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ABSTRACT

Test-Time Adaptation (TTA) aims to further adapt models to unlabeled test sets ar-
riving in a sequential datastream, thereby progressively strengthening the model’s
generalization ability. While existing TTA methods for Vision-Language Models
(VLMs) are primarily designed and evaluated on (nearly) balanced dataset con-
figurations, real-world test sets may exhibit a long-tailed distribution where major
classes dominate the decision boundaries of minor classes, presenting unique chal-
lenges. As the first attempt to solve this problem, this paper proposes Long-tailed
Test-Time Adaptation (dubbed as L-TTA), which consists of three co-designed
mechanisms: Synergistic Prototypes (SyPs), Rebalancing Shortcuts (RSs), and
Balanced Entropy Minimization (BEM). SyPs introduce two fine-grained proto-
types to enrich tail classes with extra inter-class knowledge; RSs employ learnable
shortcuts to achieve learnable adaptation, regularized by class re-allocation loss to
enforce distinct feature clustering; BEM restrains excessive entropy minimization
of confident classes with extra penalty term, with theoretical propositions to justify
its rebalancing capabilities. Extensive experiments over 15 datasets under various
long-tailed settings highlight the superior performance of L-TTA in both accuracy
and class balancing. Code is available at this Anonymous Github Link.

1 INTRODUCTION

Pretrained Vision-Language Models (VLMs) like CLIP (Radford et al., 2021) and ALIGN (Jia et al.,
2021), show remarkable zero-shot and generalization ability, giving credit to their strong joint-
modality modeling capabilities (Li et al., 2022c; Gandelsman et al., 2023; 2024) that learn from
web-scaled image-text datasets. Aware of this, various studies propose Parameter-Efficient Fine-
Tuning (PEFT) (Jia et al., 2022; Bahng et al., 2022; Zhao et al., 2023b; Han et al., 2024; Tian et al.,
2024; Sheng et al., 2025) over VLMs to efficiently transfer them to specific downstream tasks; as
two leading approaches in PEFT, adapter tuning (Zhang et al., 2022; Gao et al., 2024) and prompt
learning (Zhou et al., 2022b; Wang et al., 2022; Lu et al., 2022; Khattak et al., 2023; Wang et al.,
2023a; Yao et al., 2024) freeze the model and only finetunes several learnable modules plugged in
layers, enjoying higher efficiency and wider flexibility than the full finetuning.

However, the dramatic distribution gap (Lu et al., 2022) between the labeled training sets and the
unlabeled test sets always hinders the generalization of VLMs over the latter ones. To circum-
vent this issue, recent studies introduce a novel scheme named Test-Time Adaptation (TTA) (Wang
et al., 2020; Niu et al., 2022; Zhang et al., 2024c; Shu et al., 2022; Zhang et al., 2025b;a) for
VLMs, which enables the model to adjust itself to test sets following an unsupervised “Entropy-
Minimization (EM)” manner (Wang et al., 2020; Shu et al., 2022; Feng et al., 2023; Yoon et al.,
2024; Zhang et al., 2024c;b; Gao et al., 2024; Zanella & Ben Ayed, 2024) during inference. For ex-
ample, TPT (Shu et al., 2022) and DiffTPT (Feng et al., 2023) select the most confident augmented
views and minimize the entropy of prediction probabilities over these views; Following methods
introduce extra knowledge or regularization over prediction probabilities (i.e, C-TPT (Yoon et al.,
2024), O-TPT (Sharifdeen et al., 2025)), among supportive views (i.e, SwapPrompt (Ma et al.,
2023), PromptAlign (Abdul Samadh et al., 2023)) or historical features (i.e, DMN-ZS (Zhang et al.,
2024d), HistTPT (Zhang et al., 2024c), TDA (Karmanov et al., 2024), DPE (Zhang et al., 2024a),
BPRE (Qiao et al., 2025)). Another focus is to dynamically schedule different prompts to perceive
varied semantics, thus making them specialized and avoiding the error accumulation over a single
prompt (Zhang et al., 2024b; Xiao et al., 2025; Wang et al., 2025).
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Figure 1: (a): The TTA task under long-tailed settings with VLMs. (b): Specific failure modes for
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Figure 2: Results: Existing SOTAs show severe degradation in tail-class representations (Left) and
vulnerability to imbalance ratios (Right), while our L-TTA shows considerable robustness.

Despite their superior performance on balanced datasets, these methods suffer from significant
degradation on Long-Tailed (LT) test sets, as evidenced in Figure 2. A primary and fundamental
reason is that TTA is a one-epoch process where training and testing are intertwined, causing later
predictions to be influenced by all preceding steps (except for methods that perform TTA individ-
ually for each sample, like TPT (Shu et al., 2022)). This characteristic also precludes the use of
traditional LT strategies like up-sampling or compute-intensive regularization. We further identify
two specific failure modes unique to the VLM-based LT-TTA setting: ❶ Text-induced Tail Ero-
sion: The textual modality exacerbates long-tailed challenges because text embeddings themselves
carry biases from pre-training. As demonstrated in Figure 1 (b.1), certain classes consistently yield
higher accuracy than others, regardless of their status as head or tail classes. We refer to these as
rich classes. When rich classes coincide with head classes, tail erosion is further intensified. ❷
Modality-bias Amplification: Applying unimodal LT-TTA methods (Niu et al., 2023; Zhao et al.,
2023a) to VLMs progressively amplifies the inherent mismatch between visual and textual represen-
tations. Figure 1(b.2) shows that adapting the unimodal SAR method on a VLM backbone results in
a significant performance drop and instability compared to its use on a pure visual backbone. This
underscores the critical need for bi-modal adaptation that refine the multi-modal manifold of VLMs.

To circumvent these problems, we propose Long-tailed Test-Time Adaptation (L-TTA). First, L-
TTA equips two prototypes to accumulate multi-modal semantics beyond text embeddings, mean-
while apply a more granular update strategy to augment tail class representations. (▶ Mitigating
Asp. I,II); Then, to dynamically balance the accumulated knowledge of head/tail classes, L-TTA
introduces learnable Rebalancing Shortcuts (RSs) that are directly applied to the prototypes, op-
timized with a class re-allocation loss to boost the discernable feature clustering. (▶ Mitigating
Asp. II) Furthermore, we propose Balanced EM (BEM) to counteract the head-class bias inherent
in EM, providing a tailored optimization objective for LT-TTA. BEM weighs the class priors with
the prediction confidence, thereby favoring finer adaptation of uncertain and tail classes; Also, we
introduce two propositions to guarantee its theoretical capabilities. Extensive experiments demon-
strate that L-TTA outperforms existing methods in various benchmarks under long-tailed settings
(see T-SNE and macro-F1 comparison reported in Figure 2), showing remarkable robustness to the
noise settings along with high computational efficiency. Our contribution can be summarized as:

❶ We first study the Test-Time Adaptation (TTA) under long-tailed scenarios, and highlight
the drawbacks of existing approaches under such circumstances.
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❷ We introduce L-TTA, the first TTA for long-tailed settings. L-TTA introduces synergistic
Prototypes (SyPs), learnable Rebalancing Shortcuts (RSs), and Balanced Entropy Mini-
mization (BEM) to deal with degraded tail distributions and decision boundaries.

❸ Extensive experiments show that L-TTA surpasses existing methods in both accuracy and
class balancing capabilities. Ablation studies show that L-TTA is efficient and robust.

2 RELATED WORKS

2.1 VLMS & TEST-TIME ADAPTATION FOR VLMS

We have observed an exponential advancement of Vision-Language Models (VLMs) (Radford et al.,
2021; Wang et al., 2023b; Hurst et al., 2024), which learn and modulate diversified information as
human do. As one of the earliest VLMs (Radford et al., 2021; Jia et al., 2021; Li et al., 2022a;
Liu et al., 2023; Hurst et al., 2024), CLIP introduces image-text contrastive pretraining to learn the
modality-shared space with the web-scaled unlabeled data, which endows it with strong zero-shot
generalization ability and wide compatibility (Wang et al., 2023b; Rao et al., 2025).

Building upon this, emerging studies propose Parameter-Efficient FineTuning (PEFT) mechanisms
to efficiently adapt CLIP (Zhang et al., 2022; 2023; Liu et al., 2024). However, they mainly adopt
the labeled sets for finetuning and struggle to generalize to domain-shifted test-sets. To deal with
this, Test-time Adaptation (TTA) refines VLMs on test-data with an unsupervised Entropy Mini-
mization (EM) scheme; For example, TPT selects augmented views yielding highest confidence and
applies EM to optimize the text prompts; Following advancements concentrate on 1) calibrating the
uncertainty in predictions (Yoon et al., 2024; Sharifdeen et al., 2025); 2) applying extra regular-
izations between views (Ma et al., 2023; Abdul Samadh et al., 2023); 3) caching historical predic-
tions (Zhang et al., 2024d; Karmanov et al., 2024; Qiao et al., 2025); 4) Exploring visual adaptations
or reinforcement learning (Osowiechi et al., 2024; Hakim et al., 2025; Zhao et al., 2023b).

Notably, an emerging line of TTA also focuses on non-i.i.d. test-data (Boudiaf et al., 2022; Gong
et al., 2022; Niu et al., 2023; Wang et al., 2024; Zhao et al., 2023a). For example, LAME (Boudiaf
et al., 2022) adjusts model outputs via Laplacian regularized maximum-likelihood estimation to
avoid catastrophic degradation. DA-TTA (Wang et al., 2024) aligns source and test distributions
using a dedicated loss and incorporates domain shift detection for continual adaptation. SAR (Niu
et al., 2023) is a sharpness-aware and reliable EM that leverages group/layer normalization to stabi-
lize TTA. DELTA (Zhao et al., 2023a) uses batch-renormalization and online re-weighting to reduce
class bias. Our L-TTA differs from these methods with its unique focus on Long-tailed TTA of
VLMs, where the cross-modality misalignment and text-prior bias pose unique challenges.

2.2 LONG-TAILED LEARNING

Long-Tailed (LT) Learning is built upon the reality that real-world datasets always exhibit a perva-
sive long-tailed distribution, in which learning head classes would result in degraded decisions of
tail classes. Classical LT methods include Augmentation (Chawla et al., 2002; Kuo et al., 2020),
resampling (Wallace et al., 2011; Chawla et al., 2002), reweighting (Menon et al., 2020; Cui et al.,
2019; Cao et al., 2019; Ren et al., 2020), scaling (Li et al., 2023), pre-defining unbiased targets (Li
et al., 2022b) or contrastive learning (Zhu et al., 2022; Du et al., 2024). Recently, several studies
focus on LT problem over VLMs, for example, LTGC (Zhao et al., 2024) proposes a generative
framework leveraging recursive reasoning and filtering operations to enrich tail classes; LPT (Dong
et al., 2022) applies the Visual Prompt Tuning (VPT) to long-tailed recognition by dynamically en-
riching semantic groups between tail classes. Candle (Shi et al., 2024) introduces virtual prototypes
and a refined logit-adjustment loss to solve the long-tailed few-shot adaptation of VLMs. In contrast,
we first concentrate on the LT problem in test-time adaptation of VLMs.

3 METHODOLOGY

3.1 PRELIMINARIES

We begin by presenting the general settings of TTA on VLMs: given a pretrained CLIP F comprising
the visual encoder V = {V1, V2, · · · , VL} and text encoder T = {T1, T2, · · · , TL}, we aim to further
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Figure 3: The overview of L-TTA. For an image, we obtain its augmented views and primary log-
its. In Synergistic Prototypes (SyPs), we update DPs and EPs with confident and uncertain visual
embeddings evaluated by these primary logits, then synthetically combine them to enrich tail repre-
sentations. In Rebalancing Shortcuts, the SyPs are combined with learnable shortcuts and adapted
with class re-allocation loss. The final logits are optimized with Balanced Entropy Minimization.

adjust the prompt (could be hand-crafted like “a photo of a [CLASS].” or pre-optimized (Zhou et al.,
2022a;b)) m ∈ RDt to fit the test data. Here Dt is the text hidden dimension. Concretely, we’re
firstly given the class texts of all samples, denoted as y. We denote C as classes, Ci as a class, |Ci| as
its class cardinality (size), C as number of classes. For an image x ∈ Xtest, we generate its visual
embeddings with V , and textual embeddings of all classes with T , where each layer l of Ev/Et is:

[cl, il] = Ev,l([cl−1, il−1]); i0 = Ev(x);

[el,kl, tl] = Et,l([el−1,kl−1, tl−1]); k0 = Et([m,y])
(1)

Where il, kl are intermediate visual and textual features. cl, el are cls/eot-token; After obtaining
cL and eL from the last layer, we map them into a joint space with separate projections Pv and Pt:

f = Pv(cL); t = Pt(eL); (2)

Here f ∈ RD, t ∈ RC×D. D is the dimension of the joint space. We generate output logits z by
calculating the cosine similarity, i.e, z = cos(f , t). The final predictions are:

P(yc|x̃) =
exp(zc/τ)∑
j exp(zj/τ)

; ŷ = argmaxcP(yc|x̃) (3)

Here τ is the temperature to control the density of predictions, cos is the cosine similarity. In the
following, we also denote σ as softmax, f(x) as visual embeddings of x.

3.2 L-TTA: LONG-TAILED TEST-TIME ADAPTATION

We then introduce the framework of L-TTA (shown in Figure 3), consisting of Synergistic Proto-
types, Rebalancing Shortcuts, and Balanced Entropy Minimization.

▶ Synergistic Prototypes. Leveraging prototypes to maintain historical knowledge has emerged
as a trend in recent TTA methods. However, this scheme faces the following tricky problem under
long-tailed scenarios: Tail-class prototypes are more likely to be uninitialized at the beginning phase,
while persistently storing inadequate semantics as the datastream progresses. To solve this problem,
we introduce our first innovation named Synergistic Prototypes (SyPs), which comprises Determin-
istic Prototypes (DPs) and Exclusionary Prototypes (EPs). DPs maintain the similar functionality as
well-studied prototypes in (Karmanov et al., 2024; Zhang et al., 2024a) to register class-deterministic
features; In contrast, EPs store the most improbable features of each class generated from all possi-
ble samples, meaning that EP of each class can be always updated along the datastream, thereby
alleviating the above problem. We elaborate on our innovation in the following.

Concretely, for image x at the step s, we randomly crop Q views x̃ = {x̃i}Qi=1 from it, generating
their visual embeddings f(x̃) and predictions P(yi|x̃) = σ(f(x̃)t). Recall t is the pre-stored
textual embeddings. We gradually update our Deterministic Prototypes (DPs) v = {vc}Cc=1 of
the maximal class t in P(yi|x̃), i.e, vt, with embeddings yielding lower prediction entropy than the
threshold θ via an Exponential Moving Average (EMA) manner:

vt ←
(NDP

t,s − 1)vt + ṽt

||(NDP
t,s − 1)vt + ṽt||

, ṽt = avgj∈T fj(x̃), s.t. T = {c|H(P(yc|x̃)) < θ} (4)
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where H(·) calculates the entropy, || · || calculates the Euclidean norm. NDP
t,s is the update counter

for class t in DPs until step s and increases by 1 at each step. If T ̸= ∅, we update θ with
the minimal entropy in T following the above EMA manner. Although not all views are eligible
to represent classes and some of them are even ambiguous or subject to multiple classes, their
prediction distributions could reveal fine semantic correlations between classes; By dynamically
maintaining the visual embeddings f(x̃) for all the classes into extra prototypes, we could indirectly
exclude the features least likely to occur in every class accordingly. This idea leads to our design of
Exclusionary Prototypes (EPs) u = {uc}Cc=1: Specifically, for logit P(yi|x̃) of each view x̃, we
update EPs of all classes based on P(yc|x̃) as the following:

uc ←
(NEP

c,s − ϕc)uc + ũc

||(NEP
c,s − ϕc)uc + ũc||

, ũc = f(x̃), ϕc =
maxjP(yj |x̃)− P(yc|x̃)

maxjP(yj |x̃)
; ∀ c ∈ C (5)

Recall C is the number of classes, NEP
c,s is the update counter for class c in EPs until step s and

increases by ϕc at each step. Notably, our EPs largely differ from TDA (Karmanov et al., 2024)’s
“negative cache”, which selects visual features whose prediction entropy is within specific thresholds
and combine them into the negative cache of the predicted class. EP employs the prediction of every
view to guide EP updates of all classes, consequently capturing more refined inter-class associations
and enriching tail class representations. Furthermore, this mechanism also grants EPs considerable
robustness against OOD semantics, by endowing them with less ϕc in EMA updating.

▶ Rebalancing Shortcuts. Besides statically storing historical knowledge, learnable adaptation
enables the model to dynamically adjust the class balance and rectify its predictions. Considering
that prompts in existing TTA methods bring extra gradient flow across the text encoder, we keep the
prompts frozen (Zhang et al., 2024a), then introduce learnable Rebalancing Shortcuts (RSs) over
our SyPs to achieve dynamic adaptation. Furthermore, considering the peculiarity of our long-tailed
TTA settings, we design RSs as the impetus to boost the active feature clustering and interactions
of different classes in our SyPs. Formally, RS is implemented by a cross-attention with shared
hyper-class vectors; assume there are K hyper-class vectors q = {qi}Ki=1; we treat DPs v, EPs u as
queries, and compute the RSs with the following formula:

vi = Attn(vi, qi)qi + vi; ui = Attn(ui, qi)qi + ui; (6)
Where Attn calculates the attention score. We aim to ensure that these hyper-class vectors achieve
ideal clustering atop the prototypes and promote knowledge transfer between head and tail classes.
Gaining inspiration from the load balancing of mixture-of-experts in LLMs (Qiu et al., 2025), we
propose to treat each hyper-class as an expert, then incorporate a Class Re-Allocation (CRA) loss to
delegate each expert with evenly distributed class semantics:

LCRA =
∑

i
(avgj(ci,j(v)) · avgjAttn(vi, qj) + avgj(ci,j(u)) · avgjAttn(ui, qj)) (7)

Where ci,j(·) = 1(j = Argmaxj′(Attn(·, qj′))) is the pseudo label generated by binarizing atten-
tion scores in each row; 1(x) is 1 when x is true, else 0. Here, the average of attention scores over
all class prototypes for expert i, i.e, avgjAttn(·, qj) is treated as expert activations; avgj(ci,j(·))
stands for the counts of expert i being the top-1 entry in Attn(·, qj). By minimizing the dot product
of above two terms for u and v, we encourage all prototypes to distribute their attention weights
uniformly among hyper-class vectors, resulting in discernable feature clustering and reducing dom-
inance of head-class prototypes. The synergy between SyPs and RSs operates as follows: RSs rely
on the comprehensive and stable prototypes from SyPs to compute reallocations, SyPs leverage RSs
to go beyond static caching and enable proactive refinement. The next part will summarize how
summarizes how SyPs and RSs enhance predictions; additionally, we propose a Balanced Entropy
Minimization (BEM), a variant of EM that will be jointly employed with CRA to optimize shortcuts.

▶ Final Predictions & Balanced Entropy Minimization. We first introduce the final prediction
of L-TTA at each step for both training and inference, which comprehensively utilizes the modified
synergistic prototypes for enhanced and robust predictions:

PLTTA(yc|x) = σ(f(x)tc +A(f(x)vc)−A(f(x)uc)) (8)
Where A(x) = λ1 exp(−λ2(1− x)) is an affinity function for scaling (Gao et al., 2024). λ1,λ2 are
hyper-parameters. We then introduce our Balanced Entropy Minimization (BEM) to optimize this
prediction at each step. Entropy Minimization (EM) (Wang et al., 2020; Shu et al., 2022) is pervasive
in TTA methods; In contrast, in the context of long-tailed TTA tasks, EM would specifically degrade
the decision boundary of tail classes. We introduce the following proposition to formalize this claim:
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Proposition 1 For the long-tailed TTA tasks, denote z = {z1, z2.., zC} as the output logits, in
which we assume |C1| > |C2| > .. > |CC |. |Ci| is the class cardinality of i. We split C into Chead and
Ctail with certain measurements. The following holds true: Ei∼Chead

∇ziH < 0 < Ei∼Ctail
∇ziH.

We defer the proof to Appx. A. This proposition indicates that predictions of head-class become
more confident than those of tail-classes after EM optimization, since they are more likely to be
the maximal term. Unfortunately, solutions to this problem are non-trivial, owing to the distinct
characteristics of EM relative to classic Cross Entropy loss: EM is unsupervised and only amplifies
the model’s intrinsic bias; Moreover, its gradient with respect to the logits does not exhibit a clear
linear relationship with the logit distribution; i.e, if the distribution becomes sharper, the positive
optimization obtained by the confident class may also increase. This implies that when combining
class priors into the logits for rebalancing like what logit adjustment (Menon et al., 2020) or bal-
anced softmax (Ren et al., 2020) did, we may further exacerbate the model’s bias toward the head
classes and damage the decision boundaries. Therefore, a unique variant of EM specifically to long-
tailed settings is of necessity. This paper then introduces Balanced Entropy Minimization (BEM),
designed with an intuitive rationale: since adjusting high-confidence classes may further amplify the
bias, we can focus on calibrating uncertain classes, actively guiding their optimization with the class
priors. In implementation, BEM incorporates an additional penalty term into the EM loss:

LBEM = H′(P̃) = −σ(z′) log(z′), z′ = z + (1− P̃)β log
π∑
i πi

(9)

where β is for controlling the penalty degree, π ∈ RC is the class prior and set to the cardinality
of all classes (notably, the class prior is continually updated based on the current pseudo-labels)
{|Ci|}Ci=1 in default. Our key innovation here is to add an extra penalty (1 − P̃)β , which reduces
the contribution of class prior for already confident classes and favors classes that are both rare and
uncertain. Consequently, our BEM maintains the learning of head samples, while achieving finer
adaptation of tail samples in capturing more discernable semantics, thereby mitigating the deviation
of the decision boundary. Further comparisons of BEM and classic LT methods are in Appx. G. We
here introduce Proposition 2 to demonstrate the theoretical capability of BEM:

Proposition 2 For the long-tailed TTA tasks, denote z = {z1, z2.., zC} as the output logits, in
which we assume |C1| > |C2|.. > |CC |. |Ci| is the class cardinality of i. We split C into Chead and
Ctail with certain measurements. The following holds true (Recall H′ is from Eq. 9):

|Ei∼Chead
∇ziH− Ei∼Ctail

∇ziH| > |Ei∼Chead
∇ziH′ − Ei∼Ctail

∇ziH′| (10)

The proof is in Appx. A. This proposition reveals that applying BEM shortens the optimization gap
between head and tail classes. Thus, our BEM is both intuitively and theoretically interpretable. The
final objective of L-TTA consists LBEM and LCRA, connected by a hyper-parameter η:

LLTTA = LBEM(PLTTA) + ηLCRA (11)

4 EXPERIMENTS

▶ Datasets. We adopt four benchmarks but manipulate them to follow the long-tailed settings: ❶
OOD Benchmark (OODB), which assesses the robustness of models towards unseen data by con-
ducting TTA over four OOD variants of ImageNet (Deng et al., 2009): ImageNet-A (Hendrycks
et al., 2021b), ImageNet-V2 (Recht et al., 2019), ImageNet-R (Hendrycks et al., 2021a) and
ImageNet-S (Wang et al., 2019). ❷ Cross-Domain Benchmark (CDB), which evaluates the model’s
performance on ImageNet and 10 fine-grained datasets: Pets (Parkhi et al., 2012), SUN397 (Xiao
et al., 2010), EuroSAT (Helber et al., 2019), Caltech101 (Fei-Fei et al., 2004), Cars (Krause et al.,
2013), DTD (Cimpoi et al., 2014), UCF (Soomro et al., 2012), Flower102 (Nilsback & Zisserman,
2008), Food101 (Bossard et al., 2014), Aircraft (Maji et al., 2013). ❸ Corruption Benchmark (CB),
which adds gaussian noise to images (with the variations ι ranging from 0.1 to 0.4) to mimic harsher
scenarios. Experiments on other 16 corruption types (Hendrycks & Dietterich, 2019) with a severity
of 5 can be found in Appendix J. To enable these datasets to show obvious long-tailed distribution
(some of them may have already been slightly imbalanced), we conduct random sampling to ma-
nipulate the cardinality distribution into an exponentially decayed curve yielding specific imbalance
ratio. Notably, if the calculated cardinality is less than the class cardinality itself, we simply keep
that class unchanged. We treat the top-20% classes as head and others as tail.
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Table 1: Results on Long-tailed OOD Benchmark. We conduct 5 runs for each experiment with
imb varying from 10 to 50. THe accuracy of head / tail classes are in Appx. B. The “OOD Average”
is the average results of four OOD datasets excluding ImageNet. The best results are in Bold.

Methods | imb = 10
ImageNet-A ImageNet-R ImageNet-S ImageNet-V2 ImageNet OOD Average

Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.
CLIP [ICML’21] 46.84 43.71 72.27 70.40 42.17 40.74 59.63 51.62 63.75 58.94 58.04 50.84
TPT [NeurIPS’22] 52.79 48.08 77.33 74.28 45.22 43.60 61.34 55.70 65.53 60.36 59.17 55.42
C-TPT [ICLR’24] 50.70 46.36 75.82 72.92 44.14 42.62 60.44 53.00 64.92 60.13 57.78 53.73
MTA [CVPR’24] 57.15 51.98 77.04 74.88 48.59 46.50 63.61 62.69 67.79 62.57 61.60 59.01
TDA [CVPR’24] 60.00 54.30 81.23 78.00 47.55 45.77 66.21 60.53 69.10 63.89 63.75 59.65
ZERO [NeurIPS’24] 56.72 51.18 77.06 72.94 47.98 46.09 63.46 58.52 65.92 60.11 61.31 57.18
RLCF [ICLR’24] 57.74 52.09 79.47 75.53 46.00 44.42 64.39 58.23 69.19 63.90 61.90 57.57
DPE [NeurIPS’24] 60.31 54.41 80.58 77.42 49.32 45.45 67.78 63.32 70.16 64.19 64.50 60.15
WATT [NeurIPS’24] 60.33 53.06 80.29 76.96 48.25 46.83 66.75 60.36 70.04 64.48 63.91 59.30
CLIPArTT [WACV’25] 58.58 53.00 78.22 73.50 46.42 44.66 65.30 58.95 68.17 62.01 62.13 57.53
O-TPT [CVPR’25] 50.03 45.61 75.45 72.61 44.06 43.79 62.53 54.92 65.28 60.76 58.02 54.23
SCAP [CVPR’25] 60.54 52.26 80.57 75.48 48.97 45.38 67.41 56.55 70.64 64.80 64.37 57.42
L-TTA (Ours) 61.78 55.97 82.86 78.56 50.25 45.99 68.99 64.19 71.30 65.83 65.97 61.18

Methods | imb = 20
ImageNet-A ImageNet-R ImageNet-S ImageNet-V2 ImageNet OOD Average

Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.
CLIP [ICML’21] 46.89 41.68 72.57 69.30 42.25 40.45 58.36 50.60 63.36 57.33 55.02 50.51
TPT [NeurIPS’22] 53.30 47.11 77.76 72.82 46.04 43.79 60.78 54.81 65.22 60.70 59.47 54.63
C-TPT [ICLR’24] 50.65 45.14 76.41 71.27 46.01 43.03 59.21 53.76 64.61 60.28 58.07 53.30
MTA [CVPR’24] 57.15 51.98 77.03 74.87 48.60 46.64 63.93 62.68 66.53 61.60 61.68 59.04
TDA [CVPR’24] 60.40 53.38 81.60 75.94 45.65 43.46 64.70 56.17 68.92 63.36 63.09 57.24
ZERO [NeurIPS’24] 53.60 48.80 77.02 70.10 46.87 43.32 62.18 56.30 65.24 59.98 59.92 54.63
RLCF [ICLR’24] 56.62 50.52 78.51 72.22 45.57 42.93 64.76 56.63 69.70 62.16 61.37 55.58
DPE [NeurIPS’24] 60.05 53.87 81.18 75.87 50.10 45.02 65.50 60.53 67.41 63.53 64.21 58.82
WATT [NeurIPS’24] 60.08 52.58 80.38 75.14 47.15 44.60 66.61 60.02 69.39 63.83 63.56 58.09
CLIPArTT [WACV’25] 57.87 52.89 79.94 72.35 45.36 42.75 65.20 58.19 68.01 61.74 62.09 56.55
O-TPT [CVPR’25] 50.22 44.92 76.02 70.87 42.84 42.93 61.83 53.47 63.88 59.90 57.73 53.05
SCAP [CVPR’25] 60.36 52.20 79.52 75.44 48.45 43.12 65.84 55.97 66.83 62.97 63.54 56.68
L-TTA (Ours) 61.23 54.79 82.31 76.48 50.44 46.24 67.29 64.55 70.35 64.10 64.92 60.52

Methods | imb = 50
ImageNet-A ImageNet-R ImageNet-S ImageNet-V2 ImageNet OOD Average

Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.
CLIP [ICML’21] 44.74 36.26 71.52 62.60 39.36 36.08 58.03 50.58 63.18 53.70 53.41 46.38
TPT [NeurIPS’22] 51.13 40.84 76.77 66.30 42.99 41.28 61.27 54.95 65.29 56.57 58.04 50.84
C-TPT [ICLR’24] 51.66 41.01 75.58 65.07 44.01 41.32 61.07 56.86 65.42 55.00 58.08 51.07
MTA [CVPR’24] 57.15 51.98 75.04 74.88 46.59 42.77 63.61 62.69 66.29 61.44 60.60 58.08
TDA [CVPR’24] 58.97 49.12 80.89 70.04 44.87 41.49 64.76 58.50 68.07 62.06 62.37 54.79
ZERO [NeurIPS’24] 52.24 45.04 75.27 66.48 44.95 40.76 59.54 55.08 63.55 52.05 58.00 51.84
RLCF [ICLR’24] 54.27 46.18 76.54 68.98 45.08 38.58 63.51 53.75 66.23 56.57 59.85 51.87
DPE [NeurIPS’24] 60.21 47.46 80.76 69.96 48.07 43.50 65.80 60.78 68.04 62.37 63.71 55.43
WATT [NeurIPS’24] 57.86 49.83 78.05 70.24 45.80 40.49 65.37 55.63 68.69 57.72 61.77 54.05
CLIPArTT [WACV’25] 55.36 48.89 78.31 69.00 44.12 40.16 64.56 54.50 66.70 57.05 60.59 53.14
O-TPT [CVPR’25] 51.93 39.87 75.24 64.84 41.27 40.67 61.70 53.61 63.38 55.69 57.54 49.75
SCAP [CVPR’25] 59.05 47.00 78.08 73.11 45.86 41.03 65.31 54.19 66.30 58.85 62.08 53.83
L-TTA (Ours) 60.07 54.79 82.01 75.83 49.73 46.01 67.10 62.48 69.74 63.41 64.68 59.78

▶ Implementation Details. Following previous studies, we adopt a pretrained CLIP for evalua-
tion where the image encoder can be either ResNet-50 or ViT-B/16 (ViT-B/16 in default, the results
on ResNet-50 are in Appx. C). Following ablation studies (on ImageNet), we generate 15 aug-
mented views for a image via random resized cropping. η = 1, λ1 = 6, λ2 = 6, K = 0.3, β = 1.
We select AdamW as the optimizer with a weight decay of 1e-1 and eps of 1e-3. Hyper-parameters
for other datasets can be found in Appx. D. The imbalance ratio imb = maxi|Ci|/mini|Ci| is se-
lected from {10, 20, 50}. All experiments are conducted on a single V100 GPU, and methods for
comparison are reproduced with their provided hyperparameters. Besides accuracy (Acc.), we also
report the macro-F1 (Mac.) to highlight each model’s capability in balancing different classes. We
compare with classic methods like TPT (Shu et al., 2022), C-TPT (Yoon et al., 2024), O-TPT (Shar-
ifdeen et al., 2025); Training-free methods MTA (Zanella & Ben Ayed, 2024), TDA (Karmanov
et al., 2024), ZERO (Farina et al., 2024), visual-adaptation methods: WATT (Osowiechi et al., 2024),
CLIPArTT (Hakim et al., 2025) and other training-based methods like RLCF (Zhao et al., 2023b),
DPE (Zhang et al., 2024a), SCAP (Zhang et al., 2025a). More Details are in Appx. E.

4.1 RESULTS & DISCUSSIONS

Results on the Long-tailed OOD Benchmark. As demonstrated in Table 1, L-TTA mostly out-
performs existing methods in both accuracy and macro-F1 under three imbalance settings. Going
a step further, we find that existing methods consistently show performance degradation when the
imbalance effects worsen. For example, focusing on the accuracy/macro-F1 of OOD average when
changing imb from 10 to 50, we observe a drop of 1.38%/4.86% for TDA, 0.79%/4.72% for DPE,
2.29%/3.59% for SCAP. Interestingly, TPT and C-TPT show even more robustness since they do
not involve temporally accumulated knowledge, as indicated by their relatively minor variations
under the three imbalance settings. In contrast, L-TTA surpasses previous SOTAs by a significant
margin (1.47%/1.70% in accuracy/macro-F1 for OOD average; 1.67%/1.35% for ImageNet); also,
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Table 2: Averaged Results on Long-tailed Cross-Domain Benchmark with an imbalance ratio
of {10, 20, 50}. Please refer to Appx. B for detailed results and head / tail accuracy. We conduct 5
runs for each experiment and average the results. The best results are in Bold.

Methods Caltech Pets Cars Flowers Food101 ImageNet
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

CLIP [ICML’21] 93.10 89.95 83.51 83.29 61.83 60.09 65.67 60.67 82.34 78.24 63.43 56.66
TPT [NeurIPS’22] 93.82 90.99 83.51 83.10 63.18 61.41 66.94 60.97 83.49 79.85 65.35 59.21
C-TPT [ICLR’24] 93.41 90.69 85.41 85.08 63.25 61.57 67.66 62.08 82.41 78.38 64.98 58.47
MTA [CVPR’24] 93.48 90.97 84.36 84.33 63.78 62.41 65.32 60.24 83.61 80.17 66.87 61.87
TDA [CVPR’24] 94.33 90.69 86.16 83.47 68.15 59.60 71.77 62.13 85.94 80.68 68.70 63.10
ZERO [NeurIPS’24] 92.50 89.30 83.34 83.30 61.37 59.96 66.31 60.55 83.68 78.49 64.90 57.38
RLCF [ICLR’24] 88.46 86.90 83.39 81.58 61.86 58.18 66.45 61.81 80.55 79.38 68.37 60.88
DPE [NeurIPS’24] 94.85 91.80 90.09 85.85 68.88 61.14 73.95 65.54 84.11 78.68 68.54 63.36
WATT [NeurIPS’24] 93.33 90.35 86.02 84.91 61.95 61.03 66.32 60.87 80.94 77.31 69.37 62.01
CLIPArTT [WACV’25] 91.15 88.07 85.19 84.30 60.95 59.71 64.98 60.66 80.75 76.98 67.63 60.27
O-TPT [CVPR’25] 93.41 90.61 85.25 85.01 62.68 61.16 67.63 62.18 82.39 78.35 64.18 58.78
SCAP [CVPR’25] 91.40 86.96 86.15 77.26 64.50 62.35 68.10 62.43 82.40 80.25 67.92 62.21
L-TTA (Ours) 95.36 92.29 91.07 86.41 70.10 64.13 74.28 67.68 85.55 80.94 70.46 64.39

Methods Aircraft SUN397 DTD EuroSAT UCF101 ✦ Average ✦
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

CLIP [ICML’21] 14.39 16.78 60.17 54.25 42.89 35.70 37.29 30.17 65.25 58.18 60.90 56.72
TPT [NeurIPS’22] 14.73 17.09 63.97 57.08 43.46 36.61 37.12 30.05 66.71 60.04 62.03 57.86
C-TPT [ICLR’24] 17.42 18.76 63.22 56.65 43.62 37.28 37.76 29.53 67.46 59.10 62.42 58.37
MTA [CVPR’24] 17.81 18.60 62.46 56.59 43.45 36.94 40.45 30.95 67.82 61.39 62.67 58.59
TDA [CVPR’24] 23.04 18.97 65.81 58.68 44.06 34.53 53.48 46.39 71.13 61.25 66.60 60.20
ZERO [NeurIPS’24] 16.51 17.36 59.33 54.63 42.88 36.03 37.94 28.41 65.97 57.63 61.34 56.64
RLCF [ICLR’24] 16.08 17.17 59.13 52.75 41.80 36.77 40.49 29.03 65.75 53.75 61.12 56.20
DPE [NeurIPS’24] 24.32 21.38 68.26 61.18 47.55 39.82 55.21 45.85 69.53 60.38 67.75 61.24
WATT [NeurIPS’24] 17.74 18.27 60.19 55.05 45.60 37.49 45.09 33.38 68.09 59.38 63.15 58.19
CLIPArTT [WACV’25] 16.22 16.71 58.84 53.33 42.68 35.95 42.45 31.51 66.31 57.79 61.56 56.84
O-TPT [CVPR’25] 17.27 18.42 63.12 56.22 43.97 37.25 38.34 30.69 66.99 58.57 62.29 58.03
SCAP [CVPR’25] 22.85 19.01 63.48 61.14 42.71 36.37 46.85 38.89 66.31 62.11 63.90 59.23
L-TTA (Ours) 25.49 21.88 69.01 62.61 48.50 40.71 56.53 47.99 70.58 62.75 68.77 63.44

L-TTA yields a minor variation of 1.29% in macro-F1 when long-tail effects degrade. These results
demonstrate the substantial robustness of L-TTA under long-tailed settings.
Results on the Long-tailed Cross-Domain Benchmark. As shown in Table 2, further comparisons
on 10 fine-grained datasets and ImageNet prove the universality and robustness of L-TTA again. We
observe that prototype-based methods like TDA and DPE generally perform more competitive than
other methods. Turing to our L-TTA, it outperforms existing SOTAs for 10 of the 11 datasets and
shows a significant enhancement in the averaged metrics. We also find the improvement in Macro-F1
(2.20%) significantly exceeds that of accuracy (1.02%). This demonstrates that L-TTA can handle
diverse specific domains besides re-balancing and shows impressive adaptability.
Results on the Long-tailed Corruption Benchmark. We aim to mimic more realistic scenarios
with this benchmark and report the comparison results in Table 4. We can observe that the per-
formance gains on L-TTA is expanded, which outperforms existing SOTAs by 2.87% and 2.64%
in averaged accuracy and macro-F1; moreover, by comparing Table 2 and Table 4, we further re-
veal that under noisy conditions, the superiority of previous prototype-based diminish substantially,
nearly matching the baseline TPT; This may stem from their dependence on high-quality prototypes
and incapacity to balance different classes. By contrast, our L-TTA utilizes synergistic prototype-
sand active shortcut learning for rebalancing, exhibiting more stability under corrupted settings.

Table 3: Experiment results on other four larger backbones. \
means the model fails to provide valid outputs.

Method CLIP:ViT/L-14 CLIP:ViT/H-14 SigLIP-L/16 METACLIP-BigG
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

TPT 67.16 66.08 67.57 66.45 68.09 65.56 \ \
TDA 69.75 66.95 72.12 67.56 72.40 70.46 75.76 71.78
DPE 71.03 67.13 73.00 69.07 75.50 71.23 76.74 73.32

SCAP 69.64 67.74 70.92 68.54 71.70 67.88 \ \
L-TTA 73.07 70.15 74.67 71.37 76.75 72.77 77.91 74.46

Results on Other Backbones.
We further explore the adapt-
ability of L-TTA on stronger
backbones. We compare our L-
TTA with competitive baselines
on four additional backbones
(ViT-L/14, ViT-H/14, SigLIP-
L/16 (Zhai et al., 2023), and
MetaCLIP-BigG (Xu et al.,
2023; Chuang et al., 2025)), and report the averaged results over 10 fine-grained datasets in Ta-
ble 3 (Per-dataset results are in Appx. L). The performance gains of our model remain salient (an
average of 1.5% Acc. / 1.8% Mac.) across all backbones. This is because L-TTA effectively utilizes
sample-level information and actively promotes continuous image-text alignment for re-balancing.
We argue that these designs are essential for any backbone when faced with long-tailed TTA.

Efficiency Study. We show the results on ImageNet in Table 5 with imb=10. It is observed that
training-free methods like ZERO, MTA and TDA perform suboptimal (especially with corrupted
data), for their sensitivity to data quality. DPE yields the lowest complexity but performs subopti-
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Table 4: Averaged Results on Long-tailed Corruption Benchmark with ι ∈ {0.1, 0.2, 0.4} and
imb = 10. Please refer to Appx. B/J for results with other severity / corruption types. We conduct
5 runs for each experiment and average the results. The best results are in Bold.

Methods Caltech Pets Cars Flowers Food101 ImageNet
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

CLIP [ICML’21] 77.49 70.94 54.48 52.98 36.51 33.41 39.69 35.35 34.18 33.81 37.73 34.47
TPT [NeurIPS’22] 81.87 75.71 60.52 58.54 39.41 38.70 44.28 39.36 38.34 38.03 42.35 39.33
C-TPT [ICLR’24] 80.00 73.61 57.98 56.28 38.07 37.49 42.93 38.53 35.77 34.94 41.00 38.07
MTA [CVPR’24] 79.90 73.53 57.35 55.96 39.51 38.99 27.16 35.97 35.65 35.73 42.96 40.29
TDA [CVPR’24] 79.87 73.65 58.31 54.45 41.30 36.64 42.84 37.19 37.80 36.27 42.12 38.80
ZERO [NeurIPS’24] 77.74 73.99 55.75 53.74 38.97 33.60 38.78 36.75 35.08 33.95 38.93 35.49
RLCF [ICLR’24] 76.95 72.17 54.38 52.11 38.72 32.51 38.06 35.37 35.16 32.92 39.79 36.30
DPE [NeurIPS’24] 81.30 77.16 58.12 54.91 41.78 38.74 44.90 40.61 35.96 34.42 43.52 40.82
WATT [NeurIPS’24] 80.42 76.08 55.48 52.08 43.60 36.04 41.34 37.56 38.12 36.38 41.96 39.09
CLIPArTT [WACV’25] 79.06 74.57 56.65 53.84 41.43 35.08 40.83 37.41 36.79 35.40 43.45 38.52
O-TPT [CVPR’25] 80.13 73.82 58.53 56.77 37.38 36.79 42.62 38.20 35.72 34.90 40.90 39.26
SCAP [CVPR’25] 79.72 72.75 59.69 55.01 40.12 37.44 41.55 35.93 37.82 36.20 42.07 38.52
L-TTA (Ours) 82.45 78.35 61.98 58.53 43.48 39.46 46.68 42.72 39.55 37.92 46.11 43.10

Methods Aircraft SUN397 DTD EuroSAT UCF101 ✦ Average ✦
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

CLIP [ICML’21] 8.28 9.34 37.74 35.50 22.20 19.43 10.46 7.01 39.70 34.67 36.22 34.36
TPT [NeurIPS’22] 9.24 10.64 41.86 38.93 24.91 22.81 7.96 5.35 45.16 39.77 39.63 37.01
C-TPT [ICLR’24] 8.93 9.48 40.50 37.77 24.54 22.32 8.35 5.36 42.96 38.55 38.27 35.67
MTA [CVPR’24] 10.22 10.21 39.70 37.13 22.98 20.63 14.62 6.38 42.96 37.26 37.55 35.64
TDA [CVPR’24] 12.22 10.48 41.10 37.64 24.75 18.67 13.06 9.05 45.29 37.66 39.88 35.50
ZERO [NeurIPS’24] 10.52 9.07 40.72 36.54 23.32 20.08 11.40 7.18 42.84 35.46 37.64 34.17
RLCF [ICLR’24] 9.34 8.16 41.68 37.63 22.72 18.58 10.88 8.04 44.22 36.14 37.45 33.63
DPE [NeurIPS’24] 13.35 10.81 43.51 39.91 24.19 23.06 13.58 9.94 44.64 40.26 40.44 37.33
WATT [NeurIPS’24] 12.40 10.96 42.85 39.00 26.98 22.05 15.54 12.00 44.86 36.43 40.46 36.15
CLIPArTT [WACV’25] 11.49 10.08 41.55 38.44 24.59 21.33 15.26 11.18 43.73 35.09 39.39 35.54
O-TPT [CVPR’25] 9.06 9.79 39.55 36.81 24.18 22.69 7.89 6.15 40.36 36.55 37.85 35.61
SCAP [CVPR’25] 11.26 11.83 40.02 38.50 24.44 22.97 11.85 7.70 43.47 39.08 39.27 35.99
L-TTA (Ours) 15.65 14.57 45.01 41.24 30.94 27.43 17.42 13.94 47.21 42.46 43.31 39.97

Table 5: Comparisons of complexity. Here HM is the harmonic mean of Accuracy and Macro-f1. \
means the model fails to provide valid outputs. - means the model did not finish within time budget.

Methods TPT C-TPT MTA TDA ZERO RLCF WATT DPE CLIPArTT O-TPT SCAP L-TTA
Time (h) 3.80 3.80 1.87 0.91 0.86 8.30 27.70 1.38 6.42 3.81 2.96 1.45h

Memory (GB) 17.94 17.94 1.29 0.89 1.68 19.84 1.54G×n 1.81 1.71 17.94 1.97 1.89
HM on LT-CDB 61.12 61.06 61.75 64.51 60.42 59.71 62.07 66.31 60.54 61.39 63.31 67.20
HM on LT-CB 40.04 38.57 \ 41.04 38.04 - - 41.93 - 38.05 40.74 46.08

mal; For L-TTA, the main computational overhead is to update two prototypes and shortcuts: proto-
types are updated in parallel, while optimizing shortcuts is free of gradient tracking throughout the
backbone, thus L-TTA only incurs minor computation overhead. Statistically, L-TTA shows more
effectiveness than the cumbersome SCAP, WATT and RLCF which requires the gradient propaga-
tion along the visual encoder. Meanwhile, it embraces improvement in both accuracy and macro-F1
(1.14% and 1.67%). Conclusively, L-TTA keeps the trade-off between performance and efficiency.

4.2 ABLATION STUDIES AND SENSITIVITY ANALYSIS

Affinity coefficients λ1 and λ2. We report an ablation study of λ1 and λ2 on ImageNet with imb
as 10 in Figure 4.a. Specifically, we find that lowering λ1 and λ2, i.e., the contributions of SyPs,
generally yields poor performance; this indicates that our Synergistic Prototypes and Rebalancing
Shortcuts undeniably contribute to the performance. However, we also observe that excessive λ1

and λ2 values lead to a slight degradation. As a trade-off, we set λ1 and λ2 as λ1 = 6, λ2 = 6.

Table 6: Ablation studies on components.

Methods RN50 VIT-B/16
Acc. Mac. Acc. Mac.

DP 57.58 51.66 68.68 63.40
DP+RS 58.10 52.24 69.76 64.12

EP 56.94 51.07 67.54 62.20
EP+RS 57.43 51.86 68.03 62.77

SyP(DP+EP)+RS 59.59 53.04 70.94 65.17
SyP+RS+BEM 59.82 53.67 71.30 65.83

Different Components. L-TTA consists
of three components: Synergistic Prototypes
(SyPs), Rebalancing Shortcuts (RS), and Bal-
anced Entropy Minimization (BEM). We ablate
each of them or their combinations under back-
bone ResNet50 or VIT-B/16 and report the re-
sults in Table 6. We find dropping DPs or EPs
leads to a decrement of about -3.95% / -3.22%
in macro-F1 and -3.77% / -1.78% in macro-F1,
indicating both DPs and EPs in the SyPs contribute to the performance. Also, RS is instrumental
in the further improvement, without which we observe a considerable degradation. Furthermore,
SyP+RS+BEM always achieves superior performance to other settings, which shows BEM is an el-
igible advancement of TTA under Long-tailed settings. In summary, all of the components function
synergistically and contribute to the overall performance of L-TTA.
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(6,6)

（a） （b） （c） （d）

Figure 4: The ablation studies of (a) λ1 and λ2 evaluated on ImageNet; (b) balance factor η eval-
uated on ImageNet; (c) hyper-class vector (expert) number b in RSs evaluated on ImageNet and
Food101; (d) Penalty factor β in BEM evaluated on ImageNet and Food101.

The balance factor η. We ablate the balance factor η on ImageNet by varying its value in Figure 4.b.
We find that combining our class re-allocation loss results in a performance enhancement of about
1.19%/1.64% in accuracy/macro-F1 compared with solely employing the entropy-minimization loss
(i.e, η = 0). However, excessively large η also leads to the performance degradation. We speculate
that this potentially stems from an over-emphasis on cluster homogeneity, which introduces opti-
mization challenges and consequently hinders adaptation with limited data-stream. Our experiment
results demonstrate that setting η = 1 yields the best performance.
Vector number K in RS. We alter K from 0.1 to 1 on ImageNet and Food101 and report the results
in Figure 4.c. Generally, we find that excessively small choices lead to performance degradation,
which may result from the insufficient modeling of clusters in the dataset; In addition, we also
observe a gradual degradation when K keeps increasing, which may result from exacerbated training
challenges. Our experiment results show that setting K = 0.2 yields the best performance.

Table 7: Ablation studies on head/tail class shifts.

Dataset ImageNet Flowers
ϵ 0 1/3 2/3 1 0 1/3 2/3 1

Acc. 71.30 71.34 71.47 71.52 74.60 74.98 74.95 75.08
Mac. 65.72 65.76 65.86 65.93 68.62 68.85 68.98 69.01

Penalty factor β. We vary β from
0.1 to 8 and report the results in Fig-
ure 4.d. We find that both higher (≥2)
and lower (≤0.5) choices generally
result in the performance degrada-
tion; With appropriate parameter se-
lection, our L-TTA outperforms both
the approach leaning on class priors (β=8) and the method relying solely on original logits (β=0.1)
by up to 0.64%/0.85% in accuracy/macro-F1. This validates the effectiveness of the additional
penalty term we introduced in BEM. We find that setting β = 1 yields the best performance.
Robustness to dynamic head/tail-class shifts. This experiment investigates the model’s robustness
to dynamically changing head-tail classes. We vary the sampling probability ϵ for tail-class samples,
where a larger ϵ increases their likelihood of appearing earlier in the stream. Results in Table 7
demonstrate L-TTA maintains stable performance across ϵ, indicating strong resilience.

Table 8: Ablation studies on Per-dataset
Hyper-parameter FineTuning (PHFT).

Method LT-CDB LT-OODB
Acc. Mac. Acc. Mac.

w/o PHFT 68.52 63.12 64.88 59.98
L-TTA1 68.77 63.44 65.19 60.49

Tuning efficiency. Our method involves tuning several
additional parameters for different datasets, but this pro-
cess is more of an optional refinement choice rather than
a necessary step that critically affects model behavior. We
explain this from two perspectives: First, as shown in Fig-
ure 4, varying η, K, and β within a broad range (×0.5–2)
results in only minor performance changes of about 0.2%.
Furthermore, we report an additional experiment in Table 8, which compares the results using iden-
tical hyper-parameters (tuned on ImageNet in the above) and parameters tuned for each dataset.
The results show that L-TTA remains consistently SOTA under this fixed configuration, with perfor-
mance fluctuations within only 0.3%. The ablation studies of τ and Q are provided in Appx. F.

5 CONCLUSION

This paper aims to extend Test-Time Adaptation (TTA) to harsher and realistic long-tailed scenarios.
We propose our novel L-TTA, which consists of synergistic prototypes for enriching tail classes,
rebalancing shortcuts to register knowledge and adapt models, and balanced entropy minimization
as the first variant of EM targeting on long-tailed TTA tasks. L-TTA achieves superior performance
over 15 datasets under various long-tailed ratios, while showing impressive efficiency.
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Appendix
Long-tailed Test-Time Adaptation for Vision-Language Models

The Supplementary Material of the paper is organized as:

• Appendix A: We give the proofs of propositions.

• Appendix B: We introduce datasets and methods.

• Appendix C: We report full results on CLIP-VIT-B/16.

• Appendix D: We report full results on CLIP-ResNet50.

• Appendix E: We report hyper-parameters.

• Appendix F: We report extra Ablation Studies.

• Appendix G: We report extra discussions of applying traditional LT methods.

• Appendix H: LLM statement.

• Appendix I: Reproducibility statement.

• Appendix J: We report all experiments results on long-tailed corruption benchmarks.

• Appendix K: We report all experiments results on balanced datasets.

• Appendix L: We report all experiments results on larger backbones.

A PROOFS

A.1 PROOF OF PROPOSITION 1

Proposition 3 For the long-tailed TTA, denote z = {z1, z2, z3.., zC} as the output logits, in which
we assume |C1| > |C2| > |C3|.. > |CC |. |Ci| is the class cardinality of zi. We split C into Chead and
Ctail with certain measurements. Denote H(·) as EM loss. The following holds true (δa/δb equals
∇ba in the proposition of the main paper):

EChead

δH
δzi

< ECtail

δH
δzi

(12)

Proof. We can separate the overall expectation into the top-1 expectation term and the non-top-1
expectation term. With the law of total expectation, we deduce:

EChead

δH
δzi

= EChead
(
δH
δzi
|Mtop1)Phead(Mtop1)

+EChead
(
δH
δzi
|Mnon)Phead(Mnon)

ECtail

δH
δzi

= ECtail
(
δH
δzi
|Mtop1)Ptail(Mtop1)

+ECtail
(
δH
δzi
|Mnon)Ptail(Mnon)

(13)

Where P(Mtop1/non) denotes the probability of being top-1 / non-top1 of the entries.
Under the long-tailed scenario, the following assumption holds true: Phead(Mtop1) >
Ptail(Mtop1),Phead(Mnon) < Ptail(Mnon).

Next, we separately discover the gradient term for the top-1 logit entry, s1, and non-top-1 logit
entries. For the gradient of H with respect to s1, we can deduce the specific gradient expressions as
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follows, similar to (Wu et al., 2025):

δH
δzi

=
δ

δzi
(−

L∑
i=1

pl log pl)

= −
L∑

l=1

(
δpl
δzi

log pl + δpi)

= pi log pi + pi −
L∑

l=1

(−plpi log pl − plpi)

(14)

We finally derive:

EC(
δH
δs1
|Mtop1) = EC(−

L∑
l=1

plp1 log
p1
pl

) < 0 (15)

The last inequality can be easily deduced with the assumption that s1 is the largest entry in the logits,
since the last log term is always greater than 0.

Then consider non-top-1 logit entries. We ignore the specific correlations between different classes
and treat them as identical elements. To facilitate the discussion, we redirect our focus to their
summation snon, snon =

∑L
i=2 zi. We make the following deduction:

L∑
i=1

δH
δzi

=

L∑
i=1

(−
L∑

l=1

plpi log
pi
pl
) = 0 (16)

This shows that the gradient summation with respect to different entries is 0. Then, we can derive
that:

δH
δsrest

=

L∑
i=2

δH/δzi
δsrest/δzi

=

L∑
i=1

δH
δzi
− δH

δs1
> 0 (17)

Then we have:

EC(
δH
δzi
|Mnon) = EC

δH
δzi

= EC(
δH/δsrest
δzi/δsrest

) > 0 (18)

Consequently:

EC(
δH
δs1
|Mtop1) < 0 < EC(

δH
δzi
|Mnon) (19)

This means that the gradient of entropy with respect to the top 1 entry is theoretically smaller than
that with respect to a non-top 1 entry. Since head classes play as the top-1 entry more frequently, we
can easily deduce that proposition 1 holds true.

A.2 PROOF OF PROPOSITION 2

Proposition 4 For the long-tailed TTA, denote z = {z1, z2, z3.., zC} as the output logits, in which
we assume |C1| > |C2| > |C3|.. > |CC |. |Ci| is the class cardinality of zi. We split C into Chead and
Ctail with certain measurements. Denote H(·) as EM loss. The following holds true:

|EChead

δH
δzi
− ECtail

δH
δzi
| > |EChead

δH′

δzi
− ECtail

δH′

δzi
| (20)

Proof. Similarly, we have:

EChead

δH
δzi

= EChead
(
δH
δzi
|Mtop1)Phead(Mtop1) + EChead

(
δH
δzi
|Mnon)Phead(Mnon)

ECtail

δH
δzi

= ECtail
(
δH
δzi
|Mtop1)Ptail(Mtop1) + ECtail

(
δH
δzi
|Mnon)Ptail(Mnon)

(21)

EChead

δH′

δzi
= EChead

(
δH′

δzi
|Mtop1)Phead(Mtop1) + EChead

(
δH′

δzi
|Mnon)Phead(Mnon)

ECtail

δH′

δzi
= ECtail

(
δH′

δzi
|Mtop1)Ptail(Mtop1) + ECtail

(
δH′

δzi
|Mnon)Ptail(Mnon)

(22)
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Returning to our BEM, it incorporates an additional prior term into the logits. Since BEM primarily
exerts a stronger influence on uncertain categories, we could assert that EM and BEM yield the same
behavior in confident (top-1) classes. Focusing on non-top1 classes, head classes receive greater
negative gradient gains than tail classes under equivalent conditions. That is:

0 > ECtail
(
δH′

δzm
|Mnon)− ECtail

(
δH
δzm
|Mnon) > EChead

(
δH′

δzm
|Mnon)− EChead

(
δH
δzm
|Mnon) (23)

Since the following two formula always hold true:

ECtail
(
δH′

δzi
|Mtop1) > 0 > ECtail

(
δH′

δzi
|Mnon), EChead

δH
δzi
− ECtail

δH
δzi

> 0 (24)

We can derive the following formula:

EChead
(
δH
δzm

)− EChead
(
δH′

δzm
) ≈ Phead(Mnon)(ECtail

(
δH
δzm
|Mnon)− EChead

(
δH′

δzm
|Mnon)) > 0

ECtail
(
δH
δzm

)− ECtail
(
δH′

δzm
) ≈ Ptail(Mnon)(ECtail

(
δH
δzm
|Mnon)− ECtail

(
δH′

δzm
|Mnon)) > 0

(25)

According to Equation 23, we can easily derive the following formula:

EChead
(
δH
δzm

)− EChead
(
δH′

δzm
) > ECtail

(
δH
δzm

)− ECtail
(
δH′

δzm
) > 0 (26)

|EChead

δH
δzi
− ECtail

δH
δzi
| > |EChead

δH′

δzi
− ECtail

δH′

δzi
| (27)

Here we proved Proposition 2.

B INTRODUCTION OF DATASETS AND METHODS

Datasets: We list the detailed statistics and introductions of datasets in Table 47; Methods: We list
the introductions of methods used in our experiments as follows:

• TPT (Shu et al., 2022): TPT proposes to crop various augmented views from the original
image, and select the most confident predictions to conduct entropy minimization.

• C-TPT (Yoon et al., 2024): C-TPT calibrates the uncertainty of model predictions by en-
forcing texture representations of different prompts to be closer to their centroids.

• MTA (Zanella & Ben Ayed, 2024): MTA is free of optimizing prompts. Instead, it searches
the mode for different views and optimizes their inlierness. MTA can be adapted to API-
based models.

• TDA (Karmanov et al., 2024): TDA proposes a positive cache to store discriminative class
knowledge and a negative cache to store the noisy, spurious, or OOD semantics for different
classes. TDA is training-free.

• DPE (Zhang et al., 2024a): DPE introduces dual prototype evolving to adapt at each step.
It’s free of back-propagation over vision and text encoders.

• O-TPT (Sharifdeen et al., 2025): O-TPT further enhances C-TPT by learning orthogonal
text representations to obtain textual dispersion.

• SCAP (Zhang et al., 2025a): SCAP introduces supportive cliques to learn various attribute
prompts for each class, accompanied by a graph retention technique to accumulate learned
knowledge from previous batches. In the inference stage, it utilizes both the preserved
attributes and the learned prompts for robust prediction.

• WATT (Osowiechi et al., 2024): WATT leverages diverse text prompt templates to gen-
erate pseudo labels for model updates, then employs weight averaging (either parallel or
sequential) to consolidate learned information. The text embedding are ensembled during
evaluation to enhance generalization across domain shifts, achieving strong performance
even with episodic images without additional transformations or trainable modules.
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• CLIPArTT (Hakim et al., 2025): CLIPArTT introduces a lightweight TTA method that gen-
erates instance-specific text prompts from top-K predictions and computes pseudo-labels
via image-text similarity matrices. During training, it fine-tunes normalization layers using
cross-entropy loss to enhance robustness across domain shifts.

• ZERO (Farina et al., 2024): ZERO is an ultra-efficient training-free TTA. It retains confi-
dent views and perform marginalization to get the final prediction without backpropagation,
outperforming SOTA methods while being 10× faster and more memory-friendly.

• RLCF (Zhao et al., 2023b): RLCF is a universal TTA method that uses CLIP as a re-
ward model to provide feedback. Concretely, it first samples task-specific candidates via
beam search, then optimizes model parameters via REINFORCE algorithm with a baseline-
adjusted CLIPScore reward to enhance zero-shot generalization across classification, re-
trieval, and captioning tasks.

C EXPERIMENT RESULTS ON CLIP-VIT-B/16

The full experiment results of Cross-domain Benchmark built upon CLIP-ViT-B/16 backbone under
the imbalanced ratio of {10, 20}, {50} in shown in Table 11,12 respectively. The head / tail accuracy
of the OOD benchmark is shown in Table 16. The head / tail accuracy of Cross-domain Benchmark
is shown in Table 18, 19. The full experiment results of Corruption Benchmark in shown in Table
20, 21. As shown in the tables, L-TTA mostly outperforms existing methods, demonstrating its
superiority.

D EXPERIMENT RESULTS ON CLIP-RESNET50

The full experiment results of Cross-domain Benchmark built upon CLIP-ResNet50 backbone un-
der the imbalanced ratio of {10, 20}, {50} in shown in Table 13, 14 respectively. The full experi-
ment results of OOD Benchmark built upon CLIP-ResNet50 backbone under the imbalanced ratio
of {10, 20, 50} are shown in Table 15. As shown in the tables, L-TTA mostly outperforms existing
methods, demonstrating its superiority.

E HYPERPARAMETERS

The full hyperparameter settings are in Table 46. Notably, although we conduct primary ablation
studies on several hyper-params in the main paper, we choose to further adjust some of them for
each dataset. We also list the prompts used in experiments in Table 17.

F MORE ABLATION STUDIES

Table 9: The ablation studies of (a) temperature
evaluated on ImageNet; (b) number of augmented
views evaluated on ImageNet.

▶ Number of Augmented Views. we al-
ter the number of augmented views in Figure
9.b (For representational convenience, we plot
with the total count comprising both augmented
views and the original image. For example, 4
corresponds to three augmented views and one
original image). We find that the optimum lies
in about 8; Excessively large or small choices,
both leads to performance degradation, espe-
cially in macro-F1. This finding contradicts
with the intuition that more augmented views
lead to better performance from previous stud-
ies (Wu et al., 2025), for which we speculate that: although a larger number of views can more dis-
tinctly reflect various inter-class relationships, it also leads to an increase in OOD samples, thereby
contaminating the DPs. Simultaneously, greater cropping uncertainty reduces the distinction be-
tween EPs, consequently diminishing their ability to indicate “the semantics least likely to occur in
this category”. Our experiments show that 16 (15 augmented views) is the optimal choice.
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▶ Temperature. We alter the temperature from 1 to 20 in Figure 9.a. Interestingly, we find that
excessively large and small temperature leads to degraded performance in macro-F1; for accuracy,
we did not observe a clear trend. This phenomenon appears quite anomalous, contradicting the
conventional wisdom that temperature adjustment can balance the learning of head and tail classes.
However, we argue that: this occurs because temperature’s functionality in the EM Loss lacks the
clarity than when it in Cross-Entropy (CE) Loss. For CE loss, changing temperature (i.e., reweight-
ing class contributions) explicitly balances the per-class contribution owing to the one-dimensional
nature of logit gradient. In contrast, EM’s gradient with respect to logits is high-dimensional, re-
stricting the optimal temperature to a narrow range where deviations in either direction theoretically
impair model efficacy. Our experiments show that choosing 2 yields the optimal performance.

G CAN CLASSIC LT METHODS BE WELL APPLIED TO LONG-TAILED TTA?

Table 10: Comparison with classic LT methods.

Methods RN50 VIT-B/16
Acc. Mac. Acc. Mac.

MTA1 57.30 51.23 67.79 62.57
MTA+BS 57.31 51.28 67.87 62.33
MTA+LA 57.40 51.30 67.90 62.68

MTA+BEM 57.84 51.91 68.25 63.34
DPE 57.96 52.16 70.16 64.19

DPE+BS 57.92 52.18 70.19 64.23
DPE+LA 58.00 52.25 70.24 64.35

DPE+BEM 58.45 52.76 70.57 64.80
Ours-BEM+BS 59.50 52.76 70.75 65.12
Ours-BEM+LA 59.57 53.14 71.01 65.25

Ours 59.82 53.67 71.30 65.83

While this paper designs various techniques for
TTA under long-tailed settings, we would like
to also discover the performance of some clas-
sic methods, like balanced softmax and logit
adjustment to this task. We first briefly intro-
duce these methods as the following:

Logit Adjustment (LA) (Menon et al., 2020):
LA is a classical LT method that directly adds
the class prior, i.e, its proportion of data volume
across all classes, to the logits. LA can be ap-
plied in both the training stage, as well as the
inference stage (i.e, post-hoc adaptation). For
both stages, LA can be formulated as:

P = σ(z), z = z − τ · log(π),π =
|C|∑
i |Ci|

(28)

Where τ is the temperature. Notably, the original paper only discuss LA’s effects with supervised
cross-entropy loss. It indicates that LA enlarges the prediction gap between dominant classes and
rare ones so that the model would better distinguish them.

Balanced Softmax (BS) (Ren et al., 2020): BS proposes to directly combine the class cardinality
into softmax to achieve the head-tail balancing. It can be formulated as:

Pt =
|Ct| exp(zt)∑
j |Cj | exp(zj)

(29)

The equation 29 is nearly similar with equation 28, where the only difference lies in the signal of
the appended term and the temperature. In our experiments, We optimized the temperature to its
optimal value.

So, does these techniques really perform well on our long-tailed TTA tasks? we report the ablation
results in Table 10 with RN50 and VIT-B/16 as the backbone respectively. We find that the perfor-
mance gains from incorporating either LA or BS were quite limited. For instance, with MTA, using
LA showed almost no improvement, while BS provided only modest gains of approximately 0.10%
in accuracy and 0.08% in Macro-F1, RN50. a enhancement within the standard variations. This
validates our intuitive explanations in the main paper that merely adding class prior is not adequate
for TTA tasks. In contrast, our BEM yields considerable performance improvement: For MTA, we
observe a improvement of about 0.64% and 0.68% WITH RN50, 0.46% / 0.77% with VIT-B/16.
This also reflect that our BEM is widely applicable and shows great compatibility.

Some uni-modal LT-TTA methods. We note that some uni-modal TTA methods have indeed
begun addressing long-tail challenges. For instance, SAR (Niu et al., 2022)’s framework includes
label shift among its three practical TTA scenarios. SAR then employs batch-agnostic norms, noisy
samples filtering and sharpness-aware entropy minimization to deal with it; DELTA (Zhao et al.,
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2023a) introduces Test-time Batch Renormalization (TBR) to refine normalization statistics, and
Dynamic Online re-weighTing (DOT) to mitigates class bias in long-tailed TTA. However, these
methods unanimously fails on the VLM-specific failure modes as introduced in our Figure 1.

H THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs are only for polishing the writing of this paper.

I REPRODUCIBILITY

The code is available at the Anonymous Github Link.

J EXPERIMENTS ON LONG-TAILED CORRUPTION BENCHMARK.

We conduct experiments on other corruption types besides gaussian blur, which are first defined
by ImageNet-C: gaussian noise, shot noise, impulse noise, speckle noise, defocus blur, glass blur,
motion blur, zoom blur, snow, frost, fog, brightness, contrast, jpeg compression, pixelate, saturate,
elastic transform. The results are shown in Table 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
37, 38, 39. The averaged results are shown in Table 23.

As evidenced by these results, L-TTA’s performance advantage not only persists but becomes more
pronounced under corruptions. Furthermore, we have three key observations:(a): Training-free
methods generally struggle on this benchmark. For instance, MTA fails on 12 of 16 corruption
types, and the advantages of TDA and ZERO are substantially diminished. These methods rely on
the assumption that features form reliable, consistent clusters—an assumption violated by corrup-
tions that fragment distributions and disrupt cross-modal alignment. (b): The gains of unimodal,
training-required methods (e.g., SCAP) degrade, converging to the level of classic TPT. This stems
from their lack of genuine cross-modal co-adaptation, causing them to amplify modality misalign-
ments under corruption. (c) L-TTA delivers extensive and consistent improvements. This is be-
cause that: instead of relying on distributional assumptions, L-TTA leverages instance-specific cues
(SyPs and BEM) and employs proactive modality-shared learning (RSs) to continuously counteract
corruption-induced biases within and across modalities.

K EXPERIMENT RESULTS ON BALANCED DATASETS

The experiment results on balanced datasets are in Table 45. The results show that L-TTA can also
outperforms existing methods on balanced datasets.

L EXPERIMENTS ON LARGER BACKBONES

The experiment results on larger backbones for TPT, TDA, DPE, SCAP and L-TTA are shown in
Table 40, 41, 42, 43, 44. The performance improvement of our model is consistent across different
backbone architectures, with only minor fluctuations observed. This is because L-TTA effectively
leverages sample-level information and actively promotes continuous image-text alignment, which
are generally beneficial regardless of the underlying backbone in long-tailed test-time adaptation.
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Table 11: Results on Long-tailed Cross-domain Benchmark under the imbalance ratio of 10
(upper one) and 20 (lower one). We conduct 5 runs for each experiment under each imbalance
setting and report the Accuracy (Acc.) and F1-Macro (Mac.). All the methods are built upon CLIP-
ViT-B/16 backbone. The best results are in Bold.

Methods Caltech Pets Cars Flowers Food101
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

CLIP [ICML’21] 93.17 90.47 84.68 85.23 62.58 62.21 65.93 62.69 82.77 81.76
TPT [NeurIPS’22] 93.97 91.61 84.50 84.32 63.97 63.37 67.40 63.02 83.89 82.92
C-TPT [ICLR’24] 93.47 91.19 86.17 86.49 63.75 63.33 68.44 64.54 82.79 81.59
MTA [CVPR’24] 93.18 91.54 85.08 86.03 64.52 64.09 65.96 62.73 83.99 83.11
TDA [CVPR’24] 94.06 90.96 87.71 86.01 68.17 63.06 71.70 64.76 86.23 83.82
DPE [NeurIPS’24] 94.91 92.56 91.18 89.33 68.45 64.74 74.36 68.70 84.87 82.74
O-TPT [CVPR’25] 93.51 91.08 85.96 86.40 63.40 63.08 68.37 64.53 82.72 81.47
SCAP [CVPR’25] 91.52 86.99 86.26 80.21 65.70 63.81 70.50 65.01 83.09 82.94
L-TTA (Ours) 95.12 92.46 91.62 90.22 70.33 65.54 74.91 68.99 85.53 83.33

Methods Aircraft SUN397 DTD EuroSAT UCF101
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

CLIP [ICML’21] 16.56 18.05 60.62 57.93 43.52 36.91 37.74 31.39 64.78 60.67
TPT [NeurIPS’22] 16.75 17.71 64.13 60.48 44.30 38.03 37.69 31.76 66.75 62.86
C-TPT [ICLR’24] 19.17 19.58 63.67 60.40 44.61 39.35 37.72 32.27 66.93 61.75
MTA [CVPR’24] 20.14 20.07 62.89 60.21 43.99 38.01 39.52 32.79 67.47 63.43
TDA [CVPR’24] 20.83 19.95 66.59 62.60 46.30 36.86 57.02 48.25 71.09 64.26
DPE [NeurIPS’24] 25.23 22.20 68.85 65.10 48.36 43.21 56.77 49.47 70.19 64.81
O-TPT [CVPR’25] 18.78 18.68 64.26 60.70 45.08 38.87 38.37 32.75 66.09 61.14
SCAP [CVPR’25] 22.92 19.09 63.73 61.29 44.84 37.70 52.48 45.53 68.54 66.71
L-TTA (Ours) 27.02 24.14 69.79 65.44 51.63 47.50 57.07 48.67 70.77 64.86

Methods Caltech Pets Cars Flowers Food101
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

CLIP [ICML’21] 92.98 90.37 83.80 83.25 62.10 60.78 66.18 62.37 82.34 79.01
TPT [NeurIPS’22] 93.50 91.10 83.71 84.06 63.37 61.93 67.17 62.40 83.46 81.47
C-TPT [ICLR’24] 93.19 90.88 85.50 86.09 63.37 61.81 67.62 63.36 82.30 79.89
MTA [CVPR’24] 93.58 91.47 84.05 84.72 64.43 63.64 64.41 60.93 83.59 81.56
TDA [CVPR’24] 94.14 90.97 87.06 84.06 67.77 60.61 72.80 63.88 85.96 82.00
DPE [NeurIPS’24] 94.67 91.92 90.04 87.20 68.46 61.72 74.17 66.67 83.90 79.70
O-TPT [CVPR’25] 93.15 90.85 85.35 85.90 62.80 61.33 67.70 63.37 82.32 79.87
SCAP [CVPR’25] 91.32 86.92 86.47 78.73 63.90 61.61 68.27 62.14 83.07 82.91
L-TTA (Ours) 95.28 92.94 91.91 87.30 70.44 63.46 74.89 67.22 85.65 80.53

Methods Aircraft SUN397 DTD EuroSAT UCF101
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

CLIP [ICML’21] 15.48 15.81 60.18 54.92 43.37 36.94 37.22 30.12 64.72 58.34
TPT [NeurIPS’22] 15.55 17.17 64.04 57.91 43.76 37.91 37.12 30.63 65.82 59.16
C-TPT [ICLR’24] 17.68 19.07 63.07 57.25 43.37 37.78 37.56 30.22 67.09 59.43
MTA [CVPR’24] 18.16 18.85 62.57 57.17 43.76 38.01 40.31 31.31 67.23 61.84
TDA [CVPR’24] 25.38 20.26 65.40 58.79 44.72 33.66 55.34 53.73 70.39 61.49
DPE [NeurIPS’24] 25.77 21.35 67.89 61.91 47.79 40.51 56.07 47.04 70.32 62.45
O-TPT [CVPR’25] 17.48 18.75 62.86 56.99 43.95 37.96 38.05 31.21 66.82 59.35
SCAP [CVPR’25] 22.83 19.00 63.74 61.33 41.61 35.70 44.64 35.72 68.09 62.70
L-TTA (Ours) 26.67 21.85 68.48 62.40 47.02 37.43 57.72 47.41 71.37 62.82

Table 12: Results on Long-tailed Cross-domain Benchmark under the imbalance ratio of 50.
We conduct 5 runs for each experiment under each imbalance setting and report the Accuracy (Acc.)
and F1-Macro (Mac.). All the methods are built upon CLIP-ViT-B/16 backbone. The best results
are marked in Bold.

Methods Caltech Pets Cars Flowers Food101
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

CLIP [ICML’21] 93.15 89.01 82.05 81.40 60.80 57.28 64.91 56.94 81.92 73.94
TPT [NeurIPS’22] 93.99 90.27 82.31 80.91 62.19 58.94 66.25 57.48 83.11 75.16
C-TPT [ICLR’24] 93.57 90.00 84.55 82.65 62.63 59.58 66.92 58.35 82.13 73.66
MTA [CVPR’24] 93.68 89.90 83.95 82.25 62.39 59.49 65.58 57.06 83.26 75.84
TDA [CVPR’24] 94.79 90.14 83.72 80.34 68.50 55.13 70.82 57.76 85.64 76.21

DPE [NeurIPS’24] 94.97 90.93 89.06 81.01 69.74 56.97 73.32 61.26 83.57 73.59
O-TPT [CVPR’25] 93.57 89.90 84.43 82.74 61.84 59.08 66.81 58.65 82.13 73.72
SCAP [CVPR’24] 91.36 86.97 85.71 72.84 63.89 61.62 65.54 60.13 83.05 82.90

L-TTA (Ours) 95.69 91.47 89.68 84.70 69.52 60.45 73.04 62.84 84.30 76.97

Methods Aircraft SUN397 DTD EuroSAT UCF101
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

CLIP [ICML’21] 11.12 16.47 59.71 49.90 41.78 33.26 36.91 28.99 66.26 55.54
TPT [NeurIPS’22] 11.90 16.38 63.75 52.86 42.33 33.90 36.56 27.77 67.56 58.10
C-TPT [ICLR’24] 15.40 17.64 62.91 52.29 42.89 34.72 38.01 26.10 68.36 56.13
MTA [CVPR’24] 15.12 16.88 61.91 52.40 42.61 34.80 41.52 28.74 68.76 58.91
TDA [CVPR’24] 22.91 16.71 65.44 54.64 43.17 33.08 48.07 45.19 71.92 58.01

DPE [NeurIPS’24] 21.95 20.60 68.03 56.52 46.51 35.75 52.78 41.03 68.07 53.87
O-TPT [CVPR’25] 15.54 17.82 62.25 50.96 42.89 34.93 38.60 28.11 68.06 55.22
SCAP [CVPR’24] 22.80 18.94 62.97 60.80 41.67 35.71 43.43 35.41 62.31 56.91

L-TTA (Ours) 22.79 19.64 68.56 59.76 46.84 37.21 54.79 45.30 69.61 59.58
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Table 13: Results on Long-tailed Cross-domain Benchmark under the imbalance ratio of 10
(upper one) and 20 (lower one). We conduct 5 runs for each experiment under each imbalance
setting and report the Accuracy (Acc.) and F1-Macro (Mac.). All the methods are built upon CLIP-
ResNet50 backbone. The best results are marked in Bold. SCAP (Zhang et al., 2025a) is not
included here, because there’re no implementation to other backbones rather than CLIP-VIT-B/16.

Methods Caltech Pets Cars Flowers Food101
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

TPT [NeurIPS’22] 86.73 83.31 82.07 81.69 56.81 55.49 60.79 56.17 74.27 72.67
C-TPT [ICLR’24] 86.56 82.74 82.41 82.15 54.92 53.94 62.26 58.02 74.51 72.84
MTA [CVPR’24] 85.64 82.68 82.20 82.35 57.09 55.67 60.48 56.21 74.23 72.70
TDA [CVPR’24] 89.43 85.35 86.74 84.73 57.22 52.34 67.94 60.28 77.75 74.54

DPE [NeurIPS’24] 89.71 85.82 86.32 84.31 60.10 55.28 68.28 62.47 75.96 73.45
O-TPT [CVPR’25] 86.77 83.03 82.20 81.88 54.54 53.60 62.44 58.09 74.56 72.94

L-TTA (Ours) 90.89 86.83 87.35 85.08 60.98 55.91 69.50 62.66 78.35 75.34

Methods Aircraft SUN397 DTD EuroSAT UCF101
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

TPT [NeurIPS’22] 12.39 14.22 60.45 56.46 39.15 33.33 17.58 15.90 61.37 54.09
C-TPT [ICLR’24] 13.09 14.74 60.71 56.80 39.15 32.74 19.86 15.69 61.59 54.74
MTA [CVPR’24] 12.86 14.35 59.71 56.07 39.62 33.93 20.24 16.54 61.92 55.16
TDA [CVPR’24] 15.42 13.39 61.66 56.52 45.24 37.55 50.00 45.14 66.49 57.36

DPE [NeurIPS’24] 17.83 15.76 62.89 59.25 49.29 44.02 49.34 38.19 62.89 56.06
O-TPT [CVPR’25] 13.17 14.81 60.44 56.46 39.15 32.79 30.78 28.05 61.75 55.04

L-TTA (Ours) 19.85 18.31 63.45 59.12 50.95 45.66 50.57 45.10 67.06 58.10

Methods Caltech Pets Cars Flowers Food101
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

TPT [NeurIPS’22] 86.22 82.83 81.07 79.61 55.46 52.73 59.85 54.32 73.02 69.72
C-TPT [ICLR’24] 86.43 82.69 81.84 81.33 54.11 52.54 63.61 58.75 73.77 70.61
MTA [CVPR’24] 85.35 82.65 81.58 80.37 55.73 53.15 61.04 55.57 73.65 70.78
TDA [CVPR’24] 88.34 84.17 85.27 80.63 56.49 49.20 68.33 58.93 77.30 72.34

DPE [NeurIPS’24] 90.39 86.25 87.31 84.58 59.50 52.39 66.99 60.41 75.43 70.23
O-TPT [CVPR’25] 86.45 82.63 81.67 80.57 53.52 51.63 61.91 56.89 73.74 70.56

L-TTA (Ours) 90.52 87.42 87.61 85.87 60.58 53.10 69.04 60.67 78.29 71.61

Methods Aircraft SUN397 DTD EuroSAT UCF101
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

TPT [NeurIPS’22] 11.11 13.23 60.34 53.74 38.92 31.22 16.92 15.39 61.49 52.89
C-TPT [ICLR’24] 10.33 12.64 60.52 54.26 39.53 31.60 17.86 16.66 62.01 53.31
MTA [CVPR’24] 11.11 13.09 59.11 52.98 39.30 33.46 18.68 16.37 63.16 54.19
TDA [CVPR’24] 15.34 13.13 61.06 53.73 42.61 32.67 39.00 37.77 66.86 55.10

DPE [NeurIPS’24] 15.25 13.58 63.12 56.85 45.68 40.75 45.99 35.90 62.67 52.50
O-TPT [CVPR’25] 10.62 12.66 60.27 54.28 40.11 32.09 29.11 26.46 61.94 53.11

L-TTA (Ours) 19.40 15.00 63.94 56.06 48.56 40.54 50.08 35.91 67.45 55.02

Table 14: Results on Long-tailed Cross-domain Benchmark under the imbalance ratio of 50.
We conduct 5 runs for each experiment under each imbalance setting and report the Accuracy (Acc.)
and F1-Macro (Mac.). All the methods are built upon CLIP-ResNet50 backbone. The best results
are marked in Bold. SCAP (Zhang et al., 2025a) is not included here, because there’re no imple-
mentation to other backbones rather than CLIP-VIT-B/16.

Methods Caltech Pets Cars Flowers Food101
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

TPT [NeurIPS’22] 85.63 79.80 80.32 75.45 55.09 50.23 60.78 52.72 72.97 63.26
C-TPT [ICLR’24] 85.99 80.02 81.07 75.80 52.59 48.58 60.45 52.82 72.25 63.29
MTA [CVPR’24] 84.15 79.27 79.57 75.34 54.54 49.46 61.32 51.48 73.23 63.82
TDA [CVPR’24] 87.17 82.48 83.97 76.63 57.29 45.11 67.73 53.15 76.85 64.63

DPE [NeurIPS’24] 89.90 82.91 85.09 78.65 58.42 45.03 66.32 54.41 74.68 63.48
O-TPT [CVPR’25] 85.84 79.81 80.44 74.93 52.20 47.80 63.67 54.11 73.20 63.23

L-TTA (Ours) 91.30 84.43 85.21 79.30 59.44 49.35 69.84 55.84 77.28 63.95

Methods Aircraft SUN397 DTD EuroSAT UCF101
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

TPT [NeurIPS’22] 8.40 13.59 60.66 48.88 38.99 29.12 13.00 13.47 63.47 49.20
C-TPT [ICLR’24] 7.98 11.37 60.46 49.96 40.11 29.93 13.76 14.64 64.27 51.39
MTA [CVPR’24] 8.54 12.02 58.75 47.89 38.71 29.71 14.39 15.88 64.17 51.62
TDA [CVPR’24] 14.26 11.16 60.29 49.01 41.78 25.78 31.03 30.82 69.23 53.17

DPE [NeurIPS’24] 17.76 13.66 61.77 50.94 42.06 29.13 49.55 32.97 66.53 49.12
O-TPT [CVPR’25] 8.26 11.63 60.49 49.94 40.66 29.59 24.04 23.96 64.47 51.73

L-TTA (Ours) 18.48 15.88 62.70 51.73 42.86 30.69 51.34 31.86 69.59 54.26
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Table 15: Results on Long-tailed OOD Benchmark. We conduct 5 runs for each experiment and
report the accuracy (Acc.) and macro-F1 (Mac.). All the methods are built upon CLIP-RN50. The
“OOD Average” is calculated by averaging four OOD datasets excluding ImageNet. The best results
are marked in Bold. SCAP (Zhang et al., 2025a) is not included because of the above reason.

imb=10

Methods ImageNet-A ImageNet-R ImageNet-S ImageNet-V2 ImageNet OOD average
Acc Mac. Acc Mac. Acc Mac. Acc Mac. Acc Mac. Acc Mac.

TPT [NeurIPS’22] 25.00 23.17 59.72 57.79 32.59 31.81 55.72 54.28 56.57 50.50 43.26 41.76
C-TPT [ICLR’24] 23.54 21.86 58.13 56.53 32.01 31.35 55.75 52.00 56.44 50.62 42.36 40.44
MTA [CVPR’24] 26.39 25.10 58.05 56.30 36.04 35.78 55.67 54.50 57.30 51.23 44.04 42.92
TDA [CVPR’24] 30.62 27.95 63.00 60.08 35.58 33.31 56.68 50.53 58.13 52.88 46.47 42.97
DPE [NeurIPS’24] 30.38 28.21 63.70 61.03 36.87 35.53 58.39 53.48 57.96 52.16 47.34 44.56
O-TPT [CVPR’25] 22.75 21.30 57.55 55.84 33.55 30.69 55.04 52.47 56.81 50.77 42.22 40.08
L-TTA (Ours) 32.96 30.57 64.88 61.92 37.13 35.93 59.07 54.98 59.82 53.67 48.51 45.85

imb=20

Methods ImageNet-A ImageNet-R ImageNet-S ImageNet-V2 ImageNet OOD average
Acc Mac. Acc Mac. Acc Mac. Acc Mac. Acc Mac. Acc Mac.

TPT [NeurIPS’22] 24.63 22.51 59.57 55.51 31.96 30.55 55.83 54.69 56.06 50.81 43.00 40.82
C-TPT [ICLR’24] 22.96 21.45 57.94 54.15 31.36 30.11 55.79 52.06 54.37 50.27 42.01 39.44
MTA [CVPR’24] 27.53 25.38 58.79 57.83 35.35 34.04 54.22 53.05 57.94 51.02 43.97 42.58
TDA [CVPR’24] 30.83 27.88 63.32 58.08 34.93 32.13 56.58 51.16 58.39 52.65 46.42 42.31
DPE [NeurIPS’24] 31.31 28.75 63.27 58.96 35.07 33.84 57.83 50.81 59.02 53.51 46.87 43.09
O-TPT [CVPR’25] 22.40 20.70 57.47 53.81 31.33 32.98 56.06 52.29 55.76 51.14 41.82 39.95
L-TTA (Ours) 31.53 29.20 66.47 60.27 38.47 35.29 58.05 54.88 59.25 53.17 48.63 44.91

imb=50

Methods ImageNet-A ImageNet-R ImageNet-S ImageNet-V2 ImageNet OOD average
Acc Mac. Acc Mac. Acc Mac. Acc Mac. Acc Mac. Acc Mac.

TPT [NeurIPS’22] 24.28 19.74 60.08 49.66 31.19 27.53 55.03 53.00 55.71 50.82 42.65 37.48
C-TPT [ICLR’24] 22.09 18.07 58.37 48.30 32.31 26.84 56.03 51.75 53.93 49.75 42.20 36.24
MTA [CVPR’24] 27.63 25.38 58.79 57.83 35.35 34.04 54.22 53.05 55.25 50.59 44.00 42.58
TDA [CVPR’24] 30.20 23.71 63.19 50.54 34.10 30.10 56.83 49.00 56.14 52.86 46.08 38.34
DPE [NeurIPS’24] 30.76 24.92 64.81 52.10 35.05 31.07 56.42 47.15 57.22 53.62 46.76 38.81
O-TPT [CVPR’25] 21.38 17.72 57.88 47.87 30.83 26.81 54.95 53.84 56.02 50.00 41.26 36.56
L-TTA (Ours) 30.64 25.46 65.58 58.42 36.11 33.93 57.73 54.80 59.31 53.10 47.52 43.40

Table 16: Head / Tail accuracy on Long-tailed OOD Benchmark. We conduct 5 runs for each
experiment and report the accuracy (Acc.) and macro-F1 (Mac.). All the methods are built upon
CLIP-VIT-B/16. The “OOD Average” is calculated by averaging four OOD datasets excluding
ImageNet. The best results are marked in Bold.

imb=10 ImageNet-A ImageNet-R ImageNet-S ImageNet-V2 ImageNet Average
Head Tail Head Tail Head Tail Head Tail Head Tail Head Tail

TPT [NeurIPS’22] 53.27 50.71 78.91 72.27 48.04 36.52 63.11 55.36 66.61 63.50 61.99 55.67
C-TPT [ICLR’24] 52.17 47.78 77.59 73.70 48.34 38.25 62.12 56.41 66.10 64.87 61.26 56.20
MTA [CVPR’24] 61.07 53.73 80.38 75.22 50.34 43.17 64.74 59.20 68.08 66.19 64.92 59.50
TDA [CVPR’24] 64.47 57.31 85.58 78.31 51.00 41.28 68.45 64.49 70.45 64.92 67.99 61.26
DPE [NeurIPS’24] 64.31 56.79 85.13 78.22 52.35 42.45 69.71 63.61 71.36 66.87 68.57 61.59
O-TPT [CVPR’25] 54.67 50.64 78.15 72.22 48.66 35.10 63.19 56.42 67.14 66.53 62.36 56.18
SCAP [CVPR’25] 62.46 55.72 83.72 72.45 51.86 38.54 68.95 63.43 65.30 65.84 66.46 59.20
L-TTA (Ours) 65.30 56.90 86.00 79.28 53.51 44.00 70.02 65.30 72.04 68.81 69.37 62.86

imb=20 ImageNet-A ImageNet-R ImageNet-S ImageNet-V2 ImageNet Average
Head Tail Head Tail Head Tail Head Tail Head Tail Head Tail

TPT [NeurIPS’22] 52.74 47.92 77.58 74.01 48.17 38.49 61.13 55.47 66.39 62.80 61.20 55.74
C-TPT [ICLR’24] 52.03 46.09 76.52 73.75 48.21 37.54 63.69 55.92 62.35 61.16 60.56 54.89
MTA [CVPR’24] 61.07 53.73 80.38 74.22 49.09 43.87 63.12 58.89 68.04 62.87 64.34 58.72
TDA [CVPR’24] 64.72 56.69 85.33 77.70 50.71 41.66 66.05 66.01 68.30 62.33 67.02 60.88
DPE [NeurIPS’24] 63.49 56.82 85.00 77.66 52.24 42.91 68.12 64.25 70.72 65.61 67.91 61.45
O-TPT [CVPR’25] 54.28 50.42 78.16 73.93 48.49 36.95 63.54 55.07 66.09 62.55 62.11 55.78
SCAP [CVPR’25] 62.33 54.31 83.60 76.51 51.66 36.50 68.55 62.17 65.28 65.10 66.28 58.92
L-TTA (Ours) 65.25 57.12 86.64 78.48 53.66 43.75 68.76 65.34 71.84 68.50 69.23 62.64

imb=50 ImageNet-A ImageNet-R ImageNet-S ImageNet-V2 ImageNet Average
Head Tail Head Tail Head Tail Head Tail Head Tail Head Tail

TPT [NeurIPS’22] 52.47 37.25 77.49 72.77 46.89 37.06 60.49 52.59 65.90 59.07 60.65 51.75
C-TPT [ICLR’24] 53.81 35.00 76.35 72.69 46.12 36.76 60.59 50.90 63.72 59.37 60.12 50.94
MTA [CVPR’24] 61.07 53.73 80.37 75.22 50.39 41.17 64.74 59.15 65.96 60.41 64.51 57.94
TDA [CVPR’24] 64.50 56.52 85.41 78.33 50.24 42.22 68.15 63.54 66.51 63.06 66.96 60.73
DPE [NeurIPS’24] 63.16 55.50 85.01 78.83 49.54 43.36 68.89 62.75 67.03 65.97 66.73 61.28
O-TPT [CVPR’25] 52.88 51.33 78.02 72.65 48.04 35.09 61.10 50.46 62.28 60.98 60.46 54.10
SCAP [CVPR’25] 62.31 56.05 82.24 76.30 51.23 37.35 68.30 61.29 64.02 59.59 65.62 58.12
L-TTA (Ours) 64.57 57.93 86.81 78.95 51.75 42.57 68.15 63.44 67.84 67.17 67.82 62.01
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Table 17: The list of prompts. Notably, following DPE (Zhang et al., 2024a), we also employ the
CuPL (Pratt et al., 2023) methods to further expand prompt pools.

Datasets Prompts
Caltech101 “a photo of a {CLASS}.”

Pets “a photo of a {CLASS}, a type of food.”
Cars “a photo of a {CLASS}.”

Flowers “a photo of a {CLASS}, a type of flower.”
Food101 “itap of a {CLASS}, a type of food.”
SUN397 “a photo of a {CLASS}.”

DTD “{CLASS} texture.”
EuroSAT “a centered satellie photo of {CLASS}.”
UCF101 “a photo of a person doing {CLASS}.”
Aircraft “a photo of a {CLASS}, a type of aircraft.”

ImageNet “a bad photo of the {CLASS}.”
ImageNet-V “a origami of the {CLASS}.”
ImageNet-S “a photo of the large {CLASS}.”
ImageNet-A “a {CLASS} in a video game.”

ImageNet-R “art of the {CLASS}”
“a photo of the small {CLASS}”

Table 18: Head / Tail Accuracy on Long-tailed Cross-domain Benchmark under the imbalance
ratio of 10 (upper one) and 20 (lower one). We conduct 5 runs for each experiment under each
imbalance setting. All the methods are built upon CLIP-ViT-B/16 backbone. The best results are
marked in Bold.

Methods Caltech Pets Cars Flowers Food101
Head Tail Head Tail Head Tail Head Tail Head Tail

TPT [NeurIPS’22] 95.74 89.39 83.02 81.44 64.53 58.89 69.17 64.58 85.71 77.30
C-TPT [ICLR’24] 94.91 90.61 86.66 85.27 65.59 60.34 70.84 65.36 85.53 76.88
MTA [CVPR’24] 95.37 91.74 87.01 82.50 67.39 61.33 67.53 63.41 86.73 79.85
TDA [CVPR’24] 97.07 88.44 91.71 89.02 71.25 66.52 73.40 67.32 88.20 81.68

DPE [NeurIPS’24] 96.89 91.15 94.08 86.01 70.39 66.01 77.24 70.59 86.07 81.91
O-TPT [CVPR’25] 93.74 88.79 84.23 80.86 62.78 58.47 69.97 65.10 85.06 76.43
SCAP [CVPR’25] 95.03 86.26 87.39 85.38 65.19 63.43 72.93 62.31 86.82 81.88

L-TTA (Ours) 96.36 92.96 94.28 88.36 71.15 69.71 78.34 71.04 88.49 84.78

Methods Aircraft SUN397 DTD EuroSAT UCF101
Head Tail Head Tail Head Tail Head Tail Head Tail

TPT [NeurIPS’22] 19.40 10.30 65.80 59.96 45.67 40.60 40.12 31.38 70.11 55.71
C-TPT [ICLR’24] 23.17 9.29 64.03 63.09 44.56 44.32 38.97 36.77 71.30 56.85
MTA [CVPR’24] 26.19 11.34 63.76 62.60 46.35 41.91 39.10 39.85 70.18 64.04
TDA [CVPR’24] 24.24 17.03 67.54 67.13 45.47 44.15 58.17 57.08 73.84 67.10

DPE [NeurIPS’24] 26.87 22.45 69.46 67.84 49.70 45.59 57.50 57.62 72.67 66.46
O-TPT [CVPR’25] 21.21 10.04 61.32 59.07 46.56 41.07 40.35 32.01 71.09 55.80
SCAP [CVPR’25] 24.53 21.45 65.13 63.19 47.22 40.20 53.94 47.77 72.47 58.76

L-TTA (Ours) 29.83 22.71 70.27 70.16 54.99 47.59 58.33 56.69 72.39 68.26

Methods Caltech Pets Cars Flowers Food101
Head Tail Head Tail Head Tail Head Tail Head Tail

TPT [NeurIPS’22] 95.78 87.98 85.50 79.39 64.57 59.71 69.51 61.80 85.89 76.85
C-TPT [ICLR’24] 95.29 88.10 85.94 85.01 64.47 60.23 69.67 62.96 84.31 79.06
MTA [CVPR’24] 95.42 89.75 85.10 83.00 64.89 62.97 65.94 63.96 85.46 80.41
TDA [CVPR’24] 95.17 93.10 90.29 80.33 67.96 67.83 74.70 67.21 87.19 83.87

DPE [NeurIPS’24] 96.63 91.07 93.77 83.42 69.49 68.66 77.76 66.09 85.19 81.99
O-TPT [CVPR’25] 94.75 88.06 83.91 79.91 65.17 56.43 73.32 59.12 85.60 72.48
SCAP [CVPR’25] 93.03 88.18 87.25 85.94 65.30 63.48 73.12 57.20 86.90 75.91

L-TTA (Ours) 97.55 91.24 94.93 85.97 71.05 69.85 79.70 69.98 87.23 83.71

Methods Aircraft SUN397 DTD EuroSAT UCF101
Head Tail Head Tail Head Tail Head Tail Head Tail

TPT [NeurIPS’22] 19.11 7.77 64.75 62.00 45.74 39.00 39.18 32.10 70.01 56.08
C-TPT [ICLR’24] 21.00 9.25 63.90 60.19 43.95 41.86 39.26 33.83 71.49 58.15
MTA [CVPR’24] 22.24 9.65 62.85 62.14 45.77 40.12 40.65 36.64 70.05 60.67
TDA [CVPR’24] 26.36 21.63 66.14 65.60 45.16 41.76 57.16 48.93 72.35 65.10

DPE [NeurIPS’24] 27.89 21.17 68.45 67.61 47.55 45.77 56.56 54.55 72.16 65.95
O-TPT [CVPR’25] 19.92 11.38 63.27 61.07 46.95 36.63 40.92 31.62 70.01 55.06
SCAP [CVPR’25] 24.26 21.37 64.20 63.13 43.60 40.35 46.32 39.49 72.69 58.69

L-TTA (Ours) 29.64 22.00 68.66 68.48 47.95 46.39 57.76 55.75 73.07 67.85
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Table 19: Head / Tail Accuracy on Long-tailed Cross-domain Benchmark under the imbalance
ratio of 50. We conduct 5 runs for each experiment under each imbalance setting. All the methods
are built upon CLIP-VIT-B/16 backbone. The best results are marked in Bold.

Methods Caltech Pets Cars Flowers Food101
Head Tail Head Tail Head Tail Head Tail Head Tail

TPT [NeurIPS’22] 94.55 90.16 84.16 77.95 66.05 53.65 68.94 59.86 85.78 75.02
C-TPT [ICLR’24] 94.41 90.99 85.63 83.23 66.57 53.53 69.21 61.51 83.63 76.01
MTA [CVPR’24] 95.20 90.59 83.97 83.54 65.26 55.88 67.19 62.10 86.33 77.49
TDA [CVPR’24] 96.35 91.10 86.40 78.93 69.25 68.02 75.46 60.55 85.20 79.70

DPE [NeurIPS’24] 96.80 90.78 90.25 83.64 70.51 68.47 76.56 69.32 85.67 81.09
O-TPT [CVPR’25] 96.33 87.59 86.98 79.32 64.81 55.69 68.94 59.48 83.97 79.20
SCAP [CVPR’25] 94.03 86.02 86.71 83.50 64.41 63.42 66.93 62.31 82.85 74.90

L-TTA (Ours) 97.80 91.74 91.14 86.44 71.50 69.54 77.91 70.31 87.51 82.36

Methods Aircraft SUN397 DTD EuroSAT UCF101
Head Tail Head Tail Head Tail Head Tail Head Tail

TPT [NeurIPS’22] 13.85 8.13 64.78 60.05 43.45 39.69 38.13 31.46 71.14 60.80
C-TPT [ICLR’24] 18.10 8.82 62.84 62.65 43.88 39.36 40.29 31.35 71.78 63.13
MTA [CVPR’24] 17.63 9.73 61.86 61.38 44.09 40.29 43.15 38.43 71.95 64.14
TDA [CVPR’24] 25.98 15.03 66.18 63.89 45.35 39.72 50.49 41.18 72.39 64.60

DPE [NeurIPS’24] 26.47 17.09 68.27 67.53 46.76 43.18 54.00 50.44 70.19 65.66
O-TPT [CVPR’25] 15.38 10.58 63.13 61.18 43.73 37.41 40.25 32.81 71.30 61.30
SCAP [CVPR’25] 25.12 17.26 63.08 63.13 42.91 40.20 48.46 35.50 69.58 51.87

L-TTA (Ours) 26.62 20.77 68.43 68.10 48.88 43.64 57.25 52.04 72.74 67.94

Table 20: Detailed Accuracy on Long-tailed Noise Benchmark under the severity of 0.1 (upper
one) and 0.2 (lower one). We conduct 5 runs for each experiment under each imbalance setting.
All the methods are built upon CLIP-ViT-B/16 backbone. The best results are marked in Bold.

Methods Average Caltech Pets Cars Flowers Food101
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

TPT [NeurIPS’22] 54.51 52.16 92.38 88.79 78.94 78.47 57.02 57.01 61.46 56.41 69.71 67.91
C-TPT [ICLR’24] 53.61 51.08 91.54 87.83 77.97 77.16 55.29 55.38 61.52 57.03 66.03 64.15
MTA [CVPR’24] 54.38 51.66 91.75 87.96 78.24 77.90 57.99 57.72 59.87 54.95 67.97 66.62
TDA [CVPR’24] 56.27 52.26 91.46 86.91 81.40 79.61 59.43 53.83 65.11 57.79 69.21 66.53
DPE [NeurIPS’24] 57.33 53.56 92.86 89.90 83.27 80.15 61.63 57.14 66.52 60.66 67.52 61.66
O-TPT [CVPR’25] 53.53 51.48 91.62 87.84 78.24 77.42 54.70 54.82 61.65 57.08 66.00 64.18
SCAP [CVPR’25] 55.32 51.45 91.01 87.63 82.79 76.96 56.52 55.10 59.30 54.10 70.35 63.88
L-TTA (Ours) 59.69 55.92 92.91 90.51 85.44 82.03 62.76 58.40 68.13 61.14 71.50 67.98

Methods Aircraft SUN397 DTD EuroSAT UCF101 ImageNet
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Head Tail

TPT [NeurIPS’22] 12.54 15.24 58.50 55.09 39.00 35.37 12.41 9.36 59.39 53.78 58.22 56.36
C-TPT [ICLR’24] 14.18 15.50 58.09 54.44 37.28 33.90 12.24 9.05 58.29 53.23 57.25 54.25
MTA [CVPR’24] 15.69 15.49 58.43 54.84 37.75 34.24 13.93 8.95 58.57 52.85 58.00 56.73
TDA [CVPR’24] 19.78 17.00 60.48 56.51 38.06 31.11 11.92 13.92 63.68 55.50 58.46 56.19
DPE [NeurIPS’24] 19.50 16.14 62.56 57.61 39.02 36.02 15.06 14.79 63.47 57.04 59.20 58.07
O-TPT [CVPR’25] 14.57 16.29 57.66 54.17 37.12 33.77 12.73 9.90 58.18 53.30 56.35 57.50
SCAP [CVPR’25] 19.81 18.07 57.21 55.74 36.88 35.12 14.78 7.30 62.67 57.49 57.20 54.54
L-TTA (Ours) 22.48 20.51 62.99 59.02 45.86 40.15 18.10 16.68 65.77 59.15 60.64 59.55

Methods Average Caltech Pets Cars Flowers Food101
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

TPT [NeurIPS’22] 42.83 40.13 86.94 81.21 67.96 65.79 44.11 43.34 50.15 44.26 39.13 39.33
C-TPT [ICLR’24] 41.48 38.56 85.51 79.58 66.57 63.94 42.90 42.52 47.88 42.64 35.71 35.20
MTA [CVPR’24] 38.09 38.72 84.67 78.83 66.29 64.48 45.38 44.70 4.74 40.08 34.87 36.27
TDA [CVPR’24] 42.92 38.21 85.89 79.90 67.24 63.57 47.45 42.01 46.83 40.52 37.12 35.98
DPE [NeurIPS’24] 43.82 40.77 86.99 82.57 65.64 63.34 47.33 44.76 49.61 44.73 36.30 36.48
O-TPT [CVPR’25] 41.18 38.55 85.64 79.83 67.26 64.83 42.02 41.48 47.33 42.09 35.56 35.12
SCAP [CVPR’25] 42.87 39.48 84.99 77.83 67.70 62.42 46.11 42.30 49.03 41.88 37.05 38.00
L-TTA (Ours) 46.66 43.36 88.07 84.25 69.60 66.80 49.29 44.51 51.14 46.73 39.38 38.64

Methods Aircraft SUN397 DTD EuroSAT UCF101 ImageNet
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

TPT [NeurIPS’22] 10.52 12.03 47.94 44.47 23.71 22.45 7.97 4.95 49.94 43.85 42.80 39.75
C-TPT [ICLR’24] 8.65 8.88 46.25 42.94 24.64 22.70 9.36 4.93 47.52 41.54 41.24 39.30
MTA [CVPR’24] 10.44 10.88 45.80 42.23 22.15 20.25 13.28 5.93 47.19 40.43 44.17 41.88
TDA [CVPR’24] 12.53 11.77 46.25 41.87 23.40 16.31 12.08 8.07 50.34 41.04 43.01 39.28
DPE [NeurIPS’24] 14.57 12.07 48.61 43.73 25.74 25.43 14.80 10.58 48.01 42.42 44.38 42.31
O-TPT [CVPR’25] 8.72 9.25 45.23 41.92 24.49 24.35 7.62 4.67 47.14 41.17 42.00 39.35
SCAP [CVPR’25] 9.60 11.84 45.55 43.07 25.79 23.63 15.68 11.09 47.61 41.75 42.48 40.52
L-TTA (Ours) 16.40 15.60 50.37 45.55 31.51 30.12 17.49 14.18 52.72 46.38 47.26 44.15
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Table 21: Detailed Accuracy on Long-tailed Noise Benchmark under the severity ratio of 0.4.
We conduct 5 runs for each experiment under each imbalance setting. All the methods are built upon
CLIP-VIT-B/16 backbone. The best results are marked in Bold.

Methods Average Caltech Pets Cars Flowers Food101
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

TPT [NeurIPS’22] 21.54 18.75 66.30 57.13 34.67 31.35 17.09 15.74 21.22 17.41 6.19 6.85
C-TPT [ICLR’24] 19.74 17.37 62.95 53.42 29.39 27.74 16.01 14.57 19.38 15.92 5.56 5.47
MTA [CVPR’24] 20.17 16.55 63.29 53.80 27.51 25.51 15.15 14.56 16.88 12.89 4.12 4.29
TDA [CVPR’24] 20.44 16.02 62.27 54.15 26.30 20.17 17.03 14.07 16.59 13.25 7.06 6.29
DPE [NeurIPS’24] 20.18 17.66 64.06 59.02 25.46 21.23 16.37 14.32 18.58 16.43 4.05 5.11
O-TPT [CVPR’25] 18.83 16.81 63.12 53.78 30.09 28.06 15.42 14.08 18.89 15.43 5.59 5.41
SCAP [CVPR’25] 19.63 17.05 63.17 52.79 28.58 25.66 17.72 14.91 16.31 11.81 6.05 6.71
L-TTA (Ours) 23.60 20.65 66.36 60.28 30.89 26.76 18.39 15.48 20.76 20.28 7.76 7.15

Methods Aircraft SUN397 DTD EuroSAT UCF101 ImageNet
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

TPT [NeurIPS’22] 4.67 4.65 19.13 17.22 12.01 10.60 3.51 1.75 26.15 21.67 26.04 21.88
C-TPT [ICLR’24] 3.97 4.06 17.15 15.94 11.70 10.35 3.45 2.09 23.07 20.87 24.50 20.67
MTA [CVPR’24] 4.52 4.25 14.87 14.31 9.04 7.41 16.65 4.25 23.13 18.51 26.70 22.25
TDA [CVPR’24] 4.36 2.67 16.56 14.53 12.79 8.58 15.18 5.16 21.86 16.45 24.88 20.94
DPE [NeurIPS’24] 5.99 4.21 19.37 18.40 7.80 7.72 10.88 4.46 22.44 21.33 26.99 22.07
O-TPT [CVPR’25] 3.89 3.84 15.77 14.34 10.92 9.96 3.32 3.89 15.77 15.19 24.34 20.92
SCAP [CVPR’25] 4.38 5.57 17.30 16.70 10.66 10.17 5.08 4.71 20.13 17.99 26.52 20.50
L-TTA (Ours) 8.07 7.59 21.68 19.15 15.44 12.01 16.67 10.95 23.13 21.84 30.42 25.61

Table 22: Ablation study on the Per-dataset Hyper-parameter FineTuning (PHFT).
Method Caltech Pets Cars Flowers Food101

Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.
w/o PHFT 94.98 92.43 91.50 89.85 69.91 65.02 74.79 68.78 85.27 83.16

L-TTA 95.12 92.46 91.62 90.22 70.33 65.54 74.91 68.99 85.53 83.33

Method Aircraft SUN397 DTD EuroSAT UCF101
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

w/o PHFT 26.63 23.31 69.52 64.40 51.39 46.63 56.82 47.82 69.56 63.58
L-TTA 27.02 24.14 69.99 64.68 51.63 47.50 57.07 48.27 70.77 63.86

Method ImageNet ImageNet-A ImageNet-R ImageNet-S ImageNet-V2
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

w/o PHFT 72.12 65.27 61.56 55.26 82.48 78.09 49.98 45.45 68.60 63.87
L-TTA 71.30 65.83 61.78 55.97 82.86 78.56 50.25 45.99 68.99 64.19

Table 23: Averaged Accuracy on Long-tailed Corruption Benchmark of 16 corruption types:
gaussian noise, shot noise, impulse noise, speckle noise, defocus blur, glass blur, motion blur,
zoom blur, snow, frost, fog, brightness, contrast, jpeg compression, pixelate, saturate, elas-
tic transform. We conduct 5 runs for each experiment under each imbalance setting. All the meth-
ods are built upon CLIP-VIT-B/16 backbone. The best results are marked in Bold.

Method Caltech Pets Cars Flowers Food101
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

CLIP [ICML’21] 72.29 67.18 58.13 57.24 35.53 35.18 42.03 38.57 48.43 47.12
TPT [NeurIPS’22] 73.59 68.26 60.40 59.31 37.10 36.47 43.38 39.89 50.03 48.67
C-TPT [ICLR’24] 72.04 67.71 59.48 58.94 35.80 35.25 43.26 39.83 49.13 47.69
MTA [CVPR’24] \ \ \ \ \ \ \ \ \ \
TDA [CVPR’24] 73.85 68.36 60.97 58.57 40.29 36.40 46.65 40.73 51.54 49.31

ZERO [NeurIPS’24] 70.29 65.25 57.17 55.22 36.34 34.81 42.46 37.70 48.35 46.15
DPE [NeurIPS’24] 73.95 70.00 61.21 59.25 40.56 38.49 46.50 42.24 51.52 49.78
O-TPT [CVPR’25] 72.02 67.23 58.70 58.32 35.44 34.89 42.98 39.55 48.09 46.46
SCAP [CVPR’25] 72.82 68.25 60.13 60.74 37.44 36.46 44.87 41.64 50.07 48.47

L-TTA (Ours) 75.08 72.51 64.56 62.99 44.76 41.11 52.27 47.66 54.23 52.56

Method Aircraft SUN397 DTD EuroSAT UCF101
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

CLIP [ICML’21] 9.93 10.17 39.37 37.08 25.64 21.68 25.47 18.72 41.74 38.00
TPT [NeurIPS’22] 11.26 11.56 41.11 38.66 27.45 23.39 27.30 21.03 43.34 39.58
C-TPT [ICLR’24] 10.54 10.02 38.83 36.10 25.90 21.95 23.09 18.01 41.39 37.35
MTA [CVPR’24] \ \ \ \ \ \ \ \ \ \
TDA [CVPR’24] 12.70 10.35 43.03 39.42 27.50 21.26 28.93 25.11 46.91 40.53

ZERO [NeurIPS’24] 10.48 9.59 39.44 36.74 25.60 21.32 24.40 19.43 42.98 38.45
DPE [NeurIPS’24] 14.88 12.95 44.17 41.10 29.51 26.16 31.39 26.41 42.00 37.65
O-TPT [CVPR’25] 10.62 10.00 38.26 35.33 25.29 20.91 22.73 17.44 41.06 36.72
SCAP [CVPR’25] 11.19 11.00 41.81 39.19 28.07 23.59 29.86 24.27 45.25 40.54

L-TTA (Ours) 18.07 16.31 45.82 43.13 35.38 30.85 38.80 33.36 49.37 43.97
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Table 24: Detailed Accuracy on Long-tailed Corruption Benchmark of shot noise. We conduct
5 runs for each experiment under each imbalance setting. All the methods are built upon CLIP-
VIT-B/16 backbone. The best results are marked in Bold.

Method Caltech Pets Cars Flowers Food101
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

CLIP [ICML’21] 91.04 86.94 77.48 76.30 55.31 55.65 57.73 53.79 66.34 64.71
TPT [NeurIPS’22] 92.72 89.65 82.21 81.92 60.35 60.45 63.98 59.06 73.52 72.09
C-TPT [ICLR’24] 88.28 84.70 83.03 81.90 61.96 60.51 61.10 56.45 76.14 74.88
MTA [CVPR’24] \ \ \ \ \ \ \ \ \ \
TDA [CVPR’24] 91.79 87.29 81.47 78.12 61.99 56.52 64.19 57.47 70.69 67.92

ZERO [NeurIPS’24] 90.37 86.76 77.97 76.60 55.34 55.21 57.55 52.75 68.56 65.53
DPE [NeurIPS’24] 92.56 90.10 83.90 81.77 63.68 59.18 66.13 60.58 70.38 68.30
O-TPT [CVPR’25] 90.37 86.54 78.74 78.54 55.45 55.37 58.17 54.63 65.24 63.65
SCAP [CVPR’25] 90.78 86.96 82.09 82.42 58.65 56.54 61.62 58.53 66.79 62.73

L-TTA (Ours) 92.48 89.04 84.10 82.47 62.87 57.28 70.98 66.21 70.83 68.46

Method Aircraft SUN397 DTD EuroSAT UCF101
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

CLIP [ICML’21] 12.86 14.64 56.72 53.85 34.32 30.72 16.00 13.12 56.92 51.61
TPT [NeurIPS’22] 14.19 15.60 61.59 58.01 40.41 36.74 19.95 17.26 62.86 57.87
C-TPT [ICLR’24] 8.03 7.29 54.92 51.78 38.10 34.37 16.94 14.98 57.58 51.88
MTA [CVPR’24] \ \ \ \ \ \ \ \ \ \
TDA [CVPR’24] 20.09 16.66 61.06 56.56 37.29 29.78 23.24 20.18 65.70 56.88

ZERO [NeurIPS’24] 13.56 15.02 56.66 53.03 34.79 29.68 14.02 10.27 56.92 51.05
DPE [NeurIPS’24] 20.87 19.53 64.10 60.57 43.84 40.89 23.33 20.53 11.86 14.37
O-TPT [CVPR’25] 15.28 14.97 56.06 52.07 35.57 29.02 16.58 10.51 55.27 49.53
SCAP [CVPR’25] 12.15 11.18 60.12 56.04 38.43 31.99 19.51 12.77 62.81 57.03

L-TTA (Ours) 19.21 19.29 65.20 60.93 47.55 43.38 23.37 20.78 66.16 59.57

Table 25: Detailed Accuracy on Long-tailed Corruption Benchmark of impulse noise. We con-
duct 5 runs for each experiment under each imbalance setting. All the methods are built upon
CLIP-VIT-B/16 backbone. The best results are marked in Bold.

Method Caltech Pets Cars Flowers Food101
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

CLIP [ICML’21] 78.57 71.12 60.88 60.22 31.70 31.16 40.73 36.08 36.22 36.13
TPT [NeurIPS’22] 81.62 69.68 75.26 71.82 32.67 31.98 49.66 44.76 40.99 40.87
C-TPT [ICLR’24] 83.15 83.77 74.57 72.71 31.85 31.74 47.76 44.98 42.85 40.54
MTA [CVPR’24] 82.41 80.28 76.46 70.34 30.70 30.01 41.10 37.09 35.47 30.05
TDA [CVPR’24] 80.98 73.08 65.58 61.11 36.25 31.67 44.76 38.94 40.94 38.93

ZERO [NeurIPS’24] 79.24 71.14 62.13 62.01 33.04 32.28 41.53 36.24 36.56 36.78
DPE [NeurIPS’24] 81.47 79.20 56.63 55.13 33.62 30.70 42.36 41.07 37.88 38.02
O-TPT [CVPR’25] 79.42 72.26 63.10 61.88 32.07 30.84 41.10 36.52 36.10 34.81
SCAP [CVPR’25] 78.47 71.23 56.94 57.48 30.70 27.84 44.79 38.49 36.28 35.23

L-TTA (Ours) 86.36 80.76 61.49 59.55 35.31 32.13 52.72 48.94 38.86 37.64

Method Aircraft SUN397 DTD EuroSAT UCF101
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

CLIP [ICML’21] 7.72 8.91 35.77 34.22 17.47 15.91 6.70 3.96 38.30 30.67
TPT [NeurIPS’22] 9.28 11.12 42.19 39.79 29.01 25.69 16.18 15.47 43.52 37.04
C-TPT [ICLR’24] 11.85 11.96 44.45 41.54 30.11 25.79 19.95 10.94 43.02 37.29
MTA [CVPR’24] 7.57 5.96 50.42 46.65 25.98 20.23 18.94 12.47 51.85 42.59
TDA [CVPR’24] 9.27 8.05 41.38 37.45 19.81 13.77 12.66 8.23 43.41 34.93

ZERO [NeurIPS’24] 8.50 9.04 34.65 33.37 17.00 15.97 4.68 2.99 38.68 30.90
DPE [NeurIPS’24] 14.49 14.94 40.47 38.92 17.78 18.91 11.02 5.18 11.70 12.46
O-TPT [CVPR’25] 8.18 7.22 35.04 32.06 18.41 14.41 6.31 4.30 37.58 32.04
SCAP [CVPR’25] 10.19 10.85 46.89 46.73 24.44 19.16 8.72 7.90 46.42 42.09

L-TTA (Ours) 10.90 10.02 50.99 48.78 29.46 26.97 24.88 19.26 48.30 34.36
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Table 26: Detailed Accuracy on Long-tailed Corruption Benchmark of speckle noise. We con-
duct 5 runs for each experiment under each imbalance setting. All the methods are built upon
CLIP-VIT-B/16 backbone. The best results are marked in Bold.

Method Caltech Pets Cars Flowers Food101
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

CLIP [ICML’21] 89.16 84.61 73.94 71.96 51.38 51.72 48.81 44.67 53.38 51.15
TPT [NeurIPS’22] 89.63 85.33 74.62 72.82 52.80 52.59 47.73 43.67 53.04 50.80
C-TPT [ICLR’24] 88.38 82.57 72.42 70.28 53.10 52.43 44.09 39.84 51.21 50.92
MTA [CVPR’24] \ \ \ \ \ \ \ \ \ \
TDA [CVPR’24] 90.28 85.53 75.92 73.29 58.54 53.30 55.45 49.75 57.99 55.04

ZERO [NeurIPS’24] 88.78 84.16 74.21 71.62 51.03 51.24 49.60 45.34 55.58 52.73
DPE [NeurIPS’24] 89.29 87.05 77.86 77.08 59.69 55.22 58.53 53.85 57.32 55.87
O-TPT [CVPR’25] 88.20 83.79 74.84 73.41 52.00 51.79 50.64 46.82 52.79 50.30
SCAP [CVPR’25] 87.98 80.85 76.48 75.59 55.30 54.21 54.64 50.28 59.64 57.70

L-TTA (Ours) 92.85 88.63 80.97 79.31 61.52 55.77 61.16 54.77 57.79 56.27

Method Aircraft SUN397 DTD EuroSAT UCF101
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

CLIP [ICML’21] 11.15 12.38 52.99 50.00 29.33 26.21 18.51 13.37 53.08 47.38
TPT [NeurIPS’22] 13.41 14.46 53.59 50.28 28.05 24.60 18.36 13.24 52.69 46.31
C-TPT [ICLR’24] 12.95 14.64 51.65 49.93 25.15 24.24 16.48 15.74 50.05 48.69
MTA [CVPR’24] \ \ \ \ \ \ \ \ \ \
TDA [CVPR’24] 14.56 12.55 57.06 52.55 31.20 24.56 22.04 13.66 61.30 52.22

ZERO [NeurIPS’24] 11.61 12.90 53.63 49.76 29.80 26.15 16.00 10.60 53.95 48.01
DPE [NeurIPS’24] 21.26 19.74 61.27 57.90 34.95 33.37 26.86 18.68 60.91 53.58
O-TPT [CVPR’25] 11.85 11.52 52.50 48.57 29.80 25.46 18.78 11.25 53.02 46.96
SCAP [CVPR’25] 13.12 12.75 57.14 50.15 30.62 29.85 24.19 12.64 60.95 52.05

L-TTA (Ours) 17.50 16.68 61.54 57.17 39.44 37.74 27.42 20.47 60.82 54.97

Table 27: Detailed Accuracy on Long-tailed Corruption Benchmark of defocus blur. We con-
duct 5 runs for each experiment under each imbalance setting. All the methods are built upon
CLIP-VIT-B/16 backbone. The best results are marked in Bold.

Method Caltech Pets Cars Flowers Food101
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

CLIP [ICML’21] 44.96 37.04 19.46 17.69 3.12 2.33 12.78 9.48 9.88 8.04
TPT [NeurIPS’22] 45.86 37.79 18.83 17.13 3.82 2.95 12.78 9.54 10.35 8.14
C-TPT [ICLR’24] 41.77 34.51 18.35 18.26 3.21 2.43 13.09 9.84 11.21 8.92
MTA [CVPR’24] \ \ \ \ \ \ \ \ \ \
TDA [CVPR’24] 45.69 37.67 18.81 16.62 3.51 2.31 13.94 9.58 11.43 9.69

ZERO [NeurIPS’24] 41.82 32.53 14.77 11.13 2.59 2.51 13.70 10.72 12.03 9.57
DPE [NeurIPS’24] 48.89 43.20 17.35 16.97 3.24 2.28 8.36 8.84 11.25 9.40
O-TPT [CVPR’25] 42.70 35.26 18.42 18.32 3.27 2.44 12.97 9.71 11.14 8.72
SCAP [CVPR’25] 40.90 38.33 19.58 19.91 3.99 3.80 10.79 10.98 12.94 12.12

L-TTA (Ours) 49.67 44.18 25.12 25.01 14.65 6.48 24.85 22.09 18.04 17.50

Method Aircraft SUN397 DTD EuroSAT UCF101
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

CLIP [ICML’21] 1.79 0.95 9.42 8.16 6.71 5.88 22.95 10.26 11.59 10.37
TPT [NeurIPS’22] 2.49 1.85 8.71 7.31 7.07 6.14 23.83 11.42 13.02 11.58
C-TPT [ICLR’24] 1.95 0.64 7.65 6.93 5.15 4.24 10.48 5.74 10.05 8.69
MTA [CVPR’24] \ \ \ \ \ \ \ \ \ \
TDA [CVPR’24] 1.64 0.70 11.02 8.27 7.96 5.13 22.24 12.79 14.98 10.20

ZERO [NeurIPS’24] 2.49 1.60 10.40 9.79 5.77 4.38 20.01 8.76 14.34 12.07
DPE [NeurIPS’24] 3.58 3.47 12.61 11.80 12.95 11.79 29.23 19.24 8.42 7.58
O-TPT [CVPR’25] 2.26 0.69 7.79 7.04 4.84 3.85 11.11 6.68 10.00 8.68
SCAP [CVPR’25] 1.29 2.02 10.15 9.42 12.34 10.44 23.88 10.86 12.36 11.02

L-TTA (Ours) 8.26 6.77 12.34 11.52 18.30 14.61 32.00 20.74 23.56 18.16
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Table 28: Detailed Accuracy on Long-tailed Corruption Benchmark of glass blur. We conduct
5 runs for each experiment under each imbalance setting. All the methods are built upon CLIP-
VIT-B/16 backbone. The best results are marked in Bold.

Method Caltech Pets Cars Flowers Food101
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

CLIP [ICML’21] 77.77 70.02 59.97 57.35 22.61 21.05 37.06 32.76 37.96 37.38
TPT [NeurIPS’22] 79.16 72.51 59.80 57.05 23.08 21.31 37.12 32.82 38.84 38.48
C-TPT [ICLR’24] 79.07 72.14 61.50 59.05 22.69 21.42 39.27 34.77 37.76 36.35
MTA [CVPR’24] \ \ \ \ \ \ \ \ \ \
TDA [CVPR’24] 80.45 72.20 64.40 60.96 28.08 23.53 43.24 36.96 43.00 40.56

ZERO [NeurIPS’24] 78.32 70.68 62.82 60.00 24.65 22.71 37.49 32.66 41.67 40.86
DPE [NeurIPS’24] 82.08 74.47 62.18 59.13 25.21 22.11 41.01 39.35 40.33 40.27
O-TPT [CVPR’25] 78.57 71.63 61.57 59.02 22.85 21.36 39.39 34.78 37.78 36.31
SCAP [CVPR’25] 80.22 75.69 62.15 81.13 22.45 21.78 40.25 35.62 39.08 38.08

L-TTA (Ours) 82.76 78.39 67.61 64.78 31.24 30.26 43.39 38.27 43.18 42.22

Method Aircraft SUN397 DTD EuroSAT UCF101
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

CLIP [ICML’21] 6.78 6.91 35.16 32.69 17.63 14.20 27.79 21.09 37.42 33.72
TPT [NeurIPS’22] 6.87 7.33 36.41 34.02 18.28 14.65 28.54 22.38 37.86 34.32
C-TPT [ICLR’24] 5.38 4.93 32.93 29.78 17.78 13.66 13.26 13.94 37.20 32.49
MTA [CVPR’24] \ \ \ \ \ \ \ \ \ \
TDA [CVPR’24] 5.84 4.92 38.52 34.19 18.41 11.17 30.89 32.22 43.78 36.52

ZERO [NeurIPS’24] 8.26 8.58 37.30 34.27 19.50 17.13 24.76 18.10 40.98 36.20
DPE [NeurIPS’24] 10.67 10.20 40.51 39.13 21.06 21.82 35.60 26.93 47.49 42.51
O-TPT [CVPR’25] 5.14 4.84 32.70 29.58 17.47 13.56 14.24 14.40 37.14 32.23
SCAP [CVPR’25] 6.20 7.19 38.94 34.62 20.85 15.11 36.39 28.28 42.64 37.50

L-TTA (Ours) 14.22 12.95 42.11 40.49 23.89 21.42 41.61 32.12 42.01 39.29

Table 29: Detailed Accuracy on Long-tailed Corruption Benchmark of motion blur. We conduct
5 runs for each experiment under each imbalance setting. All the methods are built upon CLIP-VIT-
B/16 backbone. The best results are marked in Bold.

Method Caltech Pets Cars Flowers Food101
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

CLIP [ICML’21] 44.96 37.04 19.46 17.69 3.12 2.33 12.78 9.48 9.88 8.04
TPT [NeurIPS’22] 45.28 37.16 19.80 17.91 3.98 2.36 12.58 9.17 10.18 8.52
C-TPT [ICLR’24] 41.77 34.51 18.35 18.26 3.21 2.43 13.09 9.84 11.21 8.92
MTA [CVPR’24] \ \ \ \ \ \ \ \ \ \
TDA [CVPR’24] 45.45 37.46 19.64 17.04 3.76 2.48 14.23 9.60 11.35 9.67

ZERO [NeurIPS’24] 41.77 30.56 13.90 11.27 4.61 3.60 13.70 10.72 12.03 9.56
DPE [NeurIPS’24] 45.28 40.16 17.77 15.11 1.17 20.45 7.98 9.18 10.67 8.80
O-TPT [CVPR’25] 42.70 35.26 18.42 18.32 3.27 2.44 12.97 9.71 11.14 8.72
SCAP [CVPR’25] 44.83 37.17 16.44 15.89 5.02 3.74 14.85 12.22 9.85 8.31

L-TTA (Ours) 48.64 42.46 25.95 22.78 11.27 10.13 16.66 15.62 18.52 17.36

Method Aircraft SUN397 DTD EuroSAT UCF101
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

CLIP [ICML’21] 1.79 0.95 9.39 8.15 6.71 5.88 22.95 10.26 11.59 10.37
TPT [NeurIPS’22] 2.19 1.15 11.25 8.94 8.38 7.77 24.25 11.38 11.75 10.53
C-TPT [ICLR’24] 1.95 0.64 7.65 6.93 5.15 4.24 10.48 5.74 10.05 8.69
MTA [CVPR’24] \ \ \ \ \ \ \ \ \ \
TDA [CVPR’24] 2.49 1.03 11.11 8.35 8.11 4.37 25.10 13.97 13.34 9.28

ZERO [NeurIPS’24] 2.02 0.98 7.89 6.75 7.48 4.10 19.34 9.02 8.92 8.09
DPE [NeurIPS’24] 3.27 2.78 8.92 9.46 15.44 15.44 28.50 18.60 13.71 11.84
O-TPT [CVPR’25] 2.26 0.69 7.79 7.04 4.84 3.85 11.11 6.68 10.00 8.68
SCAP [CVPR’25] 1.89 1.11 9.72 9.83 7.69 7.70 20.75 16.20 14.84 12.64

L-TTA (Ours) 5.90 4.60 15.25 13.00 23.82 20.60 30.63 24.80 16.75 13.18
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Table 30: Detailed Accuracy on Long-tailed Corruption Benchmark of zoom blur. We conduct
5 runs for each experiment under each imbalance setting. All the methods are built upon CLIP-
VIT-B/16 backbone. The best results are marked in Bold.

Method Caltech Pets Cars Flowers Food101
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

CLIP [ICML’21] 92.97 89.91 84.50 84.36 58.85 59.60 62.57 58.29 78.11 77.24
TPT [NeurIPS’22] 93.66 90.49 85.11 84.98 59.21 59.89 63.50 59.21 78.96 78.20
C-TPT [ICLR’24] 92.76 89.92 84.02 84.94 57.49 58.19 64.04 59.54 77.15 76.09
MTA [CVPR’24] \ \ \ \ \ \ \ \ \ \
TDA [CVPR’24] 93.66 90.48 88.48 86.35 64.88 59.01 69.34 61.76 81.53 78.85

ZERO [NeurIPS’24] 86.36 79.71 81.54 79.57 59.20 54.50 63.38 56.50 78.23 76.59
DPE [NeurIPS’24] 93.54 90.12 87.37 86.90 66.19 61.74 70.55 63.98 81.05 78.86
O-TPT [CVPR’25] 92.80 89.98 84.02 85.01 57.67 58.21 64.10 59.66 76.99 75.79
SCAP [CVPR’25] 94.03 91.36 86.26 86.60 60.91 61.19 69.14 66.77 81.09 79.29

L-TTA (Ours) 94.17 90.65 90.35 89.38 68.76 62.55 71.16 68.30 82.58 79.80

Method Aircraft SUN397 DTD EuroSAT UCF101
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

CLIP [ICML’21] 16.60 17.90 60.77 58.04 37.75 32.79 38.84 33.96 64.40 60.83
TPT [NeurIPS’22] 16.83 18.12 61.86 59.10 39.53 34.43 40.35 35.39 65.48 61.77
C-TPT [ICLR’24] 15.90 15.59 58.27 54.22 37.91 33.09 32.25 31.90 63.35 58.09
MTA [CVPR’24] \ \ \ \ \ \ \ \ \ \
TDA [CVPR’24] 21.03 18.36 64.42 60.50 40.87 33.26 42.15 43.20 69.51 62.53

ZERO [NeurIPS’24] 17.00 14.65 61.84 59.36 38.76 34.56 40.56 39.37 65.81 61.48
DPE [NeurIPS’24] 22.43 20.37 65.28 61.33 48.36 43.54 45.50 42.52 72.33 65.27
O-TPT [CVPR’25] 15.98 15.92 58.06 54.17 38.38 33.26 39.91 34.68 63.46 58.12
SCAP [CVPR’25] 19.48 19.83 62.23 57.68 42.10 34.50 43.60 36.28 65.46 60.64

L-TTA (Ours) 27.05 25.40 66.44 63.05 50.69 46.08 47.68 44.74 71.87 68.67

Table 31: Detailed Accuracy on Long-tailed Corruption Benchmark of snow. We conduct 5 runs
for each experiment under each imbalance setting. All the methods are built upon CLIP-VIT-B/16
backbone. The best results are marked in Bold.

Method Caltech Pets Cars Flowers Food101
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

CLIP [ICML’21] 88.99 85.45 77.00 77.05 50.75 50.27 55.29 50.69 72.44 71.13
TPT [NeurIPS’22] 89.22 85.10 77.19 77.30 50.61 49.91 55.53 50.89 71.87 70.11
C-TPT [ICLR’24] 89.54 86.24 78.25 78.81 48.55 47.67 56.21 51.19 71.21 69.79
MTA [CVPR’24] \ \ \ \ \ \ \ \ \ \
TDA [CVPR’24] 91.95 88.46 83.34 80.42 57.54 51.94 60.36 52.44 76.58 73.83

ZERO [NeurIPS’24] 84.55 82.13 78.89 75.68 52.88 51.90 58.13 49.01 68.56 67.16
DPE [NeurIPS’24] 91.58 88.10 85.55 82.03 58.18 51.99 61.54 53.48 76.40 74.95
O-TPT [CVPR’25] 89.66 86.14 78.67 79.10 48.97 48.02 56.33 51.27 71.17 69.57
SCAP [CVPR’25] 90.97 84.56 82.96 82.19 49.40 49.76 60.15 56.73 74.38 73.14

L-TTA (Ours) 93.79 88.74 88.19 85.46 62.29 62.97 66.62 58.61 78.44 75.86

Method Aircraft SUN397 DTD EuroSAT UCF101
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

CLIP [ICML’21] 11.77 12.91 54.84 51.84 33.23 29.23 35.63 31.27 59.29 55.42
TPT [NeurIPS’22] 11.79 12.54 53.99 51.51 33.30 29.57 35.24 31.28 57.12 53.17
C-TPT [ICLR’24] 12.70 13.15 51.84 48.12 31.51 26.39 32.20 28.96 57.75 52.70
MTA [CVPR’24] \ \ \ \ \ \ \ \ \ \
TDA [CVPR’24] 15.97 13.60 60.16 55.80 34.48 28.81 42.82 38.00 67.34 59.52

ZERO [NeurIPS’24] 11.78 10.22 52.50 48.84 33.10 26.00 38.65 39.13 62.90 56.35
DPE [NeurIPS’24] 16.12 14.08 62.20 56.86 34.36 28.42 45.51 41.01 66.69 59.19
O-TPT [CVPR’25] 12.78 13.24 51.71 48.03 31.36 26.21 32.42 29.11 57.53 52.61
SCAP [CVPR’25] 10.36 10.45 53.66 50.85 30.28 25.57 39.06 35.27 62.32 56.20

L-TTA (Ours) 19.58 18.13 55.12 52.36 36.08 31.38 48.95 44.26 67.09 62.53
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Table 32: Detailed Accuracy on Long-tailed Corruption Benchmark of frost. We conduct 5 runs
for each experiment under each imbalance setting. All the methods are built upon CLIP-VIT-B/16
backbone. The best results are marked in Bold.

Method Caltech Pets Cars Flowers Food101
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

CLIP [ICML’21] 14.40 10.74 7.99 7.17 1.32 0.76 4.34 2.61 2.63 0.90
TPT [NeurIPS’22] 15.46 12.32 7.88 7.80 0.79 0.22 4.07 2.41 1.68 0.28
C-TPT [ICLR’24] 13.81 10.51 8.34 8.18 1.43 0.93 4.40 2.53 1.94 0.73
MTA [CVPR’24] \ \ \ \ \ \ \ \ \ \
TDA [CVPR’24] 18.58 12.40 6.94 7.00 1.32 1.04 4.27 2.19 2.15 1.04

ZERO [NeurIPS’24] 14.81 11.43 2.10 7.57 1.15 1.08 3.18 1.44 2.80 1.59
DPE [NeurIPS’24] 14.82 11.43 7.57 7.08 1.35 0.84 3.18 1.45 2.66 1.01
O-TPT [CVPR’25] 14.27 10.85 8.34 8.22 1.47 1.04 4.40 2.48 1.98 0.72
SCAP [CVPR’25] 16.54 11.24 8.95 8.81 2.55 1.67 5.21 3.19 2.21 1.79

L-TTA (Ours) 25.67 20.23 12.22 11.65 8.78 8.29 16.12 15.13 5.89 5.50

Method Aircraft SUN397 DTD EuroSAT UCF101
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

CLIP [ICML’21] 1.48 0.83 2.60 1.83 11.54 6.70 8.95 3.25 4.23 3.83
TPT [NeurIPS’22] 1.79 0.90 3.34 2.38 9.29 4.87 10.21 4.89 4.69 4.84
C-TPT [ICLR’24] 1.79 0.70 2.60 2.31 7.96 5.15 7.92 2.35 3.19 3.93
MTA [CVPR’24] \ \ \ \ \ \ \ \ \ \
TDA [CVPR’24] 2.41 1.34 3.05 1.99 14.98 7.69 6.67 4.10 6.51 4.00

ZERO [NeurIPS’24] 2.16 1.14 3.05 1.43 10.09 7.25 8.48 3.08 4.66 4.41
DPE [NeurIPS’24] 3.34 2.69 3.03 2.44 8.73 7.01 5.95 4.80 7.00 5.82
O-TPT [CVPR’25] 1.79 0.60 2.50 2.14 8.27 5.42 4.79 2.09 3.08 3.86
SCAP [CVPR’25] 2.70 2.15 2.84 2.12 10.51 6.39 5.20 4.96 7.75 4.70

L-TTA (Ours) 8.96 8.03 3.63 2.74 20.23 18.71 19.50 15.49 6.03 4.04

Table 33: Detailed Accuracy on Long-tailed Corruption Benchmark of fog. We conduct 5 runs
for each experiment under each imbalance setting. All the methods are built upon CLIP-VIT-B/16
backbone. The best results are marked in Bold.

Method Caltech Pets Cars Flowers Food101
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

CLIP [ICML’21] 20.39 13.55 5.35 3.87 0.55 0.15 5.14 3.65 2.26 1.24
TPT [NeurIPS’22] 19.59 13.09 6.49 5.43 0.88 0.16 4.96 3.48 3.60 2.15
C-TPT [ICLR’24] 18.29 12.88 4.66 3.16 0.55 0.11 4.83 2.87 3.31 1.86
MTA [CVPR’24] \ \ \ \ \ \ \ \ \ \
TDA [CVPR’24] 19.84 14.74 5.48 2.68 0.46 0.17 5.15 2.81 2.48 1.68

ZERO [NeurIPS’24] 23.65 16.61 6.32 5.18 0.58 0.24 4.71 2.77 1.84 1.04
DPE [NeurIPS’24] 19.28 18.10 4.16 3.50 0.64 0.14 2.36 2.30 2.87 2.30
O-TPT [CVPR’25] 18.92 13.30 4.66 3.31 0.57 0.18 4.83 3.01 3.37 1.86
SCAP [CVPR’25] 18.43 16.73 4.99 4.17 1.56 1.37 4.34 1.03 3.00 1.08

L-TTA (Ours) 31.91 26.47 10.56 9.37 10.79 10.18 16.67 15.12 5.52 5.45

Method Aircraft SUN397 DTD EuroSAT UCF101
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

CLIP [ICML’21] 0.31 0.13 1.99 1.22 1.87 1.67 9.93 3.96 1.15 0.88
TPT [NeurIPS’22] 1.05 1.63 3.48 2.53 2.84 2.63 9.78 3.68 2.40 1.72
C-TPT [ICLR’24] 0.70 0.14 1.74 1.29 1.40 1.18 13.47 4.03 1.59 1.27
MTA [CVPR’24] \ \ \ \ \ \ \ \ \ \
TDA [CVPR’24] 0.78 0.17 2.63 1.36 4.84 2.61 18.29 6.85 2.33 1.55

ZERO [NeurIPS’24] 0.49 0.39 3.00 1.32 4.44 2.15 9.94 5.06 1.12 0.63
DPE [NeurIPS’24] 1.56 1.20 3.82 2.10 4.28 3.00 20.60 11.37 2.07 1.29
O-TPT [CVPR’25] 1.09 0.22 1.77 1.27 1.40 0.99 12.30 4.22 1.54 1.13
SCAP [CVPR’25] 1.58 0.60 1.88 1.68 4.34 2.84 14.08 8.09 1.55 1.40

L-TTA (Ours) 8.87 7.22 3.09 2.89 18.66 15.32 19.03 13.78 3.11 0.29
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Table 34: Detailed Accuracy on Long-tailed Corruption Benchmark of brightness. We conduct
5 runs for each experiment under each imbalance setting. All the methods are built upon CLIP-
VIT-B/16 backbone. The best results are marked in Bold.

Method Caltech Pets Cars Flowers Food101
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

CLIP [ICML’21] 91.04 88.18 82.90 82.62 57.91 58.49 60.73 57.73 79.32 78.15
TPT [NeurIPS’22] 95.54 92.37 86.88 84.13 60.90 60.94 62.25 59.35 81.24 79.20
C-TPT [ICLR’24] 90.87 87.74 82.90 83.31 58.33 58.78 62.57 59.46 78.80 77.51
MTA [CVPR’24] 86.13 84.94 78.33 80.08 65.19 56.37 61.77 58.89 76.33 73.52
TDA [CVPR’24] 93.09 89.87 85.70 83.50 64.98 60.49 68.03 59.70 82.05 79.72

ZERO [NeurIPS’24] 90.49 87.16 82.27 81.98 58.65 58.86 61.77 57.54 74.28 70.82
DPE [NeurIPS’24] 91.40 90.03 87.93 84.99 66.42 63.56 69.30 62.3 83.08 79.59
O-TPT [CVPR’25] 90.41 87.31 83.04 83.52 58.26 58.73 62.08 59.14 78.76 77.41
SCAP [CVPR’25] 91.25 88.63 85.69 85.16 59.67 57.76 63.69 60.46 79.82 78.07

L-TTA (Ours) 64.46 91.79 90.34 88.97 66.13 60.81 72.68 66.63 85.88 81.64

Method Aircraft SUN397 DTD EuroSAT UCF101
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

CLIP [ICML’21] 15.82 17.00 59.27 56.56 40.87 33.71 37.92 28.61 59.78 55.60
TPT [NeurIPS’22] 18.26 19.48 61.53 59.07 43.54 36.10 42.04 33.15 62.51 58.27
C-TPT [ICLR’24] 18.32 18.40 59.85 55.68 41.97 35.91 36.74 28.96 60.88 55.16
MTA [CVPR’24] 15.42 19.42 61.18 58.13 35.77 29.19 38.88 31.67 58.92 54.65
TDA [CVPR’24] 20.64 16.72 64.61 60.45 39.16 31.80 35.73 30.90 60.92 53.99

ZERO [NeurIPS’24] 17.16 11.59 58.29 52.10 40.90 33.86 38.91 30.95 60.03 52.80
DPE [NeurIPS’24] 22.61 18.15 65.06 58.43 37.09 31.25 40.92 33.08 64.46 57.45
O-TPT [CVPR’25] 17.54 17.85 59.38 55.25 42.12 36.57 37.81 30.06 60.82 55.01
SCAP [CVPR’25] 18.12 18.86 62.39 59.36 46.00 43.24 61.82 55.79 65.77 61.52

L-TTA (Ours) 24.07 22.99 67.15 63.26 47.74 40.50 67.34 62.04 67.33 62.04

Table 35: Detailed Accuracy on Long-tailed Corruption Benchmark of contrast. We conduct 5
runs for each experiment under each imbalance setting. All the methods are built upon CLIP-VIT-
B/16 backbone. The best results are marked in Bold.

Method Caltech Pets Cars Flowers Food101
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

CLIP [ICML’21] 92.34 89.92 84.16 84.66 59.14 59.52 63.18 60.15 79.37 78.52
TPT [NeurIPS’22] 95.33 92.39 86.66 87.64 62.92 62.83 64.46 61.93 82.00 81.40
C-TPT [ICLR’24] 92.72 90.13 83.25 83.94 59.36 59.62 65.20 61.91 78.56 77.79
MTA [CVPR’24] 87.71 86.33 80.15 78.29 60.04 58.24 63.88 59.91 72.86 70.31
TDA [CVPR’24] 94.02 91.20 85.91 84.90 67.05 61.85 69.55 61.55 82.72 80.54

ZERO [NeurIPS’24] 90.34 87.69 83.80 80.92 60.84 57.57 62.76 56.36 76.20 74.08
DPE [NeurIPS’24] 94.47 92.30 86.71 85.37 67.97 62.19 72.15 64.80 83.60 82.47
O-TPT [CVPR’25] 92.09 89.49 83.11 83.90 59.23 59.44 64.83 61.58 78.45 77.64
SCAP [CVPR’25] 92.39 90.20 85.38 83.94 62.94 62.53 65.05 60.07 82.16 78.35

L-TTA (Ours) 95.90 93.29 88.75 87.65 69.00 64.25 75.50 66.37 85.16 82.87

Method Aircraft SUN397 DTD EuroSAT UCF101
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

CLIP [ICML’21] 18.55 18.24 60.89 57.83 43.21 36.75 41.78 31.87 61.37 56.71
TPT [NeurIPS’22] 19.50 19.53 64.55 61.23 44.39 38.43 43.71 34.05 64.18 59.95
C-TPT [ICLR’24] 19.10 18.09 60.74 56.66 42.12 34.88 39.38 32.64 61.98 56.93
MTA [CVPR’24] 20.71 17.50 62.03 60.86 36.12 30.38 38.42 33.91 58.78 52.04
TDA [CVPR’24] 22.04 17.80 66.79 63.05 44.15 34.76 46.45 45.78 67.44 59.77

ZERO [NeurIPS’24] 18.90 18.48 62.18 59.80 41.24 33.48 35.25 28.56 62.98 56.16
DPE [NeurIPS’24] 25.45 21.10 67.04 64.18 47.74 41.94 48.22 46.43 68.55 60.25
O-TPT [CVPR’25] 18.55 18.19 60.53 56.34 41.97 34.04 39.90 32.88 61.98 56.78
SCAP [CVPR’25] 20.96 20.29 64.22 59.37 43.73 37.36 40.54 32.04 63.88 59.71

L-TTA (Ours) 28.76 24.30 67.78 65.84 48.25 42.43 63.84 60.96 70.21 63.95
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Table 36: Detailed Accuracy on Long-tailed Corruption Benchmark of jpeg compression. We
conduct 5 runs for each experiment under each imbalance setting. All the methods are built upon
CLIP-VIT-B/16 backbone. The best results are marked in Bold.

Method Caltech Pets Cars Flowers Food101
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

CLIP [ICML’21] 90.21 86.50 72.69 74.16 55.65 53.72 59.69 54.92 68.83 67.05
TPT [NeurIPS’22] 91.07 87.13 74.70 75.94 59.97 57.85 62.99 58.66 72.91 71.54
C-TPT [ICLR’24] 91.04 87.23 75.12 76.88 53.25 51.74 61.65 57.24 68.30 66.26
MTA [CVPR’24] 89.20 86.46 68.46 62.90 52.99 50.40 56.37 54.41 66.51 64.79
TDA [CVPR’24] 92.32 88.39 81.05 79.25 62.72 56.91 66.34 58.98 72.16 69.51

ZERO [NeurIPS’24] 80.74 86.37 82.68 76.13 57.87 53.47 60.39 55.70 66.50 58.42
DPE [NeurIPS’24] 92.99 88.04 84.56 80.77 63.35 58.46 68.01 59.72 74.28 70.31
O-TPT [CVPR’25] 91.04 87.44 75.47 77.04 53.62 52.12 61.41 56.98 68.20 66.02
SCAP [CVPR’25] 91.95 88.23 78.72 80.74 54.04 54.67 64.06 61.25 70.99 70.49

L-TTA (Ours) 92.70 89.85 84.38 81.96 66.21 60.40 71.28 64.83 77.88 76.48

Method Aircraft SUN397 DTD EuroSAT UCF101
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

CLIP [ICML’21] 14.11 12.88 54.39 51.57 39.00 33.36 26.78 21.83 60.77 56.57
TPT [NeurIPS’22] 18.39 17.55 56.86 54.00 41.83 35.73 29.45 27.87 62.83 57.89
C-TPT [ICLR’24] 16.52 15.05 53.48 49.46 36.97 31.61 26.97 18.28 58.74 53.63
MTA [CVPR’24] 12.30 11.81 51.12 50.23 39.22 26.95 23.62 20.40 53.26 50.91
TDA [CVPR’24] 18.93 14.23 60.94 55.91 42.90 36.01 32.09 32.00 67.92 60.17

ZERO [NeurIPS’24] 15.09 15.48 56.39 52.49 39.43 34.08 28.72 23.34 61.71 55.21
DPE [NeurIPS’24] 20.68 14.98 61.25 56.04 44.82 38.40 34.87 34.14 68.26 61.98
O-TPT [CVPR’25] 16.13 14.84 53.28 49.30 36.66 30.86 26.24 18.20 58.79 53.66
SCAP [CVPR’25] 16.08 15.01 58.49 55.88 43.53 32.34 32.04 35.84 61.78 54.86

L-TTA (Ours) 24.86 20.38 62.53 58.97 47.55 42.80 39.57 36.04 70.28 64.50

Table 37: Detailed Accuracy on Long-tailed Corruption Benchmark of pixelate. We conduct 5
runs for each experiment under each imbalance setting. All the methods are built upon CLIP-VIT-
B/16 backbone. The best results are marked in Bold.

Method Caltech Pets Cars Flowers Food101
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

CLIP [ICML’21] 56.05 46.02 34.89 30.86 3.78 2.73 22.75 20.66 16.88 14.83
TPT [NeurIPS’22] 55.70 45.89 35.67 31.41 3.48 2.07 22.89 20.96 18.02 16.04
C-TPT [ICLR’24] 56.30 47.61 36.62 31.40 3.91 2.65 24.71 23.44 16.82 14.88
MTA [CVPR’24] \ \ \ \ \ \ \ \ \ \
TDA [CVPR’24] 57.64 46.05 36.09 32.08 5.87 3.77 25.46 22.16 20.90 18.08

ZERO [NeurIPS’24] 52.10 40.14 29.23 26.16 4.20 4.20 19.74 16.13 17.96 15.50
DPE [NeurIPS’24] 58.29 46.25 38.74 34.87 6.00 5.34 28.15 25.62 22.31 20.05
O-TPT [CVPR’25] 56.63 47.55 36.62 31.54 3.95 2.68 24.65 23.46 16.82 14.82
SCAP [CVPR’25] 58.00 48.56 40.05 35.86 3.82 3.46 26.68 24.23 21.47 20.53

L-TTA (Ours) 60.71 52.24 40.84 38.90 12.98 10.61 28.60 26.20 25.30 22.08

Method Aircraft SUN397 DTD EuroSAT UCF101
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

CLIP [ICML’21] 2.73 2.35 16.67 14.40 7.80 4.26 12.41 8.36 21.70 17.47
TPT [NeurIPS’22] 3.15 3.22 15.60 13.48 7.85 4.35 12.03 7.57 23.16 18.81
C-TPT [ICLR’24] 3.12 2.32 15.64 13.47 8.42 5.13 15.87 10.27 21.04 16.04
MTA [CVPR’24] \ \ \ \ \ \ \ \ \ \
TDA [CVPR’24] 3.97 3.66 18.65 15.79 7.64 3.91 22.46 18.36 26.42 19.95

ZERO [NeurIPS’24] 2.22 2.01 13.23 12.78 7.75 4.57 15.53 9.63 23.01 16.19
DPE [NeurIPS’24] 4.96 4.54 20.75 18.14 9.00 5.50 21.86 17.49 28.89 21.82
O-TPT [CVPR’25] 3.20 2.34 15.59 13.42 8.74 5.39 14.43 10.09 20.88 15.94
SCAP [CVPR’25] 5.41 4.82 17.65 15.46 9.26 7.18 24.87 19.60 22.32 15.78

L-TTA (Ours) 11.85 9.61 26.84 21.41 16.62 11.36 33.47 26.29 32.00 25.65
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Table 38: Detailed Accuracy on Long-tailed Corruption Benchmark of saturate. We conduct 5
runs for each experiment under each imbalance setting. All the methods are built upon CLIP-VIT-
B/16 backbone. The best results are marked in Bold.

Method Caltech Pets Cars Flowers Food101
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

CLIP [ICML’21] 92.88 90.40 85.27 85.97 61.34 61.35 63.79 60.70 80.97 80.17
TPT [NeurIPS’22] 93.52 90.85 87.09 87.70 62.54 62.65 64.42 60.92 81.15 80.40
C-TPT [ICLR’24] 93.43 90.73 84.99 86.17 61.56 61.37 64.34 61.03 80.00 79.08
MTA [CVPR’24] \ \ \ \ \ \ \ \ \ \
TDA [CVPR’24] 94.15 91.15 88.02 86.68 67.61 62.87 70.19 62.79 84.90 82.54

ZERO [NeurIPS’24] 90.85 88.77 83.20 80.57 61.70 56.49 63.59 54.20 80.00 79.74
DPE [NeurIPS’24] 94.75 91.43 90.81 88.16 68.90 63.81 72.06 63.37 86.38 85.37
O-TPT [CVPR’25] 93.22 90.67 84.99 86.27 61.75 61.41 64.04 60.74 79.94 78.88
SCAP [CVPR’25] 94.88 91.53 86.85 84.65 66.00 63.33 68.11 64.13 80.91 79.20

L-TTA (Ours) 95.29 92.45 91.21 89.93 70.09 65.04 73.39 66.79 88.27 87.13

Method Aircraft SUN397 DTD EuroSAT UCF101
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

CLIP [ICML’21] 18.63 17.89 61.41 58.69 41.65 35.23 42.22 33.63 64.78 60.82
TPT [NeurIPS’22] 20.37 19.12 62.99 60.33 42.23 35.32 43.88 35.40 64.20 60.11
C-TPT [ICLR’24] 20.58 19.50 60.88 56.77 42.43 35.84 40.07 33.09 64.51 58.03
MTA [CVPR’24] \ \ \ \ \ \ \ \ \ \
TDA [CVPR’24] 23.36 18.39 65.70 62.02 43.21 34.84 38.30 37.56 72.00 66.05

ZERO [NeurIPS’24] 19.61 18.97 61.75 59.46 41.20 36.75 33.12 27.51 66.00 62.83
DPE [NeurIPS’24] 23.73 18.94 67.68 63.54 45.38 36.50 41.50 37.75 71.62 65.96
O-TPT [CVPR’25] 19.95 19.26 60.81 56.84 42.75 36.42 40.58 33.39 64.67 58.32
SCAP [CVPR’25] 19.72 19.51 62.17 60.70 42.14 35.19 43.22 40.93 70.84 66.20

L-TTA (Ours) 30.42 28.62 68.52 67.36 48.90 37.97 46.44 43.49 74.52 68.36

Table 39: Detailed Accuracy on Long-tailed Corruption Benchmark of elastic transform. We
conduct 5 runs for each experiment under each imbalance setting. All the methods are built upon
CLIP-VIT-B/16 backbone. The best results are marked in Bold.

Method Caltech Pets Cars Flowers Food101
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

CLIP [ICML’21] 92.88 90.40 85.27 85.97 61.34 61.35 63.79 60.70 80.97 80.17
TPT [NeurIPS’22] 93.52 90.85 87.09 87.70 62.54 62.65 64.42 60.92 81.15 80.40
C-TPT [ICLR’24] 93.43 90.73 84.99 86.17 61.56 61.37 64.34 61.03 80.00 79.08
MTA [CVPR’24] \ \ \ \ \ \ \ \ \ \
TDA [CVPR’24] 94.15 91.15 88.02 86.68 67.61 62.87 70.19 62.79 84.90 82.54

ZERO [NeurIPS’24] 90.85 88.77 83.20 80.57 61.70 56.49 63.59 54.20 80.00 79.74
DPE [NeurIPS’24] 94.75 91.43 90.81 88.16 68.90 63.81 72.06 63.37 86.38 85.37
O-TPT [CVPR’25] 93.22 90.67 84.99 86.27 61.75 61.41 64.04 60.74 79.94 78.88
SCAP [CVPR’25] 94.88 91.53 86.85 84.65 66.00 63.33 68.11 64.13 80.91 79.20

L-TTA (Ours) 95.29 92.45 91.21 89.93 70.09 65.04 73.39 66.79 88.27 87.13

Method Aircraft SUN397 DTD EuroSAT UCF101
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

CLIP [ICML’21] 18.63 17.89 61.41 58.69 41.65 35.23 42.22 33.63 64.78 60.82
TPT [NeurIPS’22] 20.37 19.12 62.99 60.33 42.23 35.32 43.88 35.40 64.20 60.11
C-TPT [ICLR’24] 20.58 19.50 60.88 56.77 42.43 35.84 40.07 33.09 64.51 58.03
MTA [CVPR’24] \ \ \ \ \ \ \ \ \ \
TDA [CVPR’24] 23.36 18.39 65.70 62.02 43.21 34.84 38.30 37.56 72.00 66.05

ZERO [NeurIPS’24] 19.61 18.97 61.75 59.46 41.20 36.75 33.12 27.51 66.00 62.83
DPE [NeurIPS’24] 23.73 18.94 67.68 63.54 45.38 36.50 41.50 37.75 71.62 65.96
O-TPT [CVPR’25] 19.95 19.26 60.81 56.84 42.75 36.42 40.58 33.39 64.67 58.32
SCAP [CVPR’25] 19.72 19.51 62.17 60.70 42.14 35.19 43.22 40.93 70.84 66.20

L-TTA (Ours) 30.42 28.62 68.52 67.36 48.90 37.97 46.44 43.49 74.52 68.36

Table 40: Detailed Accuracy on 10 datasets of TPT. The best results are marked in Bold.
Method Caltech Pets Cars Flowers Food101
VIT/L-14 93.02 91.56 88.19 87.89 73.99 74.32 76.45 73.93 87.69 87.32
VIT-H 93.06 91.82 88.47 87.24 74.08 74.37 76.72 72.58 88.87 87.48
SIGLIP 93.51 92.07 90.28 88.66 76.62 70.05 76.55 72.80 87.79 87.19
META-Big \ \ \ \ \ \ \ \ \ \
Method Aircraft SUN397 DTD EuroSAT UCF101
VIT/L-14 21.75 23.10 66.64 63.41 51.17 44.88 39.22 45.09 73.46 69.34
VIT-H 22.13 25.18 64.51 63.64 53.23 45.49 40.60 44.94 74.00 71.73
SIGLIP 22.94 20.29 64.97 62.18 53.37 45.28 40.78 46.91 74.09 70.15
META-Big \ \ \ \ \ \ \ \ \ \
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Table 41: Detailed Accuracy on 10 datasets of TDA. The best results are marked in Bold.
Method Caltech Pets Cars Flowers Food101
VIT/L-14 92.89 91.96 89.64 89.33 76.85 72.61 76.86 73.01 87.92 86.18
VIT-H 94.23 92.72 91.17 89.49 82.82 67.84 78.56 74.64 88.66 83.92
SIGLIP 92.72 91.78 90.69 89.85 88.70 86.71 82.68 80.51 87.31 85.91
META-Big 92.84 92.14 90.76 90.11 86.65 84.13 81.14 76.56 86.32 84.76
Method Aircraft SUN397 DTD EuroSAT UCF101
VIT/L-14 27.53 23.94 67.41 63.17 49.42 44.43 52.93 54.69 76.09 70.22
VIT-H 33.61 27.52 66.43 62.40 54.77 50.54 52.14 53.25 78.84 73.26
SIGLIP 42.12 39.51 67.34 64.10 59.59 55.17 35.56 37.22 77.31 73.84
META-Big 44.53 40.08 70.59 55.88 60.05 55.88 63.67 61.14 81.02 77.13

Table 42: Detailed Accuracy on 10 datasets of DPE. The best results are marked in Bold.
Method Caltech Pets Cars Flowers Food101
VIT/L-14 92.51 91.33 89.80 89.05 77.16 73.29 77.29 74.17 85.81 84.75
VIT-H 94.72 93.18 91.82 89.27 83.64 69.00 79.03 85.28 87.06 83.05
SIGLIP 92.83 92.27 91.21 90.42 87.35 85.01 83.05 81.13 88.30 85.77
META-Big 92.88 92.10 90.72 90.30 87.40 85.42 83.46 81.07 88.70 87.58
Method Aircraft SUN397 DTD EuroSAT UCF101
VIT/L-14 22.14 20.34 72.28 67.92 60.90 51.77 56.41 47.84 75.95 70.88
VIT-H 34.05 29.44 70.29 70.38 58.94 51.62 53.36 47.17 77.06 72.31
SIGLIP 42.23 28.48 72.36 68.35 61.62 55.92 56.69 50.78 79.34 74.15
META-Big 44.04 42.08 73.63 59.51 61.93 55.54 63.77 62.02 80.86 77.57

Table 43: Detailed Accuracy on 10 datasets of SCAP. The best results are marked in Bold.
Method Caltech Pets Cars Flowers Food101
VIT/L-14 92.91 90.87 90.85 89.63 80.62 78.17 78.60 75.05 89.15 87.63
VIT-H 93.02 91.86 92.10 90.22 81.88 80.32 79.21 77.15 88.13 86.72
SIGLIP 92.74 91.21 92.58 90.10 81.95 80.47 81.70 78.52 90.46 88.35
META-Big \ \ \ \ \ \ \ \ \ \
Method Aircraft SUN397 DTD EuroSAT UCF101
VIT/L-14 16.76 24.31 74.92 68.62 53.91 46.59 46.63 49.66 72.05 66.83
VIT-H 26.98 26.74 76.56 70.09 53.25 45.07 45.24 48.78 72.84 68.46
SIGLIP 43.75 36.48 63.85 60.94 50.71 45.50 48.44 40.52 70.78 66.68
META-Big \ \ \ \ \ \ \ \ \ \

Table 44: Detailed Accuracy on 10 datasets of L-TTA. The best results are marked in Bold.
Method Caltech Pets Cars Flowers Food101
VIT/L-14 93.43 92.67 90.09 89.46 78.29 77.64 81.85 78.93 88.57 87.67
VIT-H 94.62 93.46 91.30 88.20 83.74 82.09 80.77 77.66 88.94 88.41
SIGLIP 94.51 93.62 93.18 90.93 85.26 86.00 82.70 78.81 89.39 87.62
META-Big 94.04 93.20 93.00 90.55 88.30 87.72 85.46 81.90 90.40 89.42
Method Aircraft SUN397 DTD EuroSAT UCF101
VIT/L-14 28.51 27.66 73.82 69.86 61.60 54.26 57.93 51.40 76.61 71.94
VIT-H 35.69 32.33 73.18 71.54 61.66 54.42 57.48 52.54 79.36 73.02
SIGLIP 46.93 42.43 74.69 61.61 62.53 60.42 58.34 52.21 79.92 74.07
META-Big 44.49 42.80 73.74 56.43 62.49 59.46 65.81 64.40 81.37 78.73
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Table 45: Results on Balanced Datasets.. The best results are in Bold.

Method Caltech Pets Cars Flowers Food101
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

CLIP 94.28 92.26 88.14 86.80 65.30 63.5 67.28 62.39 83.8 83.72
TPT 94.9 92.13 88.57 87.04 66.49 64.86 69.32 64.65 84.81 84.74

C-TPT 94.27 91.52 87.76 86.63 65.77 63.84 68.09 65.07 82.6 82.5
MTA 94.3 91.94 87.26 86.54 65.29 64.68 66.27 62.8 85.38 85.11
TDA 95 92.08 89.42 89.03 68.98 67.25 72.38 65.91 86.18 86.07

ZERO 94.02 91.33 87.24 85.91 65.75 63.68 66.58 60.53 85.26 85.12
RLCF 95.08 92.48 88.98 86.23 66.46 63.95 64.8 60.41 85.1 84.92
DPE 95.05 92.1 91.76 87.45 67.14 65.49 74.67 68.85 86.42 86.4

WATT 94.91 92.19 87.33 86.01 66.04 64.5 71.28 66.93 64.32 85.86
CLIPArTT 92.56 89.84 87.27 85.95 65.12 63.43 66.42 61.61 82 81.78

O-TPT 94.18 91.48 87.95 86.83 64.63 63.64 69.8 64.4 82.41 82.32
SCAP 92.72 88.67 88.73 86.35 65.79 63.53 70.06 65.04 86.05 83.29

Hohenstaufen 95.46 93.62 92.29 90.3 70.49 67.43 75.91 70 88.34 87.33

Method Aircraft SUN397 DTD EuroSAT UCF101
Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac. Acc. Mac.

CLIP 23.88 20.73 62.58 61.62 44.56 40.69 41.33 36.03 67.97 64.9
TPT 25.45 22.6 64.97 63.98 44.72 41.2 40.58 35.1 68.37 65.48

C-TPT 22.89 19.85 64.58 62.69 44.85 41.81 37.68 35.12 66.76 62.59
MTA 24.24 22.71 63.06 61.37 44.48 41.25 44.52 40.06 68.01 64.05
TDA 25.32 22 67.61 66.14 45.86 41.31 60.2 60.11 70.68 65.18

ZERO 24.72 21.65 63.02 61.7 44.86 40.87 38.28 32.06 65.23 61.65
RLCF 23.22 21.9 69.58 65.34 45.02 41.4 42.66 40.79 64.97 60.26
DPE 29.22 26.89 69.01 68.88 48.97 44.04 56.73 50.25 70.55 64.71

WATT 24.13 22.21 66.14 64.82 46.56 42.64 44.9 38.43 62.92 59.56
CLIPArTT 23.13 20.21 65.74 62.58 46.4 42.18 42.29 35.03 61.59 58.27

O-TPT 23.22 19.24 64.53 60.55 46.74 43.42 38.53 35.76 66.68 62.57
SCAP 23.46 19.49 65.71 63.31 45.61 41.79 52.57 45.74 71.88 66.62

Hohenstaufen 27.22 28.06 72.75 70.82 50.87 45.5 58.81 48.27 71.85 68.28

Table 46: The list of hyper-parameters.

Datasets α β b lr
Caltech101 15.0 5.0 1.0 6e-4 6e-4

Pets 4.0 7.0 1.0 5e-5 5e-5
Cars 3.0 7.0 2.0 1e-4 1e-4

Flowers 2.5 5.0 1.0 1e-4 1e-4
Food101 3.0 1.0 1.0 2e-4 2e-4
SUN397 6.0 3.0 1.0 2e-3 2e-3

DTD 6.0 3.0 1.0 6e-4 6e-4
EuroSAT 3.0 8.0 1.0 5e-5 5e-5
UCF101 9.0 8.0 1.0 4e-4 4e-4
Aircraft 6.0 2.0 1.0 6e-4 6e-4

ImageNet 6.0 5.0 2.0 6e-4 6e-4
ImageNet-V 3.0 8.0 2.0 5e-4 5e-4
ImageNet-S 7.0 7.4 2.0 6e-4 6e-4
ImageNet-A 6.0 5.0 2.0 3e-4 3e-4
ImageNet-R 3.0 8.0 2.0 6e-4 6e-4

Table 47: Introductions of datasets.
Datasets Training/Validation/Testing Types Classes Short introduction

Caltech101 4128/1649/2465 Objects 100 101 object categories (one is background)
Pets 2944/736/3669 Fg. pets 37 37 cat/dog species
Cars 6509/1635/8041 Fg. cars 195 Car from different angles

Flowers 4093/1633/2463 Fg. flowers 102 102 flower categories
Food101 50500/20200/30300 Fg. food 101 101 food dishes
SUN397 15880/3970/19850 Scenes 397 397 scene types

DTD 2820/1128/1692 Texture 47 47 visual textures
EuroSAT 13500/5400/8100 Satellie Img. 10 Satellite images across 10 land use classes
UCF101 7639/1898/3783 Actions 101 101 human actions
Aircraft 3334/3333/3333 Fg. aircraft 100 100 aircraft models

ImageNet 1.28M/-/50000 Objects 1000 Images across 1,000 classes
ImageNet-A -/-/7500 / 200 Sub-ImageNet with natural adversarial noise
ImageNet-R -/-/30000 multi-domain 200 Sub-ImageNet with artistic renditions
ImageNet-S -/-/50889 Sketches 1000 Sub-ImageNet with shape cues only
ImageNet-V -/-/10000 Collocation 1000 Sub-ImageNet with viewpoint variations
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