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Abstract

Certified adversarial robustness of large-scale deep networks has progressed sub-
stantially after the introduction of randomized smoothing. Deep net classifiers
are now provably robust in their predictions against a large class of threat models,
including ℓ1, ℓ2, and ℓ∞ norm-bounded attacks. Certified robustness analysis
by randomized smoothing has not been performed for deep regression networks
where the output variable is continuous and unbounded. In this paper, we ex-
tend the existing results for randomized smoothing into regression models us-
ing powerful tools from robust statistics, in particular, α-trimming filter as the
smoothing function. Adjusting the hyperparameter α achieves a smooth trade-off
between desired certified robustness and utility. For the first time, we propose
a benchmark for certified robust regression in visual positioning systems using
the Cambridge Landmarks dataset where robustness analysis is essential for au-
tonomous navigation of AI agents and self-driving cars. Code is publicly available
at https://github.com/arekavandi/Certified_adv_RRegression/.

1 Introduction

Adversarial examples first swayed the narrative on deep models over a decade ago [2, 26]. Where
deep nets had demonstrated remarkable generalization on classically challenging tasks [10], these
small perturbations to an input sample that make no apparent change to the input’s semantics or
true class, yield high rates of misclassifications. While defenses had so far not tipped the balance
away from the attacker, the combination of Certified Robustness (CR) with adversarial training has
excited the security and ML communities recently [15]. For a given model and input sample, CR
can guarantee the absence of any adversarial examples in close vicinity of the sample. Randomized
Smoothing (RS) is a widely used technique for CR as it scales to arbitrary large-scale models as
it requires only black-box access to model evaluations [12, 6]. Despite attacks targeting ML tasks
beyond classification [5], little is known of certification (or RS) for other standard ML tasks such as
regression. Robustness analysis for regression has been examined through Lipschitz continuity [27]
which is only feasible for small-scale regression models with full access to the models’ parameters
and certain types of activation functions.

In this paper, we present a framework for black-box certification of arbitrary regression models with
either bounded or unbounded outputs. Our results extend the findings of [17] which considers the
class of bounded-output regression models with large sample sizes in the evaluation stage. While they
introduce averaging as an aggregation operator in randomized smoothing for regression, without limits
on output range, averaged predictions may not be stable. This boundedness assumption, however,
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limits the applicability of their certificates. We present a superior approach through smoothing by
α-trimming filter. Complementing experiments with synthetic data, we benchmark our CR and
RS approaches with the Cambridge Landmarks [9] dataset and DSAC∗ framework [3] for camera
re-localization. The use of these benchmarks may be of independent interest for CR research.

2 Preliminaries

A base regression model parameterized with θ is denoted by fθ : Rd → Rt, where d and t are the
input and output dimensions: fθ(x) maps input x to multivariate output y. We will use gα(x) to
denote the smoothed version of fθ(x), as defined later. The neighborhood centered around point
z ∈ Rs with radius ϵ with respect to a given dissimilarity function is denoted by N(z, ϵ), where the
dissimilarity function can be e.g., ℓp norms as well as functional divergences such as KL or Bregman
when dealing with normalized z. In other words, for any z ∈ Rs,

N(z, ϵ) = {z′ ∈ Rs | diss(z, z′) ≤ ϵ}, (1)

where diss(., .) in general, can be any metric or function that the user is interested, and dissx (or
dissy) indicates dissimilarity in the input (or output) space. Throughout this paper, neighborhoods in
input space are defined for all dimensions simultaneously as in Eq. (1), neighborhoods for outputs
are analyzed separately using the neighboring function Ny(y, ϵy) =

∏t
i=1 Ny(yi, ϵyi

). The ℓp-norm
(p ≥ 1) of a vector is denoted and defined as ∥x∥p = (

∑
i |xi|p)1/p where xi indicates the ith entry

of x. We denote the multivariate normal distribution with mean m and covariance σ2I as N (m, σ2I),
where I is the identity matrix. We denote the standard Gaussian CDF by Φ(·). P{·} and E{·} denote
the probability and expected value operators, respectively. Finally, [[t]] indicates the set {1, 2, · · · , t}
and [·] rounds to the closest integer value.

Threat model. We consider a defender with only black-box access to model evaluations at test time:
given an input point they may observe the output regressed value, but not model structure, gradients,
parameters, or learning hyperparameters. On the other hand, we consider adversaries that have full
information access to the model and certification algorithm. However, the attacker is limited to
perturbing input data within small neighborhoods. This matches the typical threat model found in
previous works on randomized smoothing in classification [6].

Randomized smoothing. Randomized smoothing is based on the ensemble of model outputs obtained
over different perturbed inputs and is among the few techniques that are scalable to arbitrary, large
models. Randomized smoothing was first adopted in seminal works of [6, 14, 12] for classification
tasks to derive the maximum radii of input perturbations which maintain an invariant output prediction.
In particular, in [6] it was shown that for the base classifier fθ(x), the new smoothed classifier
g(x) = argmaxc∈Y P(fθ(x + e) = c), e ∼ N (0, σ2I), is certifiably robust against any ℓ2-norm-
bounded adversary with radius ϵ = σ

2

(
Φ−1(pA)−Φ−1(pB)

)
where pA ≥ pB are any lower bound of

majority class scores, and any upper bound of runner-up class scores, respectively. While randomized
smoothing has mostly been explored for classification problems with categorical outputs [8, 30, 11,
31, 28, 13], more recently research has begun to consider regression [17, 20, 7, 4, 16]. These works
all exhibit some limitation, including: universality, theoretical support, practical applicability, reliance
on large sample sizes of data points, bounded outputs, or analysis through the lens of certifying
classification. Further explanation on the differences among these studies can be found in Section 5.

3 Method

3.1 Certified Regression

For many years, robustness analysis of regression models or estimators has been investigated using
tools, such as Lipschitz continuity [27] or influence functions [23], where full access to the model
parameters and its derivatives were required. Due to a lack of a proper definition of robustness in
black-box access setup for large models, in contrast to classification problems, certified robustness has
not been fully developed for regression problems. Until recently, motivated by probabilistic certified
classification [18], the robustness definition for regression models has been introduced in [17], and
some input perturbation bounds for base regression models, as well as their smoothed version with
bounded outputs assumption using sample averaging, have been derived. In this paper, we extend
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these results for unbounded outputs in a small sample regime using a much more general form of
smoothing function. We use the same definition of robustness in regression tasks given by:
Definition 1. (Probabilistic Robustness Certificate) [17]. Given an example (x, y), a (possibly)
randomized regression function g(x) : Rd → Rt is said to be certifiably robust with probability
0 ≤ P ≤ 1 in the randomness of g, with respect to the given input and output dissimilarity functions
with radii ϵx, ϵy1, · · · , ϵyt, If ∀x′ ∈ Nx(x, ϵx)

min
i∈[[t]]

P
{

dissy(g(x′)i, yi) ≤ ϵyi
}
≥ P. (2)

This definition of robustness in black-box functions requires first analyzing the robustness of the
base regressor and then establishing theoretical results for smoothing functions applied to this base
regression as a wrapper. Based on Definition 1, users can define a region for ith continuous output
variable by Ny(yi, ϵyi

) or in other words {z | dissy(z, yi) ≤ ϵyi
} as the accepted/valid region

where the output prediction can fit in without being considered as a wrong prediction. The term
accepted/valid region will be used in the rest of the paper to refer to the output neighborhood. This
region is set by the user around f(x) to determine how much deviation is acceptable. For example, in
camera- re-localization in a 3D scene with size 100m× 100m, the user might reasonably accept up
to 0.5m deviations in the predictions. The following result has been provided for the base regression
function:
Theorem 1. (Certification of General Models Against ℓ2-Bounded Attack) [17]. Let fθ(x) : Rd → Rt

be a (possibly) randomized base regressor and e ∼ N (0, σ2I). Suppose for some example (x, y),
P{dissy(fθ(x + e)i, yi) ≤ ϵyi} ≥ pAi

,∀i ∈ [[t]] (3)

where pAi
is the lower bound on the probability of accepting prediction in the ith output variable.

Then referring to definition Eq. (2), fθ(x + e) is probabilistic certifiably robust at example (x, y), for
a ℓ2-norm dissimilarity in the input, chosen probability P ≤ mini∈[[t]] pAi

, output radii ϵy1
, . . . , ϵyt

and input radius
ϵx = min

i∈[[t]]
σ
(
Φ−1(pAi

)− Φ−1(P )
)
. (4)

The above result indicates a strong similarity between the certification of regression models and
classification task since both radii are proportional to σ and Φ−1(pA). It is worth investigating the
equivalence of these two tasks in terms of robustness radius formulation, i.e., Eq. (4):
Corollary 1. (On the Equivalence of Regression and Classification) The certificate radius for a
univariate regression model, i.e., fθ(x) : Rd → R using the robustness definition (2) with a user-
chosen P = 50%, is the same as the certified radius for a smoothed classifier made of fθ(x) : Rd → R
as the base binary classifier and dividing the space into class A and class not A, where A denotes the
case where the output is within the defined output neighborhood.

Proof. Starting from (4) as the regression certificate bound and setting P = 50%, the regression
certificate radius becomes

ϵx = σΦ−1(pA), (5)
which is exactly the radius derived for a binary classifier using the same smoothed function with the
majority voting as stated in [6].

This is an intuitive result stating that robustness in regression tasks can be reduced to the classification
task when P is set to 50%, where the output of a regression model is in the maximum uncertainty
level. In this case, there is a tie between class A and not A and this is exactly where the output of a
classification model might change and break the robustness definition of the given classifier. Now we
extend the results in Theorem 1 to the ℓp attack with proof in Appendix A.
Proposition 1. (Certification of fθ(x) Against ℓp Attack). Let fθ(x) : Rd → Rt be a (possibly)
randomized base regressor and e ∼ N (0, σ2I). Suppose

P{dissy(fθ(x + e)i, yi) ≤ ϵyi} ≥ pAi
,∀i ∈ [[t]], (6)

where pAi
is the lower bound on the probability of accepting prediction in ith output variable. Then

using (2) as the definition of certified robustness, fθ(x + δ + e), ∀∥δ∥p ≤ ϵx (p ≥ 2) is within the
accepted region, with the user-defined probability P ≤ pAi

,∀i ∈ [[t]], where

ϵx = min
i∈[[t]]

σ

d
1
2−

1
p

(
Φ−1(pAi

)− Φ−1(P )
)
. (7)
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Figure 1: General schematic of how α-trimming can be applied to the base regressor with ℓ2-norm
ball (can be any ℓp norm in this paper and can be any neighboring function in general) defined for
input vicinity and any form of convex (in this paper) or nonconvex (in general) set for the output
vicinity. Furthermore, outputs can be examined separately (in this paper) or jointly with other outputs
(in the general case as denoted by y1:k and ym:t).

It is worth pointing out that the upper bound of input perturbation in (7) is obtained by Gaussian
smoothing, meaning that we only evaluate the model once with Gaussian smoothing, but the guarantee
is valid for any ℓp attack (p ≥ 2).

3.2 Smoothing in Regression

Definition of the smoothing function in the classification task, i.e., g(x) = argmaxc∈Y P(f(x+ e) =
c), e ∼ N (0, σ2I), is not feasible for application to regression and requires adjustments. One
immediate change can be the use of an average function to compute g(x), i.e., g(x) = E{fθ(x + e)},
e ∼ N (0, σ2I) or its Monte Carlo estimation. However, as shown in [17], even a single adversarial
point (in unbounded scenarios) can entirely shift the result of averaging into the invalid zone (from
the user’s perspective). This behavior is known as the zero breakdown point of averaging in robust
statistics [32]. To deal with such a worst-case scenario, in [17] the outputs of regression models
were assumed to be bounded. Although this assumption helped to derive certificate bounds around
the input, it was shown for some cases where these considered bounds in the output are loose, the
certificate bound in the input becomes worse than the base regression model. This motivates use
of a better smoothing function that can also tolerate unbounded outputs. Therefore, we use the
α-trimming filter [1] to estimate the continuous output variable. Suppose that F is a finite set of N
numbers (sorted in ascending order). The α-trimmed mean of F is obtained by removing α fraction of
the samples (0 ≤ α < 0.5) from the high and low ends of the sorted set, and computing the average
of the remaining values. In the extreme cases, when α → 1

2 , α-trimming is equivalent to median
filtering [16], and when α = 0 it reduces to classical averaging [17]. In other words, we use the
following general form of smoothing function denoted by gα(x):

gα(x)i =
1

n− 2[αn]

n−[αn]∑
k=[αn]+1

Fk
θ(x + e)i,∀i ∈ [[t]] where e ∼ N (0, σ2I) (8)

where n is the sampling size, Fθ(x + e)i is the sorted form of fθ(x + e)i, and k is the index of the
order statistics. In the above, we draw n realization from e to construct the set values. Here α is a
hyperparameter and can be tuned based on the user-chosen value P or level of smoothing. One of the
primary uses of the α-trimming filter is in data preprocessing and outlier rejection. The adjustment of
α in this context typically relies on prior knowledge about the proportion of data points that deviate
from the nominal distribution [22]. While this prior knowledge may not always be accurate, it has
been widely utilized to reduce the sensitivity of estimators. Another method for tuning α in parameter
estimation is to consider efficiency at the nominal density. For instance, if no outliers are present
in the dataset, one may set α to achieve an estimation that closely matches the performance of its
maximum likelihood counterpart [24].
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Figure 2: Improvement in the probability of observing predictions within defined accepted region
using α-trimming for different α values.

3.3 Certified Regression Against ℓp Attack

In this section, we use α-trim smoothing function gα(x) as a wrapper around the base regression
model using the same definition of the vicinity sets in both input and output as shown in Figure 1.
Consequently, everything within the red dashed box is related to base regression certification. The
corresponding output regions outside the red dashed box represent the certification analysis for the
smoothed function with the accepted regions remaining consistent with those in the base regression
model. Note that for the following results (proof in Appendix B), the neighborhood in the output can
be in any convex region, but the input perturbation is only considered to be within a ℓp ball around x.

Theorem 2. (Certification of gα(x) for fixed range ℓp Attack). Let fθ(x) : Rd → Rt be a (possibly)
randomized base regressor, and let gα(x) be the one defined in (8) with 0 ≤ α ≤ 1/2. Let us assume
the accepted region (set) for each output target variable is convex and the following inequality holds
for e ∼ N (0, σ2I), a user-defined ϵy and ∀∥δ∥p ≤ ϵx (p ≥ 2) and ∀i ∈ [[t]]:

P{dissy(fθ(x + δ + e)i, yi) ≤ ϵyi} ≥ q, (9)

where 0 ≤ q ≤ 1, then ∀n > 0 we have

P{dissy(gα(x + δ)i, yi) ≤ ϵyi} ≥ Iq(n− [αn], [αn] + 1),∀i ∈ [[t]] (10)

where Iq(a, b) is the regularized incomplete beta function defined as Iq(a, b) = 1
B(a,b)

∫ q

0
ta−1(1−

t)b−1dt and B(a, b) is the complete beta function.

Theorem 2 states that after applying the α-trimming filter, the probability that the average prediction
of the regression network satisfies the user-chosen constraint, in the worst case scenario changes from
q to Iq(n− [αn], [αn] + 1).

The result in Theorem 2 is general and several intuitive and interesting cases are worth mentioning,
(i) in the case where q = 0, regardless of the number of samples and the value of trimming parameter
α, I0(n− [αn], [αn] + 1) = 0, meaning that when all the generated outputs by the base regression
model are outside the accepted region, there is no chance that α-trimming can generate a valid result.
(ii) When q → 1, Iq(n− [αn], [αn] + 1)→ 1, meaning that when almost all of the generated outputs
are valid, the α-trimming approach with probability 1 returns a valid result regardless of the values of
α and n. (iii) When α → 0, Iq(n− [αn], [αn] + 1)→ qn, meaning that if no trimming is applied,
one single large invalid output can make the result invalid, then to get valid output, all the generated
outputs by base regression model should be within the defined acceptable zone, where the chance of
this event is qn. Note that qn for α = 0 is much lower than the result obtained in the case of bounded
output for the same smoothing in [17] which indicates the strong impact of the output range on the
provided certificate.
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Algorithm 1: Pseudocode for prediction and certification of smoothed regression model gα at x.
Input :x, p in ℓp norm, σ, P , n, α, β, ϵy , fθ(.)
Output :Continuous variably ŷ

1 – Draw n noise samples using e ∼ N (0, σ2I) and pass the noise-corrupted version of x through
fθ(.), and save the output values.

2 – nAi
← number of accepted outputs ∀i ∈ [[t]].

3 – Estimate pAi
for ∀i ∈ [[t]] using Clopper-Pearson interval prediction as stated in [17] with

confidence 1− β
2 .

4 – ŷi ← Apply the α-trimming filter (8) to the sorted output values ∀i ∈ [[t]].
5 – ŷi is valid with probability IpAi

(n− [αn], [αn] + 1) for ∀i ∈ [[t]].

6 – The certification radius of this prediction is ϵx = mini∈[[t]]
σ

d
1
2
− 1

p

(
Φ−1(pAi

)−Φ−1(I−1
n,α(P ))

)
.

For other values of α, it is important to note that enhancing the robustness of the base regression
model is not always guaranteed unless a certain minimum amount of trimming is performed. In the
following proposition, we investigate the certificate improvement of α-trimming (with conservative α)
over the base regression model with proof in Appendix C.
Proposition 2. (Robustness Improvement via α-trimming). For any n ≥ 1, 0 ≤ q ≤ 1, if there exist
an α such that α+ ≤ α < 1/2, where

α+ :=
I−1
q (q)− 1/2

n
, (11)

and where I−1
q (q) is the inverse of Iq(n− x, x+ 1) with respect to x, then the following inequality

holds:
Iq(n− [αn], [αn] + 1) ≥ q. (12)

Proposition 2 states that for sufficiently large α values, the α-trimming averaging technique, improves
the probability of robustness and for larger values of α, the result gets better and better. As an
example, suppose for a deep network that 90% of the generated outputs are valid, i.e., q = 0.9.
Assuming drawing only 50 samples to obtain the certificate, then I−1

0.9(0.9) ≈ 7.3 and for any α which
meets α ≥ 0.136, the robustness probability, I0.9(50 − [50α], [50α] + 1) is greater than q = 0.9.
For instance, when α = 0.15 and α = 0.2, the robustness probability is 0.94 and 0.99, respectively.
Intuitively, the obtained range of α shows that to get improvement, α should be at least slightly greater
than 1− q (0.1 in our example) to be more confident that there will be less chance of observing some
samples out of the accepted region defined by the user. Figure 2 shows two different models one
with q = 0.7 and one with q = 0.9. After applying α-trimming the obtained probability of validity
in the results are shown in blue and orange colours, respectively. In both settings, α+ values are
demonstrated in vertical dashed lines and it can be observed that the success rate of the prediction
(Iq(n − [αn], [αn] + 1)) is always greater than the assumed q values for α ≥ α+. As described
above, the corresponding α+ values are slightly greater than 1− q to ensure improvement even in
worst-case scenarios. Now we must use the above results to propose the bound on ℓp norm (p ≥ 2) of
the input perturbation for a user-given probability of success (P) when α-trimming is in place (proof
in Appendix D).
Theorem 3. (Certification of gα(x) against ℓp Attack). Let fθ(x) : Rd → Rt be a deterministic or
random base regressor and let n ≥ 1, 0 ≤ α < 1/2, e ∼ N (0, σ2I) and suppose the α-trimming
function gα(x) defined in (8) is used for smoothing. Then given

P{dissy(fθ(x + e)i, yi) ≤ ϵyi} ≥ pAi
,∀i ∈ [[t]] (13)

where pAi
is the lower bound on the probability of accepting prediction in the ith output variable,

then gα(x + δ), ∀∥δ∥p ≤ ϵx (p ≥ 2) is within accepted region, i.e., Ny(y, ϵy) =
∏t

i=1 Ny(yi, ϵyi
),

with the user-defined probability P , s.t. I−1
n,α(P ) ≤ pAi

,∀i ∈ [[t]], where

ϵx = min
i∈[[t]]

σ

d
1
2−

1
p

(
Φ−1(pAi

)− Φ−1(I−1
n,α(P ))

)
, (14)

and where I−1
n,α(x) is the inverse of the regularized beta function w.r.t Bernoulli success rate parameter.
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Figure 3: Adopted regression function (a) with the estimated certified radii (against ℓ2 and ℓ∞ attacks)
for evaluated points in the center for both base and smoothed outputs (b & c).

The above result is valid for any regression model, either with bounded or unbounded outputs, and for
large or small n. Note that the performance of the base model always impacts the overall performance
of the smoothed function, irrespective of whether the setting is classification or regression. In
classification tasks, this strong relationship is reflected in the gap between pA and pB . If a base
classifier performs poorly under input perturbations, this gap will shrink, diminishing the effectiveness
of the final certification. In classification, there is only one other parameter (σ) that can potentially
compensate for this gap. In regression settings, a similar relationship applies: better performance in
the base regression model results in a better value for q. However, as demonstrated in Theorem 3, the
final performance is also influenced by σ, n and importantly α. Using an appropriate value for α can
significantly enhance the certification even when the base regression model performs poorly. The
step-by-step process of the method in prediction and certification is depicted in Algorithm 1.

4 Experiments

This section provides some numerical results to validate the proposed theorems as well as to show
their effectiveness in some real-world problems. All simulations and experiments were conducted
using an Intel(R) Core(TM) i7-9750H CPU running at 2.60GHz (with a base clock speed of 2.59GHz)
and 16GB of RAM.

Synthetic Simulations. For the first part of the experiments, we utilized the function f(x) =
10 sin(2x1) + 2(x2 − 2)3. Figure 3 (left) illustrates this function for the interval −1 < x1, x2 < 5.
As certification is performed for each point individually, we derive the certified radii for this function
at all the integer points in the considered intervals utilizing the formulas (4) and (14) with P = 0.8,
σ = 0.15, ϵy = 6 using ℓ1 norm, n = 10, 000 at two different rates of α = 0.35 and α = 0.49.
Figure 3 (middle & right) illustrates these radii in a 2D grid for the base regression model as well
as its smoothed versions against both ℓ2 and ℓ∞ norm attacks. As it can be observed, as expected,
for smoother areas these radii become larger, and an increase in α results in an increase in estimated
certified radii as clear in Eq. (14). In addition to that, as expected, the certified radii become smaller
as p increases in ℓp norm attacks. Now to examine the derived radii, for each point (25 points
in total which are raster ordered) we randomly select an adversarial example within the defined
radius (we repeat this process) and then find the empirical probability of obtaining valid outputs
using the base model and its smoothed version utilizing α-trimming filter (α = 0.35) with the same
hyperparameters with only 5 samples fed into the α-trimming filter. Figure 4 depicts the obtained
empirical probabilities for both smoothed and base models in comparison to the required probability
of valid outputs defined by the user (P = 0.8). As shown, although the base regression model shows
large variations in the empirical probabilities, with attacks in smaller neighborhoods, the α-trimming
filter uniformly improves the empirical probability across all the evaluated points (almost equal to 1)
for both types of attacks, despite adversarial examples being drawn from larger neighborhoods.

Camera Re-localization Task. In this application, we evaluate the robustness of the state-of-the-art
image-based camera re-localization technique “DSAC∗” [3] against adversarial examples. In the
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Figure 4: Empirical probability of obtaining valid outputs in comparison with desired probability
defined by the user (P = 0.8) for the base model against ℓ2 attack (a), gα(x) with α = 0.35 against
ℓ2 attack (b), and gα(x) with α = 0.35 against ℓ∞ attack (c).

camera re-localization pipeline, RGB images are fed into a trained system and the coordinates of the
location where the camera was placed to take the images are predicted [21, 19]. For certifying such
regression models, we use Cambridge Landmarks dataset [9] and in particular 3 of the largest scenes
in this popular dataset namely Great Court, King’s College, and St. Mary Church. For computing
certified error for any image, we used the same formulation as in [17], given by

eK = ∥gα(x + δ)− p∗∥2 + 1r>ϵxK, ∀∥δ∥2 ≤ r,

with K = 150cm, and α = 0.35. For learning of pA using Clopper-Pearson (β = 0.5: 75%
confidence), we used 100 samples and then we used n = 10 per radius to examine ℓ2 attack. For each
scene, the adopted parameters are selected differently to cover various experimental setups.

Great Court: P = 0.8, ϵy = 5m, output ℓ1 norm, σ = 0.05, and 760 images sized 480× 854.

King’s College: P = 0.8, ϵy = 1m, output ℓ1 norm, σ = 0.08, and 343 images sized 480× 854.

St. Mary Church: P = 0.9, ϵy = 5m, output ℓ1 norm, σ = 0.1, and 530 images sized 480× 854.

Figure 5 illustrates the proposed certified radii along the predicted trajectory of the camera in the 3
considered scenes as well as sample images with no/negligible certificates. From the top: Great Court,
King’s College, and St. Mary Church. While brighter dots represent points with higher certificates,
we did not clip the radii from below and kept the negative values as they are. Large negative radii are
indicators of high expectations of users either in considered valid regions or the expected probability
of success. While most of the points are highlighted with bright colors, some points are dark and
considered as sensitive images which can be easily misled with a small portion of manipulation.
Interestingly, all the points which are not on the trajectory of the camera, have returned negative radii.
On the other hand, Figure 6 illustrates the certified median error of the proposed methods for the
three scenes in comparison with the results shown in [17] for bounded and discounted outputs for the
Great Court scene (discount factor makes the accepted region wider than that of the base regression
model, aiming for better analytical results in worst-case scenarios). Note that results in RS-Reg [17]
were obtained with 200% discount in the output validity range, and we now provide almost the same
results with no discount in the output, and results are valid for a small number of samples. As shown
in these plots, the α-trimming filter consistently decreased the certified median error (orange curve)
across all input perturbation ranges (r) compared to the results obtained by the base regression model
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Figure 5: Evaluated scenes from the Cambridge Landmarks dataset (from the top row: Great Court,
King’s College, and St. Mary Church). The middle column depicts the reconstructed 3d sparse point
clouds using Structure-from-Motion (SfM) where the images are taken in red trajectories (predicted).
The right column visualizes the derived certified radii for each image taken on these trajectories. For
some images, they have shown robustness to input perturbation (bright points), and for some images,
they have shown sensitive results (dark points). Examples of images with no/negligible certificates
are provided in the left column. As shown, these images suffer from lighting conditions, improper
perspective, and obstructed content.

(blue curve). The main reasons for this improvement are firstly, due to the better approximation
of position parameters leveraging outlier removal and averaging using α-trimming filter. Secondly,
because of better certificate radii for each image in the scene which decreases penalization in the
process of certified median error calculation. Leveraging the α-trimming approach for smoothing,
we are no longer worried about the output ranges, and no further assumptions such as large sample
size or discount factor are required to provide a valid certificate. Sensitivity analysis of the proposed
technique in this dataset can be found in Appendix E.

5 Related Work

Among the studies that adopted randomized smoothing for tasks other than classification, we can list
smoothed embeddings [20] for few-shot learning models, certification of soft classifiers [25] where
the output variables are continuous but bounded between 0 and 1, certification against poisoning

9



Figure 6: Certified median error in DSAC∗ as a function of r. These plots are for (top-left) RS-Reg
with 200% discount in Great Court scene (figure from [17]), (top-right) proposed method in Great
Court scene, (bottom-left) proposed method in King’s College scene, and (bottom-right) proposed
method in St. Mary Church scene. The parameters are α = 0.35, n = 10, K = 150cm, and β = 0.5.

attacks [7] which have different threat models or learning tasks than this study. The most related
works to our study are [4, 17] where in the former study, the object detection was investigated through
the lens of certified regression, however, their analysis is relying on the scaling output of classifier
models to expand the range of output values which constrains the architecture of considered models,
and in the latter the certification was provided for a class of bounded output regression model in
the asymptotic case. Compared to these methods, our approach provides a probabilistic certificate
for all regression models (including models with a wide range of outputs) with a limited number of
evaluations through drawing noisy samples.

6 Conclusion

In this paper, we proposed the first probabilistic certificate against ℓp attack for all regression models
with continuous output. We showed that the α-trimming filter is an appropriate smoothing candidate
in regression models with the flexibility to trade-off between error rate and certification radii. In
addition to the comprehensive synthetic simulations, we adopted the proposed method in the camera
re-localization task using the Cambridge Landmarks dataset and benchmarked the result for this new
line of research. As future work, this technique can be extended to attacks in the semantic space of
the input, and for sampling techniques other than Gaussian sampling to further tighten the certificate
radii.

Broader Impact Adversarial examples demonstrate the vulnerability of many machine learning
models to manipulation in contested environments. This paper considers defenses (via randomized
smoothing) and robustness quantification (via robustness certificates), which are important approaches
to improving resistance to attacks, and in highlighting the limitations of learned models to practitioners.
As such, we believe this work has potential for positive societal benefit.
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A Proof of Robustness in fθ(x) against ℓp attack

We repeat the proposition’s statement here for convenience, followed by its proof.

Proposition 1: (Certification of fθ(x) Against ℓp Attack). Let fθ(x) : Rd → Rt be a (possibly)
randomized base regressor and e ∼ N (0, σ2I). Suppose

P{dissy(fθ(x + e)i, yi) ≤ ϵyi} ≥ pAi
,∀i ∈ [[t]], (15)

where pAi
is the lower bound on the probability of accepting prediction in ith output variable. Then

using (2) as the definition of certified robustness, fθ(x + δ + e), ∀∥δ∥p ≤ ϵx (p ≥ 2) is within the
accepted region, with the user-defined probability P ≤ pAi

,∀i ∈ [[t]], where

ϵx = min
i∈[[t]]

σ

d
1
2−

1
p

(
Φ−1(pAi

)− Φ−1(P )
)
. (16)

Proof. For any x, y ∈ Rd, let us define x∗y = (xiyi)i=1,··· ,d ∈ Rd. Then using the generalization of
Hoelder inequality [29], for any p, q, r ∈ [1,∞) such that 1

p + 1
q = 1

r , we have ∥x∗y∥r ≤ ∥x∥p∥y∥q .

By setting x = δ and y = 1d, we obtain ∥δ∥r ≤ d
1
r−

1
p ∥δ∥p, (with 1

q = 1
r −

1
p ). Using this inequality,

and by setting r = 2, the constraint (p ≥ 2), and the results in Theorem 1, we conclude that if
d

1
2−

1
p ∥δ∥p ≤ mini∈[[t]] σ

(
Φ−1(pAi

)− Φ−1(P )
)
, the output value is valid with probability at least P.

This completes the proof.

B Proof of Robustness for gα(x)

We repeat the theorem’s statement here for convenience, followed by its proof.

Theorem 2: (Certification of gα(x) for fixed range ℓp Attack). Let fθ(x) : Rd → Rt be a (possibly)
randomized base regressor, and let gα(x) be the one defined in (8) with 0 ≤ α ≤ 1/2. Let us assume
the accepted region (set) for each output target variable is convex and the following inequality holds
for e ∼ N (0, σ2I), a user-defined ϵy and ∀∥δ∥p ≤ ϵx (p ≥ 2) and ∀i ∈ [[t]]:

P{dissy(fθ(x + δ + e)i, yi) ≤ ϵyi} ≥ q, (17)

where 0 ≤ q ≤ 1, then ∀n > 0 we have

P{dissy(gα(x + δ)i, yi) ≤ ϵyi} ≥ Iq(n− [αn], [αn] + 1),∀i ∈ [[t]] (18)

where Iq(a, b) is the regularized incomplete beta function defined as Iq(a, b) = 1
B(a,b)

∫ q

0
ta−1(1−

t)b−1dt and B(a, b) is the complete beta function.

Proof. The proof of this theorem is based on the problem’s geometry and admitting that simple
averaging is prone to be shifted outside of the accepted set, only if a single large sample exists in
the remaining samples after applying α-trimming. To prove the result, we consider the worst-case
scenario and derive the lower bound probability of getting an accepted output within the desired
range defined by users. Let us define a random variable W as the number of rejected outputs by the
user (invalid outputs) after drawing n samples and passing then through the network fθ(.). For a
scalar output variable, three possible scenarios will occur after sorting output values, (i) all rejected
outputs will be on the left side of the accepted region, (ii) all rejected outputs will be on the right side
of the accepted region, (iii) rejected outputs will be both on the left and right with different portions.
Figure 7 illustrates the geometry of these scenarios. Note that since the accepted zone is convex
(green region), all the accepted outputs will be next to each other after sorting. As shown in (8), the
trimming will be applied equally from both sides, so in the worst-case scenario (scenarios (i) and
(ii)) both accepted and rejected outputs will be filtered with the same rate. In this case, in total 2[αn]
outputs will be filtered out ([αn] accepted outputs and [αn] rejected outputs) where the total number
of leftover samples will be n− 2[αn]. Now let us consider two cases:
1. The case W > [αn]: In this case after applying α-trimming, still W − [αn] rejected samples will

remain in the bag (set of leftover data points after applying α-trimming filter) to be averaged, and
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Figure 7: Potential scattering plots for sorted outputs of a given regression model when fed with
perturbed inputs. The general scenario which is most likely the case (top), and the worst-case scenario
(bottom).

since in the worst-case scenario one single sample is enough to push the average value outside the
accepted region, for this case we consider

P{dissy(gα(x + δ)i, yi) ≤ ϵyi |W > [αn]} = 0. (19)

2. The case W ≤ [αn]: In this case, there will be no rejected samples left in the bag to push the
average outside the acceptable zone. Since all the output values are already within the convex set, the
average value is also within the set and the average will always be valid to the user. Therefore, in this
case,

P{dissy(gα(x + δ)i, yi) ≤ ϵyi |W ≤ [αn]} = 1. (20)

The only variable that can put us in either of these two disjoint scenarios is the random variable W (n
and α are predefined values), which follows a Binomial distribution and in worst case scenario the
success rate is q as assumed in Theorems’s statement, i.e., W ∼ Bin(n, 1− q). Hence, ∀i ∈ [[t]] we
have

P{dissy(gα(x + δ)i, yi) ≤ ϵyi}

=

n∑
k=0

P{dissy(gα(x + δ)i, yi) ≤ ϵyi |W = k}P{W = k}

≥
n∑

k=0

P{dissy(gα(x + δ)i, yi) ≤ ϵyi |W = k}
(
n

k

)
(1− q)kqn−k

=

k≤[αn]∑
k=0

P{dissy(gα(x + δ)i, yi) ≤ ϵyi |W = k}
(
n

k

)
(1− q)kqn−k

+

n∑
k>[αn]

P{dissy(gα(x + δ)i, yi) ≤ ϵyi |W = k}
(
n

k

)
(1− q)kqn−k

≥
[αn]∑
k=0

(
n

k

)
(1− q)kqn−k

= Iq(n− [αn], [αn] + 1), (21)

where Iq(a, b) is the regularized incomplete beta function defined as Iq(a, b) = 1
B(a,b)

∫ q

0
ta−1(1−

t)b−1dt to compute the cumulative distribution of a binomial distribution where B(a, b) is the
complete beta function.
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C Robustness Improvement via α-trimming

We repeat the proposition’s statement here for convenience, followed by its proof.

Proposition 2: (Robustness Improvement via α-trimming). For any n ≥ 1, 0 ≤ q ≤ 1, if there exist
an α such that α+ ≤ α < 1/2, where

α+ :=
I−1
q (q)− 1/2

n
, (22)

and where I−1
q (q) is the inverse of Iq(n− x, x+ 1) with respect to x, then the following inequality

holds:
Iq(n− [αn], [αn] + 1) ≥ q. (23)

Proof. Note that Iq(n − x, x + 1) where x ∈ Z+, is the CDF of W ∼ Bin(n, 1 − q), and is a
monotonically increasing function with respect to x. To guarantee that the outcome CDF is greater
than q, we first need to find the corresponding x which achieves equality, and then find the region
where the inequality is always correct. To find the smallest x, we solve

Iq(n− x, x+ 1) = q ⇒ x = I−1
q (q) (24)

Knowing that in our formulation x corresponds to [αn], then to meet the Equality (24), α is required
to meet

I−1
q (q)− 1/2 ≤ αn < I−1

q (q) + 1/2

⇒
I−1
q (q)− 1/2

n
≤ α <

I−1
q (q) + 1/2

n
. (25)

For a fixed n and q, this means the inequality Iq(n− [αn], [αn] + 1) ≥ q holds if we select an α such

that it satisfies α ≥ I−1
q (q)−1/2

n and this completes the proof.

D Certification of gα(x)

We repeat the theorem’s statement here for convenience, followed by its proof.

Theorem 3: (Certification of gα(x) against ℓp Attack). Let fθ(x) : Rd → Rt be a deterministic or
random base regressor and let n ≥ 1, 0 ≤ α < 1/2, e ∼ N (0, σ2I) and suppose the α-trimming
function gα(x) defined in (8) is used for smoothing. Then given

P{dissy(fθ(x + e)i, yi) ≤ ϵyi} ≥ pAi
,∀i ∈ [[t]] (26)

where pAi
is the lower bound on the probability of accepting prediction in the ith output variable,

then gα(x + δ), ∀∥δ∥p ≤ ϵx (p ≥ 2) is within accepted region, i.e., Ny(y, ϵy) =
∏t

i=1 Ny(yi, ϵyi
),

with the user-defined probability P , s.t. I−1
n,α(P ) ≤ pAi

,∀i ∈ [[t]], where

ϵx = min
i∈[[t]]

σ

d
1
2−

1
p

(
Φ−1(pAi

)− Φ−1(I−1
n,α(P ))

)
, (27)

and where I−1
n,α(x) is the inverse of the regularized beta function w.r.t Bernoulli success rate parameter.

Proof. We consider the following chain to derive this upper bound on the ℓp norm of δ.

x+δ, ∥δ∥p < ϵx
fθ(x)−−−→ P{Valid fθ(x)} ≥ q

gα(x)−−−→ P{Valid gα(x)} ≥ Iq(n− [αn], [αn]+1). (28)

Based on the Proposition 1, if we select ∥δ∥p ≤ mini∈[[t]]
σ

d
1
2
− 1

p

(
Φ−1(pAi

) − Φ−1(q)
)
, then fθ(x)

is valid with probability q, and then based on results in Theorem 2, gα(x) changes this probability
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Figure 8: Sensitivity of certified median (left) and mean (right) error with changes in ntr.

Figure 9: Sensitivity of certified median (left) and mean (right) error with changes in n.

into Iq(n − [αn], [αn] + 1) for a fixed α and n, Therefore, if one asks the gα(x) to be valid with
probability P , we first solve

Iq(n− [αn], [αn] + 1) = P, (29)

for 0 ≤ q ≤ 1. Note that Iq(n − [αn], [αn] + 1) ∝
∫ q

0
tn−[αn]−1(1 − t)[αn]dt and the right hand

side is monotonically increasing function w.r.t q when n and α are fixed. Therefore, we can define
the inverse I−1

n,α(x) = q such that Iq(n− [αn], [αn] + 1) = x. Then, knowing this inverse, we can
directly use Proposition 1 to find the bound on ∥δ∥p, and this completes the proof.

E Sensitivity Analysis

In this section, we perform a sensitivity analysis of the proposed robust certification technique for
the hyperparameters involved in our mechanism. The parameters under evaluation are number of
samples to estimate pA (ntr), number of samples for α-trimming filter (n), rate of filtering (α), and
confidence level parameter (β). We use the Great Court scene with 50 randomly selected images for
examination with the size of 480× 854. The default parameters are K = 150cm, α = 0.35, β = 0.5,
ntr = 100, n = 10, P = 0.8, ϵy = 5m using ℓ1 norm in output, σ = 0.05, with robustness against
ℓ2 attack. For each parameter, we only change the parameter of interest and keep the other fixed.

ntr: This is the parameter that determines the quality of the estimated PAi
. In the reported empirical

results, this parameter was set to 100. Here we examine the performance for values in the set
{50, 100, 200} and report the certified median/mean error curve. Generally, we expect by increasing
ntr no changes occur in the tails of the certified mean/median since this only determines how reliable
the observed number of valid outputs is. If ntr is small, to keep the confidence level fixed, the
estimated lower bound of pA will be sacrificed, and that means the estimated radii will be small.
While this does not affect the curves’ tails, the middle-range errors will be significantly increased due
to the penalty term imposed by the range of radii. Figure 8 validates this interpretation and depicts
this effect for the middle parts of the curves.

16



Figure 10: Sensitivity of certified median (left) and mean (right) error with changes in α.

Figure 11: Sensitivity of certified median (left) and mean (right) error with changes in β.

n: This parameter indicates the number of samples which is going to be drawn in the output of the
base regression model to be fed into the α-trimming filter. In the experimental results, this was set to
n = 10. Here we investigate the impact of this parameter in the obtained certified median/mean error
rate by choosing the values among the set {10, 20, 30}. As shown in Figure 9 the obtained results are
quite stable with changes in n for the considered range.

α: Parameter α in α-trimming filter determines the rate of sample rejection on both sides of
the sorted values. While in the experiments, this value was set to α = 0.35, in this analysis we
investigate the role of this parameter in the final error rate results by choosing the values from the
{0.15, 0.25, 0.45}. As illustrated in Figure 10, in terms of median error, for smaller α when r is
also small, we obtained a slightly better error rate because of having more samples in the average
computation of the filtered values. On the other hand, increasing α leads to better certification radii
and the jump to higher error rates occurred in a larger range of r values. In terms of mean error rate,
increasing the value of α uniformly improved the performance because all the outliers came out of
the bag of averaging.

β: This parameter indicates the amount of confidence required about the obtained results as com-
pensation for the limited number of samples used in estimating pAi . In the experiments, this value
was set to β = 0.5 to provide confidence of 1− β

2 = 0.75. Now we choose this value from the set
{0.1, 0.3, 0.5} to examine the robustness of the results. We expect as we decrease β, as the result of
increasing the required confidence level, the estimated lower bound of pAi

,∀i ∈ [[t]] decreases and
the certified radii decrease as a result. These smaller certified radii cause more rapid growth in the
certified error rate as depicted in Figure 11.

17



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The paper’s main claim is a new randomized smoothing for regression models
with unbounded outputs and in Sections 3 and 4, such extensions are mathematically
supported and evaluated.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The only limitation of the work that the authors are aware of is the assumption
on the type of attacks, i.e., ℓp-norm bounded attacks. This point has been mentioned in
future work.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: For each statement, all the assumptions were clearly described and fully
adopted in the proof steps.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: A clear step-by-step procedure for estimating the certificate radii was presented
in Section 3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: While the dataset used in this study is publicly available, the code and in-
structions on how to run the code is publicly available on GitHub: https://github.com/
arekavandi/Certified_adv_RRegression/.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: To the best of the authors’ knowledge, all the critical parameters for the
provided results were reported with their exact values in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: As the proposed method is probabilistic, the results were reported either with
error bars (e.g., Figure 3) or were reported with a confidence level or were averaged over a
large number of samples.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: As mentioned in the paper, all simulations and experiments were conducted
using an Intel(R) Core(TM) i7-9750H CPU running at 2.60GHz (with a base clock speed of
2.59GHz) and 16GB of RAM.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: To the best of the authors’ knowledge, there is no misalignment between
this research and the code of ethics including but not limited to preserving anonymity,
appropriate citations of other relavent studies, social impact, and privacy.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

21

https://neurips.cc/public/EthicsGuidelines


Answer: [Yes]
Justification: Potential positive societal impacts of the work have been discussed in Subsec-
tion “Broader impact” right after Conclusion.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: In this paper, the authors did not release any model, but just proposed an
evaluation technique to measure models’ sensitivity to adversaries.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The studies related to the DSAC∗ model and the evaluated dataset were
appropriately cited and the URLs were provided in the GitHub page of this study.
Guidelines:

• The answer NA means that the paper does not use existing assets.
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• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: As mentioned in the abstract, the code and the required documenta-
tion are publicly available at https://github.com/arekavandi/Certified_adv_
RRegression/.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
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Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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