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Abstract001

With the rapid development of large language002
models, researchers have created increasingly003
advanced spoken dialogue systems that can nat-004
urally converse with humans. However, these005
systems still struggle to handle the full com-006
plexity of real-world conversations, including007
audio events, musical contexts, and emotional008
expressions, mainly because current dialogue009
datasets are constrained in both scale and sce-010
nario diversity. In this paper, we propose lever-011
aging synthetic data to enhance the dialogue012
models across diverse scenarios. We introduce013
ShareChatX, the first comprehensive, large-014
scale dataset for spoken dialogue that spans015
diverse scenarios. Based on this dataset, we in-016
troduce OmniChat, a multi-turn dialogue sys-017
tem with a heterogeneous feature fusion mod-018
ule, designed to optimize feature selection in019
different dialogue contexts. In addition, we020
explored critical aspects of training dialogue021
systems using synthetic data. Through com-022
prehensive experimentation, we determined the023
ideal balance between synthetic and real data,024
achieving state-of-the-art results on the real-025
world dialogue dataset DailyTalk. We also high-026
light the crucial importance of synthetic data027
in tackling diverse, complex dialogue scenar-028
ios, especially those involving audio and music.029
For more details, please visit our demo page at030
https://sharechatx.github.io/.031

1 Introduction032

With the rapid advancement of artificial intel-033

ligence, spoken dialogue systems (Jokinen and034

McTear, 2009) have emerged as a crucial branch035

of human-computer interaction. Many voice036

assistants, such as Siri (Hoy, 2018) and Cor-037

tana (Hachman, 2019), leverage automatic speech038

recognition (Yu and Deng, 2016) to transcribe039

speech into text and generate corresponding040

responses, enabling conversational capabilities.041

Driven by the progress in large language models042

(LLMs)(Touvron et al., 2023), modern spoken di- 043

alogue systems(OpenAI, 2024a) now possess en- 044

hanced reasoning and understanding abilities, al- 045

lowing for more complex dialogue functions based 046

on speech content. However, unlike traditional text- 047

based dialogue systems (Qin et al., 2023), spoken 048

dialogue systems must also account for a wealth 049

of multi-modal information beyond words. Sig- 050

nificant efforts have been made to enhance multi- 051

modal large language models for understanding var- 052

ious types of audio. Audio-Flamingo (Kong et al., 053

2024) has developed a text conversation dataset 054

centered on audio events and music, enabling text- 055

based dialogues built around these elements. Qwen- 056

Audio 1/2 (Chu et al., 2023, 2024), trained on 057

520,000 hours of audio-related tasks, has equipped 058

its models to comprehend speech, audio, music, 059

and other full-scene audio inputs. EMOVA (Chen 060

et al., 2024) introduces a framework that integrates 061

spoken dialogue with multimodal tasks, enabling 062

a spoken dialogue model that can “see, hear, and 063

speak". Although these models have demonstrated 064

some ability in handling spoken dialogues, the limi- 065

tations in the scale and diversity of current dialogue 066

datasets have led to the lack of a spoken dialogue 067

system that can effectively understand speech emo- 068

tions, audio events, or interpret background music 069

in complex spoken dialogue scenarios. 070

Compared to the vast amounts of text-based con- 071

versational data available online (Sordoni et al., 072

2015), collecting spoken dialogue corpora presents 073

significantly more challenges: (1) Limited Scale 074

of Spoken Dialogue Data. Acquiring spoken di- 075

alogue data is both more complex and costly than 076

gathering text data (Cieri et al., 2004), resulting 077

in much smaller datasets. High-quality spoken 078

data (especially data with multi-turn interactions 079

and emotional complexity across different scenar- 080

ios (Lin et al., 2024)) is even more difficult to ob- 081

tain. (2) Lack of Copyright-Free Data. Spoken 082

dialogues inherently contain personal and biomet- 083

1

https://sharechatx.github.io/


Table 1: Comparison of Spoken Dialogue Datasets. The dialogue data is derived from three scenarios: controlled
environments (Env), in-the-wild collection (Wild), and AI generation (AI-Gen). #Avg. represents the average
number of turns per dialogue. †All responses in E-chat200 are in text format, duration only includes speech on the
query side. The dialogues in AF-Dialogue all text-based, with duration reflecting only audio and music segments.

ScenariosDatasets Emo. Aud. Mus. Source # Turns #Dialog. #Avg. #Dur.

Speech-to-Speech Dialogue Dataset
IEMOCAP (Busso et al., 2008) ✔ ✗ ✗ Env 10,039 151 66.48 12
SwitchBoard (Godfrey et al., 1992) ✗ ✗ ✗ Wild - 2,500 - 250
Fisher (Cieri et al., 2004) ✗ ✗ ✗ Wild - 11,699 - 1,960
MELD (Poria et al., 2018) ✔ ✗ ✗ Wild 13,000 1,433 9.07 14
DailyTalk (Lee et al., 2023) ✔ ✗ ✗ Env 23,774 2,514 9.46 22
SpokenWOZ (Si et al., 2024) ✗ ✗ ✗ Env 203,074 5,700 35.63 249
StyleTalk (Lin et al., 2024) ✔ ✗ ✗ AI-Gen 12,056 2,967 4.06 12
ShareChatX (ours)

−ShareChat-Emotion ✔ ✗ ✗ AI-Gen 588,174 80,152 7.34 672
−ShareChat-Audio ✔ ✔ ✗ AI-Gen 199,034 27,005 7.37 217
−ShareChat-Music ✔ ✗ ✔ AI-Gen 160,028 21,443 7.46 242
−Overall ✔ ✔ ✔ AI-Gen 947,236 128,600 7.37 1,130

Non-Speech-to-Speech Dialogue Dataset
E-chat200 (Xue et al., 2023) ✔ ✗ ✗ AI-Gen 356,000 178,000 2.00 193†

AF-Dialogue (Kong et al., 2024) ✗ ✔ ✔ AI-Gen 657,600 82,200 8.00 228†

ric information, such as timbre, making anonymiza-084

tion difficult without degrading data quality. This085

raises privacy concerns when collecting and em-086

ploying large-scale spoken dialogue datasets. (3)087

Lack of Scenario-Specific Spoken Dialogue Cor-088

pora. Gathering spoken dialogue data from spe-089

cific scenarios like emergencies or high-stakes en-090

vironments is particularly challenging (Ao et al.,091

2024). These conversations often involve strong092

emotional reactions and unique audio conditions093

that are difficult to replicate or simulate. The lack094

of data from these specialized contexts limits the095

performance of dialogue systems in such scenarios.096

In response to these challenges, we propose097

leveraging large-scale synthetic data to simulate098

complex dialogue scenarios, thus improving spo-099

ken dialogue models across diverse scenarios.100

Drawing on the powerful reasoning capabilities101

of the large language model (OpenAI, 2024b),102

we generate dialogue scripts tailored to each sce-103

nario. These scripts are then converted into spo-104

ken dialogues using the high-fidelity controllable105

text-to-speech (TTS) model (Du et al., 2024). As106

shown in Table 1, we present ShareChatX, the107

first large-scale, comprehensive spoken dialogue108

dataset covering a broad range of scenarios, in-109

cluding -Emotion (involving complex emotional110

changes), -Audio (incorporating audio events), and111

-Music (featuring background music). We also in-112

troduce OmniChat, the first multi-turn spoken di-113

alogue system designed to handle a wide range of114

scenarios. OmniChat features a heterogeneous fea-115

ture fusion module called Mix-Former, engineered 116

to optimize feature selection across different dia- 117

logue contexts. Furthermore, we conducted exten- 118

sive experiments and analyzes on various training 119

methodologies to maximize the effectiveness of 120

synthetic data in the training of spoken dialogue 121

systems. This enabled us to determine the optimal 122

balance between synthetic and real data, leading 123

to state-of-the-art performance on the DailyTalk 124

dataset (Lee et al., 2023) of spoken dialogue in 125

the real world. Our experiments also highlight the 126

crucial importance of synthetic data in tackling 127

complex dialogue scenarios, especially those in- 128

volving audio and music. Our contributions are as 129

follows: 130

• We propose ShareChatX, the first large-scale 131

comprehensive spoken dialogue dataset covering 132

a wide range of scenarios, including -emotion, 133

-audio and -music. 134

• We introduce OmniChat, the first multi-turn spo- 135

ken dialogue system for diverse scenarios, with a 136

heterogeneous feature fusion module to optimize 137

expert feature selection across varied scenarios. 138

• We discussed various details involved in train- 139

ing spoken dialogue models with synthetic data, 140

and explored best practices for building effective 141

spoken dialogue systems based on synthetic data. 142

• We achieve state-of-the-art performance on the 143

real-world spoken dialogue dataset and other 144

complex dialogue scenarios, demonstrating the 145

importance of scaleable synthetic data. 146
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2 Related Works147

With the advancement of large language models148

(LLMs), increasingly powerful audio language149

models have emerged, leveraging extensive train-150

ing corpora to achieve comprehensive audio un-151

derstanding. SpeechGPT(Zhang et al., 2023), as152

the first speech-centric large language model, in-153

tegrates discrete speech units into the LLM frame-154

work, marking a significant milestone in the field.155

Similarly, Qwen-Audio1 and Qwen-Audio2(Chu156

et al., 2023, 2024) have established the first com-157

prehensive large-scale audio models, capable of158

handling more than 30 audio-related tasks, such159

as speech recognition, speech translation, and au-160

dio event detection. Building on advancements in161

audio understanding, a series of spoken dialogue162

models have been developed to enable more intel-163

ligent human-computer interaction. For instance,164

StyleTalk (Lin et al., 2024) emphasizes emotional165

conversation tasks, introducing the first spoken dia-166

logue model capable of generating responses with167

varying emotional tones.168

However, the development of spoken dialogue169

systems has been hindered by the limited scale170

of available spoken dialogue datasets. Due to the171

scarcity of training data, most current spoken dia-172

logue models are confined to question-answering173

tasks (Chu et al., 2024) or experiments conducted174

on small-scale datasets (Lin et al., 2024). Early175

efforts (Godfrey et al., 1992; Cieri et al., 2004)176

focused on creating datasets by recruiting partici-177

pants to record spoken dialogues, but such meth-178

ods were resource-intensive and costly. Subse-179

quently, researchers (Poria et al., 2018) began uti-180

lizing publicly available resources, such as TV181

shows, to compile spoken dialogue datasets. These182

real-world datasets, often annotated with emo-183

tional information, provided valuable resources184

for developing spoken dialogue systems. With185

the maturation of LLMs (OpenAI, 2024b), re-186

searchers have shifted towards synthesizing spoken187

dialogue data using AI-driven methods. For exam-188

ple, StyleTalk(Lin et al., 2024) employed a large189

language model(OpenAI, 2024b) in combination190

with controllable text-to-speech (TTS) models to191

create a dataset focused on capturing a variety of192

emotions, enabling the generation of contextually193

appropriate responses.194

To equip spoken dialogue systems with the abil-195

ity to handle a wide range of complex scenar-196

ios—including those related to speech emotion,197

audio events, and music understanding—we in- 198

troduce ShareChatX, the first large-scale, omni- 199

scenario synthetic spoken conversation dataset. By 200

leveraging synthetic data, ShareChatX significantly 201

enhances the conversational capabilities of spoken 202

dialogue systems, pushing the boundaries of their 203

applicability in diverse and challenging contexts. 204

3 ShareChatX 205

The ShareChatX dataset is divided into three sub- 206

datasets: -Emotion, -Audio, and -Music, each char- 207

acterized by distinct metadata. -Emotion includes 208

dialogue samples with rich emotional expression, 209

-Audio focuses on conversations centered around 210

audio events, and -Music features samples incor- 211

porating background music. Here, we provide a 212

detailed pipeline of the dataset construction: 213

Textual Dialogue Scripts. Leveraging the pow- 214

erful reasoning capabilities of large language mod- 215

els (OpenAI, 2024b), we create textual dialogue 216

scripts tailored to different topics and scenarios 217

using detailed prompt templates. In this process, 218

we instruct the model to first generate N rounds of 219

historical dialogue, followed by responses and emo- 220

tions that match the contextual flow. The dialogue 221

topics for -emotion subset are generated with large 222

language models, the audio descriptions for -audio 223

subset are derived from AudioCaps (Kim et al., 224

2019), and the music information for -music subset 225

is sourced from MusicCaps (Agostinelli et al.). For 226

further details, see Appendix B.2. 227

Spoken Dialogue. In the textual script genera- 228

tion step, we generated the style parameters T style
i 229

(gender, pitch, speed, emotion) and the correspond- 230

ing text content T content
i for each sentence Ti. Us- 231

ing these style parameters and the text content, we 232

employed the open-source controllable TTS model, 233

CosyVoice-Instruct (Du et al., 2024), to synthesize 234

the corresponding speech Si. 235

Dialogue Verification. To ensure the quality of 236

the voice conversation data, we implemented a dual 237

verification method combining model-based and 238

manual checks. Since each voice clip in the conver- 239

sation is generated separately, we used a speaker 240

diarization model (Plaquet and Bredin, 2023) to 241

confirm that the same speaker’s voice maintained 242

consistent timbre. Additionally, we applied an ASR 243

model (Radford et al., 2023) to ensure that the word 244

error rate (WER) across all samples did not exceed 245

5%. For each conversation, we attempted synthesis 246

up to 10 times until the entire conversation met the 247
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Figure 1: Overview of OmniChat. (a) OmniChat predicts the t-th response TAssis,t by using the previous t
dialogues Dhuman,1, · · · ,Dhuman,t and t− 1 responses TAssist,1, · · · ,TAssist,t-1 as context. OmniChat concur-
rently predicts both the Style Tstyle

Assist,t and Content Tcontent
Assist,t of the response. (b) Mix-Former leverages Q-Former

to independently represent different expert features, thereby enhancing the ability to capture the nuances of each
aspect of the dialogue segment.

required standards. Finally, manual inspection was248

conducted to verify that each sample adhered to the249

logic of natural human conversation.250

Audio/Music Integration. For ShareChat-251

Audio and ShareChat-Music, we overlay the corre-252

sponding audio and music onto the spoken dialogue253

data. For -audio subset, a large language model254

(LLM) is used to determine whether the event is255

temporary or continuous. Temporary audio events,256

such as a door slamming or a phone ringing, are257

short-lived sounds that occur briefly and are spliced258

before the first voice segment. In contrast, continu-259

ous audio events, like background chatter or street260

noise, are prolonged sounds that persist over time261

and are looped as background sound throughout the262

conversation. For the -music subset, we randomly263

apply two different methods to combine the music264

with the dialogues. To ensure the authenticity of265

the final dialogue, all audio and music components266

are overlaid according to (Petermann et al., 2022)267

when combined with speech. For further details,268

see Appendix B.1.269

4 Spoken Dialogue System270

The spoken dialogue system aims to generate271

an appropriate response DAssist,T based on the272

contextual information from the spoken dialogue273

sequence {Dhuman,1,Dhuman,2, . . . ,Dhuman,T }274

and the preceding response sequence275

{DAssist,1,DAssist,2, . . . ,DAssist,T−1}, where276

T represents the total number of dialogue turns.277

Following previous work (Lin et al., 2024), each278

response is represented by two components:279

Tstyle
Assist,i, which conveys the emotional tone, and 280

Tcontent
Assist,i, which represents the speech content. 281

These components can then be fed into controllable 282

TTS models (Du et al., 2024) to synthesize highly 283

expressive and contextually appropriate responses 284

DAssist,i. 285

4.1 OmniChat 286

As illustrated in Figure 1, subfigure (a) depicts our 287

proposed OmniChat, a multi-turn spoken dialogue 288

model built upon a large language model. This 289

model is capable of generating the most appropri- 290

ate response acoustic style Tstyle
Assist,t and content 291

Tcontent
Assist,t for various voice inputs and dialogue sce- 292

narios. In subfigure (b), after extracting features 293

using multiple expert models, the heterogeneous 294

fusion module MIX-FORMER is employed to pro- 295

duce the final voice feature input. The detailed 296

introduction is as follows: 297

Multi-Expert Audio Feature Extraction In 298

spoken dialogue, capturing acoustic features be- 299

yond just the speech content is crucial. To 300

model these features, we employ multiple ex- 301

pert models, each specializing in a different di- 302

mension of the speech. For the speech content, 303

we utilize Whisper model (Radford et al., 2023) 304

to extract speech content features Fs, trained 305

with weak supervision on large-scale speech cor- 306

pora, represented as Fs
i = {Fs

i,1, · · · ,Fs
i,n} = 307

Whisper-Encoder(Dhuman,i). For emotional in- 308

formation, we use Emotion2vec (Ma et al., 2023), 309

a speech emotion representation model trained 310

with self-supervision on extensive emotional 311
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speech datasets, which captures the emotional nu-312

ances of the speech Fe
i = {Fe

i,1, · · · ,Fe
i,n} =313

emotion2vec(Dhuman,i). To enable the model to314

understand broader non-speech elements, such as315

audio events and music, we incorporate the Beat316

model (Chen et al., 2023) as a non-speech au-317

dio feature extractor Fb
i = {Fb

i,1, · · · ,Fb
i,n} =318

Beat-Encoder(Dhuman,i). Since the feature319

frame rates of these audio expert encoders are con-320

sistent, the three expert features can be temporally321

aligned as {(Fs
i,j ,F

e
i,j ,F

b
i,j) | j ∈ [1, N ]}, where322

N is the number of frames in each audio feature.323

Mix-Former for Heterogeneous Fusion The im-324

portance of different features can vary significantly325

across dialogue system scenarios. For example,326

beat features are essential in music-related envi-327

ronments but may interfere with emotion-centric328

dialogues. To address this, we propose a heteroge-329

neous feature fusion module called MIX-FORMER,330

as shown in Figure 1 (b), which integrates diverse331

expert features while minimizing interference.332

For each expert feature, we use an attribute-333

specific window-level Q-Former to align audio334

and language between frozen audio encoders and335

a frozen large language model (LLM). The ex-336

pert features Fs
i ∈ RN×Ds ,Fe

i ∈ RN×De ,Fb
i ∈337

RN×Db , corresponding to the audio segment, are338

segmented into windows of size L. The Q-Former339

at the window level uses a fixed number of K train-340

able queries Qs,Qe,Qb to encode the features341

stacked in each window into K hidden features:342

Hs
i = Q-Former(Qs,Fs

i ), (1)343

He
i = Q-Former(Qe,Fe

i ), (2)344

Hb
i = Q-Former(Qb,Fb

i). (3)345

where Hs
i ∈ R[N×K/L]×Ds ,He

i ∈346

R[N×K/L]×De ,Hb
i ∈ R[N×K/L]×Db repre-347

sent window-level attribute features. To adapt to348

different scenarios, we introduce a weight module349

that assigns weights w to each feature using three350

linear layers:351

ws
i,l = σ(Linear(Hs

i,l)), (4)352

we
i,l = σ(Linear(He

i,l)), (5)353

wb
i,l = σ(Linear(Hb

i,l)). (6)354

where l is the l-th window-level feature and355

σ(·) is the sigmoid function. The weighted356

expert features are concatenated as: Hi =357

concat(ws
iH

s
i ,w

e
iH

e
i ,w

b
iH

b
i), where concat(·)358

is the frame-by-frame concatenation opera- 359

tion along the feature dimension, Hi ∈ 360

R[N×K/L]×[Ds+De+Db]. This concatenated feature 361

is then linearly projected to align with the input 362

space Zi. 363

4.2 Training Method 364

During training, we freeze all parameters of the 365

audio feature extractor and LLM, focusing solely 366

on training the Q-Former and the LoRA adapters, 367

which adjust the query and value weight matrices 368

in the self-attention layers of the LLM. The entire 369

model is optimized using the multi-turn dialogue 370

loss, which is calculated as follows: 371

L = −
T∑

t=1

m∑
j=1

log p(Tj
t |Z1:t,T1:t−1,T

1:j−1
t ), (7) 372

where T is the total number of dialogue turns, m 373

is the number of tokens in the t-th turn’s response, 374

Tj
t is the j-th token in the response for the t-th 375

turn, Z1:t represents the audio features up to the 376

t-th turn, and T1:t−1 refers to the tokens from all 377

previous turns, while T1:j−1
t denotes the preceding 378

tokens within the same turn. This training target 379

ensures the model learns to generate contextually 380

appropriate responses over multiple dialogue turns, 381

leveraging both the dialogue history and the audio 382

features. 383

5 Experiments 384

5.1 Implementation Details 385

We adopt the Llama-3.1-8B-Instruct model (Dubey 386

et al., 2024) as the backbone LLM. All audio data 387

are resampled to 16 kHz for consistency. In the 388

windowed Q-Former, we set K = 1 , resulting in 389

a single trainable query, and use L = 17 , which 390

corresponds to approximately 0.33 seconds per win- 391

dow. The models are trained for 30,000 steps with 392

a batch size of 48 on eight A800 GPUs. For more 393

detailed training information, refer to Appendix A. 394

To evaluate model performance, we conducted 395

experiments on two datasets: DailyTalk (Lee et al., 396

2023) and our proposed ShareChatX. For testing, 397

we randomly selected a test set from each subset of 398

DailyTalk and ShareChatX, ensuring that the train- 399

ing and test sets were non-overlapping. Following 400

previous studies (Lin et al., 2024), we employed 401

both quantitative and qualitative metrics to evaluate 402

model performance. The quantitative evaluation 403

was divided into two aspects: content and style. 404
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Table 2: Performance comparison of various methods for spoken dialogue systems on the ShareChatX datasets.
The content metrics include @B (BLEU), @R (ROUGE-L), @M (METEOR), and @BS (BERTScore). The Style
metrics include @F1e for emotion prediction accuracy.

ShareChat-Emotion ShareChat-Audio ShareChat-Music
Methods @B @R @M @BS @F1e @B @R @M @BS @F1e @B @R @M @BS @F1e

ASR-Based Spoken Dialogue System
FunAudioLLM 3.2 14.9 18.8 86.9 46.7 3.3 12.0 12.9 86.0 41.9 3.0 12.0 12.4 86.2 49.2

Direct Spoken Dialogue System
Qwen-Audio 3.0 8.2 12.2 84.3 - 3.0 7.3 11.9 84.0 - 2.9 9.0 11.7 84.1 -
Salmonn 2.9 11.8 11.4 86.1 - 3.6 10.1 11.2 85.6 - 2.9 10.5 11.1 86.1 -
Qwen2-Audio 3.1 14.2 17.4 86.7 - 3.6 12.2 13.2 87.2 - 3.0 12.2 13.4 87.2 -

OmniChat (ours) 6.2 20.0 18.9 88.1 57.2 6.0 18.7 17.4 87.3 51.5 4.7 17.7 15.8 87.8 69.1

Table 3: Performance Comparison of Various Spoken
Dialogue Systems on the DailyTalk Dataset. The con-
tent metrics include @B (BLEU), @R (ROUGE-L),
@M (METEOR), and @BS (BERTScore). The Style
metrics include @F1e for emotion prediction accuracy.

Methods @B @R @M @BS F1e GPT-eval MOS

ASR-Based Spoken Dialogue System
StyleTalk 2.01 9.42 10.95 82.82 49.63 3.51 3.42±0.23
FunAudioLLM 2.65 12.53 11.82 84.76 61.02 3.82 3.85±0.18

Direct Spoken Dialogue System
Audio-Flamingo 1.47 5.01 10.23 83.94 - 2.35 2.53±0.25
SpeechGPT 1.42 7.85 9.42 84.11 - 2.68 2.45±0.32
Qwen-Audio 2.04 7.43 11.21 84.33 - 3.01 3.23±0.18
Salmonn 2.32 11.78 11.56 85.47 - 3.41 3.05±0.22
Qwen2-Audio 3.03 12.81 13.89 86.14 - 4.01 3.87±0.25

Spoken Dialogue Systems Enhanced with Synthetic Data (ours)
OmniChat (ours) 3.54 12.63 12.57 86.24 71.87 3.96 3.97±0.22

+ Real data 4.95 12.95 14.24 86.99 75.46 4.15 3.99±0.18

For content evaluation, we utilized widely recog-405

nized text generation metrics, including vocabulary-406

level scores such as BLEU (Papineni et al., 2002),407

ROUGE-L (Lin, 2004), and METEOR (Banerjee408

and Lavie, 2005), as well as semantic-level metrics409

like BERTScore (Zhang et al., 2019). For style410

evaluation, we computed weighted F1 scores for411

speaking emotion. In addition to the quantitative412

metrics, we conducted qualitative analyses using413

GPT-based metric (Yang et al., 2024) and manual414

evaluation. The detailed prompt template for GPT415

evaluation can be found in Appendix A.3. For a416

dialogue with T turns, we use the previous T − 1417

turns as context and predict only the response for418

the T -th turn.419

5.2 Main Results420

Comparison on Real-World Spoken Dialogue.421

As shown in Table 3, we evaluated the performance422

of spoken dialogue models on the DailyTalk real-423

world spoken dialogue dataset. The models were424

categorized into ASR-Based Spoken Dialogue Sys-425

tems, which rely on ASR-transcribed text, and Di-426

rect Spoken Dialogue Systems, which generate re-427

sponses directly from speech input. (1) Response428

Content: OmniChat demonstrated superior perfor- 429

mance across all content-related metrics, particu- 430

larly when fine-tuned with real data. For instance, 431

OmniChat + Real Data achieved the highest ME- 432

TEOR score of 14.24 and a BERTScore of 86.99, 433

outperforming direct models like Qwen2-Audio 434

(METEOR: 13.89, BERTScore: 86.14). These re- 435

sults highlight the importance of synthetic data for 436

responding in real-world dialogue scenarios. (2) 437

Emotion Prediction Accuracy: OmniChat also 438

significantly outperforms all other models in terms 439

of emotion prediction, with OmniChat + Real Data 440

achieving an F1e score of 75.46, far exceeding the 441

best ASR-based model, FunAudioLLM (61.02). 442

Even without fine-tuning, OmniChat achieved an 443

impressive 71.87, demonstrating its superior abil- 444

ity to detect and generate emotionally appropri- 445

ate responses. Since real-world data may lack di- 446

verse emotional interactions, synthetic data helps 447

bridge this gap by enriching the dialogue corpus 448

with dynamic emotional shifts, which further sup- 449

ports model training. 450

Comparison on Diverse Complex Dialogue 451

Scenes. As shown in Table 2, the analysis of the 452

ShareChatX dataset (-Emotion, -Audio, -Music) 453

demonstrates the significant improvements Om- 454

niChat offers in dialogue generation and emotion 455

prediction for complex scenarios. OmniChat con- 456

sistently excels in content generation and accu- 457

rately predicts emotional shifts, highlighting its 458

effectiveness in handling multi-modal dialogues. 459

It is worth noting that while Qwen2-Audio im- 460

proved its BLEU (from 3.1 of -emotion to 3.6 of 461

-Audio), key metrics like ROUGE-L and METEOR 462

dropped significantly, indicating that recognizing 463

audio events alone is insufficient for generating co- 464

herent dialogue in complex scenarios. OmniChat, 465

by leveraging large-scale multi-modal synthetic di- 466

alogue data, maintains strong performance even in 467
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Figure 2: Performance comparison of dialogue systems trained with varying data scales on the ShareChatX-
Emotion. T denotes text input, S+T denotes both speech and ASR-transcription input, and S (ours) represents our
method utilizing only speech as input. The numbers on the horizontal axis represent the scale of the dialogue data
used during training.

challenging environments. Its ability to integrate468

multi-modal information enhances both dialogue469

generation and emotion recognition, emphasizing470

the importance of comprehensive data for improv-471

ing system performance.472

5.3 How Does Data Scale Impact the Spoken473

Dialogue Models?474

Spoken dialogue models based on large language475

models must learn the mapping between speech476

and text from scratch, and the scale of training data477

plays a crucial role in their performance. How-478

ever, what scale of data is sufficient to support the479

training of effective spoken dialogue models? To480

explore this question, we conducted a comparative481

analysis of the three most commonly used input482

modalities for dialogue models, as shown in Figure483

2: (1) text-based dialogue models (using text as in-484

put, represented by the green line), (2) ASR-based485

spoken dialogue models (utilizing ASR transcrip-486

tions along with speech input, represented by the487

orange line), and (3) direct spoken dialogue models488

(relying solely on speech input, represented by the489

blue line). The following analysis highlights the490

key findings as the dataset scale ranges from 5K to491

80K samples.492

Speech Models Surpass Text Models (5K-10K)493

At the 5K-10K data scale, models incorporating494

speech input (either with or without ASR tran-495

scriptions) begin to outperform text-based mod-496

els. For example, the BLEU score of the direct497

speech model improves from 4.65 at 5K to 4.94 at498

10K, while the text-based model lags behind with a499

BLEU score of 4.86. Speech data, which contains500

not only semantic content but also emotional cues,501

allows the model to capture richer information than502

text alone, leading to better performance as the503

dataset size increases.504

Direct Speech Model Outperforms ASR-based505

Model (10K-20K) Between the 10K and 20K506

data scale, the direct speech model (without ASR507

text) begins to outperform the ASR-based model. 508

For instance, the METEOR score of the direct 509

speech model reaches 17.59 at 20K, while the ASR- 510

based model trails slightly behind at 16.96. At this 511

scale, the ASR transcriptions no longer provide 512

additional useful information; in other words, this 513

amount of data is sufficient for models to learn the 514

mapping from speech to semantics from scratch. 515

Textual Input Becomes Redundant (20K-80K) 516

As the dataset size increases further (20K-80K), the 517

performance of the speech-only model continues to 518

improve, while the performance of the ASR-based 519

model plateaus. For example, in the BLEU met- 520

ric, the direct speech model improves from 6.06 at 521

20K to 6.17 at 80K, whereas the ASR-based model 522

shows diminishing returns, rising only from 5.79 523

to 5.85. This suggests that as the model is trained 524

on larger datasets, speech alone is sufficient to cap- 525

ture all necessary information, including emotional 526

cues and context. In contrast, the text input be- 527

comes redundant, as it lacks the multimodal infor- 528

mation present in speech, such as tone, intonation, 529

and emotion. This redundancy not only fails to im- 530

prove performance but can also hinder the model 531

by introducing unnecessary complexity. For in- 532

stance, at the 80K data scale, the ROUGE-L score 533

of the speech-only model reaches 20.02, while the 534

model using both speech and ASR text achieves 535

only 19.01. 536

5.4 Optimal Sampling Ratios of Synthetic and 537

Real Data in Spoken Dialogue Models 538

Researchers have demonstrated that achieving opti- 539

mal performance across various tasks requires bal- 540

ancing synthetic and real data during training. Syn- 541

thetic data enhances model robustness, while real 542

data ensures alignment with the target domain’s 543

distribution. Yet, the question arises: what is the 544

ideal sampling ratio for spoken dialogue models? 545

(Please note that the importance of data scale has 546

been demonstrated in subsection 5.3. This subsec- 547
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Table 4: Performance comparison of models trained
with varying mixup ratios of synthetic and real data on
the DailyTalk dataset. α represents the frequency of
synthetic data used during training.

Ratio @B @R @M @BS
!=0.0 3.54 12.63 12.57 86.24 71.87

!=0.1 5.07 13.29 14.17 85.70 71.05

!=0.2 4.95 12.95 14.24 86.99 75.46
!=0.3 3.94 12.04 13.84 86.42 74.71

!=0.4 3.88 11.97 13.25 85.90 73.55

!=0.5 3.73 11.63 13.05 85.26 72.36

!=1.0 3.90 12.32 13.22 86.02 70.66

@#$!

tion focus solely on the sampling rate, with the548

synthetic data scale fixed at 80K.)549

To explore this, we experimented with various550

sampling ratios, as shown in Table 4, to determine551

the optimal balance between synthetic and real data:552

(1) Low Ratio (α = 0.1) Ensures Lexical Con-553

sistency. At a sampling ratio of α = 0.1 (one syn-554

thetic sample for every ten training samples), the555

model achieved a BLEU of 5.07 and a ROUGE-L556

of 13.29, outperforming models trained exclusively557

on real data (α = 1.0) or synthetic data (α = 0.0).558

This indicates that incorporating a small proportion559

of synthetic data helps the model achieve better560

consistency at the word level, while real data en-561

sures alignment with natural spoken dialogues. (2)562

Moderate Ratio (α = 0.2) Achieves Sentence-563

Level Consistency. Further increasing the propor-564

tion of synthetic data improved the model’s ability565

to generate semantically coherent responses. At a566

sampling ratio of α = 0.2, the model’s F1e score567

increased by 4.41 compared to α = 0.1, demon-568

strating that this ratio allows the model to achieve569

optimal performance at the sentence level in terms570

of meaning and emotion control. (3) Excessive571

Ratio (α > 0.2) Leads to Performance Decline.572

When the ratio of synthetic data exceeded α = 0.2,573

performance in real conversation scenarios began574

to decline. For instance, the ROUGE-L dropped575

by 0.91 when α increased from 0.2 to 0.3, indi-576

cating that an excessive reliance on synthetic data577

can hinder the model’s ability to generalize to real-578

world conversations. Based on these findings, a579

sampling ratio of α = 0.2 provides the ideal bal-580

ance, achieving optimal performance in real-world581

dialogue scenarios.582

5.5 Multi-Expert Speech Feature For Spoken583

Dialogue Systems.584

As shown in Table 5, we present a performance585

comparison of different expert feature selection586

Table 5: Performance Comparison of Different Expert
Feature Selection Strategies on ShareChat-Music. M-F
stands for Mix-Former.

Methods SHARECHAT-MUSIC

Fs Fe Fb M-F @B @R @M @BS @F1e

✔ 4.65 17.8 15.8 87.5 66.7
✔ ✔ 4.68 17.6 15.4 87.5 68.8
✔ ✔ ✔ 4.63 17.7 15.6 86.3 69.0
✔ ✔ ✔ ✔ 4.68 17.7 15.8 87.8 69.1

strategies on the ShareChat-Music dataset, focus- 587

ing on the role of Mix-Former (M-F) and three 588

expert features: speech features (Fs), emotion fea- 589

tures (Fe), and beat features (Fb). 590

The experiment shows that simply adding ex- 591

pert features without proper integration can lead 592

to performance degradation. For example, when 593

speech (Fs) and emotion (Fe) features were com- 594

bined without Mix-Former, the METEOR score 595

dropped to 15.4, compared to 15.8 when only 596

speech features (Fs) were used. However, when 597

Mix-Former was applied, the model successfully 598

combined multiple expert features, leading to im- 599

proved results. With speech, emotion, and beat fea- 600

tures (Fs, Fe, Fb) processed through Mix-Former, 601

the model achieved the highest METEOR score of 602

15.8 and the best BERTScore of 87.8, demonstrat- 603

ing its ability to effectively capture and integrate 604

diverse expert feature information. 605

6 Conclusion 606

Spoken dialogue systems have been hindered by 607

the scarcity of large-scale, high-quality spoken di- 608

alogue data. To address this challenge, we intro- 609

duced the use of synthetic datasets to enhance the 610

performance of dialogue models. In this paper, we 611

presented ShareChatX, the first large-scale dataset 612

covering diverse, complex scenarios such as emo- 613

tional dialogues, audio events, and music. Through 614

extensive experimentation, we determined the op- 615

timal balance between real and synthetic data, as 616

well as the required data size for training spoken di- 617

alogue models. These findings provide valuable in- 618

sights for future dialogue model development. Fur- 619

thermore, our proposed system, OmniChat, demon- 620

strated superior spoken dialogue synthesis across 621

various scenarios, delivering emotionally appropri- 622

ate and high-quality language responses. These 623

advancements underscore the crucial role of syn- 624

thetic data in advancing spoken dialogue systems 625

and optimizing their performance in real-world ap- 626

plications. 627
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Limitations628

The spoken dialogue system we proposed, Om-629

nichat, currently focuses on generating the most ap-630

propriate reply content and emotions but still relies631

on a controllable TTS model to synthesize speech632

for replies. However, the research in this article em-633

phasizes the understanding capabilities of spoken634

dialogue systems, and the conclusions drawn can635

also serve as a reference for end-to-end spoken dia-636

logue models that directly generate speech. In the637

future, we will explore the application of synthetic638

data in developing end-to-end spoken dialogue sys-639

tems.640

Ethical Discussion641

Spoken dialogue systems developed using public642

data may face risks such as inappropriate guidance643

or offensive language. Due to the complexity and644

diversity of conversations in public datasets, it can645

be challenging to determine whether the content646

poses risks, such as encouraging criminal behav-647

ior. In contrast, dialogue systems developed using648

synthetic data can better ensure ethical consistency649

in conversation content. Additionally, this paper is650

intended solely for academic research and does not651

result in commercial products, so the ethical risks652

are minimal at present. We plan to explore how653

to further reduce the risk of accidental guidance in654

voice dialogue systems in the future.655
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Figure 3: Overview for Crafting our ShareChatX Dataset. First, text dialogue scripts Ti = {T style
i , T content

i }
are generated using large language models, with data-specific prompts tailored for the three subsets: -emotion,
-audio, and -music. Next, spoken dialogue data Si is synthesized using controllable text-to-speech synthesis model
(CosyVoice-Instruct), incorporating style parameters such as gender, pitch, speed, and emotion. To ensure the
quality of the generated data, both model-based and manual verification processes are applied. Finally, audio events
and music are integrated into the dialogues, with specific methods for handling temporary and continuous sounds.

A More Experimental Details840

A.1 Details for Dialogue on DailyTalk841

In mixed training with real and synthetic data, we842

sample from both datasets at a specific sampling843

rate α. For each training instance, a random num-844

ber µ is drawn between 0 and 1. If µ < α, the845

model selects samples from the synthetic data for846

training. If µ ≥ α, the samples are selected from847

the real data for training. We randomly selected848

220 samples from DailyTalk as the test set. We will849

open-source the test set partitions in this work to850

facilitate comparison in future studies.851

A.2 Details for Dialogue on Complex852

Scenarios853

For ShareChat-Emotion, we train the model di-854

rectly on the ShareChat-Emotion dataset and pro-855

ceed to evaluate it. For ShareChat-Audio and856

ShareChat-Music, we leverage a model pre-trained857

on ShareChat-Emotion and fine-tune it on these858

two subsets to better adapt the model for spe-859

cific complex scenarios. Both the pre-training860

on ShareChat-Emotion and the fine-tuning on the861

two subsets are conducted for 30,000 steps each.862

We have 3,731 dialogues for the -emotion test set,863

1,555 for the -audio test set, and 1,243 for the -864

music test set.865

A.3 Prompt Template for GPT-eval 866

As illustrated in Figure 7, we present the template 867

utilized for GPT-based evaluation (GPT-eval). 868

B More Details about ShareChatX. 869

Figure 3 illustrates the detailed synthesis process 870

of ShareChatX. The following sections provide cor- 871

responding prompt templates for each step of the 872

process. 873

B.1 Temporary and Continuous Audio Events 874

We use GPT-4 to determine whether audio events 875

are temporary or continuous, which guides how we 876

concatenate audio and spoken dialogues. Specifi- 877

cally, the prompt template for this step is shown in 878

Figure 4. 879

B.2 Prompt Template 880

ShareChat-Emotion For ShareChat-Emotion, 881

we utilized a large language model (LLM) to ran- 882

domly generate 521 dialogue topics. Below are sev- 883

eral examples of these topics to provide a clearer 884

understanding of the dialogue content: Artistic hob- 885

bies, Regrets from the past, Dealing with difficult 886

people, Communication styles, and The culture of 887

food. In Figure 5, we present the emotion distribu- 888

tion for ShareChat-Emotion. The detailed prompt 889

template for ShareChat-Emotion is shown in Figure 890

8. 891
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I will provide you with a description of the background sound and ask you to determine what may have 
happened based on the background sound and analyze whether this will happen again in a short period of time? 

The background sound is described as [The wind is blowing, insects are singing, and rustling occurs].

All you have to do is reply “This will happen again” or “This will not happen again”.

Figure 4: The prompt template to determine whether audio events are temporary or continuous.

happy, 27.52%

neutral, 
33.48%

surprised, 
11.37%

sad, 10.20%

disgusted, 
4.35%

fearful, 6.12%
angry, 6.96%

happy

neutral

surprised

sad

disgusted

fearful

angry

Figure 5: Emotion distribution in ShareChat-Emotion.

ShareChat-Audio For ShareChat-Audio, we892

used the captions of audio events in Audio-893

Caps (Kim et al., 2019) as keywords to generate894

conversations. To prevent interference with the dia-895

logues, we employed PANNs (Kong et al., 2020) to896

identify and remove all human voice events. The897

detailed prompt template for ShareChat-Audio is898

shown in Figure 9.899

ShareChat-Music For ShareChat-Music, we900

used the aspect list from the audio clips in Music-901

Caps (Kim et al., 2019) as keywords to generate di-902

alogues. The aspect list includes detailed informa-903

tion such as music type, instrument type, emotion,904

and other characteristics of each piece of music.905

The detailed prompt template for ShareChat-Music906

is shown in Figure 10.907

C More Experimental Results908

C.1 Spoken Dialogue System for Complex909

Scenarios.910

In spoken dialogue models, the presence of back-911

ground sounds such as audio events or music re-912

quires the model to understand not only the emo-913

tional and contextual content of speech but also914

the various background sounds that influence the915

conversation. To explore how to effectively train916

spoken dialogue models for complex scenarios, we917

conducted experiments on the ShareChat-Audio918

dataset, as shown in Figure 6. Our results highlight919

several key factors for training effective spoken920

dialogue models in these complex, multi-modal 921

environments: 922

The Effect of Pre-Training on Large-Scale 923

General Dialogue Data. Across all metrics, mod- 924

els pre-trained on larger-scale general dialogue data 925

(E-PT+A-FT) achieved significantly better results 926

than models trained solely on music data (A-FT). 927

For instance, the BLEU score of the E-PT+A-FT 928

model (6.007) with 27K training data was higher 929

than that of the A-FT model (5.310). This indi- 930

cates that large-scale pre-training equips the model 931

with a stronger understanding of language struc- 932

ture and general conversational dynamics, which is 933

crucial for handling complex scenarios that involve 934

background sounds. 935

The Impact of Scenario-Specific Dialogue 936

Data. The scale of the spoken dialogue data in com- 937

plex scenarios also plays a critical role in model per- 938

formance. When fine-tuned with 27K ShareChat- 939

Audio samples, the ROUGE-L score of the pre- 940

trained model (E-PT) increased from 17.350 to 941

18.649. However, when the model was fine-tuned 942

with only 5K-10K music samples, its performance 943

did not surpass that of the model pre-trained on 944

general dialogue data. For example, the METEOR 945

score of the model fine-tuned on 5K spoken dia- 946

logue data in audio scenario (14.006) was lower 947

than that of the pre-trained model (15.890). This 948

shows that while fine-tuning on scenario-specific 949

data improves performance, a sufficient volume of 950

such data is necessary to fully support the model in 951

complex environments. 952

C.2 Dialogue Results in Real-World 953

We present cases of the model output on the Dai- 954

lytalk dataset in Figure 11, showcasing Omnichat’s 955

logical reasoning and expression capabilities in 956

real-world scenarios. Compared to FunAudioLLM 957

and Qwen2-Audio, our model generates more nat- 958

ural and reasonable responses, with accurate emo- 959

tional expressions tailored to the conversation. 960

12



5K 10
K

20
K

4.5

5.0

5.5

6.0
BLEU

A-FT
E-PT
E-PT+A-FT

5K 10
K

20
K

16

17

18

ROUGE-L

A-FT
E-PT
E-PT+A-FT

5K 10
K

20
K

14

15

16

17
METEOR

A-FT
E-PT
E-PT+A-FT

5K 10
K

20
K

85

86

87

BERTScore

A-FT
E-PT
E-PT+A-FT

Figure 6: Performance Comparison of Various Training Strategies on ShareChat-Audio. A-FT refers to training
using only the -audio subset, E-PT involves pre-training on the more general -emotion subset, and E-PT+A-FT
represents a strategy where the model is first pre-trained on the general -emotion subset, followed by fine-tuning on
the -audio subset.

C.3 Dialogue Results in Complex Scenarios961

Cases in Figure 12 and Figure 13 present the962

results of Omnichat compared to other base-963

lines on Sharechat-Emotion, Sharechat-Audio, and964

Sharechat-Music datasets. On the Sharechat-965

Emotion dataset, we evaluated the model’s diverse966

outputs when presented with identical text but with967

varying emotional undertones in the dialogue cor-968

pus. The enthusiastic replies in response to a posi-969

tive attitude and the comforting words when faced970

with a melancholic tone, demonstrating model’s971

adeptness at discerning and responding to emo-972

tional subtleties973

The results in Figure 13 demonstrate that the974

model not only effectively captures bird chirping975

sounds in the background environment but also976

understands the music in the background and is ca-977

pable of expressing its own perspective. Compared978

to the baseline, the model’s superior understanding979

of background sounds indicates that the extensive980

synthetic data and the novel heterogeneous feature981

fusion module have endowed it with more versatile982

conversational capabilities.983
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You are an evaluator assessing the quality of responses generated by a spoken dialogue system.
Each response will be scored on a scale of 1 to 5 based on the following criteria:

1: The response is contextually irrelevant and expresses inappropriate emotion.
2: The response is partially relevant to the context but feels unnatural, with inappropriate emotion.
3: The response is partially relevant to the context and expresses appropriate emotion.
4: The response is contextually relevant and natural, mentioning the attribute, and expresses
appropriate emotion.
5: The response is contextually relevant, smooth, natural, and expresses emotions that perfectly
align with the scenario.

Here is the context and the generated response. Please evaluate the response based on the
above criteria and provide a score along with a brief explanation for your rating.

Example Input

Context:
“User: I just got promoted at work, but I feel so overwhelmed lately.”

Generated Response:
“Congratulations on your promotion! It’s normal to feel overwhelmed with new responsibilities.
Take things step by step, and you’ll get the hang of it.”

Expected Output

Score: 5
Explanation: The response is contextually relevant, natural, and emotionally supportive,
perfectly aligning with the user’s scenario and emotions.

Figure 7: The Prompt Template for GPT-eval.
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Figure 8: The prompt template for ShareChat-Emotion. The green words are alternative key words.
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Figure 9: The prompt template for ShareChat-Audio. The green words are alternative key words.
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Figure 10: The prompt template for ShareChat-Music. The green words are alternative key words.
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You look tired.

Yeah, I’ve been working so much 
overtime lately.

With neutral emotion

With neutral emotion

Really? How come?

My boss gave me a big project. I had 
to have it finished by this morning. 
It was so difficult!

With surprised emotion

With neutral emotion

You shouldn’t work so hard.

I know. But hard work pays off, you 
know.

With neutral emotion

With neutral emotion

What are you hiding in your coat 
pocket?

It's a camera.

With neutral emotion

With neutral emotion

Umm you want to take pictures of 
the inside of your pocket?

Not even funny, Billy. This is my new 
snapshot sticker camera.

With neutral emotion

With neutral emotion

What's that supposed to mean?

With neutral emotionWhat do you mean?

Well, if I can finish this project on 
time, I’ll get a raise at the end of the 
month.

With neutral emotion

With happy emotion

human

OmniChat

human

human

human

OmniChat

OmniChat

OmniChat

history

response

human

human

human

history

response

It’s a good opportunity to learn new 
skills.

FunAudio
LLM

Well, I got the promotion I wanted 
after putting in all that extra effort.

Qwen2-
Audio

It has stickers on the back of the 
photo, and you can stick them 
anywhere.
With neutral emotion

OmniChat

Well, it means I can take little 
picture stickers and stick them on 
things. FunAudio

LLM

It's a sticker that you can stick on 
your clothes to take pictures of the 
inside of your pockets. Qwen2-

Audio

OmniChat

OmniChat

Figure 11: Dialogue results samples on the DailyTalk Dataset.
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history

response

Yeah, it definitely takes time. every 
step forward is a step towards 
something better. FunAudio

LLM

Yes, change requires effort and 
patience.

Qwen2-
Audio

history

response

Just remember, every step forward 
is a step towards something better.

FunAudio
LLM

Definitely, but with time and 
patience, we can adapt and benefit 
from the changes. Qwen2-

Audio

You know, embracing change is 
really exciting! It can open new 
doors for us.

Absolutely, but it can also feel a little 
overwhelming at times.

With neutral emotion

With neutral emotion

For sure! But I think that's part of 
the journey. We grow from it.

True, but sometimes it's hard to let 
go of what we’re used to.

With sad emotion

With neutral emotion

It can be challenging to get used to 
it.

With happy emotion

human

human

human

OmniChat

OmniChat

Yeah, but I think it's worth it in the 
end, right?

With happy emotion

OmniChat

You know, embracing change is 
really exciting! It can open new 
doors for us.

Absolutely, but it can also feel a little 
overwhelming at times.

With neutral emotion

With neutral emotion

For sure! But I think that's part of 
the journey. We grow from it.

True, but sometimes it's hard to let 
go of what we’re used to.

With sad emotion

With neutral emotion

It can be challenging to get used to 
it.

With sad emotion

human

human

human

OmniChat

OmniChat

I know, it can be really tough to 
adjust sometimes. Just take it one 
step at a time.

With sad emotion

OmniChat

Figure 12: Dialogue results samples on the ShareChat-Emotion Dataset.
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Have you heard that new track with 
the male vocalist? 

Yes! I love the way the slow tempo 
really sets a nostalgic tone.

With happy emotion

With happy emotion

The lyrics are quite insightful, aren’t 
they? They really stick with you.

Totally! It has this blend of soft 
yellow sad energy but with an 
electric guitar lead that's exotic.

With neutral emotion

With happy emotion

It’s like classic pop mixed with 
something modern. 

I feel a bit pensive and yet relaxed. 
What do you think of the soft bass 
line underpinning the vocals?

With neutral emotion

With neutral emotion

The overall mood seems a bit 
melancholic, doesn't it?

Yeah, it definitely has that 
melancholic vibe, but it's also quite 
soothing.

With neutral emotion

With neutral emotion

human

OmniChat

human

human

human

OmniChat

OmniChat

OmniChat

history

response

Yeah, there's a touch of melancholy 
that makes you reflect on past 
experiences. FunAudio

LLM

It feels uplifting in its own unique 
way.

Qwen2-
Audio

Can you believe how peaceful it is 
here? The birds sound so lovely!

Yeah, it definitely has a certain 
charm.

With happy emotion

With neutral emotion

I didn’t expect to see so many birds 
together, it’s like they're having a 
party!

It really feels like a joyful gathering, 
doesn’t it?

With surprised emotion

With happy emotion

And they all seem to get along with 
each other nicely.

With neutral emotion

human

human

human

history

response

yeah, it sounds like they are 
peacefully eating together, right?

With happy emotion

OmniChat

Isn't it amazing how they coexist so 
peacefully?

FunAudio
LLM

Yes, the birds seem to be enjoying 
each other’s company.

Qwen2-
Audio

OmniChat

OmniChat

A pigeon coos softly and 
then there is a lot of pecks 
and cooing by a lot of birds.

A male vocalist sings this retro classic 
melody. The tempo is slow with a 
melodious electric guitar lead, soft 
acoustic guitar accompaniment.

Figure 13: Dialogue results samples on the ShareChat-Audio and ShareChat-Music Dataset.
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