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Perceptual Quality Assessment of
High-Dynamic-Range Image: A Benchmark
Dataset and a No Reference Method

Zihao Zhou, Liquan Shen™, Jun Lei, Zhaoyi Tian™, Xiangyu Hu, Shiwei Wang~, and Yang Chen

Abstract— High dynamic range (HDR) imaging technology has
received increasing attention in recent years, and HDR image
quality assessment (IQA) metrics are indispensable during the
capturing, processing and displaying of HDR images. However,
existing HDR-IQA datasets and methods neglect complex dis-
tortions during the HDR image processing schemes, leading
to limited generalization performance on practical application.
In this work, to facilitate the development of HDR-IQA dataset,
we present HDRQAD, a large-scale HDR Quality Assessment
Dataset, which possesses diversified distortions during HDR
imaging technologies, abundant scenes and considerable quantity.
Specifically, the HDRQAD dataset contains 1409 HDR images,
which are derived from source scenes with six types of distortions
during the HDR imaging schemes. In contrast to existing datasets
that contain only compression artifacts, the HDRQAD includes
Under-exposure, Over-exposure, Motion blur and Ghosting in
HDR images achieved with multi-exposure fusion technology,
conversion artifacts in HDR images achieved with single image
reconstruction technology and compression artifacts during the
transmission of HDR images. Furthermore, during the process
of constructing the dataset, we identified three key challenges
in HDR-IQA tasks: 1) dynamic range variations, 2) HDR
visual artifacts with large overall gap, 3) inter-regional non-
uniform image quality. Based on these observations, we propose
a new end-to-end network for HDR-IQA tasks, which consists
of a Distortion-aware Representation Learning (DRL) module
and an Inter-Regional Quality Interaction (IRQI) module. The
DRL learns the representations of dynamic range variations
and HDR visual artifacts, enhancing the reliability of prior
information extraction. The IRQI captures inter-regional quality
dependencies with interacting and fusing intermediate distortion
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features for more accurately predicting image quality. Extensive
experiments prove the superiority of proposed HDRQAD and
demonstrate that the proposed network achieves state-of-the-
art performance. The Dataset and Code will be made publicly
available at HDR-IQA-Dataset.

Index Terms— High dynamic range (HDR), deep learning,
no reference, image quality assessment.

I. INTRODUCTION

IGH dynamic range (HDR) imaging technology is

favored by the consumer market and professional color
systems to render the brightness and color variations of real
scene more accurately. During the past decade, advancements
in HDR imaging technology and hardware devices have rev-
olutionized the whole multimedia communications pipeline
from acquisition to final display [1]. Recently, many HDR
imaging methods were proposed, which can be classified into
three types: Multi-exposure Fusion (MEF) frameworks [2], [3],
Single Image Reconstruction (SIR) frameworks [4], [S] and
HDR camera schemes [6], [7].

These imaging methods facilitate the acquisition of HDR
content. However, as shown in Fig. 1, these methods may lead
to different distortion patterns. In the context of MEF, ghosting
artifacts that arise during the fusion process is a critical
content of research [8]. For lack of shooting proficiency, issues
such as motion blur, under-exposure, and over-exposure may
occur during the fusion process. For SIR, the reconstructed
HDR image suffers from saturation in highlights, noise in
lowlights and severe color shift [9]. These distortions are
referred to as single image construction artifacts. Although
HDR cameras can directly capture HDR content, compression
artifacts inevitably arise during storage and transmission.

Research in HDR IQA is significantly lagging. One main
limitation is the absence of a uniform subjective quality assess-
ment dataset with comprehensive distorted content. Pioneers
have constructed some previous HDR-IQA datasets [10], [11],
[12], [13], [14] that contain distorted images in various scenar-
ios. They just utilize existing compression tools, such as JPEG,
JPEG2K, JPEG-XT and HEVC to construct a dataset, resulting
in limited distortion content. Besides, most of these datasets
are limited in scale, featuring only several hundred images or
even fewer than one hundred, and lack scene diversity, making
it difficult to validate the effectiveness and robustness of the
HDR-IQA algorithms.

Besides datasets, another limitation is the lack of efficient
IQA algorithms specifically designed for HDR content. The

1051-8215 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence
and similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on November 10,2025 at 15:23:05 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0002-2148-6279
https://orcid.org/0009-0002-7239-2640
https://orcid.org/0009-0002-6721-3521

ZHOU et al.: PERCEPTUAL QUALITY ASSESSMENT OF HIGH-DYNAMIC-RANGE IMAGE

Natural Scene

— ror canen [0
Images :

\ Monitor
oot @ - .
Reconstruction

Over- Under-
LDR Image exposure  exposure [©)
Multi-exposure ©) i ‘
Fusion Motion Blur Ghosting Co;lptﬁssion
LDR Stacks 10) ®

(a) HDR Imaging Schemes (b) HDR Distortions Types

Fig. 1. Different HDR imaging schemes and various HDR distortions. The
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IQA algorithms employed for HDR images can be divided
into three categories: 1) general algorithms that aim to extract
comprehensive image distortion information through the use of
either handcrafted [15] or learned features [16]; 2) extended
LDR algorithms [17], [18], [19], which transform linear
content into a perceptually more uniform space for subsequent
prediction; 3) HDR-IQA algorithms [20], [21], [22], [23],
[24], [25], which are designed to simulate the non-linear
response characteristics of the human visual system. General
algorithms and extended LDR metrics, which were initially
intended for LDR image distortions, may not be as effective
in evaluating HDR images, potentially leading to performance
degradation.

In HDR-IQA algorithms, most traditional methods [20],
[21], [22], [23] depend on simple mapping functions that
convert image features into quality prediction. And most
deep learning-based methods [24], [25] rely on general
features, such as saliency and visual masking, which con-
strains their ability to accurately evaluate HDR-specific
distortions, resulting in suboptimal performance. Although
these methods achieved their intended goals, they were val-
idated only on previous datasets only containing compression
distortion. However, distortions from recent HDR imaging
methods cannot be ignored, including Motion blur, Ghosting,
Under-exposure and Over-exposure from MEF scheme, and
conversion artifacts from SIR scheme. Existing HDR-IQA
algorithms are not effective at assessing these distortions.
Therefore, it is necessary to propose a new HDR-IQA
algorithm to better predict the quality of HDR images with
diverse HDR distortions.

HDR images display a diversity of distortions, each of
which has unique distortion characteristics. These factors
motivate us to consider various distortions from alternative
perspectives in the design of an HDR-IQA algorithm. How
to represent the HDR distortions? There are two key
aspects: dynamic range distortions and HDR visual artifacts.
Dynamic range variations etc. can lead to deviation of human
cognition, while HDR visual artifacts resulting from different
distortions have large overall gap, such as ghosting and over-
exposure, induce discomfort during observation, resulting in
serious degradaion of subjective quality. How to address the
problem of inter-regional non-uniform quality in single
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Fig. 2. Problem of non-uniform quality. The HDR image is degradate by
over-exposure, where red is low quality region and green is high quality
region.

HDR image? The HDR distortions introduce non-uniform
quality degradation in single HDR image, complicating quality
assessment. As shown in Fig. 2, image with over-exposure
exhibits severe detail loss in highlight regions while low-light
areas maintain a considerable degree of integrity, which
demonstrates that both low-quality and high-quality regions
coexist in an HDR image. This necessitates a holistic rep-
resentation of image quality, encompassing quality variations
across different regions and considering inter-regional quality
dependencies.

To address the limitation of datasets, motivated by the inher-
ent differences, we here propose a groundbreaking HDRQAD,
High Dynamic Range image Quality Assessment Dataset, for
HDR-IQA tasks. Compared with previous works [10], [11],
[12], [13], [14] that only consider HDR carmera scheme,
HDRQAD is the first large-scale IQA dataset that not only
includes HDR camera scheme but also involves multi-exposure
fusion and single image reconstruction schemes, addressing
the research vacancy in the HDR subjective quality assess-
ment. It encompasses a wide range of content and HDR
distortions to cover the complete quality spectrum of HDR
images created in practice. In particular, HDRQAD includes
a total of 1,409 distorted HDR images with more than
20,000 human ratings. The dataset features a high diversity
of real content (outdoor, indoor, daytime, nighttime, back-
light, frontlight, etc.) and distortion types (over-exposure,
under-exposure, single image reconstruction artifact, ghosting,
motion blur, etc.), covering a wide spectrum of distortions
encountered in most real-world applications.

To address the limitation of HDR-IQA algorithms, we pro-
pose a network to assess HDR image quality more accurately
and reasonably. The network comprises a Distortion-aware
Representation Learning module (DRL) and an Inter-Regional
Quality Interaction module (IRQI). The DRL is designed to
learn the representation of HDR distortions, which indepen-
dently extracts prior information of distortions presenting in
distinct regions of a HDR image, improving the robustness
of subsequent efforts to capture inter-regional dependencies.
The IRQI captures inter-regional quality dependencies with
interacting and fusing intermediate distortion features to more
accurately representing image quality. The contributions of our
work can be summarized as follows:

« We embark on a groundbreaking endeavor to create the
HDRQAD for developing a high-quality metrics for HDR
IQA. A total of 1,409 distorted HDR images acquired
through three imaging schemes, enabling HDRQAD
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characterized by a high diversity of real distortion
types (6 categories) and content (147 scenes). To our
best knowledge, HDRQAD is the largest in scale, the
most abundant in scenes, and contains comprehensive
distortions.

o We design an end-to-end network for HDR IQA, which
consists of a DRL module and an IRQI module. The
DRL module independently considers distortions in dif-
ferent regions from both dynamic range and HDR visual
artifacts perspectives, enhancing the robustness of qual-
ity prediction. The IRQI captures inter-regional quality
dependencies to improve the accuracy of overall quality
assessment.

« Extensive expreiments demonstrate the superiority of
HDRQAD and proposed HDR-IQA algorithm. We re-
evaluated the existing popular IQA algorithms on
HDRQAD, providing a complete survey of performance
of them for researchers to explore HDR IQA researches.

II. RELATED WORKS
A. Subjective HDR Quality Assessment

With the advancement of HDR research, many subjective
HDR-IQA datasets have been proposed to explore the pecep-
tual quality of HDR image. For instance, Narwaria et al.
[10] studied the quality assessment in tone mapping-based
HDR image compression, where they explored the optimal
parameters of dynamic range reduction function for max-
imized visual quality and constructed a subjective dataset
consisting of 140 compressed HDR images with 10 contents.
The next year, Narwaria et al. [14] addressed the issue
of how tone mapping affects the perceptual quality of the
decompressed HDR signal produced by inverse tone mapping,
and collected 216 decompressed HDR images with 6 contents.
Valenzise et al. [11] proposed a subjective dataset containing
260 compressed images with 5 contents to validate the con-
sistency of PSNR and SSIM with subjective perception in a
perceptually uniform space. Korshunov et al. [12] proposed a
dataset with JPEG-XT, which led to a total of 240 compressed
images with 20 contents, including several images with dif-
ferent luminance, frames from HDR video, and CGI images.
Rousselot et al. [26] selected 96 distorted images with 8 HDR
images degraded by HEVC, gaussian noise and color gamut
mismatch to study the impacts of viewing conditions on HDR-
VDP2.

To facilitate development of HDR IQA, there are serveral
works that have merged previous datasets. Zerman et al. [13]
provided a complete and thorough survey of the performance
of HDR full-reference image quality metrics. They collected
several HDR image databases [10], [11], [12], [14] and created
a new part of HDR images, which consists of 50 distorted
images with 5 contents degraded by JPEG and JPEG2K,
resulting in a total of 690 distorted images. Recently, Mikhail-
iuk et al. [27] constructed a consolidated dataset (UPIQ)
consists of 3779 LDR images and 380 HDR images using
psychometric scales, where the Mean Opinion Score (MOS)
values of HDR images were obtained from two datasets [10],
[12] by a specially designed algorithm.
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In addition, subjective experiments have been conducted
using several HDR datasets. Fang et al. [28] constructed
a deghosting quality assessment dataset to investigate the
effectiveness of different deghosting algorithms. Hanji et al.
[9] proposed a HDR single reconstruction dataset to rank
the results of single image reconstruction methods. It is
regretful that these datasets lack MOS values, resulting in their
unavailability for HDR IQA.

Most of the above datasets contain only compression dis-
tortion and are limited in scale. These datasets focus on
compression distortion, reflecting a relatively mature study of
its subjective quality, while other common HDR distortions,
such as ghosting and single-image reconstruction artifacts,
remain insufficiently explored. Although there are datasets [9],
[28] containing the specific distorted content of HDR imaging,
they lack the MOS necessary for HDR-IQA tasks. Therefore,
a large-scale dataset with a wide range of distortions and
diverse content is highly desired.

B. Objective Quality Assessment

1) General IQA Algorithms: Objective IQA algorithms are
designed to predict image quality consistent with human
perception. According to the types of reference image, IQA
algorithms can be divided into three types: Full Reference
(FR), Reduced Reference (RR) and No Reference (NR).
FR algorithms are typically achieved by comparing the pris-
tine reference image against a distorted version to quantify
the visual quality degradation [29], [30]. RR IQA models
utilize partial reference information to assess visual quality
[31], [32]. NR methods evaluate visual quality without a
reference image and instead employ information extracted
from distorted images [33], [34], making them the most
practical for real-world applications. Before the advent of
deep neural network methods, traditional IQA approaches
were predominantly full-reference and relied on handcrafted
features to represent image quality. The popular traditional
IQA models include PSNR, SSIM [35], VIF [36], FSIM
[37], GFM [38], NIQE [39], PIQE [40] and Brisque [15],
among others. Different from traditional handcrafted-based
methods, deep learning-based IQA approaches are mostly
no-reference and can establish an end-to-end mapping between
the image and its quality. The popular deep learning-based
IQA approaches contain HyperNet [16], VCRNet [41], TReS
[42], TempQT [43], among others.

2) Extended LDR Metrics: Extended LDR metrics aim to
better inherit the performance of LDR quality metrics with
a special coding method. Considering the large gap between
HDR linear content and human perception, Aydin et al. [17]
designed a Perceptual Uniform (PU) code, which maps HDR
linear content to perceptually uniformed range, to employ
PSNR and SSIM for HDR image prediction. Azimi et al.
[19] improved the PU function relied on the latest CSF [45]
and extended it to cover more LDR metrics. Shang et al.
[46] proposed a new framework with a nonlinear transform
to enhance distortions occurring in higher and lower light
portions of the HDR image, improving the performance of
LDR metrics in HDR-IQA tasks. Recently, Cao et al. [47]
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decomposed HDR images into LDR image stacks with differ-
ent exposures, and then evaluated these decomposed images
with the well-established LDR quality metrics to predict HDR
image quality. Besides, although the Gamma function and the
PQ [18] transform are designed for display model, they have
the ability to extend LDR metrics.

3) Dedicated HDR IQA Algorithms: HDR IQA remains a
nascent field. Most existing HDR-IQA metrics are traditional
methods, even learning-based methods are underdeveloped.
For traditional methods, HDR visual difference predictor
(HDR-VDP) [20] is one of the most classical HDR FR-
IQA methods. The series of HDR-VDP predicts the visible
differences by modeling the optical and retinal pathways
in the human visual system (HVS) [20], [21], [48]. HDR-
VQM is another equally important metric, which extracts
frequency features with a Gabor filter in a perceptual domain
for predicting the video quality [49]. Some authors have
utilized structural information between the reference image
and a distorted version, Liu et al. [23] employed Gabor and
Butterworth filter to model response of HVS in frequency, and
Zhang et al. [22] utilized gradient similarity with the designed
stabilization parameters. Moreover, other researchers have
addressed HDR image quality from the assessment chromatic
aspect, employing different HDR Uniform Color Spaces [50]
or utilizing color difference models [51].

For deep learning-based models, most of them were
designed for compression distortion and have not under-
gone subsequent development. To the best of our knowledge,
Jia et al. [24] first proposed a deep learning-based model
with saliency map and verified the feasibility of converting
LDR image features to HDR images. The NR method pro-
posed by Kottayil et al. [25] predicts pixel-level error and
perceptual resistance to image error with two deep network
units. Mikhailiuk et al. [27] trained the PU-PieAPP model
based on the construction of a uniform photometric image
quality (UPIQ) dataset. Besides, some authors attempted other
methods, such as modeling HDR-VDP2 prediction [52] and
using newly-conceived differential natural scene statistics [53].

III. PROPOSED DATASET

To advance the development of HDR IQA, the largest
High Dynamic Range image Quality Assessment Dataset
(HDRQAD) is proposed. Most of the existing HDR-IQA
datasets [10], [11], [12], [13], [14], [26], [27] focus on at
exploring the effect of transmission on image quality. How-
ever, the diversity of HDR imaging schemes, which mainly
is divided into multi-exposure fusion (MEF) [2], [3], single
image reconstruction (SIR) [4], [5] and HDR Camera scheme
[6], [7], introduces HDR distortions not limited to transmis-
sion. In this section, we focus on distortions that may occur
in HDR imaging schemes, and provides essential guidance for
constructing our dataset.

A. HDR Image Distortion Types

Three imaging schemes mentioned in Sec. I exhibit different
distortion patterns. In the context of multi-exposure fusion
(MEF), ghosting artifacts have been a significant focus of
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research [8]. Due to a lack of shooting proficiency, issues such
as motion blur, under-exposure, and over-exposure may occur
during the capture process. SIR scheme often produces HDR
images exhibiting saturation in highlights, noise in lowlights,
and significant color shifts [9]. These distortions are referred to
as single image construction artifacts. Although HDR cameras
can directly capture HDR content, compression artifacts are
inevitably introduced during transmission. Moreover, the HDR
image distortions include ghosting, motion blur (MB), under-
exposure (UE) and over-exposure (OE) introduced by MEF
scheme, single image reconstruction artifact (SIRA) occurring
in SIR scheme, and compression artifacts result from HDR
Camera scheme.

B. Building Dataset

A multi-exposure fusion scheme, single image reconstruc-
tion scheme, and HDR camera scheme are involved in the
proposed dataset, with details as follows:

1) MEF Scheme: The LDR image stacks are captured by
high-speed mirrorless camera, the Canon R6 Mark 2, which
enables us to acquire high-quality multi-exposure LDR image
stacks. As shown in Fig. 3, five multi-exposure LDR image
stacks are captured in a manually motion-continuous way.
Three images with exposure level {EV-3, EVO, EV+3} of
the middle frame in LDR stacks are selected to obtain the
reference HDR image by triangular fusion function [54].
As shown in Fig. 3, the distortions generation as follows:

e Over-exposure (OE) : Selecting images with exposure
values {EV+1, EV+2, EV+3} denotes degradation level 2,
and those with {EV0, EV+2, EV+3)} denotes level 1.

e Under-exposure (UE) : Selecting images with exposure
values {EV-3, EV-2, EV-1} denotes degradation level 2, and
those with {EV-2, EV-1, EV-0} denotes level 1.

e Ghosting : Multi-exposure images from neighboring
frames are fused, with one- and two-frame intervals serving
as degradation levels 1 and 2, respectively, to obtain ghost
images.

e Motion blur (MB) : Each LDR image stack is captured
statically, making it hard to directly obtain a blurred image.
Inspired by [55], a strategy of interpolating is adapted, averag-
ing and then fusing to obtain blurred HDR images, as shown
in Fig. 3(c)(d).

2) SIR Scheme: As shown in Fig. 4, seven-exposure levels
LDR image stacks are acquired through the Canon R6 Mark
2 pre-set bracketing program. The reference image generation
method is same as MEF scheme. In addition to the scenes we
captured, another 41 scenes are carefully selected from [56].
The distortions generation details as follows:

e Single image reconstruction artifact (SIRA) : HDRCNN
[57] and ExpandNet [58] are selected for each scene as
the algorithm to reconstruct the HDR content. Three LDR
images with exposure values {EV-3}, {EV0} and {EV+3} are
reconstructed to three HDR images.

3) HDR Camera Scheme: Digital film camera, the Black-
magic URSA Mini Pro 4.6K, is used to directly capture HDR
images for HDR Camera scheme. The HDR image captured
with digital film camera regarded as high quality reference
HDR image. The distortions generation as follows:
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e Compression : Three degradations are generated with
different JPEG-XT configurations, i.e., ProfileA with quality
factor pairs [20, 20], ProfileB with quality factor pairs /35,
35], and ProfileC with quality factor pairs [50, 50].

C. Subjective Test Protocol

Subjective test experiments are carried out in a gray-tone
laboratory uninterrupted by external light sources and other
factors, which is recommended by ITU-R [59]. A SIM2 HDR
monitor, the full HD SIM2 HDR47ES4MB (1920 x 1080,
16:9), is used to display the test images. The Dual Stimulation
Impairment Scale (DSIS) Variant I method [59] is employed
for this test. The test image and the reference image are
segmented to 944 x 1080, then pieced together into a image
with 32 black pixels in the center. Twenty participants are
asked to subjectively rate the test images on a scale ranging
from I to 5 (i.e. 1: very annoying, 2: annoying, 3: slightly
annoying, 4: perceptible, but not annoying, 5: imperceptible).

HDR Image Subjective Test

Wasmn Up'
Start Exit Next
Test

1-Very Annoying | 2-Annoying  3-Slightly Annoying

4-Not annoying | S-Imperceptual

start Exit Previous Next

(b) HDR image on HDR monitor

(a) GUI on LDR monitor

Fig. 5. (a) The graphical user interface (GUI) on LDR monitor. (b) HDR
image on HDR monitor. The HDR monitor shows the reference image on one
side and the test image on the other, separated by a 32-pixel-wide black bar
in the middle.

The computer used in the subjective testing experiments
is connected to both LDR and HDR monitors. The Graph-
ical User Interface (GUI) and displayed image as shown in
Fig. 5. To mitigate the influence of image order, participants
are divided into two groups with different reference image
positions. To ensure the accuracy of participants’ evaluations,
a 10-minute warm-up session is conducted prior to the start
of the test. During the testing process, participants know the
position of the reference image and provide subjective quality
assessments within the 6-second display of the HDR images.
Each testing session has a duration of 10 minutes, followed by
a 15-minute rest period before proceeding to the subsequent
round of testing.

In total, 28,180 opinion scores of 1,409 images are col-
lected. Two outliers are detected according to the principles
recommended in ITU-R [59]. Each mean opinion score
(MOS) is subsequently obtained by averaging the effective
opinion scores. Assuming that the scores follow Student’s -
distribution, each MOS is associated with the 95% confidence
interval.
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IV. DATASET AND DISTORTION ANALYSIS

A. Dataset Analysis

As shown in Fig. 6(a), it can be observed that the MOS
values of HDRQAD almost span the entire quality axis,
which reveals that proposed HDRQAD exemplifies reasonable
perceptual quality of various distortions separation recogniz-
ability. To quantify its superiority, the proposed HDRQAD
is compared with existing HDR-IQA datasets. As presented
in Table I, HDRQAD stands out for its diversity of scenes,
quantity, and types of distortion. As shown in Fig. 6(b) and
Fig. 6(c), HDRQAD exhibits superior diversity and extensive
coverage across both image content and distortion types.
The MOS distributions of various distortions are shown in
Fig. 6(d). The median MOS values show a clear upward trend
from Ghosting to UE, which reveals that the influence of
these distortions on perceived image quality is undeniable and
cannot be overlooked.

B. Distortion Analysis

In Fig. 7, the effect of various distortions regarding the
MOS values and image characteristics is illustrated, where
HDR image distortion can be analyzed from two aspects.
From the distortion representation aspect, these distortions

TABLE 1

COMPARISON OF EXISTING HDR IMAGE QUALITY DATABASES. THE DIs-
TORTION TYPES OF HDRQAD CONSIST OF OVER-EXPOSURE (OE),
UNDER-EXPOSURE (UE), MOTION BLUR (MB), SINGLE IMAGE
RECONSTRUCTION ARTIFACT (SIRA), GHOSTING AND
JPEG-XT.” N.A.” INDICATES NOT AVAILABLE
FOR HDR-IQA TASKS

Dataset Scene  Images Distortion Type Annotations

Narwaria [10] 10 240 JPEG MOS
Narwaria [14] 6 216 JPEG2K MOS
Valenzise [11] 5 260  JPEG, JPEG2K, JPEG-XT MOS
Korshunov [12] 20 240 JPEG-XT MOS
Zerman [13] 48 690  JPEG, JPEG2K, JPEG-XT MOS
Rousselo [26] 8 96 HEVC, Gaussian, CGM MOS
UPIQ [27] 30 380 JPEG, JPEG2K, JPEG-XT JOD
Fang [28] 20 180 Ghosting N.A.
Han [9] 27 432 SIRA N.A.

HDRQAD 147 1409 OE, UE, MB, SIRA MOS

Ghosting, JPEG-XT

mainly manifest as dynamic range shifts and HDR visual
artifacts. As shown in Fig. 7(a), the dynamic range distribu-
tions of distortions exhibit substantial heterogeneity, resulting
in disparate influences on HDR image quality. Besides, dif-
ferent distortions exhibit pronounced overall gap in visual
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artifacts. As shown in Fig. 7(b), ghosting, characterized by
target motion, contrasts starkly with detail loss associated with
over-exposure, showcasing the distinct visual consequences of
distortion types. Therefore, dynamic range and HDR visual
artifacts emerge as pivotal considerations within the spectrum
of distortion content. From the inter-regional non-uniform
quality aspect, the localized nature of distortion content leads
to significant disparities in image quality across intra-image
regions, which renders inter-regional quality dependencies
critical for representing the overall image quality. For example,
as shown in Fig. 7(c), although both low- and high-quality
regions are presented in blurred and under-exposed images,
they exhibit distinctly different subjective quality. This is
because the inter-regional quality dependencies of blurred
image fall on low-quality regions, whereas the under-exposure
image exhibits the opposite tendency.

From these observations, two key issues can be summa-
rized: 1) HDR distortions are complex and require evaluation
from the perspectives of dynamic range and HDR visual
artifacts to accurately measure the degree of distortion;
2) The non-uniform quality across different regions within
an image makes the quality dependency relationship critical
when representing the overall image quality. However, existing
HDR-IQA algorithms with simple quality mapping functions
are insufficient in effectively addressing these challenges,
which highlights an imperative need for innovative HDR-IQA
algorithms.

V. PROPOSED METHOD
A. Overall Pipeline

As analyzed in Section IV-B, the representations of com-
plex HDR distortions and the phenomena of inter-regional

non-uniform quality increase the difficulty of HDR-IQA tasks.
To address these issues, a new network is proposed for
HDR IQA, which independently learns the representation of
distortion content within an individual region and captures

the quality dependencies between different regions for better
representing HDR image quality. The overall pipelne of the
proposed method as shown in Fig. 8. Four representative
patches are randomly selected from the quad-divided HDR
input image /, and then serve as independent input content
in linear domain {PliinearIi =1, 2, 3, 4} anc_l perceptually
uniform space {P;m|i =1, 2, 3, 4}. Paired Pl’l.nwr and P}lﬂl
are fed into Distortion-aware Representation Learning module
(DRL) to learn representations of dynamic range anomalies
{Figli = 1,2, 3, 4} and HDR visual artifacts {F}, ,|i = 1,
2, 3, 4}, thereby accurately identifying distorted content in
HDR images. Subsequently, all F l") g and F"', 4 are fed into
Inter-Regional Quality Interaction module (IRQI) to capture
inter-regional quality dependencies, where the united dynamic
range features Fypr and united artifact features Fy 4 are gen-
erated by F li) g and F, \’, 4» Tespectively. Finally, the Multilayer
Perceptron (MLP) with Fypg and Fy 4 is employed to predict
HDR image quality.

B. Distortion-Aware Representation Learning

The representation of HDR distortion content takes into
account both the dynamic range and HDR visual artifacts.
When the human visual system (HVS) processes the dynamic
range of HDR images, the base perception of dynamic
range is generated by local background luminance, then
local anomalies [19] and geometric structures [60] caused
by exposure errors further affect the perception of dynamic
range. Besides, the visual artifacts are classified as another
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important criterion for evaluating the quality of HDR images.
The significant differences in visual artifacts across distortions
motivate addressing this issue from a global patch perspective.
Combining the above two points, the Distortion-aware Rep-
resentation Learning module (DRL) consists of a Dynamic
Range sub-network (DRN) and a Visual Artifact sub-network
(VAN).

1) Dynamic Range Sub-Network: As shown in Fig. 8(a), the
Dynamic Range Sub-network is designed in the linear domain
because linear content is not influenced by any transforms and
is more related to dynamic range. The EfficientNet-BO [61] is
employed to extract the background luminance representation
F, é. Specifically, the F é is achieved by utilizing convolution
and pooling to integrate the outputs of the 3rd, 4th, 6th,
and 9th stages of EfficientNet-BO, which improves the net-
work’s ability to characterize the dynamic range. Subsequently,
a parallel attention mechanism is introduced to evaluate the
effect of geometric structure and local exposure. Compared to
refined geometric structure, the glare and area cutoff caused by
exposure errors require wider range detection. For this reason,
a multi-scale Dynamic Range Perception module (DRP) is
designed to extract the exposure error and geometric structure
priors. The dynamic range features extraction is formulated as
follows

Fjhr = DRP(F}) (1)

where the superscript i is ith patch, Fé is background lumi-
nance representation and FJ,, is dynamic range representation
extracted by DRP. The DRP details as follows

DRP(B) = Wgig © B+ Wsig © B + B,

3
Wsiz =o{ > Convk(Pool(B)) + GAP(B)},
k=1,s=2
9
Weie =o{ . Convk(Pool(B)) + GAP(B)},  (2)
k=5,s=2

where B is background luminance representation, Wgg is
attentional weight for evaluate exposure impact, Wg;g is atten-
tional weight for evaluate structual impact, © is Broadcasting
product, Convk is Convolution operation with kernel size k
and stride 1, GAP is global average pool operation, o is
sigmoid activation function, Concat is concating in channel
dimension.

2) Visual Artifact Sub-Network: In the Visual Artifact Sub-
network, as shown in Fig. 8(a), the HDR images are first
converted to perceptual space with the PU21 [19], which is a
global transform and is beneficial for extracting features from
a global perspective. The tailored ViT-B/16 [62] is choosed
as visual artifact branch network to extract visual artifact
prior. The outputs of 5th-8th stage of encoder layers are
integrated as patches non-local visual artifact priors, which
can be formulated as follows

. /i 8
Fy 4 = Convi(Concat {sz} 5) 3)
j=

where F}" is output of jth stage of ViT and F{, 4 1s nonl-local
texture prior of ith patch.
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Finally, the four patches’ representations of the dynamic
range {F f) zli =1, 2,3, 4} and the non-local visual artifact
{F} 4li =1, 2, 3, 4} are respectively extracted by the dynamic
range sub-network and the visual artifact sub-network.

C. Inter-Regional Quality Interaction

While the DRL network proposed in the previous section
effectively learns the representation of HDR distortions,
the inherent localized nature of these distortions results in
non-uniform HDR image quality distribution. Directly uti-
lizing distortion features from different regions to represent
HDR image quality can lead to performance degradation.
To address this problem, Inter-regional Quality Interaction
with the dynamic range interaction and the visual artifact
interaction modules is proposed, which captures inter-region
quality dependencies by leveraging features associated with
dynamic range and visual artifacts, respectively. This approach
enables more accurate representation of HDR image quality,
which is detailed as follows.

1) Dynamic Range Interaction: The dynamic range interac-
tion is highly related to crucial HVS-inspired features, such as
object surface luminance, glare, and inter-regional luminance
differences, which are important for accurately representing
image quality. To this end, the Dynamic Range Interaction
module (DRI) is proposed, which employs channel attention
and spatial attention to respectively capture inter-regional
dynamic range relationships and select effective features for
representing the inter-regional quality dependencies associated
with dynamic range.

As shown in Fig. 9, the proposed DRI consists of dynamic
range interaction blocks. Given the features to be interacted
{F iD rli=1,2,3, 4}, the dynamic range interaction calculation
process based on attention mechanism is as follows

FgDR = Convl(Concat {FBR}LI)

Wi = DRIB(Fj2) k=1,2,34 4)
Fipr=We O Fopr k=1,2,34
Fupr = Fipr ® Fpp ®)

where @ is broadcasting addition operaction, DRIB is
dynamic range interaction block, Fg pr is the preliminary
interaction result of input features F’D R Flkj pg 18 the inter-
mediate result and Fypgr is the final result of the interaction
of F Q) g using the attention mechanism. Wj are the interaction
weight matrics updated with intermediate attentions, which can
be expressed as

DRIB (M) = o(C(M) © S(M)) (6)

where M is intermediate result and o is sigmoid activation
function. C (M) is channel attention for capturing interaction
between patches and S(M) is spatial attention for finding out
significant dynamic range features.

2) Visual Artifact Interaction: As HDR visual artifacts are
significant during global observation, the interaction between
artifacts in different regions should be considered from a
global perspective. Inspired by [63], the Visual Artifact Inter-
action module (VAI) is proposed, which adapts self-attention
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Fig. 9. The details of designed modules.

to filter salient features (e.g., texture, edge and skeletons of
object) and cross-attention to capture inter-regional dependen-
cies associated with visual artifacts.

As shown in Fig. 9, the proposed VAI consists of three
Cross Patches Artifact Interaction blocks (CPAI). The CPAI
contains two Cross-attention (CA) blocks, two Self-attention
(SA) blocks and a 1 x 1 convolution layer. These attentional
blocks consist of Query (Q), Key (K) and Value (V), and
the difference between CA and SA mainly lies in the source
of Q. Specifically, the Q, K, V of SA come from the same
features, while the Q of CA comes from other features. The
texture interaction calculation process based on the attention
mechanism is as follows

Fua = CPAI(F{%, Fi) (7

where CPAI is cross-patches texture interaction block, F‘ﬂZA
and Ff,‘z are intermediate interaction result of input features
(F} 4. FZ,) and (FéA, Fy,) by using CPAI, which can be
expressed as follow

CPAI(F;, F») = Convi(Concat(Fcai, Fca2)),
Fcar = CPA(SA(F)), SA(F2)),
Fcaz = CPA(SA(F2), SA(F1)). 3)

where (Fj, F») is input features pairs, Fca; and Fca; are
results of (Fj, F7) utilizing cross-patch attention, SA is self-
attention block, CPA is cross-patches attention block. Note
that, the first input of CA is soure of K and V and the second
input is source of Q.

D. Quality Prediction and Loss Function

Given a priori features F,or, a feature score map and
a feature weight map are generated from F);,-, Which is
achieved by two independent MLPs. The final HDR image
score is calculated by weighting the score map with the

_____________________ J
TABLE 11
THE SETTINGS OF DATASETS ADOPTED FOR EXPERIMENTS. “-” INDI-
CATES THAT NO PARTITIONING IS APPLIED TO NARWARIA [10]
Overall Train Set Test Set
Dataset Scenes  Images | Scenes Images | Scenes Images
HDRQAD 147 1409 114 1108 33 311
Korshunov [12] 20 240 15 192 5 48
Zerman [13] 10 100 8 80 2 20
UPIQ [27] 30 380 24 304 6 76
Narwaria [10] 10 150 - - -
weight map.
. _2.50m

> m

where ¢ is predicted score, s is score map, m is weight map,
> is summation operation, ©® is Hadamard product.
The loss function is Mean Square Error (MSE).

VI. EXPERIMENT

A. Experiment Protocol

1) Dataset: There are five datasets adopted, including our
HDRQAD and four publicly available datasets [10], [12], [13],
[27]. As presented in Table II, the adopted HDR datasets are
utilized either in their entirety or partitioned into separate train-
ing and testing sets. For dataset UPIQ, the HDR portion of the
data is adapted, which consists of 380 distorted images with
30 scenes. The datasets HDRQAD, Korshunov, Zerman and
UPIQ are divided into 80% for training and 20% for testing,
which is performed according to original scenes to ensure the
independence of image content. For the HDRQAD dataset,
since the original image content is already within the range
of [0, 1], we directly use the raw data as input. For the other
datasets, considering that the image content does not have a
unified range and compression artifacts may introduce outliers,
we perform normalization based on their respective reference
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TABLE III
QUANTITATIVE COMPARISON FOR TRAINING ON THE EXISTING DATASET [10], [27] OR HDRQAD, WHILE EVALUATING ON HDRQAD, [10] OR [27]

Train dataset UPIQ [27] Narwaria [10] HDRQAD
Test dataset HDRQAD HDRQAD UPIQ [27] Narwaria [10]
Method SRCC PLCC KRCC | SRCC PLCC KRCC | SRCC PLCC KRCC | SRCC PLCC KRCC
PU21-HyperNet [16] | 0.2811 0.3420 0.1985 | 0.4037 0.4616 0.2928 | 0.7588 0.7505 0.5591 | 0.8989  0.8846  0.6989
PU21-VCRNet [41] 0.3144  0.2885 0.2230 | 0.2388 0.3543 0.1673 | 0.7202 0.7379  0.5317 | 0.8202  0.8135 0.6633
PU21-TempQT [43] 0.3151  0.3923  0.2218 | 0.3705 0.4539 0.2661 | 0.7275 0.7021  0.5317 | 0.8369  0.8232  0.6502
BHDRIQA [24] 0.2700 0.2728 0.1829 | 0.3123 0.3438 0.2164 | 0.7388 0.7397 0.5444 | 0.8147 0.8117 0.6328

images, which is similar to the preprocessing procedure of
PU21 [19]. The normalization formula is as follows:

1
1 =Cli
norm ip( Max”)f

.0, 1) (10)

where Clip(.,0, 1) denotes clipping the values that out of
the range of O to 1, the / represent the input HDR image
and Max,.y is maximum values of the reference image of
I. Besides, if PU21 transformation is required, a luminance
coefficient is multiplied, and the PU values scale to the range
of 0 to 1. The PU21 transformation formula is as follows:

PU21(C * Lnorm)
Maxpy2) + eps

(1)

Ipy21 =

where PU21(.) denotes the PU21 transformation, I,/
denotes the normalized HDR image, C = 10* denotes the
luminance coefficient, Maxpyz; = 595.39 denotes the max
value of PU21 and eps = 1073 denotes the constant that
prevents abnormal values.

2) Implementation Details: The proposed system is imple-
mented on a computer with an Intel Xeon Silver 4210R
Processor, 192G RAM, and a Nvidia RTX2080Ti GPU with
Pytorch 1.8.1 and CUDA 10.2. EfficientNet-BO [61] and ViT-
B/16 [62] with patch size P set to 16 are chosen as pre-trained
models. The EfficientNet-BO is pre-trained on ImageNet-21k
and fine-tuned on our dataset, while ViT-B/16 is pre-trained
on ImageNet-21k and fine-tuned on ImageNet-1k. The weight
of EfficientNet-BO is freezed in final training. Each image
is cropped 20 times and randomly horizontally flipped each
image with a given probability 0.5. We use Adam optimizer
with cosine annealing learning rate with the parameters 7y,
and eta,;,;, set to 50 and O for 15 epochs. Learning rate and
mini-batch size are set to 1e-5 and 12. Representative patches
from four sub-images of each test image are selected by ran-
domly cropping 20 times during testing, and the 20 prediction
results are averaged for each test image. The final performance
of each experiment is tested 5 times and averaged. We perform
the experiment 10 times with different seeds and report the
best metrics for algorithms.

3) Performance Evaluation: The performance evaluation
used is Spearman Rank order Correlation Coefficient (SRCC),
Pearson Linear Correlation Coefficient (PLCC) and Kendall’s
Rank Correlation Coefficient (KRCC). As suggested in VQEG
[68], a non-linear logistic regression function is employed to
map the predicted scores to the MOS values.

B. Evaluation of Proposed Dataset

To evaluate the effectiveness of our HDRQAD, the
HDRQAD is compared with the existing dataset [10], [27].
The representative IQA models [16], [24], [41], [43] are
trained on the HDRQAD and compared datasets, and the
performance of these models is tedsted on the HDRQAD
and dataset [10], [27]. Besides, the pre-trained LDR models
[16], [41], [43] are tested on the HDRQAD and compared
datasets. In these experiments, the training and testing sets are
each adopted as the corresponding entire dataset to perform a
comprehensive evaluation of the HDRQAD dataset.

Quantitative results of HDRQAD and other datasets are
shown in Table III. The proposed HDRQAD demonstrates
superior generalization capabilities. As Table III demonstrates,
the models trained on datasets [10], [27] struggle to achieve
SRCC and PLCC results above 0.5 on HDRQAD, while the
same models trained on HDRQAD consistently exceed 0.7,
with some surpassing 0.85 on datasets [10], [27]. The models
trained on existing datasets exhibit limited generalization capa-
bilities to other distortion types, while the model trained on
our dataset not only effectively generalizes to existing datasets
but also has the ability to assess other HDR distortions.

Quantitative results of pre-trained LDR models [16], [41],
[43] wiht PU21 [19] on HDRQAD and others datasets are
shown in Table IV. The results further validate the diver-
sity of distortions in HDRQAD, as pre-trained LDR models
struggle more to address the distorted images in HDRQAD
compared to other datasets. The evaluation metrics SRCC,
PLCC and KRCC for HDRQAD are the lowest overall, with
all scores remaining below 0.31. In contrast, the SRCC and
PLCC metrics for the UPIQ and the Narwaria [10] exceed
0.65 for the TempQT pre-trained on LIVE [66], which are
significantly higher than the metrics obtained when tested
on HDRQAD. These experimental results further demonstrate
that the proposed database addresses distortion types that
existing databases fail to capture.

C. Evaluation of Proposed Method

The proposed method is compared with seventeen state-of-
the-art quality metrics, which can be divided into 1) HDR-
IQA algorithms that contain BHDRIQA [24], HDRQA-
DISTS [47], HDR-VDP2.2 [21], DIGMS [22] and LGFM [23];
and 2) general IQA algorithms that consist of NIQE [39],
PIQE [40], Brisque [15], HyperNet [16], VCRNet [41], TReS
[42], TempQT [43], PSNR, SSIM [35], VIF [36], FSIM [37]
and GFM [38]. For general IQA algorithms, HDR images are
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TABLE IV

QUANTITATIVE COMPARISON OF DIFFERENT PRE-TRAINED LDR MODELS

ON [10], [27] oR HDRQAD. THE “ * ” INDICATES MODELS PRE-TRAINED

ON LDR DATASETS. BLUE INDICATES THE WORST PERFORMANCE AMONG THE SAME TYPE OF METRICS, REFLECTING THE

CHALLENGES O

F THE DATASET

Test HDR dataset Narwaria [10] UPIQ [27] HDRQAD

Method Train LDR dataset | SRCC PLCC KRCC SRCC PLCC KRCC | SRCC PLCC KRCC
PU21-HyperNet* [16] KonlQ [64] 04216 04702 0.2981 | 04968 0.5093 0.3564 | 0.0959 0.1143  0.0658
CSIQ [65] 0.0281 0.0488 0.0176 | 0.0206 0.0353 0.0171 | 0.1806 0.1846  0.1248

PU21-VCRNet* [41] TID2013 [67] 0.1166  0.1381  0.0797 | 0.0867 0.0652 0.0605 | 0.0300 0.0115 0.0204
LIVE [66] 0.3088 0.1818 0.2130 | 0.1887 0.0806 0.1382 | 0.2469 0.2313  0.1688

CSIQ [65] 0.3950 0.3865 0.2756 | 0.3408 0.3391 0.2480 | 0.2568 0.2489  0.1779

PU21-TempQT* [43] TID2013 [67] 0.2568  0.2217 0.1752 | 0.2515 0.2237 0.1736 | 0.2515 0.2197 0.1710
LIVE [66] 0.6836  0.6694  0.4927 | 0.7686 0.7690 0.5796 | 0.3064 0.2974 0.2103

TABLE V

PERFORMANCE COMPARISON IN TERMS OF SRCC, PLCC AND KRCC OF THE PROPOSED METHODS AGAINST 17 EXISTING METHODS ON HDRQAD
AND THREE HDR IQA DATASETS. THE ToP-1 RESULTS IN FR METHODS ARE HIGHLIGHTED IN BOLD. THE TOP-1 AND TOP2 RESULTS IN NR

METHODS ARE HIGHLIGHTED IN

RED AND BLUE, RESPECTIVELY

Dataset HDRQAD Korshunov [12] UPIQ [27] Zerman [13]

Method SRCC PLCC KRCC | SRCC PLCC KRCC SRCC PLCC KRCC | SRCC PLCC KRCC
PU21-PSNR (FR) 0.1005 0.2020 0.1740 | 0.9038 0.8916 0.7427 | 0.7680 0.7974 0.5790 | 0.8917 0.8031 0.7476
PU21-SSIM (FR) [35] 0.2886  0.2389  0.1948 | 0.8608 0.8677 0.7140 | 0.6567 0.7134 05005 | 0.9542 09140 0.8281
PU21-VIF (FR) [36] 0.5342  0.5605 03699 | 0.9390 0.9629 0.7876 | 0.9030 09136 0.7350 | 0.9565 0.9854 0.8706
PU21-FSIM (FR) [37] 0.6726  0.6787 0.4954 | 0.8740 0.8359 0.7583 | 0.7915 0.7730 0.6025 | 0.9546 09713  0.8706
PU21-GFM (FR) [38] 0.6104 0.5352 0.4265 | 0.8726 0.8643 0.7246 | 0.7915 0.7740  0.6030 | 0.9614 0.9487 0.8496
HDRQA-DISTS (FR) [47] | 0.5364 0.5317 0.3677 | 0.9434 09561 0.8140 | 0.8657 0.8594 0.6914 | 0.9321 0.9235 0.8532
HDR-VDP2.2 (FR) [21] 0.7739  0.7617 0.5859 | 0.9644 0.9292 0.8467 | 0.7217 0.7144 0.5600 | 0.9355 0.8442 0.7896
DIGMS (FR) [22] 0.3379  0.2452  0.2419 | 0.9565 0.9609 0.8620 | 0.9453 0.9470 0.8290 | 0.8941 0.8275 0.7540
LGFM (FR) [23] 0.6069 0.6279 0.4163 | 09570 0.9785 0.8250 | 0.9497 0.9443 0.8010 | 0.9551 0.9731 0.8423
PU21-NIQE (NR) [39] 0.3310 0.3643  0.2291 | 0.8037 0.8564 0.6360 | 0.8286 0.7543 0.6333 | 0.8438 0.8193  0.6630
PU21-PIQE (NR) [40] 0.3167 0.3689  0.2297 | 0.7051 0.7188  0.5327 | 0.7743  0.7559 0.6064 | 0.8881 0.9223  0.7705
PU21-Brisque (NR) [15] 0.2734  0.2800 0.1920 | 0.7666  0.8135 0.6410 | 0.6567 0.6577 0.4756 | 0.7148 0.7090 0.5986
PU21-HyperNet (NR) [16] | 0.8669  0.8678 0.6863 | 0.9524 0.9737 0.8177 | 0.9367 0.9328 0.7822 | 0.9408 0.9630 0.8126
PU21-VCRNet (NR) [41] 0.8483 0.8552 0.6601 | 09315 0.8872 0.7806 | 0.9317 0.9290 0.7704 | 0.9553 0.9597 0.8844
PU21-TReS (NR) [42] 0.8598 0.8670 0.6789 | 0.9356 0.9567 0.7934 | 0.9332 0.9288 0.7781 | 0.8568 0.8627 0.7789
PU21-TempQT (NR) [43] 0.8735 0.8793  0.6955 | 0.9287 0.9573 0.7702 | 09549 09512 0.8186 | 0.9038 0.8851 0.7368
BHDRIQA (NR) [24] 0.7901 0.7856  0.5911 | 09405 0.9431 0.7952 | 0.8746 0.8720 0.6870 | 09143 0.9390 0.7789
Ours (NR) 0.9090 09143 0.7434 | 09677 0.9813 0.8602 | 0.9550 0.9561 0.8193 | 0.9573 0.9650 0.8358

transformed into the perceptual space by using PU21 [19]. The
experimental settings are as follows.

e Quantitative Results: The training and testing sets are
split in an 80%/20% ratio to validate the performance of the
proposed method on a single dataset. And the non-learned
methods are only tested on test set, while the learned methods
are trained on trained set and tested on test set.

e Cross-Dataset Testing: The training and testing datasets
are the corresponding entire dataset to evaluate the generaliza-
tion ability of the proposed method across different datasets.

e Ablation Experiments: The training and testing sets are
split in an 80%/20% ratio to validate the effectiveness of each
component of the proposed method.

1) Quantitative Results: Table V shows the performance
comparison of different IQA models. The proposed method
achieve the best overall performance on these datasets.
As Table V demonstrates, the proposed method achieves the
best performance on HDRQAD, with SRCC, PLCC, and
KRCC scores approximately 3.6%, 3.5%, and 5% higher than
the suboptimal method (TempQT), respectively. Attributed to

the large-scale HDRQAD, deep learning-based IQA models,
such as TempQT and TReS, are revitalized, allowing them to
be adapted for HDR-IQA tasks. However, they demonstrate
only moderate performance because they do not account for
the HDR distortions characteristics. Traditional methods, such
as VIF and LGFM, fail to predict image quality on HDRQAD
because they rely on handcrafted features, limiting their ability
to handle complex distortions. The inferior performance of
FR metrics on HDRQAD can be attributed to their lack of
consideration for the impact of non-uniform image quality dis-
tribution on overall quality. In contrast, the proposed method,
which considers the characteristics of HDR distortions and
non-uniform quality in HDR images, performs much better
than the other models.

2) Result Visualization: In Fig. 10, the scatter plots of the
MOS values against the predicted scores of all HDR IQA
metrics are presented. The concentrated distribution of data
points result from the proposed method has minimal bias and
noise, which indicates it can stably and accurately assess HDR
image quality across various distortions.
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TABLE VI

SRCC, PLCC AND KRCC ON THE CROSS-DATASET VALIDATION. [12] AND [13] ARE SELECTED AS TEST DATASETS FOR THE ABLATION EXPERIMENTS.
FOR THE UPIQ TRAINING SET, ONLY [13] IS USED IN THE TEST SET BECAUSE UPIQ ALREADY INCLUDES [12]; FOR THE [13] TRAINING SET,

[12] SERVE AS THE TEST SET. THE TEST SET IS REFINED TO REMOVE DUPLICATE CONTENT FROM THE TRAINING SET. THE “ * ”
INDICATES MODELS PRE-TRAINED ON LDR DATASETS. SPECIFICALLY, HyperNet IS PRE-TRAINED ON THE KONIQ [64], WHILE

VCRNet, TReS, AND TempQT ARE ALSO PRE-TRAINED ON LIVE [67]. THE “-” INDICATES UNAVAILABILITY. THE TOP-1

RESULTS ARE HIGHLIGHTED IN RED AND THE TOP-2 RESULTS ARE HIGHLIGHTED IN BLUE

Train dataset HDRQAD Zerman [13] UPIQ [27]
Test dataset Korshunov [12] Zerman [13] Korshunov [12] Zerman [13]
Method SRCC PLCC KRCC | SRCC PLCC KRCC | SRCC PLCC KRCC | SRCC PLCC KRCC
PU21-HyperNet* [16] | 0.3552 0.4250 0.2478 | 0.4028 0.3418  0.2817 - - - - - -
PU21-VCRNet* [41] 0.3643  0.3477 0.2529 | 0.1776  0.1320 0.1165 - - - - - -
PU21-TempQT* [43] 0.7437 0.7720 0.5659 | 0.5215 0.5464 0.3586 - - - - - -
PU21-HyperNet [16] 0.7921 0.8270 0.6096 | 0.4656 0.4803 0.3231 | 0.8315 0.8366 0.6589 | 0.7556 0.7654  0.5330
PU21-VCRNet [41] 0.6328 0.6776  0.4659 | 0.3986  0.4365 0.2037 | 0.8647 0.8110 0.6665 | 0.6914 0.5781 0.5112
PU21-TempQT [43] 0.7908 0.8117 0.6010 | 0.6418 0.6739 0.4567 | 0.8667 0.8306 0.6724 | 0.7715 0.7889  0.5425
BHDRIQA [24] 0.8103  0.8310 0.6359 | 0.5905 0.6185 0.4126 | 0.7935 0.7603  0.6030 | 0.5815 0.5215 0.4199
Ours 0.8452  0.8733 0.6618 | 0.7206 0.7617 0.5167 | 0.8677 0.8394 0.6758 | 0.7625 0.7705  0.5367
TABLE VII
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SRCC, PLCC AND KRCC ON THE CROSS-DATASET VALIDATION. THERE ARE TWO SETTINGS: TRAINING ON THE KORSHUNOV [12] AND TESTING ON
THE NARWARIA [10] AND ZERMAN [13]; TRAINING ON THE NARWARIA [10] AND TESTING ON THE KORSHUNOV [12] AND ZERMAN [13]. THE

TEST SET IS REFINED TO REMOVE DUPLICATE CONTENT FROM THE TRAINING SET. THE TOP-1 RESULTS ARE HIGHLIGHTED IN RED AND

THE TOP-2 RESULTS ARE HIGHLIGHTED IN BLUE

Train dataset Korshunov [12] Narwaria [10]
Test dataset Narwaria [10] Zerman [13] Korshunov [12] Zerman [13]
Method SRCC PLCC KRCC | SRCC PLCC KRCC | SRCC PLCC KRCC | SRCC PLCC KRCC
PU21-HyperNet [16] | 0.8121  0.8172  0.6360 | 0.6514 0.6987 0.4563 | 0.8651 0.8631  0.6639 | 0.7588 0.7791  0.5689
PU21-VCRNet [41] 0.8359 0.8384 0.6444 | 0.6885 0.6738 0.4856 | 0.8645 0.8674 0.6661 | 0.6815 0.6609  0.4804
PU21-TempQT [43] 0.8071 0.8188  0.6265 | 0.7471 0.7490  0.5367 | 0.8067 0.8186 0.6277 | 0.6961 0.7094  0.5099
BHDRIQA [24] 0.8091 0.8198 0.6200 | 0.5649 0.6011 0.4062 | 0.8091 0.8198 0.6210 | 0.7522 0.7376  0.5612
Ours 0.8410 0.8445 0.6578 0.7695  0.7559  0.5649 0.8657 0.8703  0.6780 | 0.7901 0.8250  0.5892
3) Cross-Dataset Testing: The performance of cross-dataset TABLE VIII

testing is shown in Tables VI and VI It can be observed that
the proposed method exhibits the best overall performance,
which reflects the proposed method has strong generation
ability. Other methods fail to consider the characteristics
of HDR distortions or inter-regional quality dependencies,
resulting in suboptimal generalization ability. In contrast, the
proposed method effectively identifies HDR distortion patterns
and captures inter-regional quality dependencies, achieving the
best generalization ability.

The experimental results trained on HDRQAD indicate
some degree of performance reduction. To strengthen the relia-
bility of the conclusions, we compare the results of pre-trained
LDR models on datasets Korshunov [12] and Zerman [13].
As shown in Table VI, the proposed method outperforms not
only the retrained methods but also the pre-trained methods,
further demonstrating its superiority.

4) Ablation Experiment: Several ablation experiments are
presented to study the effects of the proposed HDR-IQA
algorithm on HDRQAD. Firstly, the effectiveness of each com-
ponent in the proposed algorithm is validated. Subsequently,
the performance improvement of the proposed method has
been validated to stem from the design of the distortion module
rather than an increase in input content.

To verify the effectiveness of the proposed DRL and
IRQI, we compare the SRCC and PLCC of the follow-
ing combinations: 1) DRL, which verifies the effectiveness

SRCC AND PLCC RESULT FROM THE ABLATION EXPERIMENTS ON
HDRQAD. PART DENOTES THE ABLATION IS ONLY PERFORMED FOR
DYNAMIC RANGE DISTORTION OR HDR VISUAL ARTIFACTS

DRN | VAN | DRI | VAI | SRCC | PLCC

v X X X 0.8719 | 0.8681

DRL X v X X 0.8922 | 0.8955
v v X X 0.8944 | 0.8993

DRL + IRQI v X v X 0.8882 | 0.8927
(Part) X v X v 0.8998 | 0.9073
DRL + IRQI v v v v 0.9090 | 0.9143

of DRN and VAN; 2) Part of DRL+IRQI, which verifies
the effectiveness of VAN and VAI; 3) DRL+IRQI, which
verifies the complementarity of each component. As shown
in Table VIII, both DRN and VAN individually exhibit
good prediction accuracy. Compared to DRN, DRN+VAN
achieves improvements of 2.2% and 3.1% in SRCC and
PLCC, respectively. The performance of part of DRL+IRQI
has comprehensively surpassed that of DRL, demonstrating
the effectiveness of VAI and DRI. Finally, the complete
DRL+IRQI achieves the best performance with 0.9% and
0.7% improvements in SRCC and PLCC, respectively, over the
suboptimal components, demonstrating the complementarity
of each component.

To verify that the performance improvement results from
accurate distortion representation rather than additional input
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Fig. 10. Scatter plots of the objective scores against the subjective MOS values on HDRQAD testing set.

TABLE IX

SRCC AND PLCC RESULT FROM THE DISTORTION REPRESENTATION
ABLATION EXPERIMENTS WITH A SINGLE PATCH ON HDRQAD

EfficientNet | DRP | VAN | SRCC | PLCC
v X X 0.8170 | 0.8198
v v X 0.8288 | 0.8351
X X v 0.8775 | 0.8851
v v v 0.8944 | 0.8993

content, we conducted ablation experiments on a single
patch, excluding IRQI components. We compare the SRCC
and PLCC of the following combinations: 1) EfficientNet,
which represents the influence of background luminance;
2) DRP, which represents the influence of exposure error;
3) VAN, thich represents the influence of HDR visual
artifacts. As shown in Table IX, compared to Efficient-
Net, EfficientNet+DRP shows improvements of 1.1% and
1.5% in SRCC and PLCC, respectively. The SRCC and
PLCC of EfficientNet+DRP+VAN both achieves 0.89, with
improvements of 1.7% and 1.4% over VAN. Notably,
EfficientNet+DRP+VAN outperforms the suboptimal method
(TempQT, as shown in Table V) by 2.1% and 2.0% in
SRCC and PLCC, respectively, verifying the effectiveness of
distortion representation in the proposed method.

5) Computational Complexity: As shown in Table X,
we compare the complexity of NR-IQA methods, including
SRCC, time (s), VRAM (G), FLOPs (G) and parameters (M).
HDR images are tested on a computer with an Intel Xeon
Silver 4210R processor and an RTX 2080 Ti GPU. It can
be observed that the proposed method has a relatively longer
inference time, primarily because it considers more image

2]
@]
S o)
U L W e Wi on
TABLE X
COMPUTATIONAL COMPLEXITY OF NR-IQA METHODS
SRCC  Time (s) VRAM (G) FLOPs (G) Params (M)
HyperNet [16] | 0.8699 0.93 1.33 4.33 27.38
VCRNet [41] 0.8483 1.27 1.36 10.26 14.93
TempQT [43] 0.8735 1.01 4.10 143.13 240.12
BHDRIQA [24] | 0.7901 1.74 1.21 0.071 8.90
Ours 0.9090 1.98 1.93 36.93 74.80

content to better identify distortion patterns and predict image
quality. Specifically, during the inference of a HDR image, the
proposed method’s Distortion Representation Learning (DRL)
module processes four distinct image patches. Subsequently,
the Inter-Region Quality Interaction (IRQI) module handles
the feature representations of these patches. Compared to other
methods with a single stage that only processes a single patch,
the proposed method requires more inference time. Although
the proposed method has a relatively longer inference time,
it achieves the best SRCC performance, surpassing the sub-
optimal method by 3.5%. Moreover, the VRAM, FLOPs, and
parameter requirements of the proposed method remain within
acceptable levels. These characteristics collectively indicate
that the proposed method offers significant potential for prac-
tical applications.

D. Limitation

The proposed method does not explicitly account for
semantic information, leading to discrepancies between pre-
dicted scores and MOS values in scenarios where semantic
interpretability significantly influences human perception.
As shown in Fig. 11, the predicted scores for all three images
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MOS:1.72 Pre:2.77

MOS:1.33 Pre:2.81

MOS:2.28 Pre:3.22

Fig. 11. Some failure cases of proposed method. MOS denotes the mean
opinion score. Pre denotes the predicted score of proposed method.

are higher than their corresponding MOS values. These images
exhibit a clear foreground but abnormal exposure in the back-
ground, potentially leading participants to assign relatively
lower quality scores. This phenomenon aligns with the charac-
teristics of human visual perception, that meaningful content
is evaluated holistically rather than in isolated components.
For instance, in a natural scene, certain artificial or natural
elements, in conjunction with the background, collectively
construct a scene with comprehensive semantic information.
Therefore, in such cases, the semantic interpretability of dis-
torted content plays a critical role in participants’ judgment
of image quality. However, the proposed method integrates
distorted content and inter-regional quality dependencies but
does not explicitly account for semantics, resulting in predicted
scores that may not align with MOS values. These obser-
vations indicate that semantic information has a significant
impact on the representation of HDR image quality. In our
future work, we aim to explore mechanisms that interpret
the perceptual significance of semantic content and contex-
tual information, thereby further enhancing the consistency
between model predictions and human perception.

VII. CONCLUSION

To advance the development of HDR IQA, we constructe
a HDR-IQA dataset with the widest range distortions and the
largest scale, named HDRQAD, which acquires 1409 HDR
images by considering the distortions introduced in three
HDR imaging schemes. The HDRQAD covers plentiful natu-
ral scenes and typical HDR quality degradation conditions.
In contrast to most existing HDR-IQA methods designed
just for compression distortion, an end-to-end network is
proposed that effectively captures the representation of HDR
distortions and addresses the issue of regional non-uniformity
in quality, enabling precise characterization of the overall
image quality. The experimental results prove the superiority
of proposed HDRQAD and demonstrate that the proposed
network achieves state-of-the-art performance.
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