

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 THINK-AT-HARD: SELECTIVE LATENT ITERATIONS TO IMPROVE REASONING LANGUAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Improving reasoning capabilities of Large Language Models (LLMs), especially under parameter constraints, is crucial for real-world applications. Prior work proposes recurrent transformers, which allocate a fixed number of extra iterations per token to improve generation quality. After the first, standard forward pass, instead of verbalization, last-layer hidden states are fed back as inputs for additional iterations to refine token predictions. Yet we identify a *latent overthinking* phenomenon: easy token predictions that are already correct after the first pass are sometimes revised into errors in additional iterations. To address this, we propose Think-at-Hard (TaH), a dynamic latent thinking method that iterates deeper only at hard tokens. It employs a lightweight neural decider to trigger latent iterations, only at tokens that are likely incorrect after the standard forward pass. During latent iterations, Low-Rank Adaptation (LoRA) modules shift the LLM’s objective from general next-token prediction to focused hard-token refinement. We further introduce a duo-causal attention mechanism that extends attention from token sequence dimension to an additional iteration depth dimension. This enables cross-iteration information flow while maintaining full sequential parallelism. Experiments show that TaH boosts LLM reasoning performance across five challenging benchmarks while maintaining the same parameter count. Compared with baselines that iterate twice for all output tokens, TaH delivers 8.1-11.3% accuracy gains while exempting 94% of tokens from the second iteration. Against strong single-iteration Qwen3 models finetuned with the same data, it also delivers 4.0-5.0% accuracy gains. When allowing <3% additional parameters from LoRA and iteration decider, the gains increase to 8.5-12.6% and 5.3-5.4%, respectively.

1 INTRODUCTION

Figure 1: Selective iteration can mitigate latent overthinking. (a) Toy example. Uniform latent iteration (always think-twice) can fix wrong predictions, but may also overthink and corrupt correct ones. (b) Next-token prediction accuracy of finetuned Qwen3-1.7B variants. Always think-twice causes more errors than corrections over direct reply. In contrast, the think-at-hard oracle, which iterates only when the first-pass prediction is wrong, achieves substantial improvements with minimal harm. While this oracle signal is unavailable in practice, it highlights the potential of selective iteration.

Recent advances in Large Language Model (LLM) reasoning have enabled broad applications across diverse domains (Jaech et al., 2024; Guo et al., 2025; Yang et al., 2025). With tens to hundreds of billions of parameters, LLMs can generate complex Chain-of-Thought (CoT) to solve challenging tasks. At the same time, smaller language models have also drawn increasing attention. With only a few billion parameters, they offer compelling alternatives: lower costs, faster inference, and suitability for edge computing (Abdin et al., 2024; Team et al., 2025; Wang et al., 2025a).

054 At this crossroad, enhancing reasoning capabilities under parameter constraints becomes a central
 055 challenge. A common approach is to distill smaller models to mimic LLM CoT trajectories using
 056 next-token prediction supervision. However, not all tokens are equally predictable: certain tokens
 057 encode critical logic or reasoning directions that are fundamentally harder to predict (Lin et al.,
 058 2024; Fu et al., 2025a; Wang et al., 2025b). With limited computation per output token, small
 059 models quickly hit a performance ceiling and mispredict some of these tokens. Once critical errors
 060 occur, the reasoning trajectory can irrecoverably diverge and produce drastically different outcomes.

061 Prior work proposes recurrent transformers to address this parameter–performance para-
 062 dox (Hutchins et al., 2022; Saunshi et al., 2025; Zeng et al., 2025). Instead of verbalizing the
 063 next token immediately after one forward pass, these models typically feed the last-layer hidden
 064 states back into the LLM for additional passes in the latent space. Each pass refines the hidden
 065 representation without producing tokens. After a fixed number of iteration depths, the final hidden
 066 states are passed to the language modeling head to generate the next token. By uniformly allocating
 067 extra iterations per token, these models increase inference depth without enlarging parameter count,
 068 potentially benefiting hard reasoning tokens.

069 However, we identify a *latent overthinking* problem in fixed-depth recurrent transformers, where
 070 excessive iterations revise correct answers into wrong ones. As shown in Figure 1, finetuning
 071 Qwen3-1.7B-Base to always perform two iterations per token yields even more errors than the
 072 single-iteration baseline on the Open-R1 dataset (Hugging Face, 2025). This occurs because most
 073 tokens are already predicted correctly in the first iteration, such as coherence or suffix tokens. Sim-
 074 ilar to overthinking in explicit CoT reasoning (Wu et al., 2025), latent overthinking on these easy
 075 tokens degrades performance despite extra computation. While the opposite *latent underthinking*
 076 exists for tokens that need more iterations to correctly predict, such cases are rarer. We define to-
 077 kens that cannot be accurately predicted in a single forward pass as *hard* tokens, and ask our central
 078 question:

079 *Can LLMs selectively dedicate latent iterations only to hard tokens?*

080 If achieved, different iterations could specialize in distinct prediction focuses for more effective
 081 latent reasoning. Oracle experiments validate this approach: as shown in Table 4, a think-at-hard
 082 oracle improves MATH accuracy by 25–28%.

083 Achieving dynamic latent iteration presents three main challenges. First, the model architecture
 084 should enable cross-depth attention, allowing each iteration to access full context. This is crucial
 085 because when early tokens skip deeper iterations, later tokens must still access their representations
 086 from shallower depths. Meanwhile, this cross-depth flow cannot compromise the sequence-level
 087 parallelism essential for efficient training and prefilling. Second, the model must adapt to changing
 088 objectives and distributions across iterations, while maximizing parameter reuse. Third, training
 089 must remain stable despite tight coupling dependencies: the iteration policy depends on prediction
 090 quality at each depth, while that quality depends on which tokens the policy sends to each depth.

091 To address these challenges, we propose TaH, a dynamic latent thinking method that selectively ap-
 092 plies deeper iterations only to hard tokens. As shown in Figure 2, TaH employs a neural decider to
 093 determine whether to continue iterating or verbalize each token. We design a duo-causal attention
 094 mechanism to enable cross-depth attention and full sequence parallelism. To specialize deeper iter-
 095 ations for hard-token refinement and preserve strong first-pass predictions, we apply LoRA adapters
 096 solely at iterations $d > 1$. TaH is stably trained by aligning both LLM backbone and iteration
 097 decider with a static oracle iteration policy. We summarize our contributions as follows.

- 099 • **Selective Latent Iteration.** We identify the latent overthinking phenomenon, revealing
 100 how false corrections harm easy tokens at redundant iterations. This insight guides our
 101 new paradigm where latent iteration depth adapts to token difficulty.
- 102 • **Specialized Model Architecture.** We develop a model architecture that natively supports
 103 selective iteration depths. The dedicated duo-causal attention mechanism, LoRA adapters,
 104 and iteration decider enable efficient cross-depth information flow, objective transitions,
 105 and dynamic depth selection.
- 106 • **Stable Training.** We introduce a stable training scheme that uses a static oracle policy
 107 to decouple model adaptation and policy learning. It overcomes the circular dependency
 108 between iteration decisions and prediction quality.

108 Experiments show that TaH consistently improves reasoning performance. Finetuned from Qwen3-
 109 0.6B-Base and 1.7B-Base with aligned parameter count, TaH achieves an average accuracy gain of
 110 4.0-5.0% over standard single-iteration variants across five reasoning benchmarks, while applying
 111 deeper thinking to only 6% of tokens. With less than 3% additional parameters, these gains further
 112 increase to 5.3-5.4%. Compared with AlwaysThink which applies two iterations to all tokens, the
 113 gains are 8.1-11.3% and 8.5-12.6%, validating TaH’s high effectiveness.

114

115

2 RELATED WORK

117

118 Unlike standard LLMs that verbalize at every autoregressive step, latent thinking shifts part of gen-
 119 eration away from explicit natural-language CoT in order to improve reasoning (Li et al., 2025).

120

121 **Signal-guided Control.** These methods keep reasoning in token space but steers computation by
 122 inserting control tokens. Early work shows that simple filler tokens (e.g., dots) can mimic some
 123 benefits of CoT (Pfau et al., 2024). Building on this, later work expands the LLM vocabulary
 124 with [PAUSE] tokens and learns where to insert them for extra compute before predicting the
 125 next token (Goyal et al., 2024; Kim et al., 2025). They are lightweight and easily integrable, but
 126 constrained to the discrete-token interventions with limited latent controls.

127

128 **Latent Optimization.** These methods perform autoregressive reasoning directly in internal repre-
 129 sentations, emitting little or no intermediate text. They distill and compress CoT into latent continu-
 130 ous embeddings through various strategies. Coconut and CCoT progressively replace text with latent
 131 thinking under final response supervision (Hao et al., 2024; Cheng & Van Durme, 2024); Token as-
 132 sorted and HCoT compress CoT spans to embeddings with hidden-state alignment (Su et al., 2025;
 133 Liu et al., 2024). SoftThink directly applies logit-weighted embeddings for latent iterations (Zhang
 134 et al., 2025b). While offering efficiency gains and flexible control over hidden trajectories, these
 135 methods sacrifice reasoning interpretability, with training-based ones further requiring heavy miti-
 136 gation from strong verbal LLMs.

137

138 **Recurrent Transformers.** These methods interleave latent and verbal reasoning, introducing latent
 139 iterations before each token verbalization. After a standard forward pass, these methods feed latent
 140 states back as next-iteration inputs for a fixed number of iterations, then verbalize the output token.
 141 Existing approaches differ in the formation of next-iteration input. For example, Looped Trans-
 142 former reuses last-layer hidden states directly (Saunshi et al., 2025; Geiping et al., 2025), whereas
 143 Ponder uses logit-weighted embeddings (Equation 4) (Zeng et al., 2025). Recurrent transformers
 144 combine advantages of visible reasoning trajectories with latent exploration. By reusing the
 145 parameters across iterations, it achieves deeper computation per token without parameter increases.
 146 However, the fixed depth burdens each iteration with both easy and hard tokens, potentially causing
 147 false corrections for already-correct predictions.

148

149 **Positioning.** TaH belongs to the recurrent transformer family but extends this paradigm signifi-
 150 cantly. It *selectively* allocates latent iterations to *refine hard tokens*, improving reasoning quality
 151 with specialized objectives across iterations. While concurrent works (Bae et al., 2025; Zhu et al.,
 152 2025) also enable selective recursion, they require complete model retraining. TaH instead lever-
 153 ages existing pre-trained models, adding depth-aware LoRA and duo-causal attention to improve
 154 reasoning with minimal finetuning overhead.

155

156

3 PRELIMINARY

157

158

159 **Autoregressive LLMs.** Modern LLMs generate text through an autoregressive next-token predic-
 160 tion process. It includes a *prefill* stage and a *decode* stage (Radford et al., 2018; 2019; Kwon et al.,
 161 2023). In the prefill stage, the model processes the entire input sequence in parallel; in the decode
 162 stage, it consumes one new token at a time along with cached history to predict the next token.

163

164

165 Formally, let t_i denote the token at position i and $x_i \in \mathbb{R}^h$ its embedding. Let $E \in \mathbb{R}^{v \times h}$ be the
 166 embedding matrix, so $x_i = E[t_i]$ when t_i is treated as an index. Here, v and h are the vocabulary
 167 size and hidden dimension. The output projection matrix is $W_{\text{out}} \in \mathbb{R}^{h \times v}$ (equal to E^\top if tied).

168 Given the context $T_{\leq i} = [t_0, \dots, t_i]$ with embeddings $X_{\leq i} = [x_0, \dots, x_i]$, the model θ produces a

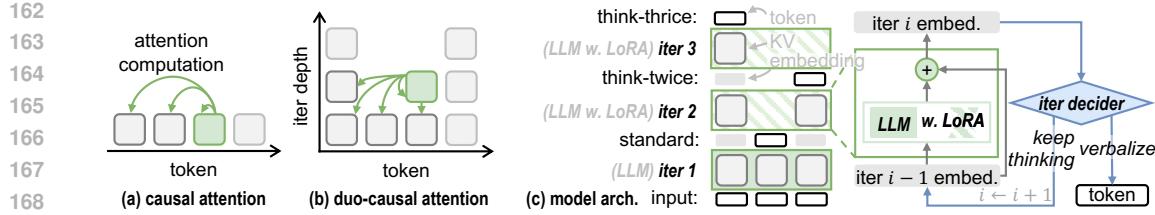


Figure 2: TaH Overview. (a) Regular causal attention: tokens attend only to previous positions. (b) Our duo-causal attention: tokens attend to both previous positions and shallower iteration depths, maintaining 2D causality. (c) Model architecture: TaH selectively iterates or verbalizes tokens. It uses LoRA at deeper iterations to shift from next-token prediction to hard-token refinement. A neural decider determines whether to continue iterating or output the token.

last-layer hidden state y_i for token t_i :

$$y_i = \mathcal{P}_\theta(x_i | X_{\leq i}) \in \mathbb{R}^h. \quad (1)$$

The next-token distribution p_i and sample are:

$$p_i = \text{softmax}(W_{\text{out}}^\top y_i) \in \mathbb{R}^v, \quad t_{i+1} = \mathcal{S}(p_i), \quad (2)$$

where \mathcal{S} is a sampling rule such as greedy or nucleus sampling. Decoding repeats until an end-of-sequence token is generated.

Causal Attention. To respect autoregression, modern LLMs apply *causal* attention. As shown in Figure 2(a), each position attends only to itself and earlier positions, consistent with Equation 1. This design brings two key benefits: (1) it enables parallel training with next-token prediction and shifted logits, avoiding the need for token-by-token generation; and (2) it allows efficient inference by caching Key/Value states of past tokens instead of recomputing them.

Recurrent Transformers. Recurrent transformers introduce an inner loop that iterates in latent space before verbalizing each output token. Let $d \in \{1, 2, \dots\}$ denote the iteration depth (written as a superscript), and set $x_i^{(0)} = E[t_i]$. At each iteration, recurrent transformers update y_i with causal attention on the hidden states of *the current iteration*:

$$y_i^{(d)} = \mathcal{P}_\theta(x_i^{(d)} | X_{\leq i}^{(d)}), \quad X_{\leq i}^{(d)} = [x_0^{(d)}, \dots, x_i^{(d)}]. \quad (3)$$

An inner transition then produces the next-depth embedding. For example, Loop (Saunshi et al., 2025) simply sets $x_i^{(d+1)} = y_i^{(d)}$, while Ponder (Zeng et al., 2025) uses a logit-weighted embeddings:

$$x_i^{(d+1)} = \text{softmax}(W_{\text{out}}^\top y_i^{(d)}) E = p_i^{(d)} E. \quad (4)$$

In practice, it uses the top-100 logits instead of full logits for efficiency.

Verbalization occurs at a fixed *maximum depth* d_{\max} shared by all tokens, where $y_i^{(d_{\max})}$ is transformed into the next token t_{i+1} , resembling Equation 2.

4 TAH DESIGN

We expand the motivations and key designs of TaH in this section, including the duo-causal attention mechanism (Section 4.1), model architecture (Section 4.2), and training scheme (Section 4.3).

4.1 DUO-CAUSAL ATTENTION

Motivation. In recurrent transformers, attention typically operates within each iteration. For fixed-depth methods, standard causal attention on the current iteration’s Key and Value states already incorporates all context (Equation 3). However, dynamic iteration depths pose a challenge: tokens iterating at a deeper level cannot access the hidden states of previous tokens that verbalized at shallower depths. This creates a dilemma. On one hand, tokens require up-to-date states of all

216 previous tokens for rich semantic context. On the other hand, efficient training requires all tokens
 217 at depth d be computable in parallel, without depending on previous tokens' deeper states ($d' > d$)
 218 that have not yet been computed. Existing approaches compromise on one of these aspects. Some
 219 sacrifice parallelism by allowing attention to deeper iterations, forcing sequential generation during
 220 training (Hao et al., 2024); others preserve parallelism by restricting attention to only the initial
 221 iteration's KVs (Bae et al., 2025). To resolve this dilemma, we introduce a simple yet effective
 222 mechanism to maximize cross-depth information flow while maintaining high parallelism.

223 **Duo-causal Attention Mechanism.** As shown in Figure 2(b), duo-causal attention extends *causal-*
 224 *ity* to two dimensions, letting tokens attend across both previous positions and shallower iteration
 225 depths. Formally, we extend the accessible set from Equation 3 to

$$226 \quad 227 \quad X_{\leq i}^{(\leq d)} = \{x_j^{(k)} \mid j \leq i, k \leq d\}. \quad (5)$$

228 When all tokens iterate only once (as in standard transformers), this naturally reduces to regular
 229 causal attention. The duo-causal design achieves both full parallel training and cross-depth infor-
 230 mation flow. At depth d , all tokens compute their depth- d representations simultaneously using *only*
 231 *and all* information from depths 1 through d .

232 *Implementation-wise, duo-causal attention is fully compatible with attention kernels like FlashAt-*
 233 *tention (Dao et al., 2022; Dao, 2024; Shah et al., 2024), or other sparse implementations (Fu et al.,*
 234 *2025b; Zhang et al., 2025a). As detailed in Appendix A.4.1, we simply maintain separate KV caches*
 235 *per iteration depth and flatten the 2D (token, depth) grid into a 1D sequence by concatenating deeper*
 236 *KV caches after shallower ones (Figure 14). Positional encodings are applied based solely on the*
 237 *original token index, invariant to iteration depth. The duo-causal constraint is then enforced via a*
 238 *modified additive attention mask, requiring no custom CUDA kernels.*

239 4.2 MODEL ARCHITECTURE

241 **Motivation.** Previous fixed-depth recurrent transformers use identical weights across all iterations.
 242 However, we find that over 85% of next-tokens are correctly predicted at the first iteration (Figure
 243 1(b)) This suggests deeper iterations serve a different objective: they refine the first iteration's
 244 prediction rather than predicting further ahead to the next-next token. This mirrors deep LLMs,
 245 where shallow layers predict next tokens for deeper layers to refine (Belrose et al., 2023; Schuster
 246 et al., 2022; Bae et al., 2023). While deep LLMs naturally handle this shift through distinct pa-
 247 rameters per depth, recurrent transformers must accommodate both objectives with shared weights,
 248 potentially limiting performance. Moreover, fixed iteration depths can cause *latent overthinking*,
 249 motivating our dynamic approach.

250 **Backbone Model.** To address the objective shift, we apply a LoRA adapter (Hu et al., 2022) to the
 251 shared LLM backbone only for iterations $d > 1$. As shown in Figure 2(c), this allows the base LLM
 252 to focus on latent embeddings, while the adapter handles the objective shift. It preserves strong
 253 next-token prediction at $d = 1$, alleviating interference from deeper iterations. We also add residual
 254 connections across iterations to simplify the refinement and improve gradient flow. Formally, at
 255 depth d , we compute

$$256 \quad 257 \quad y_i^{(d)} = \mathcal{P}_{\theta_d}(x_i^{(d)} \mid X_{\leq i}^{(\leq d)}), \quad (6)$$

258 with depth-specific parameters

$$259 \quad \theta_d = \theta \text{ for } d = 1, \quad \theta_d = \theta + \Delta \text{ for } d > 1,$$

260 where θ and Δ denote the LLM and LoRA weights, respectively. The next-iteration inputs use logit-
 261 weighted embeddings (Equation 4); verbalization follows standard sampling (Equation 2). Each $y_i^{(d)}$
 262 either continues iterating or verbalizes according to the decider \mathcal{I}_ϕ .

263 **Iteration Decider.** We use a lightweight MLP as the iteration decider \mathcal{I}_ϕ to determine whether
 264 each token should continue iterating or verbalize. After each iteration, it processes concatenated
 265 hidden states from shallow, middle, and final layers of the backbone LLM to predict a continuation
 266 probability:

$$267 \quad 268 \quad \hat{c}_i^{(d)} = \mathcal{I}_\phi(h_i^{(d)}) \in [0, 1].$$

269 During inference, token i verbalizes when $\hat{c}_i^{(d)}$ falls below threshold $c_{\text{threshold}}$ or reaches maximum
 depth d_{max} .

270 4.3 TRAINING SCHEME
271272 We employ a two-stage training scheme: first finetune the backbone model for dynamic iteration,
273 then the iteration decider, all using an oracle policy.274 **Motivation.** As shown in Figure 2(c), the backbone network θ_d and the neural iteration decider
275 \mathcal{I}_ϕ are tightly coupled: the backbone generates hidden states as inputs for the decider, while the
276 decider controls the backbone’s KV cache and iterations. Training both simultaneously causes in-
277 stability due to mutual distribution shifts. Therefore, we adopt a stable two-stage approach where
278 both components are sequentially trained to align an oracle iteration policy π .279 **Oracle Iteration Policy π .** To guide training, we define an oracle policy π that determines token
280 difficulty using a frozen reference LLM, following Fu et al. (2025a). A token is classified as *easy* if
281 the reference model correctly predicts it with a single forward pass, and *hard* otherwise. Throughout
282 the paper, we use the supervised fine-tuned (SFT) variant of the base model as the reference model.283 Formally, let \hat{t}_{i+1} denote the reference model’s top-1 prediction and t_{i+1} the ground-truth token. For
284 explanation simplicity, we assume maximum iteration depth $d_{\max} = 2$ in Equation 7; the general
285 case is detailed in Appendix A.2.4. The oracle iteration depth d^π is:
286

287
$$d_i^\pi = 1 + \mathbf{1}[\hat{t}_{i+1} \neq t_{i+1}], \quad (7)$$

288 where $\mathbf{1}[\cdot]$ is the indicator function. The per-depth continuation label becomes:
289

290
$$c_i^{(d)} = \mathbf{1}[d \leq d_i^\pi], \quad (8)$$

292 indicating whether iteration should continue at depth d . Table 4 and Figure 1 verify the effectiveness
293 of the oracle policy.294 **Stage 1: Backbone supervision under π .** We optimize the backbone LLM (θ and LoRA adapter
295 Δ) with π -guided iteration execution. The loss is standard next-token prediction at the oracle-
296 determined depth:
297

298
$$\mathcal{L}_{\text{SFT}}(\theta, \Delta) = \sum_i -\log p_i^{(d_i^\pi)}(t_{i+1}),$$

300 where $p_i^{(d_i^\pi)}$ is the next-token distribution at position i , depth d_i^π . This preserves first-iteration accu-
301 racy for easy tokens while training deeper iterations to refine hard tokens.303 **Stage 2: Decider imitation under frozen backbone.** We freeze the backbone model (θ, Δ) and
304 train the iteration decider ϕ to imitate the oracle policy’s continuation decisions. We minimize binary
305 cross-entropy with class reweighting for label imbalance:

306
$$\mathcal{L}_{\text{dec}}(\phi) = -\sum_i \sum_{d=1}^{\min\{d_{\max}-1, d_i^\pi\}} \left[w_{\text{stop/cont.}}^{(d)} c_i^{(d)} \log \hat{c}_i^{(d)} + (1 - c_i^{(d)}) \log (1 - \hat{c}_i^{(d)}) \right],$$

310 where $c_i^{(d)}$ is the ground-truth continuation label, $\hat{c}_i^{(d)}$ is the predicted probability, and $w_{\text{stop/cont.}}^{(d)}$ is
311 the occurrence ratio of stop label divided by continue label, respectively.312 Our two-stage scheme stabilizes training by decoupling backbone learning (conditioned on a fixed
313 π) from policy learning (imitation of π).
314315 5 EXPERIMENT
316317 5.1 SETUP
318319 We present key configurations here, with more detailed setups in the Appendix.
320321 **Baselines.** We compare diverse methods under equal parameter budgets, using Qwen3-0.6B-Base
322 and Qwen3-1.7B-Base (Yang et al., 2025) as backbones. We compare TaH over several fixed-depth
323 strategies: (1) *Standard*, which always verbalizes directly and reduces to the original Qwen model;
(2) *AlwaysThink*, which applies the maximum number of latent iterations to all tokens; (3) *SoftThink*,

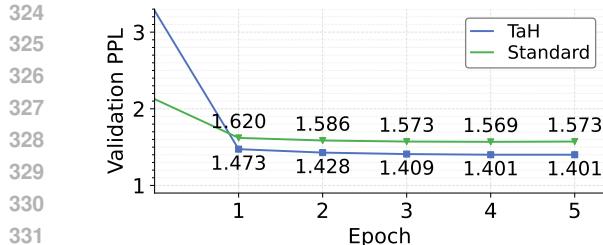


Figure 3: Training dynamics of the LLM backbone on Qwen3-0.6B-Base. TaH converges rapidly and achieves lower perplexity.

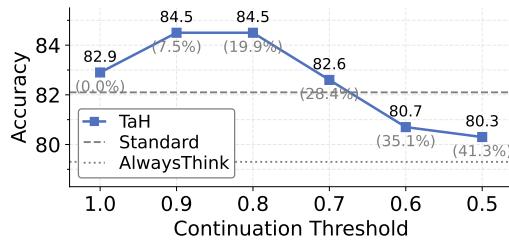


Figure 4: GSM8K accuracy with respect to continuation threshold. Numbers in brackets indicate the percentage of tokens that iterate twice.

following official baseline implementation (Zhang et al., 2025b) on top of the Standard model. Unless otherwise specified, both TaH and AlwaysThink use a maximum of two iterations. We also compare with dynamic query routing via matrix factorization (Ong et al., 2024), routing between MobileLLM-R1-360M (Zhao et al., 2025) and Qwen3-1.7B, as well as between Qwen3-0.6B and Qwen3-4B, to match average parameter sizes of 0.6B and 1.7B.

TaH Setup. Before training, we prune one layer from the base model so that TaH matches the parameter count of baselines. The layer is chosen to minimize the increase in validation loss. We also report results for an unpruned variant, TaH+, which adds less than 3% extra parameters from LoRA and iteration decider. The detailed parameter composition is shown in Table 6. Following (Fu et al., 2025a), we set the continuation threshold $c_{\text{threshold}} = 0.9$ with about 6% of tokens being iterated twice. The oracle policy π uses Qwen3-0.6B, 1.7B and 4B as reference models to determine token difficulty during training.

Training Scheme. All models are trained on the math subset of Open-R1 (Hugging Face, 2025) using supervised finetuning. To fit memory and compute limits, we exclude responses longer than 8,192 tokens; 4B models additionally truncate at 4,096 tokens; all other training settings follow the official Open-R1 script. The filtered dataset contains 300M tokens, with 1% reserved for validation. Each method is sufficiently trained for 5 epochs, and we select the checkpoint with the lowest validation loss as the final model. All backbones are initialized from the corresponding Qwen3-Base.

Evaluation Setup. We evaluate across challenging reasoning benchmarks, including GSM8K (Cobbe et al., 2021), MATH500 (Hendrycks et al., 2021), AMC23 (American Mathematics Competitions), AIME25 (American Invitational Mathematics Examination), and OlympiadBench (He et al., 2024). The maximum generation length is set to 8,192 tokens for all benchmarks, except GSM8K which uses 4,096 due to its simpler problems and larger size. Performance is reported as pass@1 under a zero-shot chain-of-thought setting, using sampling temperature 0.6. For large datasets (MATH500, OlympiadBench, GSM8K), we generate one sample per problem; for small datasets (AMC23, AIME25), we generate eight samples per problem.

5.2 PERFORMANCE

Benchmark Evaluation. We validate TaH’s reasoning ability through extensive tests across five challenging math benchmarks. Table 1 presents performance results for models at 0.6B and 1.7B parameter sizes. Starting from strong Qwen3-Base models, we observe that existing approaches show limited effectiveness: fixed-depth recurrent transformers (AlwaysThink) and query routing fail to consistently outperform the standard direct-answer baseline. SoftThink provides improvements on some cases, yet remain marginal overall. In contrast, TaH achieves consistent gains, delivering average improvements of 4.0% and 5.0% for the 0.6B and 1.7B models, respectively. Our enhanced variant (TaH+), which only adds less than 3% additional parameters, pushes these gains to 5.3% and 5.4%. Relative to AlwaysThink, the gains are 8.1-11.3% for TaH, and 8.5-12.6% for TaH+.

Training Dynamics. During stage 1 (LLM backbone training), guided by the oracle policy that only triggers a second iteration on hard tokens, TaH converges notably faster than the Standard baseline. It also achieves much lower perplexity on the validation dataset as shown in Figure 3. During stage 2

378 Table 1: Accuracy comparison of different baselines across five benchmarks and two model sizes.
 379 Subscripts indicate improvement over Standard. The top two scores for each task and model size
 380 are highlighted in bold.
 381

382	383	384	Method											
			385	386	387	388	389	390						
391	392	393	394	395	396	397	398	399	400	401	402			
391	392	393	394	395	396	397	398	399	400	401	402			
Param. Benchmark			Standard	Routing	SoftThink	AlwaysThink	TaH	TaH+						
391	392	393	394	395	396	397	398	399	400	401	402			
0.6B			AIME25	4.2	1.0	2.5	1.5	4.2	5.0					
			OlympiadBench	18.8	7.4	19.4	10.2	23.9	24.0					
			AMC23	23.4	10.9	24.1	15.6	32.5	30.6					
			MATH500	47.2	27.3	48.8	32.8	51.2	54.2					
			GSM8K	62.5	45.6	61.3	54.6	64.4	68.8					
			Average	31.2	18.5	31.2	22.9	35.2/+4.0	36.5/+5.3					
1.7B			AIME25	13.3	10.2	12.9	10.0	17.9	14.6					
			OlympiadBench	33.0	30.6	33.4	30.0	38.8	41.2					
			AMC23	42.2	42.2	43.1	42.5	48.4	51.2					
			MATH500	68.4	60.0	68.8	61.8	74.4	73.0					
			GSM8K	82.1	71.2	79.6	79.3	84.5	85.8					
			Average	47.8	36.8	47.6	44.7	52.8/+5.0	53.2/+5.4					
4B			AIME25	23.3	22.5	22.5				30.4	28.3			
			OlympiadBench	47.7	45.0	50.1				50.5	52.0			
			AMC23	62.8	60.9	64.1	OOM			70.3	70.6			
			MATH500	82.8	76.1	83.2				84.4	85.6			
			GSM8K	90.5	85.3	90.9				90.4	91.5			
			Average	61.4	58.0	62.2	-			65.2/+3.8	65.6/+4.2			

(iteration-decider training), the neural decider successfully imitates the oracle strategy, reaching about 83% accuracy at predicting iteration decisions of oracle labels, as shown in Figure 10.

Adding Iteration Depth. We train a 1.7B TaH with maximum three iteration (TaH-3). TaH-3 yields 5.8% average gain over Standard, and 0.8% over TaH-2. Detailed results are in Appendix A.2.4.

Generalizability. We further study generalization when TaH is evaluated out of domain (OOD) or trained on broader data mixtures. First, when trained only on math data, TaH+ still improves OOD STEM performance on MMLU-STEM (4.7% and 2.9% for 0.6B and 1.7B respectively), indicating that the learned thinking patterns transfer robustly across domains. Second, finetuning Qwen3-1.7B-Base on a balanced OpenR1 mixture of math, QA, and code shows that TaH+ yields consistent gains over Standard across all categories, improving the overall average accuracy by 6.8%. See additional experiment and performance details in Appendix A.2.1.

5.3 DESIGN CHOICE EXPLORATION

We demonstrate the effectiveness and robustness of TaH by finetuning our model with alternative model architectures and training schemes, or altering the continuation thresholds. All results are reported on MATH500, AMC23 and OlympiadBench (Olym.).

Model Architecture. (1) **Iteration Scheme.** As shown in Table 2, TaH’s dynamic iteration scheme outperforms the *Standard* and *AlwaysThink* alternatives, confirming the benefit of avoiding latent underthinking and overthinking. Note that for *Standard*, duo-causal attention degenerates to regular causal attention. (2) **Duo-Causal Attention.** Replacing duo-causal attention with standard causal attention variants causes significant drops: (a) attending only to the first iteration (Causal-iter1) drops 5.4%; (b) attending only to the current iteration (Causal) drops even larger at 8.5%. The latter failure confirms duo-causal attention’s essential role for cross-depth information flow. (3) **LoRA and residual connections.** Removing LoRA and residual connections leads to consistent drops, confirming their beneficial roles in objective transition across iterations.

432 Table 2: **Ablation of iteration scheme, attention mechanism and architecture designs on TaH-0.6B.**
433

Ablation	Iter. Scheme	Attention	LoRA	Residual	MATH500	AMC23	Olym.	Average
Base	TaH	Duo-causal	✓	✓	51.2	32.5	23.9	35.9/+0.0
Scheme	Standard	Duo-causal	✓	✓	47.2	23.4	18.8	29.8/-6.1
	AlwaysThink	Duo-causal			32.8	15.6	10.2	19.5/-16.4
Attention	TaH	Causal-iter1	✓	✓	47.8	24.4	19.4	30.5/-5.4
		Causal			42.0	23.8	16.4	27.4/-8.5
Arch.	TaH	Duo-causal	✗	✓	51.6	29.7	22.4	34.6/-1.3
		Duo-causal	✗	✗	49.2	22.5	21.2	31.0/-4.9

444 Table 3: Ablation study on training schemes.
445

Supervision	Iter. Policy	MATH500	AMC23	Olympiadbench	Average
Token-only	Oracle	51.2	32.5	23.9	35.9
<i>Token+latent</i>	Oracle	49.4	29.6	15.9	31.6 /-4.3
Token-only	<i>Iter. decider</i>	44.8	24.1	17.3	28.7 /-7.2
	<i>Dynamic</i>	11.0	2.8	2.7	5.5/-30.4

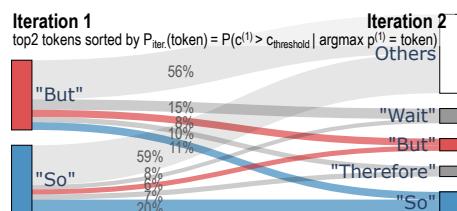
453 **Training Scheme.** (1) **Supervision type.** Inspired by early exit methods, a common alternative
454 supervises all iteration depths with next-token labels to enable flexible early termination. It enforces
455 accurate prediction at depth 1 even for hard tokens. As shown in Table 3, such *token+latent* super-
456 vision underperforms our token-only approach that supervises only at oracle-determined depths. It
457 aligns with our intuition that different iterations should focus on tokens of different difficulties. (2)
458 **Iteration policy during LLM training.** We compare our static oracle strategy π with two alter-
459 natives. The *iter. decider* trains the decider first then uses it during backbone training, but suffers
460 from the coupling challenge discussed in Section 4.3. The *dynamic* recalculates the oracle using the
461 evolving backbone in Equation 7, encountering the same coupling challenge and causing training
462 collapse. These results support our backbone training recipe: using next-token supervision with
463 oracle iteration policy.

464 **Continuation Threshold.** As shown in Figure 4, TaH maintains robust performance across different
465 continuation thresholds and iteration ratios. We empirically set $c_{\text{threshold}} = 0.9$ for all evaluations.
466

467 5.4 BEHAVIOR ANALYSIS

469 **Latent Overthinking.** To analyze latent thinking patterns, we verbalize tokens from all iteration
470 depths using their last-layer hidden states. The oracle method uses the oracle policy π from Sec-
471 tion 4.3 for iteration decision. (1) **Generation.** Since ground-truth tokens are unavailable during
472 generation, we use predictions from the stronger DeepSeek-R1-Distill-Qwen-32B model (Guo et al.,
473 2025) as proxy labels. Table 4 shows that the oracle policy substantially improves performance by
474 verbalizing correct predictions immediately while iterating only on incorrect ones. With our trained
475

Training	Inference	Accuracy
Standard	Standard	52
AlwaysThink	AlwaysThink	38/-14
AlwaysThink	TaH-Oracle	77/+25
TaH-Oracle	TaH-Decider	54/+ 2
TaH-Oracle	TaH-Oracle	80/+28

484 Table 4: Impact of iteration schemes on Qwen3-
485 0.6B (first 100 MATH500 samples).486 Figure 5: Next-token prediction changes across
487 iterations. Top2 tokens that think-twice most are
488 visualized.

iteration decider approximating the oracle, TaH outperforms both Standard and AlwaysThink baselines. However, the ideal oracle policy achieves even higher gains, indicating future potential. (2) **Next-token prediction.** We evaluate next-token prediction accuracy on the Open-R1 dataset, using the test model itself as the reference model in π . Figure 1 reveals that AlwaysThink produces more incorrect than correct revisions, demonstrating latent overthinking. In contrast, oracle-controlled iterations substantially increase correct revisions by selectively targeting hard tokens.

Token Alternation Patterns. We analyze which tokens TaH selects for deeper iteration. On the validation set, *But* and *So* emerge as top candidates, with iteration probabilities of 34% and 18%, respectively. These tokens signal critical contrasting or causal relationships, confirming that models benefit from additional processing at logically complex junctures. Figure 5 illustrates how TaH alternates predictions after iteration at these key tokens, suggesting logic refinement behavior. See Appendix A.3.4 for detailed analysis.

Attention Pattern. We visualize the attention pattern of TaH. As discussed in Figure 11 and Appendix A.3.6, the duo-causal attention automatically focuses on different iterations in different heads, extracting broader contexts from multiple depths.

Iteration and FLOPs. Tables 10 and 11 report the average iteration count, per-token FLOPs, and **memory access cost** of TaH. TaH matches the FLOPs of the Standard baseline (averaging 1.06 iterations per token), while significantly undercutting AlwaysThink (2.00 iterations), **which incurs $\approx 2.2 \times$ FLOPs and memory access. When tested on an NVIDIA A800-80GB GPU, TaH achieves a $2.48 \times$ speedup over AlwaysThink and reduces peak memory usage by $1.48 \times$. See Appendices A.2.2 and A.2.3 for more details.**

6 CONCLUSION

We present TaH, a selective latent thinking method that iterates deeper only on hard tokens. Architecturally, TaH introduces duo-causal attention, depth-specific LoRA, and a neural iteration decider to facilitate dynamic depths. An oracle policy guides the stable two-stage training for the tightly coupled LLM backbone and decider. Across five reasoning benchmarks, TaH improves accuracy by 4.0-5.4% over strong baselines with minimal overhead (<3% additional parameters and $\approx 6\%$ extra iterations), establishing a new paradigm for better reasoning within the current parameter budgets.

540 ETHICS STATEMENT
541542 This study raises no ethical issues, it did not involve human subjects or sensitive personal data.
543544 REPRODUCIBILITY STATEMENT
545546 This paper provides sufficient information to reproduce the reported results. All experiments were
547 conducted using publicly available datasets together with open-source models and code. Appendix A
548 details implementation aspects, including data selection, hyperparameters, and training procedures.
549 To facilitate full reproducibility, we will release the code, configuration files, and model checkpoints
550 upon publication.
551552 REFERENCES
553554 Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen
555 Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, et al. Phi-3 technical report: A
556 highly capable language model locally on your phone. *arXiv preprint arXiv:2404.14219*, 2024.
557 URL <https://arxiv.org/abs/2404.14219>.558 Sangmin Bae, Jongwoo Ko, Hwanjun Song, and Se-Young Yun. Fast and robust early-exiting frame-
559 work for autoregressive language models with synchronized parallel decoding. *arXiv preprint*
560 *arXiv:2310.05424*, 2023.561 Sangmin Bae, Yujin Kim, Reza Bayat, Sungnyun Kim, Jiyoun Ha, Tal Schuster, Adam Fisch, Hravir
562 Harutyunyan, Ziwei Ji, Aaron Courville, et al. Mixture-of-recursions: Learning dynamic recur-
563 sive depths for adaptive token-level computation. *arXiv preprint arXiv:2507.10524*, 2025.564 Nora Belrose, Zach Furman, Logan Smith, Danny Halawi, Igor Ostrovsky, Lev McKinney, Stella
565 Biderman, and Jacob Steinhardt. Eliciting latent predictions from transformers with the tuned
566 lens. *arXiv preprint arXiv:2303.08112*, 2023.567 Yanxi Chen, Xuchen Pan, Yaliang Li, Bolin Ding, and Jingren Zhou. Ee-llm: Large-scale train-
568 ing and inference of early-exit large language models with 3d parallelism. *arXiv preprint*
569 *arXiv:2312.04916*, 2023.570 Jeffrey Cheng and Benjamin Van Durme. Compressed chain of thought: Efficient reasoning through
571 dense representations. *arXiv preprint arXiv:2412.13171*, 2024.572 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
573 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
574 solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.575 Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In *Inter-
576 national Conference on Learning Representations (ICLR)*, 2024.577 Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast and
578 memory-efficient exact attention with IO-awareness. In *Advances in Neural Information Process-
579 ing Systems (NeurIPS)*, 2022.580 Luciano Del Corro, Allie Del Giorno, Sahaj Agarwal, Bin Yu, Ahmed Awadallah, and Subhabrata
581 Mukherjee. Skipdecode: Autoregressive skip decoding with batching and caching for efficient
582 llm inference. *arXiv preprint arXiv:2307.02628*, 2023.583 Tianyu Fu, Yi Ge, Yichen You, Enshu Liu, Zhihang Yuan, Guohao Dai, Shengen Yan, Huazhong
584 Yang, and Yu Wang. R2r: Efficiently navigating divergent reasoning paths with small-large model
585 token routing. *arXiv preprint arXiv:2505.21600*, 2025a.586 Tianyu Fu, Haofeng Huang, Xuefei Ning, Genghan Zhang, Boju Chen, Tianqi Wu, Hongyi Wang,
587 Zixiao Huang, Shiyao Li, Shengen Yan, et al. Mixture of attention spans: Optimizing llm infer-
588 ence efficiency with heterogeneous sliding-window lengths. In *Second Conference on Language
589 Modeling*, 2025b.

594 Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R Bartoldson,
 595 Bhavya Kailkhura, Abhinav Bhatele, and Tom Goldstein. Scaling up test-time compute with
 596 latent reasoning: A recurrent depth approach. *arXiv preprint arXiv:2502.05171*, 2025.

597

598 Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar, and Vaish-
 599 nav Nagarajan. Think before you speak: Training language models with pause tokens. *URL*
 600 <https://arxiv.org/abs/2310.02226>, 2024.

601 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 602 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 603 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

604 Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
 605 Tian. Training large language models to reason in a continuous latent space. *arXiv preprint*
 606 *arXiv:2412.06769*, 2024.

607

608 Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
 609 Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
 610 promoting agi with olympiad-level bilingual multimodal scientific problems. *arXiv preprint*
 611 *arXiv:2402.14008*, 2024.

612 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 613 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *arXiv*
 614 *preprint arXiv:2103.03874*, 2021.

615

616 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
 617 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
 618 ing compute-optimal large language models. *arXiv preprint arXiv:2203.15556*, 2022.

619 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 620 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

621

622 Hugging Face. Open r1: A fully open reproduction of deepseek-r1, January 2025. *URL* <https://github.com/huggingface/open-r1>.

623

624 DeLesley Hutchins, Imanol Schlag, Yuhuai Wu, Ethan Dyer, and Behnam Neyshabur. Block-
 625 recurrent transformers. *Advances in neural information processing systems*, 35:33248–33261,
 626 2022.

627

628 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 629 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv*
 630 *preprint arXiv:2412.16720*, 2024.

631

632 Eunki Kim, Sangryul Kim, and James Thorne. Learning to insert [pause] tokens for better reasoning.
arXiv preprint arXiv:2506.03616, 2025.

633

634 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
 635 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 636 serving with pagedattention. In *Proceedings of the 29th symposium on operating systems prin-
 ciples*, pp. 611–626, 2023.

637

638 Jindong Li, Yali Fu, Li Fan, Jiahong Liu, Yao Shu, Chengwei Qin, Menglin Yang, Irwin King, and
 639 Rex Ying. Implicit reasoning in large language models: A comprehensive survey. *arXiv preprint*
 640 *arXiv:2509.02350*, 2025.

641

642 Zhenghao Lin, Zhibin Gou, Yeyun Gong, Xiao Liu, Yelong Shen, Ruochen Xu, Chen Lin, Yujiu
 643 Yang, Jian Jiao, Nan Duan, et al. Rho-1: Not all tokens are what you need. *arXiv preprint*
arXiv:2404.07965, 2024.

644

645 Tianqiao Liu, Zui Chen, Zitao Liu, Mi Tian, and Weiqi Luo. Expediting and elevating large language
 646 model reasoning via hidden chain-of-thought decoding. *arXiv preprint arXiv:2409.08561*, 2024.

647

Xuan Luo, Weizhi Wang, and Xifeng Yan. Adaptive layer-skipping in pre-trained llms. *arXiv*
preprint arXiv:2503.23798, 2025.

648 Wenheng Ma, Xinhao Yang, Shulin Zeng, Tengxuan Liu, Libo Shen, Hongyi Wang, Shiyao Li,
 649 Ke Hong, Zhenhua Zhu, Xuefei Ning, Tsung-Yi Ho, Guohao Dai, and Yu Wang. Cd-llm: A
 650 heterogeneous multi-fpga system for batched decoding of 70b+ llms using a compute-dedicated
 651 architecture. *ACM Trans. Reconfigurable Technol. Syst.*, October 2025. ISSN 1936-7406. doi:
 652 10.1145/3771288. URL <https://doi.org/10.1145/3771288>. Just Accepted.

653 Isaac Ong, Amjad Almahairi, Vincent Wu, Wei-Lin Chiang, Tianhao Wu, Joseph E Gonzalez,
 654 M Waleed Kadous, and Ion Stoica. Routellm: Learning to route llms with preference data. *arXiv*
 655 *preprint arXiv:2406.18665*, 2024.

656 Jacob Pfau, William Merrill, and Samuel R Bowman. Let's think dot by dot: Hidden computation
 657 in transformer language models. URL <https://arxiv.org/abs/2404.15758>, 2404, 2024.

658 Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-
 659 standing by generative pre-training. *OpenAI blog*, 2018.

660 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 661 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.

662 David Raposo, Sam Ritter, Blake Richards, Timothy Lillicrap, Peter Conway Humphreys, and
 663 Adam Santoro. Mixture-of-depths: Dynamically allocating compute in transformer-based lan-
 664 guage models. *arXiv preprint arXiv:2404.02258*, 2024.

665 Nikunj Saunshi, Nishanth Dikkala, Zhiyuan Li, Sanjiv Kumar, and Sashank J Reddi. Reasoning
 666 with latent thoughts: On the power of looped transformers. *arXiv preprint arXiv:2502.17416*,
 667 2025.

668 Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Tran, Yi Tay, and Donald
 669 Metzler. Confident adaptive language modeling. *Advances in Neural Information Processing*
 670 *Systems*, 35:17456–17472, 2022.

671 Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and Tri Dao.
 672 Flashattention-3: Fast and accurate attention with asynchrony and low-precision. *Advances in*
 673 *Neural Information Processing Systems*, 37:68658–68685, 2024.

674 DiJia Su, Hanlin Zhu, Yingchen Xu, Jiantao Jiao, Yuandong Tian, and Qingqing Zheng. Token
 675 assorted: Mixing latent and text tokens for improved language model reasoning. *arXiv preprint*
 676 *arXiv:2502.03275*, 2025.

677 MiniCPM Team, Chaojun Xiao, Yuxuan Li, Xu Han, Yuzhuo Bai, Jie Cai, Haotian Chen, Wen-
 678 tong Chen, Xin Cong, Ganqu Cui, Ning Ding, Shengdan Fan, Yewei Fang, Zixuan Fu, Wenyu
 679 Guan, Yitong Guan, Junshao Guo, Yufeng Han, Bingxiang He, Yuxiang Huang, Cunliang Kong,
 680 Qiuzuo Li, Zhen Li, Dan Liu, Biyuan Lin, Yankai Lin, Xiang Long, Quanyu Lu, Yaxi Lu,
 681 Peiyan Luo, Hongya Lyu, Litu Ou, Yinxu Pan, Zekai Qu, Qundong Shi, Zijun Song, Jiayuan
 682 Su, Zhou Su, Ao Sun, Xianghui Sun, Peijun Tang, Fangzheng Wang, Feng Wang, Shuo Wang,
 683 Yudong Wang, Yesai Wu, Zhenyu Xiao, Jie Xie, Zihao Xie, Yukun Yan, Jiarui Yuan, Kaihuo
 684 Zhang, Lei Zhang, Linyue Zhang, Xueren Zhang, Yudi Zhang, Hengyu Zhao, Weilin Zhao,
 685 Weilun Zhao, Yuanqian Zhao, Zhi Zheng, Ge Zhou, Jie Zhou, Wei Zhou, Zihan Zhou, Zix-
 686 uan Zhou, Zhiyuan Liu, Guoyang Zeng, Chao Jia, Dahai Li, and Maosong Sun. Minicpm4:
 687 Ultra-efficient llms on end devices. *arXiv preprint arXiv:2506.07900*, 2025. URL <https://arxiv.org/abs/2506.07900>.

688 Chenyu Wang, Zishen Wan, Hao Kang, Emma Chen, Zhiqiang Xie, Tushar Krishna, Vijay Janapa
 689 Reddi, and Yilun Du. Slm-mux: Orchestrating small language models for reasoning. *arXiv*
 690 *preprint arXiv:2510.05077*, 2025a.

691 Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
 692 Jianxin Yang, Zhenru Zhang, et al. Beyond the 80/20 rule: High-entropy minority tokens drive
 693 effective reinforcement learning for llm reasoning. *arXiv preprint arXiv:2506.01939*, 2025b.

694 Yuyang Wu, Yifei Wang, Ziyu Ye, Tianqi Du, Stefanie Jegelka, and Yisen Wang. When more is
 695 less: Understanding chain-of-thought length in llms. *arXiv preprint arXiv:2502.07266*, 2025.

702 Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du, Hanxiao Liu, Yifeng Lu, Percy S Liang,
 703 Quoc V Le, Tengyu Ma, and Adams Wei Yu. Doremi: Optimizing data mixtures speeds up
 704 language model pretraining. *Advances in Neural Information Processing Systems*, 36:69798–
 705 69818, 2023.

706 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 707 Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint*
 708 *arXiv:2505.09388*, 2025.

709 Fan Yang, Xinhao Yang, Hongyi Wang, Zehao Wang, Zhenhua Zhu, Shulin Zeng, and Yu Wang.
 710 Glitches: Gpu-fpga llm inference through a collaborative heterogeneous system. In *2024 IEEE*
 711 *High Performance Extreme Computing Conference (HPEC)*, pp. 1–7. IEEE, 2024.

712 Boyi Zeng, Shixiang Song, Siyuan Huang, Yixuan Wang, He Li, Ziwei He, Xinbing Wang, Zhiyu
 713 Li, and Zhouhan Lin. Pretraining language models to ponder in continuous space. *arXiv preprint*
 714 *arXiv:2505.20674*, 2025.

715 Jintao Zhang, Chendong Xiang, Haofeng Huang, Jia Wei, Haocheng Xi, Jun Zhu, and Jianfei Chen.
 716 Spargeattention: Accurate and training-free sparse attention accelerating any model inference. In
 717 *International Conference on Machine Learning (ICML 2025)*, 2025a.

718 Zhen Zhang, Xuehai He, Weixiang Yan, Ao Shen, Chenyang Zhao, Shuohang Wang, Yelong Shen,
 719 and Xin Eric Wang. Soft thinking: Unlocking the reasoning potential of llms in continuous
 720 concept space. *arXiv preprint arXiv:2505.15778*, 2025b.

721 Changsheng Zhao, Ernie Chang, Zechun Liu, Chia-Jung Chang, Wei Wen, Chen Lai, Rick Cao,
 722 Yuandong Tian, Raghuraman Krishnamoorthi, Yangyang Shi, et al. Mobilellm-r1: Exploring
 723 the limits of sub-billion language model reasoners with open training recipes. *arXiv preprint*
 724 *arXiv:2509.24945*, 2025.

725 Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Livia Sun, Jeff Huang, Cody Hao Yu, Shiyi
 726 Cao, Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Sqlang: Efficient execution of
 727 structured language model programs. *Advances in neural information processing systems*, 37:
 728 62557–62583, 2024.

729 Rui-Jie Zhu, Zixuan Wang, Kai Hua, Tianyu Zhang, Ziniu Li, Haoran Que, Boyi Wei, Zixin Wen,
 730 Fan Yin, He Xing, et al. Scaling latent reasoning via looped language models. *arXiv preprint*
 731 *arXiv:2510.25741*, 2025.

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A APPENDIX**
757758 **A.1 ADDITIONAL EXPERIMENT SETUPS**
759760 **A.1.1 TRAINING RECIPE**
761762 We follow the official training setup of Open-R1 (Hugging Face, 2025). For Standard, TaH, and
763 TaH+, we use a maximum sequence length of 8192 tokens. For AlwaysThink, we reduce the maxi-
764 mum length to 4096 due to its substantially higher memory usage during training. Detailed training
765 hyperparameters are listed in Table 5.
766767 **A.1.2 BASELINE SETUPS**
768769 **Routing.** The query-level routing baseline selects a model from a candidate pair for each question.
770 In our experiments, we use two pairs: (1) MobileLLM-R1-360M, Qwen3-1.7B, and (2) Qwen3-
771 0.6B, Qwen3-4B. All candidate models are SFT-trained under the same settings as the Standard
772 baseline (Section 5). For each pair, the routing ratio is calibrated so that the average active parameter
773 count matches our 0.6B and 1.7B targets, respectively.
774775 **AlwaysThink.** AlwaysThink uses the exact same architecture as TaH, but substitutes the iteration
776 decider to one that always iterates twice.
777778 **A.1.3 PARAMETER BREAKDOWN**
779780 Table 6 reports the parameter breakdown of the Standard, TaH, and TaH+ methods. To offset the
781 additional parameters introduced by TaH through LoRA and the iteration decider, we remove one
782 layer from the LLM backbone, ensuring a fair comparison. In practical deployments, we recommend
783 TaH+, which adds only about 3% additional parameters.
784785 **A.1.4 LATENT OVERTHINKING ANALYSIS SETUP**
786787 We set up an oracle experiment to estimate the performance upper bound of our method. The
788 oracle employs the DeepSeek-R1-Distill-Qwen-32B model as a dynamic label generator, replacing
789 the MLP-based iteration decider. During each iteration, we compare the token predictions from the
790 label generator with those from the TaH model. The model continues to iterate only when the top-1
791 predictions of these two models differ. Due to resource constraints and computational overhead,
792 we evaluated the accuracy only on the first 100 samples from the MATH500 dataset, denoted as
793 MATH100 throughout the paper.
794795 **A.2 ADDITIONAL EXPERIMENTAL RESULTS**
796797 **A.2.1 GENERALIZABILITY**
798799 **General Training and Evaluation.** To verify generalizability, we expanded our training and eval-
800 uation to diverse domains. We followed the exact protocol from the main paper to finetune Qwen3-
801 1.7B-Base. The only modification was replacing the math-only dataset with a balanced subset of
802 OpenR1 (100k samples total) covering all task splits, ensuring a fair comparison by maintaining the
803804 **Table 5: Training hyperparameters.**
805

806 Hyperparameter	807 Value
808 learning rate	4e-5
809 max grad norm	0.2
810 training epochs	5
811 global batch size	128
812 warmup ratio	0.03
813 lr scheduler	cosine (min-lr ratio 0.1)
814 precision	bfloat16

810
811 Table 6: Parameter breakdown of Standard, TaH, and TaH+. Counts are reported using M (million)
812 and B (billion).

813	Param.	Method	Backbone	LoRA	Iter. Decider	Total
814	0.6B	Standard	596M	–	–	596M
		TaH	580M	10M	5M	595M
		TaH+	596M	10M	5M	611M
815	1.7B	Standard	1.72B	–	–	1.72B
		TaH	1.67B	34M	18M	1.72B
		TaH+	1.72B	34M	18M	1.77B

816
817
818 Table 7: Performance of Qwen3-1.7B models trained on a general OpenR1 mixture (math, QA, and
819 code) across downstream benchmarks.

820	Category	Dataset	Standard	SoftThink	AlwaysThink	TaH+
821	Math	MATH500	67.8	64.8	63.2	72.6
		AMC23	39.7	40.3	40.9	48.4
822	QA	GPQA	30.3	33.3	30.5	39.4
		MMLU-STEM	74.1	73.5	69.6	76.6
823	Code	HumanEval+	44.2	44.5	25.6	48.2
		MBPP+	27.2	27.8	16.4	39.0
824	Average		47.2	47.4	41.0	54.0 <i>/+6.8</i>

825
826 same data scale. As shown in Table 7, TaH+ achieves consistent improvements across math, QA, and
827 coding domains, with an average performance gain of 6.8%. This demonstrates TaH’s effectiveness
828 on diverse reasoning and generation tasks beyond pure mathematics.

829
830 **Out-Of-Domain (OOD) Performance.** We further evaluated the zero-shot generalization capability
831 of models trained solely on math datasets from the main paper. As shown in Table 8, TaH+ demon-
832 strates consistent improvements not only on in-domain math benchmarks (MATH500, AMC23) but
833 also on out-of-domain tasks like MMLU-STEM. This indicates that the thinking patterns learned by
834 TaH+ on math problems are robust and transferrable to broader scientific reasoning tasks.

835 A.2.2 REAL-WORLD EFFICIENCY

836
837 **Setup.** We investigate the real-world efficiency of different 1.7B models under our cur-
838 rent implementation. All measurements were obtained on a single A800 GPU with a batch
839 size of 1 and a maximum output length of 8192 tokens, using a challenging AIME25 prob-

840
841 Table 8: Performance of math-only trained models (0.6B and 1.7B) on in-domain math benchmarks
842 and the out-of-domain STEM benchmark (MMLU-STEM).

843	Param.	Benchmark	Standard	SoftThink	AlwaysThink	TaH+
844	0.6	MATH500	47.2	48.8	32.8	54.2
		AMC23	23.4	24.1	15.6	30.6
		MMLU-STEM	51.6	51.4	42.6	56.3
		Average	40.7	41.4	30.3	47.0
845	1.7	MATH500	68.4	68.8	61.8	73.0
		AMC23	42.2	43.1	42.5	51.2
		MMLU-STEM	70.8	70.6	63.8	73.7
		Average	60.5	60.8	56.0	66.0

864 Table 9: Real-world decoding performance on a single A800 GPU, including maximum memory
 865 usage (GB), decoding latency (s), throughput (tokens/s), and per-component time breakdown.
 866

Metric	Standard		TaH		AlwaysThink	
Component	Latency (s)	Ratio(%)	Latency (s)	Ratio(%)	Latency (s)	Ratio(%)
Memory (GB)	4.3		4.6		6.8	
Latency (s)	210.6		301.4		747.2	
Throughput (tok/s)	38.9		27.2		11.0	
Iter-1 Forward	210.6	100.0	229.8	76.2	224.1	30.0
Iter-2 Forward	—	—	29.6	9.8	384.7	51.5
Iter. Decider	—	—	10.5	3.5	—	—
LoRA Switching	—	—	7.5	2.5	91.1	12.2
Other	—	—	24.1	8.0	47.4	6.3

878
 879 lem where all three methods reached the token limit. Memory usage was profiled using
 880 `torch.cuda.memory._record_memory_history`.
 881

882 **Memory.** As shown in Table 9, TaH introduces minimal memory overhead of +7% over Standard,
 883 even at an extensive length of 8192 tokens. In contrast, AlwaysThink increases memory usage by
 884 58%. This surge is primarily due to its dense iteration doubling the KV cache size, whereas TaH
 885 keeps the cache compact by skipping the second iteration for 94% of tokens.

886 **Latency Breakdown.** We report the decoding latency, throughput, and a detailed time breakdown
 887 for Standard, AlwaysThink, and TaH in Table 9. Here, *Iter-1 forward* and *Iter-2 forward* denote the
 888 total forward-pass time spent on the first and second latent iterations, respectively; *Iter decider* is
 889 the time for the iteration decider network to judge whether to continue iterating or verbalize; *LoRA*
 890 *switching* is the overhead of switching LoRA adapters; and *Other* includes tensor initialization,
 891 concatenation, and related bookkeeping.

892 **Discussion.** We note that our current implementation is not yet optimized at the system level, so
 893 there remains room for further efficiency improvements. For example, the *LoRA Switching* and
 894 *Other* overheads (bookkeeping) are relatively high due to the Python-level implementation of dy-
 895 namic control flow. These engineering optimizations are largely orthogonal to the algorithmic de-
 896 sign of TaH, and we plan to continue refining the implementation to further reduce latency and
 897 memory overhead. The theoretical FLOPs and memory access analysis of TaH are provided in
 898 Appendix A.2.3.

900 A.2.3 THEORETICAL EFFICIENCY ANALYSIS

901 Following prior work Hoffmann et al. (2022); Yang et al. (2024); Ma et al. (2025), we analyze
 902 the computational and memory access overhead of TaH relative to the Standard and AlwaysThink
 903 baselines. Table 10 presents the average number of input/output tokens and latent iterations per
 904 token across five benchmarks. We use these statistics to calculate the theoretical computation and
 905 memory access costs for each method.

906 As shown in Table 11, TaH incurs only a marginal increase in cost per token (1.04 to 1.05 \times) com-
 907 pared to the Standard baseline. In comparison, *AlwaysThink* is prohibitively expensive, requiring
 908 2.19 to 2.27 \times more computation and memory access. These theoretical results confirm that TaH ex-
 909 ceeds the reasoning benefits of fixed-depth recurrent transformers without the substantial efficiency
 910 penalty.

911 A.2.4 ITERATION DEPTH BEYOND TWO

912 **Hard Token Labeling.** Previous works have proposed many methods to evaluate the hardness
 913 of each tokens in the training data, like through excess loss (Lin et al., 2024; Xie et al., 2023),
 914 entropy (Wang et al., 2025b; Chen et al., 2023) and prediction difference (Fu et al., 2025a).

915 For shallow iteration budgets within two ($D_{\max} \leq 2$), we adopt the prediction difference policy. It
 916 simply labels the tokens that do not yield top-1 in next-token prediction at the first iteration as hard

918
919
920
Table 10: Input tokens (shared across methods) and output token / iteration statistics for Standard,
AlwaysThink, TaH, and TaH+.
921
922
923

Param.	Dataset	In.	Standard		AlwaysThink		TaH		TaH+	
			Out.	Iter.	Out.	Iter.	Out.	Iter.	Out.	Iter.
0.6B	AIME25	159	7450	1.00	7316	2.00	7648	1.05	7486	1.06
	OlympiadBench	100	6599	1.00	6622	2.00	6631	1.09	6513	1.06
	AMC23	85	6377	1.00	6368	2.00	6242	1.05	6145	1.05
	MATH500	71	4823	1.00	5350	2.00	4877	1.05	4793	1.06
	GSM8K	61	1955	1.00	2844	2.00	1923	1.07	1791	1.07
	Average ratio	–	1.00×	1.00×	1.02×	2.00×	1.00×	1.06×	0.97×	1.06×
1.7B	AIME25	159	7195	1.00	7173	2.00	7496	1.06	7498	1.06
	OlympiadBench	100	6008	1.00	6484	2.00	6387	1.06	6258	1.06
	AMC23	85	5681	1.00	7543	2.00	6122	1.04	5852	1.06
	MATH500	71	4004	1.00	4414	2.00	4233	1.06	4286	1.06
	GSM8K	61	1451	1.00	1644	2.00	1721	1.08	1686	1.08
	Average ratio	–	1.00×	1.00×	1.13×	2.00×	1.09×	1.06×	1.07×	1.06×

930
931
932
933
934
935
936
Table 11: Decoding computation (GFLOPs) and memory access (GB) per output token for Standard,
AlwaysThink, TaH and TaH+ methods.
937
938
939

Param.	Dataset	Standard		AlwaysThink		TaH		TaH+	
		Comp.	Mem.	Comp.	Mem.	Comp.	Mem.	Comp.	Mem.
0.6B	AIME25	1.47	1.38	3.35	3.14	1.52	1.43	1.57	1.47
	OlympiadBench	1.41	1.32	3.21	3.02	1.51	1.42	1.50	1.41
	AMC23	1.40	1.31	3.17	2.97	1.43	1.34	1.46	1.37
	MATH500	1.31	1.22	2.98	2.80	1.35	1.26	1.39	1.31
	GSM8K	1.14	1.06	2.54	2.38	1.19	1.12	1.22	1.14
	Average ratio	1.00×	1.00×	2.27×	2.27×	1.04×	1.04×	1.06×	1.06×
1.7B	AIME25	4.31	4.03	9.45	8.83	4.51	4.21	4.64	4.34
	OlympiadBench	4.16	3.88	9.18	8.58	4.36	4.07	4.48	4.18
	AMC23	4.12	3.85	9.54	8.91	4.24	3.96	4.43	4.13
	MATH500	3.92	3.66	8.45	7.89	4.10	3.83	4.23	3.95
	GSM8K	3.62	3.38	7.48	6.98	3.87	3.61	3.98	3.72
	Average ratio	1.00×	1.00×	2.19×	2.19×	1.05×	1.05×	1.08×	1.08×

956
957 tokens. Formally, we use a binary halting rule:

958
959
960
$$H_i^\pi = \begin{cases} 0, & \text{if } h_i = 0 \text{ (easy token)} \\ D_{\max}, & \text{if } h_i = 1 \text{ (hard token)} \end{cases} \quad (9)$$

961 If the iteration depth goes beyond 2 ($D_{\max} > 2$), we use the reference model’s cross-entropy as a
962 non-binary indicator of difficulty. Define

963
964
$$\ell_i^{\text{ref}} = -\log p_{i,\text{ref}}^{(0)}(t_{i+1}).$$

965 We then map difficulty to halting depth via monotone quantile binning:

966
967
$$H_i^\pi = \lfloor \text{QuantileRank}(\ell_i^{\text{ref}}) \cdot D_{\max} \rfloor, \quad (10)$$

968 where $\text{QuantileRank}(\cdot) \in [0, 1]$ is the empirical CDF over the training set (higher loss \Rightarrow deeper
969 halting). This induces per-depth continuation labels $c_i^{(d)} = \mathbb{1}[d < H_i^\pi]$ for $d \in \{0, 1, \dots, D_{\max}\}$.970 **Experiment Result.** Specifically, we train a 1.7B TaH with a maximum per-token iteration count
971 of 3, using oracle labels generated by the method described above. As shown in Table 12, TaH-3
achieves a further improvement of **0.8%** on average over TaH-2.

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
Table 12: Performance comparison between TaH-2 and TaH-3 (maximum per-token iterations of 2 and 3, respectively). Iter.2 and Iter.3 denote the per-token percentages executing two and three iterations, respectively.

Param.	Dataset	Standard		TaH-2		TaH-3		
		Acc.		Acc.	Iter.2	Acc.	Iter.2	Iter.3
1.7B	MATH500	68.4		74.4	5.6	72.6	5.3	0.2
	GSM8K	82.1		84.5	7.5	84.8	7.6	0.3
	AMC23	42.2		48.4	4.2	48.7	5.1	0.1
	OlympiadBench	33.0		38.8	5.7	41.6	5.4	0.2
	AIME25	13.3		17.9	6.0	20.4	5.3	0.1
	Average	47.8		52.8	5.8	53.6	5.7	0.2

Table 13: Performance on MATH500 and GSM8K-500 (first 500 GSM8K samples)

Dataset	Method	
	Standard-0.6B	Ponder-1.4B
MATH500	47.2	2.0
GSM8K-500	62.8	1.8
Avg.	55	1.9

A.2.5 ADDITIONAL LATENT THINKING METHODS

Some latent thinking methods requires pre-training and uses base model other than Qwen3. We also compare with these methods, including Ponder (Zeng et al., 2025). Specifically, we adopt the released pretrained PonderingPythia-1.4B as the base model and perform SFT on the same training data. We observe that the fine-tuned model learns the stylistic patterns of the training data, but still underperforms substantially, which may be attributable to the limited capability of the PonderingPythia-1.4B backbone.

A.2.6 TRAINING RECIPE INFLUENCE

Figure 13 expands Table 3 by showing validation perplexity dynamics across different supervision signals and iteration policies. The naming convention matches Table 3. TaH with token-only supervision and the oracle policy yields lower perplexity than *iter.* *decider* and *token+latent*. Although the *dynamic* policy achieves the lowest perplexity, it fails on downstream tasks and often produces infinite-loop generations.

A.3 ADDITIONAL ANALYSIS

A.3.1 ORACLE POLICY AND HARD TOKEN ANALYSIS

Metrics for Hard Token Labeling. We investigate different metrics for defining hard tokens to validate our choice of top-1 prediction mismatch. We compare three labeling strategies:

1. Top-1 Mismatch (TaH Default): Labels a token as hard if the reference model’s greedy prediction differs from the ground truth.
2. Entropy (TaH-Entropy): Labels a token as hard if the reference model’s prediction entropy exceeds a threshold.
3. Cross-Entropy (TaH-CE): Labels a token as hard if the reference model’s cross-entropy loss exceeds a threshold.

To ensure a fair comparison, for *TaH-Entropy* and *TaH-CE*, we set the thresholds such that the number of hard tokens in each sample matches the total ratio from the default Top-1 Mismatch policy. This isolates the impact of *which* tokens are selected, rather than *how many*.

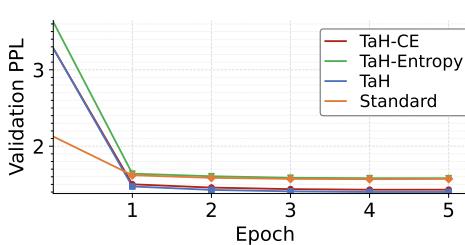


Figure 6: Validation loss curves of 0.6B models trained with different oracle labeling metrics. The default Top-1 Mismatch policy yields the lowest validation loss.

Table 14: Performance comparison of different difficulty metrics (Entropy, Cross-Entropy, and Top-1 Accuracy) on 0.6B models. All methods mark the same total number of tokens as "hard."

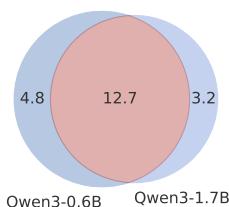
Method	MATH500	AMC23	OlympiadBench	Average
TaH-Entropy	42.0	21.9	16.9	26.9
TaH-CE	47.4	21.2	20.4	29.7
TaH	51.2	32.5	23.9	35.9

Figure 6 compares the validation loss, and Table 14 reports downstream accuracy on 0.6B models. While cross-entropy (*TaH-CE*) improves over entropy labeling (*TaH-Entropy*), the Top-1 Mismatch policy (*TaH*) achieves superior performance across all benchmarks. This empirically verifies that directly targeting tokens where the model's top-1 prediction is wrong is the most effective way to identify hard tokens for TaH.

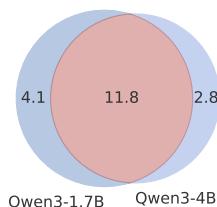
Labeling Robustness. We investigate the robustness of hard-token labels with respect to the choice of reference model. We do so by analyzing the consistency of hard-token identification across different model scales (e.g., Qwen3-0.6B, 1.7B, and 4B).

First, we quantify the agreement between models. As shown in Figure 7, hard tokens exhibit high consistency across scales. Notably, even a smaller, less accurate reference model (1.7B) successfully identifies 81% of the hard tokens for a larger model (4B).

Second, to understand the quality of this overlap, we partition tokens into an *overlap set* (marked as hard by both models) and a *non-overlap set* (marked as hard by only one model). We plot the cross-entropy loss under each reference model in Figure 8. We observe that overlap tokens have substantially higher average cross-entropy ($\approx 2.0 \times$) than non-overlap tokens for *all* reference models. This indicates that either reference model can identify this core set of "hard" tokens, which corresponds to positions of genuine, high uncertainty. It reveals a consensus on hardness among models even of different sizes.



(a) Overlap between Qwen3-0.6B and 1.7B



(b) Overlap between Qwen3-1.7B and 4B

Figure 7: Venn diagrams illustrating the overlap of hard-token labels between different reference models. The high overlap proportions indicate that "hard" tokens are largely consistent across model scales.

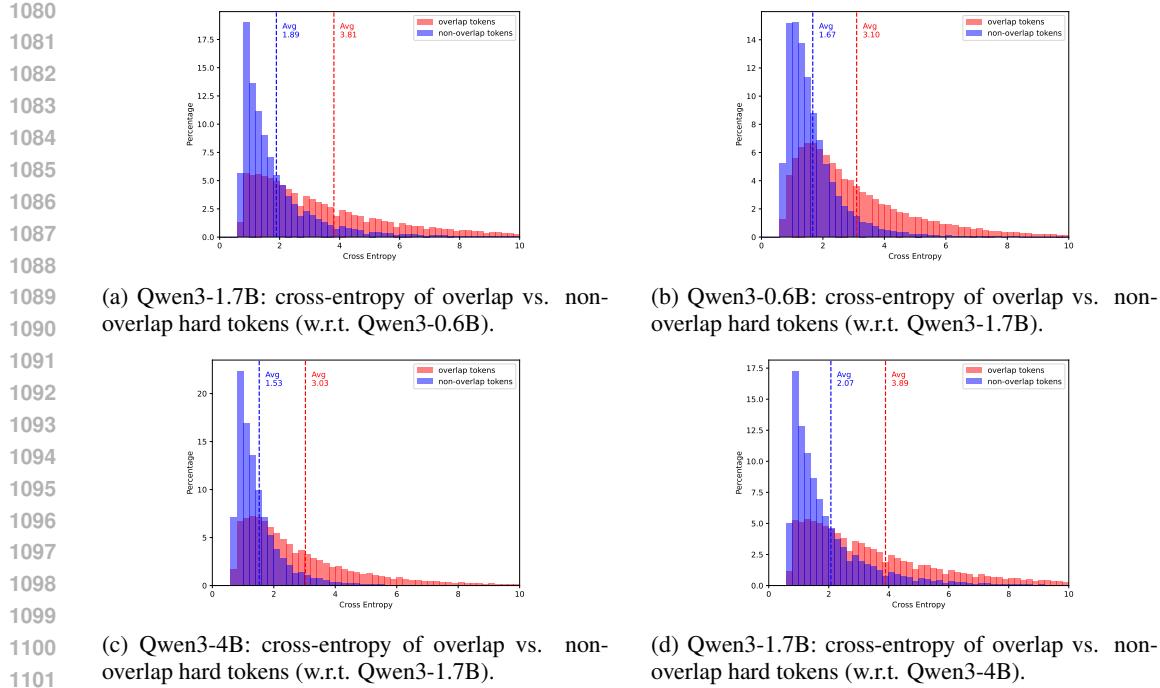


Figure 8: Token-level cross-entropy distributions of overlap and non-overlap hard tokens across different reference model pairs. For each pair of reference models (e.g., Qwen3-1.7B and Qwen3-0.6B), we plot the cross-entropy of tokens labeled as hard by both models (overlap) and by only one model (non-overlap) on both reference models.

Table 15: Iteration decider behavior and downstream gains on different validation subsets. The decider is trained once on general OpenR1 and evaluated without retraining.

Metric	Math	Code	QA
Iteration Percentage	7.8%	10.7%	26.6%
Iteration Accuracy	86.7%	82.3%	76.6%
Benchmark Gain over Standard	+6.8%	+7.9%	+5.8%

A.3.2 ITERATION DECIDER ROBUSTNESS

We evaluate the iteration decider, trained on the general OpenR1 corpus, across three validation subsets (Math, Code, and QA) to quantify its robustness and cross-domain generalizability. As summarized in Table 15, the decider maintains high decision accuracy across all domains without any retraining.

Despite being invoked on only 7.8-26.6% of tokens, the decider consistently yields 5.8-7.9% absolute accuracy gains over the standard single-pass baseline on all three domains. Moreover, the decider automatically adjusts its iteration rate according to task difficulty: it iterates more frequently on QA (26.6%) than on Math (7.8%), even under a fixed threshold $c_{\text{threshold}} = 0.9$. This behavior indicates that the decider responds to intrinsic uncertainty signals in the model’s predictive distribution rather than memorizing domain-specific patterns, consistent with the token-level difficulty analysis in Appendix A.3.3.

A.3.3 HARD TOKEN IDENTIFIABILITY

Why is the iteration decider robust and generalizable across tasks? We investigate this by analyzing the intrinsic properties of “hard” tokens.

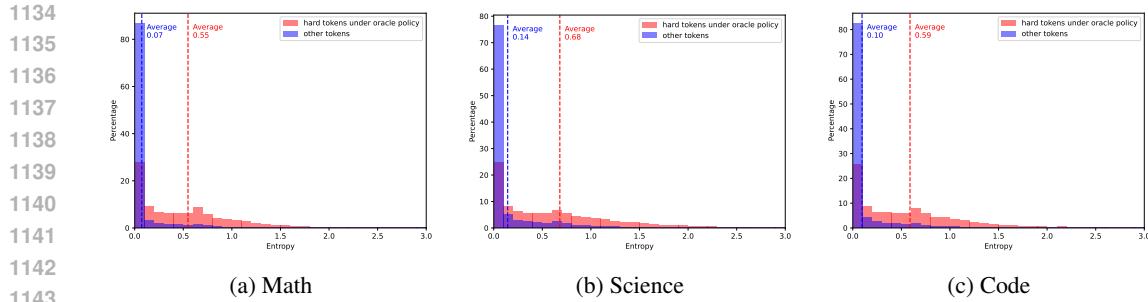


Figure 9: Output Logit entropy distribution at the first iteration of TaH, categorized by oracle policy’s difficulty labels (hard token) on the OpenR1 validation set (Math, QA, Code). The distinct separation between distributions confirms that TaH’s internal logits provide a strong, task-agnostic signal for identifying hard tokens.

Table 16: Conditional probabilities of continuation confidence and next-token distribution.

Token T_1	$P(c^{(1)} > c_{\text{threshold}} \mid t^{(1)} = T_1)$	Token T_2	$P(t^{(2)} = T_2 \mid t^{(1)} = T_1)$
But	34.3%	So	13.63%
		Wait	12.17%
		Therefore	8.95%
So	17.7%	So	28.17%
		Therefore	13.67%
		But	4.89%

We compute the token entropy of hard and easy tokens across three diverse subsets of the OpenR1 dataset (Math, Science, and Code). As shown in Figure 9, hard tokens exhibit a universal signature of significantly higher entropy ($> 5\times$) compared to easy tokens. This distinct separation confirms that “hardness” is an intrinsic, robustly identifiable property of the model’s predictive state, rather than a complex, task-specific pattern. Given this clear signal, the neural iteration decider can easily learn reliable classification strategies that generalize well across different domains.

A.3.4 TOKEN ALTERNATION PATTERN

We analyze tokens that most frequently trigger a second iteration (“think-twice” tokens). For each token type t , we compute the continuation rate

$$\Pr(c_i^{(1)} > c_{\text{threshold}} \mid t_i = t),$$

using the inference threshold $c_{\text{threshold}} = 0.9$ (Section 4.3). We estimate this quantity on the OpenR1 validation set and, for diagnostics, randomly sample 10K token positions ($\approx 0.4\%$ of tokens) to track whether the next-token prediction switches between depth 1 and depth 2. This setting quantifies which token types most often trigger an additional iteration and how often iteration alters the predicted next token.

A.3.5 ITERATION DECISION ERROR

We analyze how iteration decision accuracy affects TaH’s end-to-end response quality, since iteration decider will not be perfect as shown in Figure 10. To this end, we randomly inject errors into the oracle iteration-decider predictions at different rates. Formally, we denote the original oracle prediction as the *label* $l \in \{0, 1\}$ and the altered prediction as the *output* $o \in \{0, 1\}$. We define the *iter. error* as the total proportion of deliberately introduced errors:

$$\text{iter. error} = P(l \neq o) = \underbrace{P(l = 1, o = 0)}_{\text{underthink rate}} + \underbrace{P(l = 0, o = 1)}_{\text{overtthink rate}}. \quad (11)$$

We further distinguish the impacts of overthinking and underthinking. Here, overthinking refers to cases where the decider incorrectly signals *continue*, while underthinking corresponds to cases

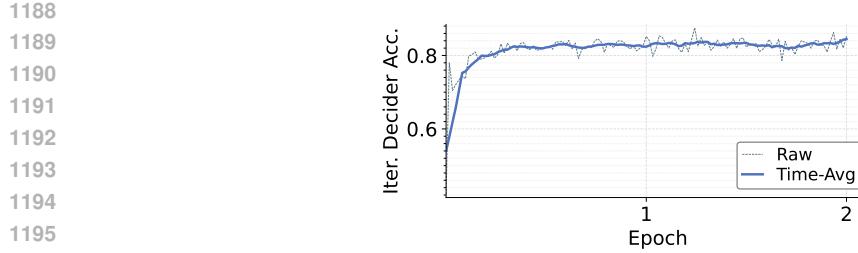


Figure 10: Iteration-decider accuracy vs. epoch (Qwen3-0.6B).

Table 17: TaH performance under different iteration-decider error rates. All values are reported in percentages.

Iter. Error (%)	Underthink (%)	Overthink (%)	MATH100 Accuracy (%)
0.0	0.0	0.0	80.0
2.8	2.8	0.0	78.0
10.0	1.5	8.5	55.4
15.0	2.1	12.9	45.2
20.0	2.5	17.5	27.1
22.1	0.0	22.1	21.6

where it incorrectly signals *stop*. Table 17 shows how TaH’s MATH100 accuracy varies with different iteration error rates. We quantify these effects by fitting a linear model to the data:

$$\text{accuracy} = -1.41 \times \text{underthink rate} - 2.73 \times \text{overthink rate} + 0.81.$$

This analysis indicates that inaccurate iteration decisions are the main factor behind the performance gap between TaH and its oracle variant, with overthinking being the dominant source of performance gaps.

A.3.6 DUO-CAUSAL ATTENTION PATTERN

We perform forward computation on 100 samples, each with a length of 128 tokens. Figure 11 shows the average attention weights of three representative attention heads in the second iteration of the TaH model. The left panel illustrates a head that mainly attends to keys from the first iteration. The middle panel shows a head focusing on keys from the second iteration. The right panel displays a head with a balanced attention distribution. These results suggest that the TaH model, under the duo-causal attention mechanism, can automatically learn diverse attention patterns across layers and heads.

Figure 12 further presents the total attention scores assigned to keys in the first iteration. It can be seen that the first layer tends to focus more on keys from the second iteration. Different layers also exhibit varying attention behaviors.

A.4 IMPLEMENTATION DETAILS

A.4.1 DUO-CAUSAL ATTENTION IMPLEMENTATION

Figure 14 illustrates the implementation of duo-causal attention, with the formal definitions provided below.

(1) KV cache concatenation. At depth d , we form the visible K/V sequence by concatenating all shallower-to-current depths along the sequence dimension:

$$\text{KV}^{(\leq d)} = [\text{KV}^{(1)} ; \text{KV}^{(2)} ; \dots ; \text{KV}^{(d)}].$$

This realizes the accessible set in Equation 5, allowing deeper iterations to access all shallower iterations while preserving positional causality. The KV cache is managed by iteration depth during

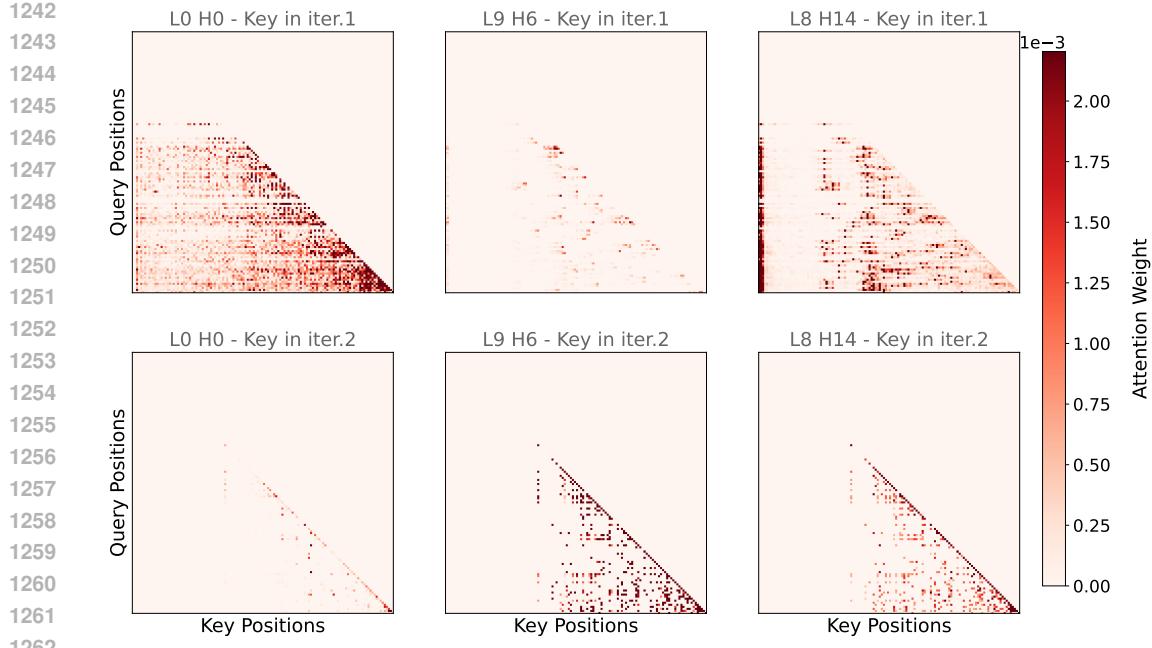


Figure 11: TaH duo-causal attention pattern.

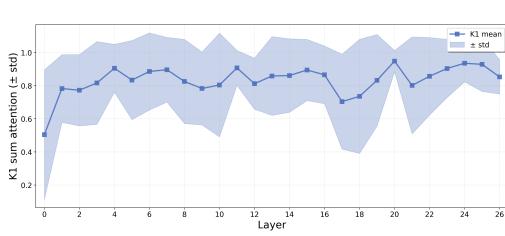


Figure 12: TaH mean and standard deviation of attention weights (key from iteration 1) across layers in iteration 2.

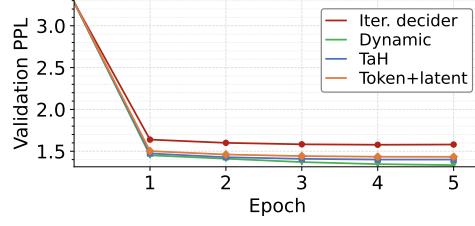


Figure 13: Validation perplexity for different training schemes.

decoding, as shown in Figure 14(b). The fragmented KV-cache management strategy is standard in existing LLM serving systems (Kwon et al., 2023; Zheng et al., 2024).

(2) Two-dimensional causal mask. For a query (i, d) , a key (j, k) is attendable iff $j \leq i$ and $k \leq d$. We implement this as an additive attention mask with 0 for allowed entries and $-\infty$ otherwise, enforcing positional and iteration causality jointly. Figure 14(c) visualize the landscape of the duo-causal attention mask. When $d = 1$ for all tokens, the rule reduces to standard causal attention.

(3) Compatibility with efficient attention. The mask is provided in the standard additive form and the concatenated K/V remain contiguous along the sequence dimension, matching the usual scaled dot-product attention interface. As a result, duo-causal attention is directly compatible with optimized kernels such as FlashAttention, without kernel modifications.

A.5 ADDITIONAL RELATED WORK

Instead of using the shared model parameter multiple times through latent iteration, previous work also proposes layer skipping methods for dynamic computing allocation.

Layer Skipping. Layer skipping aims to accelerate LLM inference by dynamically bypassing certain layers for specific tokens. Some methods use a learnable module to make real-time skipping decisions. MoD (Raposo et al., 2024) uses a top-k router to select a subset of tokens for processing,

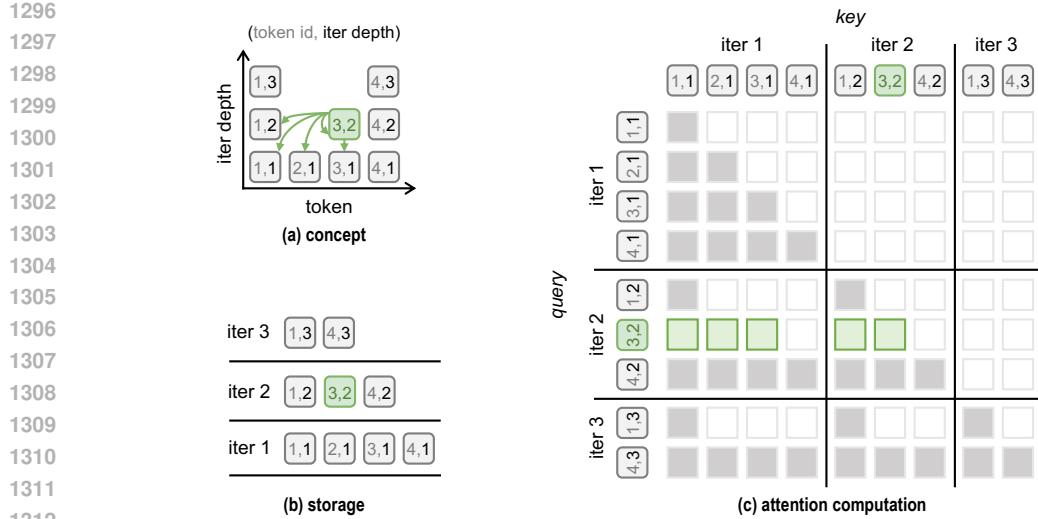


Figure 14: **Duo-causal attention implementation.** (a) Conceptual TaH example with dynamic iteration depths. Each cell denotes a token–depth pair (token id, iter depth). (b) Each iteration maintains its own KV cache. (c) KV caches from all iterations are concatenated into a 1D sequence and processed with standard attention under a duo-causal mask. The duo-causal mask is conceptually partitioned into blocks by iteration depth. The diagonal blocks use a standard causal mask, while off-diagonal blocks use reduced causal masks that enforce the duo-causal rules.

while FlexiDepth (Luo et al., 2025) uses a plug-in router to determine whether a layer should be bypassed. Others use a fixed strategy to skip layers. SkipDecode (Del Corro et al., 2023) enforces a monotonically decreasing number of active layers during generation. However, these methods still require loading the entire model’s parameters, resulting in a large memory access overhead. Instead of skipping some layers, TaH adds computational depth by allowing core tokens to undergo multiple refinement iterations. This approach provides greater computational depth without increasing the model’s parameter count.

A.6 LIMITATIONS AND FUTURE WORK

Comparison with Official Qwen3 Models. Official Qwen3 models are trained on different data distributions and scales, and use different training procedures, including on-policy distillation (Yang et al., 2025). By contrast, our models use SFT only on limited, publicly accessible data. Consequently, performance may differ between the two.

Future Work. We consider advanced training techniques largely orthogonal to TaH. Promising directions include: (1) integrating TaH with online distillation to provide stronger supervision; (2) applying reinforcement learning to optimize the compute–accuracy trade-off and to learn continuation policies beyond imitation. Due to resource constraints, this work focuses on SFT with public data; we leave these combinations for future work.

A.7 USE OF LARGE LANGUAGE MODELS (LLMs)

Large language models (e.g., GPT-5, Gemini) were used exclusively for proofreading and minor copyediting. They were not employed to generate scientific content, contribute to research ideation, or design methods. All research ideas, methods, and conclusions are solely the responsibility of the authors.

1350
1351

A.8 EXAMPLES

1352 We use an example question from AIME25 and responses from Standard, TaH and AlwaysThink to
1353 provide an intuitive understanding of our method. Only TaH can successfully answer this question.
1354 Blue-highlighted tokens indicate positions that undergo two iterations.1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Text 1. Question

On $\triangle ABC$ points A, D, E , and B lie that order on side \overline{AB} with $AD = 4$, $DE = 16$, and $EB = 8$. Points A, F, G , and C lie in that order on side \overline{AC} with $AF = 13$, $FG = 52$, and $GC = 26$. Let M be the reflection of D through F , and let N be the reflection of G through E . Quadrilateral $DEGF$ has area 288. Find the area of heptagon $AFNBCEM$.

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

Text 2. Standard Response

Okay, let me try to figure out this problem step by step. It's about a heptagon formed by reflecting points and finding its area. ... We have triangle ABC . On side AB , points A, D, E , and B are in that order. The lengths are given as $AD = 4$, $DE = 16$, and $EB = 8$. So $AB = 28$... On side AC , points A, F, G , and C are in that order with $AF = 13$, $FG = 52$, and $GC = 26$. So $AC = 91$... Let me place point A at $(0, 0)$ and B at $(28, 0)$... Let C be at $(91, h)$... Then $D = (4, 0)$, $E = (20, 0)$, $F = (13, \frac{13h}{91})$, $G = (65, \frac{65h}{91})$...

Area of quadrilateral $DEGF$ can be calculated ... Applying the shoelace formula ... Area = $\frac{1}{2} \cdot \frac{1248h}{91} = \frac{624h}{91} = 6h$ So with 288: $6h = 288 \Rightarrow h = \frac{288}{6} = 48$ Reflections: M is the reflection of D through F and N is the reflection of G through E ... $M = (22, 0)$, $N = (-39, 0)$, $B = (28, 0)$, $C = (91, 48)$, $E = (20, 0)$...

Using the shoelace formula for $AFNBCEM$ in order ... Sum = $0 + 0 + 0 + 1344 + (-960) + 0 + 0 = 384$

Take absolute value and multiply by $1/2$: Area = $\frac{1}{2} \cdot |384| = 192$

Final Answer 192 ✗

Text 3. TaH Response

Okay, let's try to tackle this geometry problem. It seems a bit complex with all these points and reflections, ... First, let me visualize triangle ABC . Points D, E , and B are on side AB with $AD = 4$, $DE = 16$, and $EB = 8$ Let me set up a coordinate system. Let's place point A at the origin $(0, 0)$... Then, since AB is a line segment, let me assume AB is along the x -axis. So point B would be at $(28, 0)$... Now, points F, G, C are on AC ... Let me define coordinates for C as (c_x, c_y) ...

Compute the sum of $x_i y_{i+1} - x_{i+1} y_i$ for each i ...

Sum of all terms: $0 + \frac{1300c_y}{91} + 0 - > \frac{52c_y}{91} = \frac{(1300-52)c_y}{91} = \frac{1248c_y}{91}$

Then, the area is $\frac{1}{2} \cdot \left| \frac{1248c_y}{91} \right| = \frac{624c_y}{91}$

Compute the area of this heptagon ...

Using shoelace formula

...

Term2: -240 Term3:

840 Term4: 1176

Term5: -840 Term6:

240 ...

Sum: $0 - 240 + 840 + 1176 - 840 + 240 + 0 = 1176$

Take absolute value and multiply by $1/2$: Area = $\frac{1}{2} \cdot |1176| = 588$

...

Final Answer 588 ✓

Text 4. AlwaysThink Response

Okay, so I need to find the area of the heptagon $AFNBCEM$. Let me first try to visualize the problem. There's triangle ABC . On side AB , there are points A, D, E, B . The order is A, D, E, B . The distances given are $AD=4$, $DE=16$, and $EB=8$. So, starting at A , moving 4 units to D , then 16 units to E , then 8 units to B . So, the total length of AB is $AD + DE + EB = 4 + 16 + 8 = 28$ units. Got that.

...

Points in order: $D(4,0)$, $E(20,0)$, $F(13,h)$, $G(65,h)$, back to $D(4,0)$.

Compute the terms:

...

Sum these terms: $0 + 20h - 52h - 4h = -36h$

Take absolute value and multiply by $1/2$: Area = $(1/2) * |-36h| = (1/2) * 36|h| = 18|h|$

But the area is given as 288, so $18|h| = 288 \Rightarrow |h| = 16$.

...

Now, apply the shoelace formula ... Therefore, total sum is $8640/17$

Take absolute value and multiply by $1/2$: Area = $(1/2) * |8640/17| = 8640/34 = 4320/17 \approx 254.1176$

...

Therefore, the answer is $4320/17$.

Final Answer 4320 117 ✗