4096 1024
PDBBind (Molecule-Protein) (64, 1280) 4096 1024
PDBBind (Peptide-Protein) (480, 1280) 4096 1024
PDBBind (RNA-Drug) (480, 64) 4096 1024

Benchmark LR Epochs
TDC-DG (Molecule-Protein) 0.0001 1000
LP-PDBBind (Leakproof) 0.0001 1000
PDBBind (Molecule-Protein) 0.0001 1000
PDBBind (Peptide-Protein) 0.0001 1000
PDBBind (RNA-Drug) 0.0001 200

D CONFIDENCE MODEL

To enhance prediction robustness and reliability, we leveraged the largest available dataset (SMPBind
- I) for training. This ensured the model was exposed to a diverse range of chemical configurations,
improving its ability to generalize and accurately identify novel drug-target interactions with high
confidence.

To evaluate the reliability of its predictions, we introduce a Confidence Model, which is trained
jointly with the primary model. The model processes the drug-target embeddings and interaction
logits, estimating the certainty of each prediction through a continuous confidence score.

The confidence model is implemented as a feedforward neural network, which takes as input the
concatenated drug-target embeddings and interaction logits, producing a single confidence score:

c = fconf(Ecombined, ŷ),

where Ecombined represents the fused representation of the drug-target pair, and ŷ is the predicted
interaction score.

15



Published at LMRL Workshop at ICLR 2025

The confidence score is designed to estimate the absolute difference between the ground-truth label y
(which is either 0 or 1) and the predicted interaction score ŷ. This means that the closer the confidence
score is to 0, the more reliable the prediction is, while values closer to 1 indicate higher uncertainty
or potential misclassification.

Training is performed jointly with the primary model using a combined loss function. To align the
confidence scores with prediction reliability, the confidence model is optimized using mean squared
error (MSE) loss. This loss function ensures that the confidence score directly reflects the prediction’s
deviation from the ground truth, reinforcing the model’s ability to assess uncertainty.

LConf =
1

N

∑
i

(ci − |yi − ŷi|)2 .

The final loss function integrates confidence estimation with interaction prediction:

LFinal = αLPrediction + (1− α)LConf,

where 0 ≤ α ≤ 1 controls the trade-off between classification performance and confidence calibra-
tion.

After training, the model assigns confidence scores to predictions, providing a measure of reliability.
To better understand how confidence correlates with prediction accuracy, we categorize predictions
into True Positives (TP), False Positives (FP), True Negatives (TN), and False Negatives (FN).

Figure 6 illustrates the distribution of confidence scores across these categories for a test subset of
SMPBind - I. As expected, correctly classified samples (TP and TN) exhibit lower confidence scores,
indicating high certainty in their predictions. In contrast, misclassified samples (FP and FN) tend to
have higher confidence scores, reflecting greater uncertainty.

Figure 6: Distribution of confidence scores across prediction categories (TP, FP, TN, FN). Lower
confidence scores indicate higher certainty in the model’s predictions, while higher scores suggest
increased uncertainty.

This confidence-aware framework enhances the interpretability of predictions, providing a systematic
way to prioritize high-confidence interactions for downstream applications. Moreover, it serves as the
method used to rank predictions, enabling the selection of interacting drug-protein pairs from a vast
pool of possible combinations. By sorting based on confidence scores, the approach ensures that the
top-ranked interactions are not only predicted as interacting but also assigned a high confidence (i.e.,
a lower confidence score), making them strong candidates for further investigation.
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E ABLATION STUDIES ON EMBEDDING EFFECTIVENESS

E.1 ABLATION STUDIES FOR DTI

We conducted extensive ablation experiments on widely used DTI benchmarks—BIOSNAP, Bind-
ingDB, and DAVIS—to identify the most effective drug and protein embeddings for accurate interac-
tion prediction. Below, we present our findings and the rationale for the selected configurations.

E.1.1 DRUG EMBEDDINGS

We evaluated multiple drug embedding strategies to determine the most effective representation for
our model:

• Mollm: A transformer-based model that extracts molecular features through self-attention
mechanisms (Vaswani et al., 2017; Radford et al., 2021).

• GIN with Barlow Twins Loss: A self-supervised method using Graph Isomorphism
Networks to learn robust molecular representations (Zbontar et al., 2021).

• Cooperative Protocol (COOP): An embedding approach integrating cooperative strategies
to improve drug representations (Finkelshtein et al., 2023).

• Molecular FingerPrints (MFPS): Provides robust and detailed encodings of molecular
structures by converting molecules into fixed-length binary vectors representing the presence
or absence of particular substructures (Rogers & Hahn, 2010).

• Graph Convolutional Network (GCN): A neural network model that effectively captures
the structural features of drugs by transforming molecular graphs into high-dimensional
embeddings suitable for interaction prediction (Kipf & Welling, 2016).

For the initial ablation study, we used ESM-2 for protein embeddings and tested different drug
embeddings. The results are presented in Table 6.

Table 6: Performance of Tensor-DTI on different datasets with various drug embeddings. GINL

differs from GIN by using a larger training dataset and a more complex architecture. All values
correspond to AUPR.

Dataset/d. emb. GCN GINL MFPS GIN COOP
BIOSNAP 0.879 0.832 0.881 0.837 0.837
unseen T 0.708 0.646 0.720 0.649 0.638
unseen D 0.872 0.827 0.851 0.832 0.832
BindingDB 0.664 0.583 0.679 0.591 0.581
DAVIS 0.532 0.331 0.527 0.334 0.338

GCN performed particularly well on unseen drugs, while MFPS achieved the highest overall AUPR
scores across benchmarks. These findings confirm their robustness in different settings, leading to
their selection for further analysis.

E.1.2 PROTEIN EMBEDDINGS

After evaluating drug embeddings, we assessed the impact of protein embeddings, comparing SaProt
and ESM-2 to determine their effect on model performance.

• SaProt Embeddings: Derived from a transformer-based model specifically designed for
protein sequences, offering high-quality embeddings (Su et al., 2023).

• ESM-2 Embeddings: Generated by a state-of-the-art transformer model trained on a large
corpus of protein sequences, known for its robust performance (Lin et al., 2023).

The results of this ablation study are shown in Table 7.
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Table 7: Performance of Tensor-DTI on different datasets with various protein embeddings.

Dataset/d. emb. GCN (ESM-2) MFPS (ESM-2) GCN (SaProt) MFPS (SaProt)
BIOSNAP 0.879 0.881 0.897 0.894
unseen T 0.708 0.720 0.836 0.838
unseen D 0.872 0.851 0.879 0.849
BindingDB 0.664 0.679 0.685 0.689
DAVIS 0.532 0.527 0.555 0.552
MEAN 0.731 0.732 0.770 0.764

The results indicated that SaProt embeddings consistently outperformed ESM-2 embeddings across
multiple datasets, leading us to select SaProt for protein embeddings in our final model. We also
selected GCN as the technique for further analysis.

E.1.3 IMPACT OF TRAINING THE GCN

To assess the impact of large-scale training, we examined whether pretraining the GCN on a larger
dataset (PCBA 1328) improves performance. As shown in Table 8, the pretrained GCN consistently
outperforms its untrained counterpart, achieving higher AUPR scores across all benchmarks.

Table 8: Performance of Tensor-DTI with GCN Trained embeddings and ConPlex.

Dataset/d. emb. GCN GCN trained ConPlex(MFPS)
BIOSNAP 0.900 ± 0.002 0.903 ± 0.003 0.897 ± 0.001
unseen T 0.834 ± 0.004 0.839 ± 0.003 0.842 ± 0.006
unseen D 0.880 ± 0.004 0.888 ± 0.002 0.874 ± 0.002
BindingDB 0.686 ± 0.003 0.699 ± 0.002 0.628 ± 0.012
DAVIS 0.544 ± 0.015 0.547 ± 0.006 0.458 ± 0.016

These findings demonstrate that both GCN and trained GCN embeddings significantly outperform
ConPlex in most benchmarks, reinforcing the robustness of our proposed Tensor-DTI model.

E.2 ABLATION STUDIES FOR DTA

In addition to our comprehensive analysis for DTI, we conducted ablation studies for DTA prediction
in the TDC-DG benchmark to identify the optimal embeddings for both drugs and proteins.

E.2.1 PROTEIN EMBEDDINGS

We first compared the performance of different protein embeddings, specifically SaProt and ESM-2
embeddings:

• SaProt Embeddings (Su et al., 2023).
• ESM-2 Embeddings (Lin et al., 2023).

The results of this ablation study are shown in Table 9.

Table 9: Performance of Tensor-DTI in terms of PCC on TDC-DG with two different protein
embeddings.

t. emb./d. emb. GCN
ESM-2 0.550
SaProt - 650M 0.530

Based on these results, ESM-2 embeddings were selected due to their superior performance.
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E.2.2 DRUG EMBEDDINGS

We then evaluated two primary drug embedding methods for our DTA model:

• Molecular FingerPrints (MFPS) (Rogers & Hahn, 2010).

• Graph Convolutional Network (GCN) (Kipf & Welling, 2016).

For this ablation study, we used ESM-2 for protein embeddings and evaluated different drug embed-
dings. The results are presented in Table 10.

Table 10: Performance of Tensor-DTI and ConPlex on different datasets with various drug embeddings
(PCC).

-/d. emb. GCN MFPS GCN trained ConPlex (MFPS)
PCC 0.546 ± 0.02 0.580 ± 0.004 0.539 ± 0.001 0.538 ± 0.008

Among the evaluated methods, MFPS achieved the highest PCC score (0.580), demonstrating superior
performance compared to other embedding strategies. Given its consistently strong results across
benchmarks, we selected MFPS as the preferred drug embedding for the final model.

Additionally, Table 10 confirms that in this case, training the GCN did not provide any advantage
for the DTA study. This may be attributed to the activity information contained in the PCBA 1328
dataset.

E.3 ABLATION STUDIES FOR DTA - LEAK PROOF BENCHMARK

To further assess the impact of embedding choices on DTA prediction under strict data leakage con-
straints, we evaluated Tensor-DTI on the LP-PDBBind benchmark. The results highlight significant
differences in performance based on the selected embeddings.

The best-performing configuration combined SaProt protein embeddings with trained GCN drug
embeddings, achieving a PCC of 0.565 and an RMSE of 1.62. In contrast, using ESM-2 protein
embeddings with MFPS drug embeddings led to a lower PCC of 0.450 and a higher RMSE of
1.79. Overall, the best-performing configuration combined SaProt protein embeddings with trained
GCN drug embeddings, achieving the highest PCC and lowest RMSE. These findings highlight the
importance of structural protein embeddings (SaProt) and graph-based drug representations (trained
GCN) in improving model generalization under strict data leakage constraints. This underscores
the critical role of domain-specific, structure-informed embeddings in achieving robust and accurate
affinity predictions in real-world applications.

F DATABASES

Data collection, processing and splitting are pivotal in drug-target interaction predictions. We
outline all datasets used in this work with detailed descriptions on the train-validation-test splittings
performed over them.

BIOSNAP. This drug-target interaction network provides information on the genes (i.e., proteins
encoded by genes) targeted by drugs available on the U.S. market. Drug targets are molecules
essential for the transport, delivery, or activation of a drug. This information is widely utilized
in computational drug target discovery, drug design, docking or screening, metabolism prediction,
interaction prediction, and general pharmaceutical research. Drug target information includes biotech
drugs and nutraceuticals. On average, these drugs have 5–10 unique target proteins. The dataset
lists all known targets with physiological or pharmaceutical effects, not just a single primary target,
and fully accounts for the fact that many drug targets are protein complexes composed of multiple
subunits or combinations of proteins.

Preprocessing and splitting. We use ChGMiner from BIOSNAP which contains only positive drug-
target interactions. Following the approach described in (Singh et al., 2023), we create negative DTIs
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by randomly sampling an equal number of protein–drug pairs, under the assumption that a random
pair is unlikely to interact positively.

DAVIS. The DAVIS dataset is a comprehensive resource profiling interactions between 72 kinase
inhibitors and 442 kinases, covering over 80% of the human catalytic protein kinome. It provides
detailed binding affinity data (Kd) for each interaction and calculates selectivity scores to evaluate
inhibitor specificity. The dataset distinguishes between type I inhibitors, which target active kinase
conformations, and type II inhibitors, which bind inactive states, showing that type II inhibitors are
generally more selective, though exceptions exist. It highlights group-selective inhibitors, off-target
profiles, and structural features contributing to selectivity, making it invaluable for drug discovery,
kinase biology, and computational modeling. This resource has facilitated the development of
selective inhibitors and the repurposing of existing drugs, while offering insights into kinase-inhibitor
interaction patterns and signaling pathways.

BindingDB. BindingDB is a publicly accessible database that provides experimentally determined
protein-ligand binding affinities, focusing on drug-target interactions. It currently contains over
20,000 binding measurements for approximately 11,000 small molecule ligands and 110 protein
targets, including isoforms and mutants. BindingDB integrates data from enzyme inhibition studies
and isothermal titration calorimetry, extracted from scientific literature and directly deposited by
experimentalists. The database is designed to support diverse applications, such as computational drug
design, ligand discovery, and structure-activity relationship analysis. Its web interface offers powerful
tools for querying by chemical structure, substructure, protein sequence, or affinity ranges, and
supports virtual screening using uploaded compound databases. By linking data to the Protein Data
Bank (PDB) and PubMed, BindingDB facilitates the integration of binding, structural, and sequence
data, making it a valuable resource for researchers in pharmaceutical sciences and computational
biology.

Preprocessing and splitting for DAVIS and BindingDB datasets. Following the approach described in
(Singh et al., 2023), we treat pairs with KD < 30 as positive DTIs and those with larger KD values as
negative DTIs. The dataset is split into 70% for training, 10% for validation, and 20% for testing.
Training data are subsampled to have an equal number of positive and negative interactions, ensuring
a balanced training set, while validation and test data retain the original ratio of interactions. This
preprocessing strategy ensures consistency across datasets and facilitates robust model evaluation.
Compared to DAVIS, which represents a low-data learning setting with 2,086 training interactions,
BindingDB provides a broader learning scenario with 12,668 training interactions, offering greater
diversity in drug-target interaction pairs. Both datasets complement each other, enabling evaluation
of model performance across varying levels of data availability.

DUD-E (Kinase Subset). DUD-E provides a curated set of protein targets and their known binding
partners, along with decoy molecules designed to resemble the physicochemical properties of true
binders but are experimentally confirmed not to bind. From this database, we focus specifically on the
kinase family, which consists of 26 protein targets. For each target, the dataset includes an average of
224 true binding partners and 50 decoys per binding partner, enabling robust evaluation of model
performance in distinguishing between true and decoy interactions.

Preprocessing and splitting. We derive train-test splits by partitioning the kinase targets such that
no target appears in both the training and test sets. Specifically, we hold out 50% of kinase targets
for testing and use the remaining targets for training, ensuring representative coverage of the kinase
family in both splits. This setup evaluates the ability of models to generalize to unseen kinase targets
and to distinguish true binding interactions from decoy molecules.

PLINDER. PLINDER (Durairaj et al., 2024) is a comprehensive protein-ligand interaction dataset
designed to address critical challenges in computational drug design and protein engineering. It
includes 449,383 systems, each extensively annotated with over 500 attributes, including protein,
ligand, pocket, and interaction-level similarity metrics. PLINDER uniquely links holo systems to apo
and predicted structures, enabling realistic evaluation scenarios such as docking, ligand generation,
and co-folding. By employing advanced splitting algorithms, PLINDER minimizes information
leakage, enhancing the evaluation of machine learning models’ generalization capabilities. Its rich
annotations, task-specific test sets, and robust evaluation frameworks make PLINDER a valuable
resource for advancing predictive modeling in protein-ligand interactions.
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Preprocessing and splitting. PLINDER preprocesses and splits its extensive protein-ligand interaction
(PLI) dataset, comprising 449,383 systems from 162,978 PDB entries, into training, validation,
and test sets with rigorous quality control and annotation. A total of 113,498 high-quality systems
meeting stringent criteria such as resolution ≤ 3.5 Å and R-factor ≤ 0.4 are annotated with over
500 features, including protein, pocket, ligand, and interaction-level details. Train-test splits are
generated using graph-based algorithms that classify systems based on similarity metrics like protein
sequence identity, pocket overlap, and ligand fingerprints, ensuring minimal leakage and maximum
diversity. The PLINDER-PL50 split includes 57,602 training, 3,453 validation, and 3,729 test systems,
achieving 0% leakage for PLI similarity ≥ 50%. Another configuration, PLINDER-ECOD, defines
splits using evolutionary domains and comprises 77,411 training, 10,169 validation, and 12,174 test
systems, all containing 100% high-quality systems to support robust and realistic benchmarking of
computational models.

SMPBind - I. The following dataset is a curated mix of several databases. These databases include
ChEMBL, PubChem, ChEBI (Chemical Entities of Biological Interest), STITCH, OpenTargets,
DGIdb (Drug Gene Interaction Database), Pharos, TTD (Therapeutic Targets Database), HMDB
(Human Metabolome Database), T3DB (Toxin and Toxin-Target Database), BindingDB and DTC
(Drug Target Commons).

Preprocessing and splitting. From these databases we extract the pairs of protein molecules that
have been experimentally validated at least once. Afterwards, we realize a heavy de-duplication
procedure. Racemic mixtures are separated into their chiral parts, hydrogen atoms are removed,
metal atoms are disconnected from the molecule, the molecule is normalized and reionized. After
this point, in the case that the molecule has several fragments, the biggest one is assumed to be the
bioactive one, so it is selected. Then the molecule is neutralized and canonized, to avoid the presence
of tautomerism overlap within the database. Lastly, InchiKeys are computed from the resulting
molecules and used for de-duplication. The resulting database contains more than 400,000 different
Murckro scaffolds, and more than 35,000 unique proteins, divided in over 7,000 different families
and 1,000 superfamilies.

Propedia. Propedia v2.3 (Martins et al., 2023) is a peptide-protein interaction database. The last
updated version builds on the foundational Propedia database by incorporating over 49,300 peptide-
protein complexes—a 150% increase from its initial release—and introducing graph-based structural
signatures to represent peptide structures numerically. These signatures, calculated using the aCSM-
ALL algorithm, enhance the ability to cluster and analyze peptides based on sequence similarities,
structural interfaces, and binding sites. Propedia v2.3 supports machine learning applications, offering
a CSV dataset of feature vectors suitable for tasks like peptide classification and therapeutic discovery.
The database facilitates in-depth exploration of peptide-protein recognition mechanisms, a critical
aspect of drug development and biotechnology.

Preprocessing and splitting. We preprocess the Propedia dataset by clustering protein and peptide
embeddings into distinct groups using K-Means. Protein and peptide embeddings are numerically
represented. Clustering ensures that similar protein and peptide structures are grouped together,
facilitating representative splitting across training, validation, and test sets. The dataset is split into
80% for training, 10% for validation, and 10% for testing, ensuring that no peptide-protein pairs
from the same cluster appear across different splits. Negative pairs are generated by randomly
sampling an equal number of peptide-protein pairs within each split, resulting in a 1:1 balance of
positive and negative interactions in all sets. The original dataset contains only positive pairs, and
this augmentation ensures balanced training and evaluation.

CoPRA dataset. The CoPRA dataset (Han et al., 2024) is designed for protein-RNA binding
affinity prediction and consists of two subsets: PRI30k (training), and PRA310 (test). This dataset
is directly provided by CoPRA and includes 30,000 non-redundant protein-RNA complexes from
BioLiP2 (PRI30k) and 310 high-quality complexes curated from PDBBind, PRBABv2, and ProNAB
(PRA310).

Preprocessing and splitting. Positive interactions are extracted from experimental annotations, while
negative pairs are generated by random pairing within each subset to ensure a 1:1 positive-negative
ratio. Clusters are created using CD-HIT at 70% sequence identity to prevent data leakage, with
distinct splits for training, validation, and testing. This setup ensures diverse, high-quality data for
robust model evaluation (Han et al., 2024).
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G OVERVIEW OF DATASET VOLUMES ACROSS BENCHMARKS

Table 11: Dataset volumes for DTI benchmarks across train, validation, and test splits, showing the
number of positive and negative pairs for each interaction type. Note that for the DUD-E dataset, no
validation set was used.

Target Ligand Benchmark Train Validation Test
Positive Negative Positive Negative Positive Negative

Protein Drug

BIOSNAP 9,490 9,306 1,372 1,327 2,718 2,656
BINDINGDB 5,842 5,702 859 5,134 1,752 10,307
DAVIS 883 909 132 2,474 252 4,987
DUD-E - Kinase 4,112 150,027 - - 5,027 201,599
PLINDER 692,144 692,129 32,252 32,248 49,770 49,760
PLINDER pocket 311,978 388,522 12,730 22,243 15,577 23,754
SMPBind 10,340,470 10,349,292 1,292,375 1,293,821 1,292,591 1,293,639

Protein Peptide Propedia 40,370 40,393 4,418 4,419 4,415 4,412
Protein RNA CoPRA 15,626 15,626 820 820 200 200

Table 12: Dataset volumes for DTA benchmarks, showing the number of positive pairs for train,
validation, and test splits for each interaction type.

Target Ligand Benchmark Train (Positive) Validation (Positive) Test (Positive)

Protein Drug

TDC-DG 146,744 36,686 49,028
LP-PDBBIND 5,691 1,317 3,103
LP-PDBBIND (∆G) 5,691 1,317 3,103
PDBBind-Opt 13,185 1,465 1,628
PDBBind-Opt+LP 7,051 1,846 4,193

Protein Peptide PDBBind-Opt 1,896 210 240
RNA Drug PDBBIND 96 13 11
Protein RNA CoPRA 165 21 14
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H LOW-LEAKAGE DATASETS RESULTS

To assess Tensor-DTI’s robustness in minimized leakage scenarios, we compare its performance
against a one-hot encoding baseline across multiple datasets, ensuring consistency in hyperparameter
settings.

Table 13: Performance comparison of DTI (classification) and DTA (regression) models on minimized
leakage datasets. AUPR is used for classification benchmarks, while PCC and RMSE evaluate affinity
prediction tasks.

Benchmark Model AUPR PCC RMSE

PLINDER (random negatives) Tensor-DTI 0.779± 0.001 - -
PLINDER (high pocket dissimilarity) Tensor-DTI 0.698± 0.005 - -

LP-PDBBind
Tensor-DTI - 0.565± 0.004 1.620± 0.024

DeepDTA - 0.512± 0.020 2.290± 0.040

AutoDock Vina - 0.450± 0.000 2.560± 0.000

One-Hot - 0.428± 0.016 2.287± 0.032

LP-PDBBind (∆G prediction)
Tensor-DTI - 0.528± 0.013 2.122± 0.032

One-Hot - 0.428± 0.016 2.287± 0.032

PDBBind-Opt Peptide-Protein
Tensor-DTI - 0.679± 0.014 1.175± 0.020

One-Hot - 0.568± 0.025 1.846± 0.099

PDBBind-Opt Small Molecule-Protein
Tensor-DTI - 0.750± 0.005 1.335± 0.011

One-Hot - 0.728± 0.007 1.320± 0.012

PDBBind-Opt Small Molecule-Protein
(Leak proof split) Tensor-DTI - 0.493± 0.005 1.545± 0.006

One-Hot - 0.385± 0.014 1.752± 0.033
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I EXPANDED RESULTS ON BIOMOLECULAR INTERACTION PREDICTIONS

We compare Tensor-DTI against a one-hot encoding baseline under the same hyperparameter settings
to evaluate its performance across various biomolecular interaction tasks.

Table 14: Performance of Tensor-DTI on the Propedia peptide interaction database.

Model AUPR
Tensor-DTI 0.953± 0.001
One-hot encoding 0.884± 0.003

Table 15: Performance of Tensor-DTI on CoPRA.

Model AUPR
Tensor-DTI 0.916± 0.008
One-hot encoding 0.795± 0.009

Table 16: Performance of Tensor-DTI on the CoPRA (PRA310). The top table corresponds to Kd

(binding constant) prediction, while the bottom table corresponds to ∆G (free energy) prediction.

Kd Prediction

Model PCC RMSE

Tensor-DTI 0.631± 0.111 1.443± 0.232

One-hot encoding 0.468± 0.189 1.399± 0.232

∆G Prediction

Model PCC RMSE

Tensor-DTI 0.621± 0.052 1.910± 0.212

One-hot encoding 0.453± 0.213 1.896± 0.430

Table 17: Performance of Tensor-DTI on the PDBBind interaction database, selecting from it the
Drug-RNA interactions.

Model PCC RMSE
Tensor-DTI 0.792± 0.015 1.684± 0.038
One-hot encoding 0.633± 0.018 1.738± 0.036

24


	Introduction
	Tensor-DTI
	Results and Discussion
	Benchmarking Tensor-DTI
	Effectiveness of the Contrastive Learning Approach and Evaluation on DUD-E Dataset
	Tensor-DTI Performs Well on Affinity Prediction Datasets
	DTI and DTA Assessments on Low-Leakage Datasets
	Tensor-DTI Allows Pocket Specificity with the Addition of Pocket Embeddings
	Assessment of ATP and AMP Binding Alongside Cryptic Site Inhibitor Binding Predictions in CDK2 and RET Kinases

	Broadening the Scope of Biomolecular Interaction Predictions

	Conclusion
	DTI Model Visualization
	Learning pocket representations
	Sequence Encoding
	Structural Graph Representation
	Prediction Architecture
	Pocket Extraction
	Performance and Generalization

	Hyperparameter Configurations and Model Architectures
	DTI
	DTA

	Confidence model
	Ablation Studies on Embedding Effectiveness
	Ablation Studies for DTI
	Drug Embeddings
	Protein Embeddings
	Impact of Training the GCN

	Ablation Studies for DTA
	Protein Embeddings
	Drug Embeddings

	Ablation Studies for DTA - Leak Proof Benchmark

	Databases
	Overview of Dataset Volumes Across Benchmarks
	Low-Leakage Datasets Results
	Expanded Results on Biomolecular Interaction Predictions

