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ABSTRACT

Improving reasoning capabilities of Large Language Models (LLMs), especially
under parameter constraints, is crucial for real-world applications. Prior work
proposes recurrent transformers, which allocate a fixed number of extra iterations
per token to improve generation quality. After the first, standard forward pass,
instead of verbalization, last-layer hidden states are fed back as inputs for addi-
tional iterations to refine token predictions. Yet we identify a latent overthinking
phenomenon: easy token predictions that are already correct after the first pass are
sometimes revised into errors in additional iterations. To address this, we propose
Think-at-Hard (TaH), a dynamic latent thinking method that iterates deeper only
at hard tokens. It employs a lightweight neural decider to trigger latent iterations,
only at tokens that are likely incorrect after the standard forward pass. During la-
tent iterations, Low-Rank Adaptation (LoRA) modules shift the LLM’s objective
from general next-token prediction to focused hard-token refinement. We further
introduce a duo-causal attention mechanism that extends attention from token se-
quence dimension to an additional iteration depth dimension. This enables cross-
iteration information flow while maintaining full sequential parallelism. Experi-
ments show that TaH boosts LLM reasoning performance across five challenging
benchmarks while maintaining the same parameter count. Compared with base-
lines that iterate twice for all output tokens, TaH delivers 8.1-11.3% accuracy
gains while exempting 94% of tokens from the second iteration. Against strong
single-iteration Qwen3 models finetuned with the same data, it also delivers 4.0-
5.0% accuracy gains. When allowing <3% additional parameters from LoRA and
iteration decider, the gains increase to 8.5-12.6% and 5.3-5.4%, respectively.

1 INTRODUCTION

Maybe directly
answer this time.

I’ll reason step by step. 

How many numbers from 1–100 contain the digit “7”?user query:

direct reply:

think-twice reply:

List all? 
Too many cases.

We can list all the numbers.

We can split tens and ones.

think at
hard tokens

overthink at
simple tokens

I’ll directly answer 10. ✘

✘
latent 

iteration: 83%

12%

92%

8%

direct reply↴
always think-twice

direct reply↴
think-at-hard oracle
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both ✔
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(a) (b)

85%
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43%57%

Figure 1: Selective iteration can mitigate latent overthinking. (a) Toy example. Uniform latent itera-
tion (always think-twice) can fix wrong predictions, but may also overthink and corrupt correct ones.
(b) Next-token prediction accuracy of finetuned Qwen3-1.7B variants. Always think-twice causes
more errors than corrections over direct reply. In contrast, the think-at-hard oracle, which iterates
only when the first-pass prediction is wrong, achieves substantial improvements with minimal harm.
While this oracle signal is unavailable in practice, it highlights the potential of selective iteration.

Recent advances in Large Language Model (LLM) reasoning have enabled broad applications across
diverse domains (Jaech et al., 2024; Guo et al., 2025; Yang et al., 2025). With tens to hundreds of
billions of parameters, LLMs can generate complex Chain-of-Thought (CoT) to solve challenging
tasks. At the same time, smaller language models have also drawn increasing attention. With only
a few billion parameters, they offer compelling alternatives: lower costs, faster inference, and suit-
ability for edge computing (Abdin et al., 2024; Team et al., 2025; Wang et al., 2025a).
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At this crossroad, enhancing reasoning capabilities under parameter constraints becomes a central
challenge. A common approach is to distill smaller models to mimic LLM CoT trajectories using
next-token prediction supervision. However, not all tokens are equally predictable: certain tokens
encode critical logic or reasoning directions that are fundamentally harder to predict (Lin et al.,
2024; Fu et al., 2025a; Wang et al., 2025b). With limited computation per output token, small
models quickly hit a performance ceiling and mispredict some of these tokens. Once critical errors
occur, the reasoning trajectory can irrecoverably diverge and produce drastically different outcomes.

Prior work proposes recurrent transformers to address this parameter–performance para-
dox (Hutchins et al., 2022; Saunshi et al., 2025; Zeng et al., 2025). Instead of verbalizing the
next token immediately after one forward pass, these models typically feed the last-layer hidden
states back into the LLM for additional passes in the latent space. Each pass refines the hidden
representation without producing tokens. After a fixed number of iteration depths, the final hidden
states are passed to the language modeling head to generate the next token. By uniformly allocating
extra iterations per token, these models increase inference depth without enlarging parameter count,
potentially benefiting hard reasoning tokens.

However, we identify a latent overthinking problem in fixed-depth recurrent transformers, where
excessive iterations revise correct answers into wrong ones. As shown in Figure 1, finetuning
Qwen3-1.7B-Base to always perform two iterations per token yields even more errors than the
single-iteration baseline on the Open-R1 dataset (Hugging Face, 2025). This occurs because most
tokens are already predicted correctly in the first iteration, such as coherence or suffix tokens. Sim-
ilar to overthinking in explicit CoT reasoning (Wu et al., 2025), latent overthinking on these easy
tokens degrades performance despite extra computation. While the opposite latent underthinking
exists for tokens that need more iterations to correctly predict, such cases are rarer. We define to-
kens that cannot be accurately predicted in a single forward pass as hard tokens, and ask our central
question:

Can LLMs selectively dedicate latent iterations only to hard tokens?

If achieved, different iterations could specialize in distinct prediction focuses for more effective
latent reasoning. Oracle experiments validate this approach: as shown in Table 4, a think-at-hard
oracle improves MATH accuracy by 25-28%.

Achieving dynamic latent iteration presents three main challenges. First, the model architecture
should enable cross-depth attention, allowing each iteration to access full context. This is crucial
because when early tokens skip deeper iterations, later tokens must still access their representations
from shallower depths. Meanwhile, this cross-depth flow cannot compromise the sequence-level
parallelism essential for efficient training and prefilling. Second, the model must adapt to changing
objectives and distributions across iterations, while maximizing parameter reuse. Third, training
must remain stable despite tight coupling dependencies: the iteration policy depends on prediction
quality at each depth, while that quality depends on which tokens the policy sends to each depth.

To address these challenges, we propose TaH, a dynamic latent thinking method that selectively ap-
plies deeper iterations only to hard tokens. As shown in Figure 2, TaH employs a neural decider to
determine whether to continue iterating or verbalize each token. We design a duo-causal attention
mechanism to enable cross-depth attention and full sequence parallelism. To specialize deeper iter-
ations for hard-token refinement and preserve strong first-pass predictions, we apply LoRA adapters
solely at iterations d > 1. TaH is stably trained by aligning both LLM backbone and iteration
decider with a static oracle iteration policy. We summarize our contributions as follows.

• Selective Latent Iteration. We identify the latent overthinking phenomenon, revealing
how false corrections harm easy tokens at redundant iterations. This insight guides our
new paradigm where latent iteration depth adapts to token difficulty.

• Specialized Model Architecture. We develop a model architecture that natively supports
selective iteration depths. The dedicated duo-causal attention mechanism, LoRA adapters,
and iteration decider enable efficient cross-depth information flow, objective transitions,
and dynamic depth selection.

• Stable Training. We introduce a stable training scheme that uses a static oracle policy
to decouple model adaptation and policy learning. It overcomes the circular dependency
between iteration decisions and prediction quality.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Experiments show that TaH consistently improves reasoning performance. Finetuned from Qwen3-
0.6B-Base and 1.7B-Base with aligned parameter count, TaH achieves an average accuracy gain of
4.0-5.0% over standard single-iteration variants across five reasoning benchmarks, while applying
deeper thinking to only 6% of tokens. With less than 3% additional parameters, these gains further
increase to 5.3-5.4%. Compared with AlwaysThink which applies two iterations to all tokens, the
gains are 8.1-11.3% and 8.5-12.6%, validating TaH’s high effectiveness.

2 RELATED WORK

Unlike standard LLMs that verbalize at every autoregressive step, latent thinking shifts part of gen-
eration away from explicit natural-language CoT in order to improve reasoning (Li et al., 2025).

Signal-guided Control. These methods keep reasoning in token space but steers computation by
inserting control tokens. Early work shows that simple filler tokens (e.g., dots) can mimic some
benefits of CoT (Pfau et al., 2024). Building on this, later work expands the LLM vocabulary
with [PAUSE] tokens and learns where to insert them for extra compute before predicting the
next token (Goyal et al., 2024; Kim et al., 2025). They are lightweight and easily integrable, but
constrained to the discrete-token interventions with limited latent controls.

Latent Optimization. These methods perform autoregressive reasoning directly in internal repre-
sentations, emitting little or no intermediate text. They distill and compress CoT into latent continu-
ous embeddings through various strategies. Coconut and CCoT progressively replace text with latent
thinking under final response supervision (Hao et al., 2024; Cheng & Van Durme, 2024); Token as-
sorted and HCoT compress CoT spans to embeddings with hidden-state alignment (Su et al., 2025;
Liu et al., 2024). SoftThink directly applies logit-weighted embeddings for latent iterations (Zhang
et al., 2025b). While offering efficiency gains and flexible control over hidden trajectories, these
methods sacrifice reasoning interpretability, with training-based ones further requiring heavy miti-
gation from strong verbal LLMs.

Recurrent Transformers. These methods interleave latent and verbal reasoning, introducing latent
iterations before each token verbalization. After a standard forward pass, these methods feed latent
states back as next-iteration inputs for a fixed number of iterations, then verbalize the output token.
Existing approaches differ in the formation of next-iteration input. For example, Looped Trans-
former reuses last-layer hidden states directly (Saunshi et al., 2025; Geiping et al., 2025), whereas
Ponder uses logit-weighted embeddings (Equation 4) (Zeng et al., 2025). Recurrent transformers
combine advantages of visible reasoning trajectories with latent exploration. By reusing the pa-
rameters across iterations, it achieves deeper computation per token without parameter increases.
However, the fixed depth burdens each iteration with both easy and hard tokens, potentially causing
false corrections for already-correct predictions.

Positioning. TaH belongs to the recurrent transformer family but extends this paradigm signifi-
cantly. It selectively allocates latent iterations to refine hard tokens, improving reasoning quality
with specialized objectives across iterations. While concurrent works (Bae et al., 2025; Zhu et al.,
2025) also enable selective recursion, they require complete model retraining. TaH instead lever-
ages existing pre-trained models, adding depth-aware LoRA and duo-causal attention to improve
reasoning with minimal finetuning overhead.

3 PRELIMINARY

Autoregressive LLMs. Modern LLMs generate text through an autoregressive next-token predic-
tion process. It includes a prefill stage and a decode stage (Radford et al., 2018; 2019; Kwon et al.,
2023). In the prefill stage, the model processes the entire input sequence in parallel; in the decode
stage, it consumes one new token at a time along with cached history to predict the next token.

Formally, let ti denote the token at position i and xi ∈ Rh its embedding. Let E ∈ Rv×h be the
embedding matrix, so xi = E[ti] when ti is treated as an index. Here, v and h are the vocabulary
size and hidden dimension. The output projection matrix is Wout ∈ Rh×v (equal to E⊤ if tied).
Given the context T≤i = [t0, . . . , ti] with embeddings X≤i = [x0, . . . , xi], the model θ produces a
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Figure 2: TaH Overview. (a) Regular causal attention: tokens attend only to previous positions. (b)
Our duo-causal attention: tokens attend to both previous positions and shallower iteration depths,
maintaining 2D causality. (c) Model architecture: TaH selectively iterates or verbalizes tokens. It
uses LoRA at deeper iterations to shift from next-token prediction to hard-token refinement. A
neural decider determines whether to continue iterating or output the token.

last-layer hidden state yi for token ti:

yi = Pθ

(
xi | X≤i

)
∈ Rh. (1)

The next-token distribution pi and sample are:

pi = softmax
(
W⊤

outyi
)
∈ Rv, ti+1 = S(pi), (2)

where S is a sampling rule such as greedy or nucleus sampling. Decoding repeats until an end-of-
sequence token is generated.

Causal Attention. To respect autoregression, modern LLMs apply causal attention. As shown in
Figure 2(a), each position attends only to itself and earlier positions, consistent with Equation 1.
This design brings two key benefits: (1) it enables parallel training with next-token prediction and
shifted logits, avoiding the need for token-by-token generation; and (2) it allows efficient inference
by caching Key/Value states of past tokens instead of recomputing them.

Recurrent Transformers. Recurrent transformers introduce an inner loop that iterates in latent
space before verbalizing each output token. Let d ∈ {1, 2, . . . } denote the iteration depth (written
as a superscript), and set x(0)

i = E[ti]. At each iteration, recurrent transformers update yi with
causal attention on the hidden states of the current iteration:

y
(d)
i = Pθ

(
x
(d)
i

∣∣X(d)
≤i

)
, X

(d)
≤i = [x

(d)
0 , . . . , x

(d)
i ]. (3)

An inner transition then produces the next-depth embedding. For example, Loop (Saunshi et al.,
2025) simply sets x(d+1)

i = y
(d)
i , while Ponder (Zeng et al., 2025) uses a logit-weighted embeddings:

x
(d+1)
i = softmax

(
W⊤

outy
(d)
i

)
E = p

(d)
i E. (4)

In practice, it uses the top-100 logits instead of full logits for efficiency.

Verbalization occurs at a fixed maximum depth dmax shared by all tokens, where y
(dmax)
i is trans-

formed into the next token ti+1, resembling Equation 2.

4 TAH DESIGN

We expand the motivations and key designs of TaH in this section, including the duo-causal attention
mechanism (Section 4.1), model architecture (Section 4.2), and training scheme (Section 4.3).

4.1 DUO-CAUSAL ATTENTION

Motivation. In recurrent transformers, attention typically operates within each iteration. For fixed-
depth methods, standard causal attention on the current iteration’s Key and Value states already
incorporates all context (Equation 3). However, dynamic iteration depths pose a challenge: to-
kens iterating at a deeper level cannot access the hidden states of previous tokens that verbalized
at shallower depths. This creates a dilemma. On one hand, tokens require up-to-date states of all
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previous tokens for rich semantic context. On the other hand, efficient training requires all tokens
at depth d be computable in parallel, without depending on previous tokens’ deeper states (d′ > d)
that have not yet been computed. Existing approaches compromise on one of these aspects. Some
sacrifice parallelism by allowing attention to deeper iterations, forcing sequential generation during
training (Hao et al., 2024); others preserve parallelism by restricting attention to only the initial
iteration’s KVs (Bae et al., 2025). To resolve this dilemma, we introduce a simple yet effective
mechanism to maximize cross-depth information flow while maintaining high parallelism.

Duo-causal Attention Mechanism. As shown in Figure 2(b), duo-causal attention extends causal-
ity to two dimensions, letting tokens attend across both previous positions and shallower iteration
depths. Formally, we extend the accessible set from Equation 3 to

X
(≤d)
≤i = {x(k)

j | j ≤ i, k ≤ d }. (5)

When all tokens iterate only once (as in standard transformers), this naturally reduces to regular
causal attention. The duo-causal design achieves both full parallel training and cross-depth infor-
mation flow. At depth d, all tokens compute their depth-d representations simultaneously using only
and all information from depths 1 through d.

Implementation-wise, duo-causal attention is fully compatible with attention kernels like FlashAt-
tention (Dao et al., 2022; Dao, 2024; Shah et al., 2024), or other sparse implementations (Fu et al.,
2025b; Zhang et al., 2025a). As detailed in Appendix A.4.1, we simply maintain separate KV caches
per iteration depth and flatten the 2D (token, depth) grid into a 1D sequence by concatenating deeper
KV caches after shallower ones (Figure 14). Positional encodings are applied based solely on the
original token index, invariant to iteration depth. The duo-causal constraint is then enforced via a
modified additive attention mask, requiring no custom CUDA kernels.

4.2 MODEL ARCHITECTURE

Motivation. Previous fixed-depth recurrent transformers use identical weights across all iterations.
However, we find that over 85% of next-tokens are correctly predicted at the first iteration (Fig-
ure 1(b)) This suggests deeper iterations serve a different objective: they refine the first iteration’s
prediction rather than predicting further ahead to the next-next token. This mirrors deep LLMs,
where shallow layers predict next tokens for deeper layers to refine (Belrose et al., 2023; Schuster
et al., 2022; Bae et al., 2023). While deep LLMs naturally handle this shift through distinct pa-
rameters per depth, recurrent transformers must accommodate both objectives with shared weights,
potentially limiting performance. Moreover, fixed iteration depths can cause latent overthinking,
motivating our dynamic approach.

Backbone Model. To address the objective shift, we apply a LoRA adapter (Hu et al., 2022) to the
shared LLM backbone only for iterations d > 1. As shown in Figure 2(c), this allows the base LLM
to focus on latent embeddings, while the adapter handles the objective shift. It preserves strong
next-token prediction at d = 1, alleviating interference from deeper iterations. We also add residual
connections across iterations to simplify the refinement and improve gradient flow. Formally, at
depth d, we compute

y
(d)
i = Pθd

(
x
(d)
i

∣∣∣X(≤d)
≤i

)
, (6)

with depth-specific parameters

θd = θ for d = 1, θd = θ +∆ for d > 1,

where θ and ∆ denote the LLM and LoRA weights, respectively. The next-iteration inputs use logit-
weighted embeddings (Equation 4); verbalization follows standard sampling (Equation 2). Each y

(d)
i

either continues iterating or verbalizes according to the decider Iϕ.

Iteration Decider. We use a lightweight MLP as the iteration decider Iϕ to determine whether
each token should continue iterating or verbalize. After each iteration, it processes concatenated
hidden states from shallow, middle, and final layers of the backbone LLM to predict a continuation
probability:

ĉ
(d)
i = Iϕ

(
h
(d)
i

)
∈ [0, 1].

During inference, token i verbalizes when c
(d)
i falls below threshold cthreshold or reaches maximum

depth dmax.
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4.3 TRAINING SCHEME

We employ a two-stage training scheme: first finetune the backbone model for dynamic iteration,
then the iteration decider, all using an oracle policy.

Motivation. As shown in Figure 2(c), the backbone network θd and the neural iteration decider
Iϕ are tightly coupled: the backbone generates hidden states as inputs for the decider, while the
decider controls the backbone’s KV cache and iterations. Training both simultaneously causes in-
stability due to mutual distribution shifts. Therefore, we adopt a stable two-stage approach where
both components are sequentially trained to align an oracle iteration policy π.

Oracle Iteration Policy π. To guide training, we define an oracle policy π that determines token
difficulty using a frozen reference LLM, following Fu et al. (2025a). A token is classified as easy if
the reference model correctly predicts it with a single forward pass, and hard otherwise. Throughout
the paper, we use the supervised fine-tuned (SFT) variant of the base model as the reference model.

Formally, let t̂i+1 denote the reference model’s top-1 prediction and ti+1 the ground-truth token. For
explanation simplicity, we assume maximum iteration depth dmax = 2 in Equation 7; the general
case is detailed in Appendix A.2.4. The oracle iteration depth dπ is:

dπi = 1 + 1
[
t̂i+1 ̸= ti+1

]
, (7)

where 1[·] is the indicator function. The per-depth continuation label becomes:

c
(d)
i = 1[d ≤ dπi ] , (8)

indicating whether iteration should continue at depth d. Table 4 and Figure 1 verify the effectiveness
of the oracle policy.

Stage 1: Backbone supervision under π. We optimize the backbone LLM (θ and LoRA adapter
∆) with π-guided iteration execution. The loss is standard next-token prediction at the oracle-
determined depth:

LSFT(θ,∆) =
∑
i

− log p
(dπ

i )
i

(
ti+1

)
,

where p
(dπ

i )
i is the next-token distribution at position i, depth dπi . This preserves first-iteration accu-

racy for easy tokens while training deeper iterations to refine hard tokens.

Stage 2: Decider imitation under frozen backbone. We freeze the backbone model (θ,∆) and
train the iteration decider ϕ to imitate the oracle policy’s continuation decisions. We minimize binary
cross-entropy with class reweighting for label imbalance:

Ldec(ϕ) = −
∑
i

min{dmax−1,dπ
i }∑

d=1

[
w

(d)
stop/cont.c

(d)
i log ĉ

(d)
i +

(
1− c

(d)
i

)
log

(
1− ĉ

(d)
i

)]
,

where c
(d)
i is the ground-truth continuation label, ĉ(d)i is the predicted probability, and w

(d)
stop/cont. is

the occurrence ratio of stop label divided by continue label, respectively.

Our two-stage scheme stabilizes training by decoupling backbone learning (conditioned on a fixed
π) from policy learning (imitation of π).

5 EXPERIMENT

5.1 SETUP

We present key configurations here, with more detailed setups in the Appendix.

Baselines. We compare diverse methods under equal parameter budgets, using Qwen3-0.6B-Base
and Qwen3-1.7B-Base (Yang et al., 2025) as backbones. We compare TaH over several fixed-depth
strategies: (1) Standard, which always verbalizes directly and reduces to the original Qwen model;
(2) AlwaysThink, which applies the maximum number of latent iterations to all tokens; (3) SoftThink,
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Figure 3: Training dynamics of the LLM back-
bone on Qwen3-0.6B-Base. TaH converges
rapidly and achieves lower perplexity.
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Figure 4: GSM8K accuracy with respect to con-
tinuation threshold. Numbers in brackets indi-
cate the percentage of tokens that iterate twice.

following official baseline implementation (Zhang et al., 2025b) on top of the Standard model. Un-
less otherwise specified, both TaH and AlwaysThink use a maximum of two iterations. We also
compare with dynamic query routing via matrix factorization (Ong et al., 2024), routing between
MobileLLM-R1-360M (Zhao et al., 2025) and Qwen3-1.7B, as well as between Qwen3-0.6B and
Qwen3-4B, to match average parameter sizes of 0.6B and 1.7B.

TaH Setup. Before training, we prune one layer from the base model so that TaH matches the
parameter count of baselines. The layer is chosen to minimize the increase in validation loss. We
also report results for an unpruned variant, TaH+, which adds less than 3% extra parameters from
LoRA and iteration decider. The detailed parameter composition is shown in Table 6. Following (Fu
et al., 2025a), we set the continuation threshold cthreshold = 0.9 with about 6% of tokens being iterated
twice. The oracle policy π uses Qwen3-0.6B, 1.7B and 4B as reference models to determine token
difficulty during training.

Training Scheme. All models are trained on the math subset of Open-R1 (Hugging Face, 2025)
using supervised finetuning. To fit memory and compute limits, we exclude responses longer than
8,192 tokens; 4B models additionally truncate at 4,096 tokens; all other training settings follow the
official Open-R1 script. The filtered dataset contains 300M tokens, with 1% reserved for validation.
Each method is sufficiently trained for 5 epochs, and we select the checkpoint with the lowest vali-
dation loss as the final model. All backbones are initialized from the corresponding Qwen3-Base.

Evaluation Setup. We evaluate across challenging reasoning benchmarks, including
GSM8K (Cobbe et al., 2021), MATH500 (Hendrycks et al., 2021), AMC23 (American Mathe-
matics Competitions), AIME25 (American Invitational Mathematics Examination), and Olympiad-
Bench (He et al., 2024). The maximum generation length is set to 8,192 tokens for all benchmarks,
except GSM8K which uses 4,096 due to its simpler problems and larger size. Performance is re-
ported as pass@1 under a zero-shot chain-of-thought setting, using sampling temperature 0.6. For
large datasets (MATH500, OlympiadBench, GSM8K), we generate one sample per problem; for
small datasets (AMC23, AIME25), we generate eight samples per problem.

5.2 PERFORMANCE

Benchmark Evaluation. We validate TaH’s reasoning ability through extensive tests across five
challenging math benchmarks. Table 1 presents performance results for models at 0.6B and 1.7B
parameter sizes. Starting from strong Qwen3-Base models, we observe that existing approaches
show limited effectiveness: fixed-depth recurrent transformers (AlwaysThink) and query routing fail
to consistently outperform the standard direct-answer baseline. SoftThink provides improvements
on some cases, yet remain marginal overall. In contrast, TaH achieves consistent gains, delivering
average improvements of 4.0% and 5.0% for the 0.6B and 1.7B models, respectively. Our enhanced
variant (TaH+), which only adds less than 3% additional parameters, pushes these gains to 5.3% and
5.4%. Relative to AlwaysThink, the gains are 8.1-11.3% for TaH, and 8.5-12.6% for TaH+.

Training Dynamics. During stage 1 (LLM backbone training), guided by the oracle policy that only
triggers a second iteration on hard tokens, TaH converges notably faster than the Standard baseline. It
also achieves much lower perplexity on the validation dataset as shown in Figure 3. During stage 2
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Table 1: Accuracy comparison of different baselines across five benchmarks and two model sizes.
Subscripts indicate improvement over Standard. The top two scores for each task and model size
are highlighted in bold.

Method
Param. Benchmark Standard Routing SoftThink AlwaysThink TaH TaH+

0.6B

AIME25 4.2 1.0 2.5 1.5 4.2 5.0
OlympiadBench 18.8 7.4 19.4 10.2 23.9 24.0
AMC23 23.4 10.9 24.1 15.6 32.5 30.6
MATH500 47.2 27.3 48.8 32.8 51.2 54.2
GSM8K 62.5 45.6 61.3 54.6 64.4 68.8
Average 31.2 18.5 31.2 22.9 35.2/+4.0 36.5/+5.3

1.7B

AIME25 13.3 10.2 12.9 10.0 17.9 14.6
OlympiadBench 33.0 30.6 33.4 30.0 38.8 41.2
AMC23 42.2 42.2 43.1 42.5 48.4 51.2
MATH500 68.4 60.0 68.8 61.8 74.4 73.0
GSM8K 82.1 71.2 79.6 79.3 84.5 85.8
Average 47.8 36.8 47.6 44.7 52.8/+5.0 53.2/+5.4

4B

AIME25 23.3 22.5 22.5

OOM

30.4 28.3
OlympiadBench 47.7 45.0 50.1 50.5 52.0
AMC23 62.8 60.9 64.1 70.3 70.6
MATH500 82.8 76.1 83.2 84.4 85.6
GSM8K 90.5 85.3 90.9 90.4 91.5
Average 61.4 58.0 62.2 – 65.2/+3.8 65.6/+4.2

(iteration-decider training), the neural decider successfully imitates the oracle strategy, reaching
about 83% accuracy at predicting iteration decisions of oracle labels, as shown in Figure 10.

Adding Iteration Depth. We train a 1.7B TaH with maximum three iteration (TaH-3). TaH-3 yields
5.8% average gain over Standard, and 0.8% over TaH-2. Detailed results are in Appendix A.2.4.

Generalizability. We further study generalization when TaH is evaluated out of domain (OOD) or
trained on broader data mixtures. First, when trained only on math data, TaH+ still improves OOD
STEM performance on MMLU-STEM (4.7% and 2.9% for 0.6B and 1.7B respectively), indicating
that the learned thinking patterns transfer robustly across domains. Second, finetuning Qwen3-1.7B-
Base on a balanced OpenR1 mixture of math, QA, and code shows that TaH+ yields consistent gains
over Standard across all categories, improving the overall average accuracy by 6.8%. See additional
experiment and performance details in Appendix A.2.1.

5.3 DESIGN CHOICE EXPLORATION

We demonstrate the effectiveness and robustness of TaH by finetuning our model with alternative
model architectures and training schemes, or altering the continuation thresholds. All results are
reported on MATH500, AMC23 and OlympiadBench (Olym.).

Model Architecture. (1) Iteration Scheme. As shown in Table 2, TaH’s dynamic iteration scheme
outperforms the Standard and AlwaysThink alternatives, confirming the benefit of avoiding latent
underthinking and overthinking. Note that for Standard, duo-causal attention degenerates to regular
causal attention. (2) Duo-Causal Attention. Replacing duo-causal attention with standard causal
attention variants causes significant drops: (a) attending only to the first iteration (Causal-iter1)
drops 5.4%; (b) attending only to the current iteration (Causal) drops even larger at 8.5%. The
latter failure confirms duo-causal attention’s essential role for cross-depth information flow. (3)
LoRA and residual connections. Removing LoRA and residual connections leads to consistent
drops, confirming their beneficial roles in objective transition across iterations.
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Table 2: Ablation of iteration scheme, attention mechanism and architecture designs on TaH-0.6B.

Ablation Iter. Scheme Attention LoRA Residual MATH500 AMC23 Olym. Average
Base TaH Duo-causal ✓ ✓ 51.2 32.5 23.9 35.9/+0.0

Scheme Standard Duo-causal ✓ ✓
47.2 23.4 18.8 29.8/−6.1

AlwaysThink 32.8 15.6 10.2 19.5/−16.4

Attention TaH Causal-iter1
✓ ✓

47.8 24.4 19.4 30.5/−5.4

Causal 42.0 23.8 16.4 27.4/−8.5

Arch. TaH Duo-causal ✗ ✓ 51.6 29.7 22.4 34.6/−1.3

✗ ✗ 49.2 22.5 21.2 31.0/−4.9

Table 3: Ablation study on training schemes.

Supervision Iter. Policy MATH500 AMC23 Olympiadbench Average
Token-only Oracle 51.2 32.5 23.9 35.9
Token+latent Oracle 49.4 29.6 15.9 31.6 /−4.3

Token-only Iter. decider 44.8 24.1 17.3 28.7 /−7.2

Dynamic 11.0 2.8 2.7 5.5/−30.4

Training Scheme. (1) Supervision type. Inspired by early exit methods, a common alternative
supervises all iteration depths with next-token labels to enable flexible early termination. It enforces
accurate prediction at depth 1 even for hard tokens. As shown in Table 3, such token+latent super-
vision underperforms our token-only approach that supervises only at oracle-determined depths. It
aligns with our intuition that different iterations should focus on tokens of different difficulties. (2)
Iteration policy during LLM training. We compare our static oracle strategy π with two alter-
natives. The iter. decider trains the decider first then uses it during backbone training, but suffers
from the coupling challenge discussed in Section 4.3. The dynamic recalculates the oracle using the
evolving backbone in Equation 7, encountering the same coupling challenge and causing training
collapse. These results support our backbone training recipe: using next-token supervision with
oracle iteration policy.

Continuation Threshold. As shown in Figure 4, TaH maintains robust performance across different
continuation thresholds and iteration ratios. We empirically set cthreshold = 0.9 for all evaluations.

5.4 BEHAVIOR ANALYSIS

Latent Overthinking. To analyze latent thinking patterns, we verbalize tokens from all iteration
depths using their last-layer hidden states. The oracle method uses the oracle policy π from Sec-
tion 4.3 for iteration decision. (1) Generation. Since ground-truth tokens are unavailable during
generation, we use predictions from the stronger DeepSeek-R1-Distill-Qwen-32B model (Guo et al.,
2025) as proxy labels. Table 4 shows that the oracle policy substantially improves performance by
verbalizing correct predictions immediately while iterating only on incorrect ones. With our trained

Training Inference Accuracy
Standard Standard 52

AlwaysThink AlwaysThink 38/−14

AlwaysThink TaH-Oracle 77/+25

TaH-Oracle TaH-Decider 54/+ 2

TaH-Oracle TaH-Oracle 80/+28

Table 4: Impact of iteration schemes on Qwen3-
0.6B (first 100 MATH500 samples).

"But"

"So"
"So"

"Wait"
"But"

"Therefore"

Others

Iteration 1 Iteration 2

56%

15%

10%
8%

11%59%

6%
20%

top2 tokens sorted by Piter.(token) = P(c(1) > cthreshold | argmax p(1) = token)

8%
7%

Figure 5: Next-token prediction changes across
iterations. Top2 tokens that think-twice most are
visualized.
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iteration decider approximating the oracle, TaH outperforms both Standard and AlwaysThink base-
lines. However, the ideal oracle policy achieves even higher gains, indicating future potential. (2)
Next-token prediction. We evaluate next-token prediction accuracy on the Open-R1 dataset, using
the test model itself as the reference model in π. Figure 1 reveals that AlwaysThink produces more
incorrect than correct revisions, demonstrating latent overthinking. In contrast, oracle-controlled
iterations substantially increase correct revisions by selectively targeting hard tokens.

Token Alternation Patterns. We analyze which tokens TaH selects for deeper iteration. On the
validation set, But and So emerge as top candidates, with iteration probabilities of 34% and 18%,
respectively. These tokens signal critical contrasting or causal relationships, confirming that models
benefit from additional processing at logically complex junctures. Figure 5 illustrates how TaH
alternates predictions after iteration at these key tokens, suggesting logic refinement behavior. See
Appendix A.3.4 for detailed analysis.

Attention Pattern. We visualize the attention pattern of TaH. As discussed in Figure 11 and
Appendix A.3.6, the duo-causal attention automatically focuses on different iterations in different
heads, extracting broader contexts from multiple depths.

Iteration and FLOPs. Tables 10 and 11 report the average iteration count, per-token FLOPs, and
memory access cost of TaH. TaH matches the FLOPs of the Standard baseline (averaging 1.06
iterations per token), while significantly undercutting AlwaysThink (2.00 iterations), which incurs
≈ 2.2× FLOPs and memory access. When tested on an NVIDIA A800-80GB GPU, TaH achieves a
2.48× speedup over AlwaysThink and reduces peak memory usage by 1.48×. See Appendices A.2.2
and A.2.3 for more details.

6 CONCLUSION

We present TaH, a selective latent thinking method that iterates deeper only on hard tokens. Archi-
tecturally, TaH introduces duo-causal attention, depth-specific LoRA, and a neural iteration decider
to facilitate dynamic depths. An oracle policy guides the stable two-stage training for the tightly
coupled LLM backbone and decider. Across five reasoning benchmarks, TaH improves accuracy by
4.0-5.4% over strong baselines with minimal overhead (<3% additional parameters and ≈6% extra
iterations), establishing a new paradigm for better reasoning within the current parameter budgets.
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A APPENDIX

A.1 ADDITIONAL EXPERIMENT SETUPS

A.1.1 TRAINING RECIPE

We follow the official training setup of Open-R1 (Hugging Face, 2025). For Standard, TaH, and
TaH+, we use a maximum sequence length of 8192 tokens. For AlwaysThink, we reduce the maxi-
mum length to 4096 due to its substantially higher memory usage during training. Detailed training
hyperparameters are listed in Table 5.

A.1.2 BASELINE SETUPS

Routing. The query-level routing baseline selects a model from a candidate pair for each question.
In our experiments, we use two pairs: (1) MobileLLM-R1-360M, Qwen3-1.7B, and (2) Qwen3-
0.6B, Qwen3-4B. All candidate models are SFT-trained under the same settings as the Standard
baseline (Section 5). For each pair, the routing ratio is calibrated so that the average active parameter
count matches our 0.6B and 1.7B targets, respectively.

AlwaysThink. AlwaysThink uses the exact same architecture as TaH, but substitutes the iteration
decider to one that always iterates twice.

A.1.3 PARAMETER BREAKDOWN

Table 6 reports the parameter breakdown of the Standard, TaH, and TaH+ methods. To offset the
additional parameters introduced by TaH through LoRA and the iteration decider, we remove one
layer from the LLM backbone, ensuring a fair comparison. In practical deployments, we recommend
TaH+, which adds only about 3% additional parameters.

A.1.4 LATENT OVERTHINKING ANALYSIS SETUP

We set up an oracle experiment to estimate the performance upper bound of our method. The
oracle employs the DeepSeek-R1-Distill-Qwen-32B model as a dynamic label generator, replacing
the MLP-based iteration decider. During each iteration, we compare the token predictions from the
label generator with those from the TaH model. The model continues to iterate only when the top-1
predictions of these two models differ. Due to resource constraints and computational overhead,
we evaluated the accuracy only on the first 100 samples from the MATH500 dataset, denoted as
MATH100 throughout the paper.

A.2 ADDITIONAL EXPERIMENTAL RESULTS

A.2.1 GENERALIZABILITY

General Training and Evaluation. To verify generalizability, we expanded our training and evalu-
ation to diverse domains. We followed the exact protocol from the main paper to finetune Qwen3-
1.7B-Base. The only modification was replacing the math-only dataset with a balanced subset of
OpenR1 (100k samples total) covering all task splits, ensuring a fair comparison by maintaining the

Table 5: Training hyperparameters.

Hyperparameter Value
learning rate 4e-5
max grad norm 0.2
training epochs 5
global batch size 128
warmup ratio 0.03
lr scheduler cosine (min-lr ratio 0.1)
precision bfloat16
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Table 6: Parameter breakdown of Standard, TaH, and TaH+. Counts are reported using M (million)
and B (billion).

Param. Method Backbone LoRA Iter. Decider Total

0.6B
Standard 596M – – 596M
TaH 580M 10M 5M 595M
TaH+ 596M 10M 5M 611M

1.7B
Standard 1.72B – – 1.72B
TaH 1.67B 34M 18M 1.72B
TaH+ 1.72B 34M 18M 1.77B

Table 7: Performance of Qwen3-1.7B models trained on a general OpenR1 mixture (math, QA, and
code) across downstream benchmarks.

Category Dataset Standard SoftThink AlwaysThink TaH+

Math MATH500 67.8 64.8 63.2 72.6
AMC23 39.7 40.3 40.9 48.4

QA GPQA 30.3 33.3 30.5 39.4
MMLU-STEM 74.1 73.5 69.6 76.6

Code HumanEval+ 44.2 44.5 25.6 48.2
MBPP+ 27.2 27.8 16.4 39.0

Average 47.2 47.4 41.0 54.0/+6.8

same data scale. As shown in Table 7, TaH+ achieves consistent improvements across math, QA, and
coding domains, with an average performance gain of 6.8%. This demonstrates TaH’s effectiveness
on diverse reasoning and generation tasks beyond pure mathematics.

Out-Of-Domain (OOD) Performance. We further evaluated the zero-shot generalization capability
of models trained solely on math datasets from the main paper. As shown in Table 8, TaH+ demon-
strates consistent improvements not only on in-domain math benchmarks (MATH500, AMC23) but
also on out-of-domain tasks like MMLU-STEM. This indicates that the thinking patterns learned by
TaH+ on math problems are robust and transferrable to broader scientific reasoning tasks.

A.2.2 REAL-WORLD EFFICIENCY

Setup. We investigate the real-world efficiency of different 1.7B models under our cur-
rent implementation. All measurements were obtained on a single A800 GPU with a batch
size of 1 and a maximum output length of 8192 tokens, using a challenging AIME25 prob-

Table 8: Performance of math-only trained models (0.6B and 1.7B) on in-domain math benchmarks
and the out-of-domain STEM benchmark (MMLU-STEM).

Param. Benchmark Standard SoftThink AlwaysThink TaH+

0.6

MATH500 47.2 48.8 32.8 54.2
AMC23 23.4 24.1 15.6 30.6
MMLU-STEM 51.6 51.4 42.6 56.3
Average 40.7 41.4 30.3 47.0

1.7

MATH500 68.4 68.8 61.8 73.0
AMC23 42.2 43.1 42.5 51.2
MMLU-STEM 70.8 70.6 63.8 73.7
Average 60.5 60.8 56.0 66.0
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Table 9: Real-world decoding performance on a single A800 GPU, including maximum memory
usage (GB), decoding latency (s), throughput (tokens/s), and per-component time breakdown.

Metric Standard TaH AlwaysThink
Memory (GB) 4.3 4.6 6.8
Latency (s) 210.6 301.4 747.2
Throughput (tok/s) 38.9 27.2 11.0

Component Latency (s) Ratio(%) Latency (s) Ratio(%) Latency (s) Ratio(%)
Iter-1 Forward 210.6 100.0 229.8 76.2 224.1 30.0
Iter-2 Forward – – 29.6 9.8 384.7 51.5
Iter. Decider – – 10.5 3.5 – –
LoRA Switching – – 7.5 2.5 91.1 12.2
Other – – 24.1 8.0 47.4 6.3

lem where all three methods reached the token limit. Memory usage was profiled using
torch.cuda.memory. record memory history.

Memory. As shown in Table 9, TaH introduces minimal memory overhead of +7% over Standard,
even at an extensive length of 8192 tokens. In contrast, AlwaysThink increases memory usage by
58%. This surge is primarily due to its dense iteration doubling the KV cache size, whereas TaH
keeps the cache compact by skipping the second iteration for 94% of tokens.

Latency Breakdown. We report the decoding latency, throughput, and a detailed time breakdown
for Standard, AlwaysThink, and TaH in Table 9. Here, Iter-1 forward and Iter-2 forward denote the
total forward-pass time spent on the first and second latent iterations, respectively; Iter decider is
the time for the iteration decider network to judge whether to continue iterating or verbalize; LoRA
switching is the overhead of switching LoRA adapters; and Other includes tensor initialization,
concatenation, and related bookkeeping.

Discussion. We note that our current implementation is not yet optimized at the system level, so
there remains room for further efficiency improvements. For example, the LoRA Switching and
Other overheads (bookkeeping) are relatively high due to the Python-level implementation of dy-
namic control flow. These engineering optimizations are largely orthogonal to the algorithmic de-
sign of TaH, and we plan to continue refining the implementation to further reduce latency and
memory overhead. The theoretical FLOPs and memory access analysis of TaH are provided in
Appendix A.2.3.

A.2.3 THEORETICAL EFFICIENCY ANALYSIS

Following prior work Hoffmann et al. (2022); Yang et al. (2024); Ma et al. (2025), we analyze
the computational and memory access overhead of TaH relative to the Standard and AlwaysThink
baselines. Table 10 presents the average number of input/output tokens and latent iterations per
token across five benchmarks. We use these statistics to calculate the theoretical computation and
memory access costs for each method.

As shown in Table 11, TaH incurs only a marginal increase in cost per token (1.04 to 1.05×) com-
pared to the Standard baseline. In comparison, AlwaysThink is prohibitively expensive, requiring
2.19 to 2.27× more computation and memory access. These theoretical results confirm that TaH ex-
ceeds the reasoning benefits of fixed-depth recurrent transformers without the substantial efficiency
penalty.

A.2.4 ITERATION DEPTH BEYOND TWO

Hard Token Labeling. Previous works have proposed many methods to evaluate the hardness
of each tokens in the training data, like through excess loss (Lin et al., 2024; Xie et al., 2023),
entropy (Wang et al., 2025b; Chen et al., 2023) and prediction difference (Fu et al., 2025a).

For shallow iteration budgets within two (Dmax ≤ 2), we adopt the prediction difference policy. It
simply labels the tokens that do not yield top-1 in next-token prediction at the first iteration as hard
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Table 10: Input tokens (shared across methods) and output token / iteration statistics for Standard,
AlwaysThink, TaH, and TaH+.

Standard AlwaysThink TaH TaH+
Param. Dataset In. Out. Iter. Out. Iter. Out. Iter. Out. Iter.

0.6B

AIME25 159 7450 1.00 7316 2.00 7648 1.05 7486 1.06
OlympiadBench 100 6599 1.00 6622 2.00 6631 1.09 6513 1.06
AMC23 85 6377 1.00 6368 2.00 6242 1.05 6145 1.05
MATH500 71 4823 1.00 5350 2.00 4877 1.05 4793 1.06
GSM8K 61 1955 1.00 2844 2.00 1923 1.07 1791 1.07

Average ratio – 1.00× 1.00× 1.02× 2.00× 1.00× 1.06× 0.97× 1.06×

1.7B

AIME25 159 7195 1.00 7173 2.00 7496 1.06 7498 1.06
OlympiadBench 100 6008 1.00 6484 2.00 6387 1.06 6258 1.06
AMC23 85 5681 1.00 7543 2.00 6122 1.04 5852 1.06
MATH500 71 4004 1.00 4414 2.00 4233 1.06 4286 1.06
GSM8K 61 1451 1.00 1644 2.00 1721 1.08 1686 1.08

Average ratio – 1.00× 1.00× 1.13× 2.00× 1.09× 1.06× 1.07× 1.06×

Table 11: Decoding computation (GFLOPs) and memory access (GB) per output token for Standard,
AlwaysThink, TaH and TaH+ methods.

Standard AlwaysThink TaH TaH+
Param. Dataset Comp. Mem. Comp. Mem. Comp. Mem. Comp. Mem.

0.6B

AIME25 1.47 1.38 3.35 3.14 1.52 1.43 1.57 1.47
OlympiadBench 1.41 1.32 3.21 3.02 1.51 1.42 1.50 1.41
AMC23 1.40 1.31 3.17 2.97 1.43 1.34 1.46 1.37
MATH500 1.31 1.22 2.98 2.80 1.35 1.26 1.39 1.31
GSM8K 1.14 1.06 2.54 2.38 1.19 1.12 1.22 1.14

Average ratio 1.00× 1.00× 2.27× 2.27× 1.04× 1.04× 1.06× 1.06×

1.7B

AIME25 4.31 4.03 9.45 8.83 4.51 4.21 4.64 4.34
OlympiadBench 4.16 3.88 9.18 8.58 4.36 4.07 4.48 4.18
AMC23 4.12 3.85 9.54 8.91 4.24 3.96 4.43 4.13
MATH500 3.92 3.66 8.45 7.89 4.10 3.83 4.23 3.95
GSM8K 3.62 3.38 7.48 6.98 3.87 3.61 3.98 3.72

Average ratio 1.00× 1.00× 2.19× 2.19× 1.05× 1.05× 1.08× 1.08×

tokens. Formally, we use a binary halting rule:

Hπ
i =

{
0, if hi = 0 (easy token)
Dmax, if hi = 1 (hard token)

(9)

If the iteration depth goes beyond 2 (Dmax > 2), we use the reference model’s cross-entropy as a
non-binary indicator of difficulty. Define

ℓref
i = − log p

(0)
i,ref

(
ti+1

)
.

We then map difficulty to halting depth via monotone quantile binning:

Hπ
i =

⌊
QuantileRank

(
ℓref
i

)
·Dmax

⌋
, (10)

where QuantileRank(·) ∈ [0, 1] is the empirical CDF over the training set (higher loss ⇒ deeper
halting). This induces per-depth continuation labels c(d)i = ⊮[d < Hπ

i ] for d ∈ {0, 1, . . . , Dmax}.

Experiment Result. Specifically, we train a 1.7B TaH with a maximum per-token iteration count
of 3, using oracle labels generated by the method described above. As shown in Table 12, TaH-3
achieves a further improvement of 0.8% on average over TaH-2.
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Table 12: Performance comparison between TaH-2 and TaH-3 (maximum per-token iterations of
2 and 3, respectively). Iter.2 and Iter.3 denote the per-token percentages executing two and three
iterations, respectively.

Standard TaH-2 TaH-3
Param. Dataset Acc. Acc. Iter.2 Acc. Iter.2 Iter.3

1.7B

MATH500 68.4 74.4 5.6 72.6 5.3 0.2
GSM8K 82.1 84.5 7.5 84.8 7.6 0.3
AMC23 42.2 48.4 4.2 48.7 5.1 0.1
OlympiadBench 33.0 38.8 5.7 41.6 5.4 0.2
AIME25 13.3 17.9 6.0 20.4 5.3 0.1

Average 47.8 52.8 5.8 53.6 5.7 0.2

Table 13: Performance on MATH500 and GSM8K-500 (first 500 GSM8K samples)

Method
Dataset Standard-0.6B Ponder-1.4B

MATH500 47.2 2.0
GSM8K-500 62.8 1.8

Avg. 55 1.9

A.2.5 ADDITIONAL LATENT THINKING METHODS

Some latent thinking methods requires pre-training and uses base model other than Qwen3. We
also compare with these methods, including Ponder (Zeng et al., 2025). Specifically, we adopt the
released pretrained PonderingPythia-1.4B as the base model and perform SFT on the same train-
ing data. We observe that the fine-tuned model learns the stylistic patterns of the training data,
but still underperforms substantially, which may be attributable to the limited capability of the
PonderingPythia-1.4B backbone.

A.2.6 TRAINING RECIPE INFLUENCE

Figure 13 expands Table 3 by showing validation perplexity dynamics across different supervision
signals and iteration policies. The naming convention matches Table 3. TaH with token-only super-
vision and the oracle policy yields lower perplexity than iter. decider and token+latent. Although
the dynamic policy achieves the lowest perplexity, it fails on downstream tasks and often produces
infinite-loop generations.

A.3 ADDITIONAL ANALYSIS

A.3.1 ORACLE POLICY AND HARD TOKEN ANALYSIS

Metrics for Hard Token Labeling. We investigate different metrics for defining hard tokens to
validate our choice of top-1 prediction mismatch. We compare three labeling strategies:

1. Top-1 Mismatch (TaH Default): Labels a token as hard if the reference model’s greedy
prediction differs from the ground truth.

2. Entropy (TaH-Entropy): Labels a token as hard if the reference model’s prediction entropy
exceeds a threshold.

3. Cross-Entropy (TaH-CE): Labels a token as hard if the reference model’s cross-entropy
loss exceeds a threshold.

To ensure a fair comparison, for TaH-Entropy and TaH-CE, we set the thresholds such that the
number of hard tokens in each sample matches the total ratio from the default Top-1 Mismatch
policy. This isolates the impact of which tokens are selected, rather than how many.
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Figure 6: Validation loss curves of 0.6B models trained with different oracle labeling metrics. The
default Top-1 Mismatch policy yields the lowest validation loss.

Table 14: Performance comparison of different difficulty metrics (Entropy, Cross-Entropy, and Top-
1 Accuracy) on 0.6B models. All methods mark the same total number of tokens as ”hard.”

Method MATH500 AMC23 OlympiadBench Average
TaH-Entropy 42.0 21.9 16.9 26.9
TaH-CE 47.4 21.2 20.4 29.7
TaH 51.2 32.5 23.9 35.9

Figure 6 compares the validation loss, and Table 14 reports downstream accuracy on 0.6B models.
While cross-entropy (TaH-CE) improves over entropy labeling (TaH-Entropy), the Top-1 Mismatch
policy (TaH) achieves superior performance across all benchmarks. This empirically verifies that
directly targeting tokens where the model’s top-1 prediction is wrong is the most effective way to
identify hard tokens for TaH.

Labeling Robustness. We investigate the robustness of hard-token labels with respect to the choice
of reference model. We do so by analyzing the consistency of hard-token identification across
different model scales (e.g., Qwen3-0.6B, 1.7B, and 4B).

First, we quantify the agreement between models. As shown in Figure 7, hard tokens exhibit high
consistency across scales. Notably, even a smaller, less accurate reference model (1.7B) successfully
identifies 81% of the hard tokens for a larger model (4B).

Second, to understand the quality of this overlap, we partition tokens into an overlap set (marked
as hard by both models) and a non-overlap set (marked as hard by only one model). We plot
the cross-entropy loss under each reference model in Figure 8. We observe that overlap tokens
have substantially higher average cross-entropy (≈ 2.0×) than non-overlap tokens for all reference
models. This indicates that either reference model can identify this core set of ”hard” tokens, which
corresponds to positions of genuine, high uncertainty. It reveals a consensus on hardness among
models even of different sizes.

4.8 3.212.7

Qwen3-0.6B Qwen3-1.7B

(a) Overlap between Qwen3-0.6B and 1.7B

4.1 2.811.8

Qwen3-1.7B Qwen3-4B

(b) Overlap between Qwen3-1.7B and 4B

Figure 7: Venn diagrams illustrating the overlap of hard-token labels between different reference
models. The high overlap proportions indicate that ”hard” tokens are largely consistent across model
scales.
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(a) Qwen3-1.7B: cross-entropy of overlap vs. non-
overlap hard tokens (w.r.t. Qwen3-0.6B).
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(b) Qwen3-0.6B: cross-entropy of overlap vs. non-
overlap hard tokens (w.r.t. Qwen3-1.7B).
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(c) Qwen3-4B: cross-entropy of overlap vs. non-
overlap hard tokens (w.r.t. Qwen3-1.7B).
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(d) Qwen3-1.7B: cross-entropy of overlap vs. non-
overlap hard tokens (w.r.t. Qwen3-4B).

Figure 8: Token-level cross-entropy distributions of overlap and non-overlap hard tokens across
different reference model pairs. For each pair of reference models (e.g., Qwen3-1.7B and Qwen3-
0.6B), we plot the cross-entropy of tokens labeled as hard by both models (overlap) and by only one
model (non-overlap) on both reference models.

Table 15: Iteration decider behavior and downstream gains on different validation subsets. The
decider is trained once on general OpenR1 and evaluated without retraining.

Metric Math Code QA
Iteration Percentage 7.8% 10.7% 26.6%
Iteration Accuracy 86.7% 82.3% 76.6%
Benchmark Gain over Standard +6.8% +7.9% +5.8%

A.3.2 ITERATION DECIDER ROBUSTNESS

We evaluate the iteration decider, trained on the general OpenR1 corpus, across three validation
subsets (Math, Code, and QA) to quantify its robustness and cross-domain generalizability. As
summarized in Table 15, the decider maintains high decision accuracy across all domains without
any retraining.

Despite being invoked on only 7.8-26.6% of tokens, the decider consistently yields 5.8-7.9% ab-
solute accuracy gains over the standard single-pass baseline on all three domains. Moreover, the
decider automatically adjusts its iteration rate according to task difficulty: it iterates more frequently
on QA (26.6%) than on Math (7.8%), even under a fixed threshold cthreshold = 0.9. This behavior
indicates that the decider responds to intrinsic uncertainty signals in the model’s predictive distri-
bution rather than memorizing domain-specific patterns, consistent with the token-level difficulty
analysis in Appendix A.3.3.

A.3.3 HARD TOKEN IDENTIFIABILITY

Why is the iteration decider robust and generalizable across tasks? We investigate this by analyzing
the intrinsic properties of ”hard” tokens.
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Figure 9: Output Logit entropy distribution at the first iteration of TaH, categorized by oracle policy’s
difficulty labels (hard token) on the OpenR1 validation set (Math, QA, Code). The distinct separation
between distributions confirms that TaH’s internal logits provide a strong, task-agnostic signal for
identifying hard tokens.

Table 16: Conditional probabilities of continuation confidence and next-token distribution.

Token T1 P (c(1) > cthreshold | t(1) = T1) Token T2 P (t(2) = T2 | t(1) = T1)

But 34.3%
So 13.63%
Wait 12.17%
Therefore 8.95%

So 17.7%
So 28.17%
Therefore 13.67%
But 4.89%

We compute the token entropy of hard and easy tokens across three diverse subsets of the OpenR1
dataset (Math, Science, and Code). As shown in Figure 9, hard tokens exhibit a universal signature
of significantly higher entropy (> 5×) compared to easy tokens. This distinct separation confirms
that ”hardness” is an intrinsic, robustly identifiable property of the model’s predictive state, rather
than a complex, task-specific pattern. Given this clear signal, the neural iteration decider can easily
learn reliable classification strategies that generalize well across different domains.

A.3.4 TOKEN ALTERNATION PATTERN

We analyze tokens that most frequently trigger a second iteration (”think-twice” tokens). For each
token type t, we compute the continuation rate

Pr
(
c
(1)
i > cthreshold | ti = t

)
,

using the inference threshold cthreshold = 0.9 (Section 4.3). We estimate this quantity on the Open-
R1 validation set and, for diagnostics, randomly sample 10K token positions (≈0.4% of tokens)
to track whether the next-token prediction switches between depth 1 and depth 2. This setting
quantifies which token types most often trigger an additional iteration and how often iteration alters
the predicted next token.

A.3.5 ITERATION DECISION ERROR

We analyze how iteration decision accuracy affects TaH’s end-to-end response quality, since iteration
decider will not be perfect as shown in Figure 10. To this end, we randomly inject errors into
the oracle iteration-decider predictions at different rates. Formally, we denote the original oracle
prediction as the label l ∈ {0, 1} and the altered prediction as the output o ∈ {0, 1}. We define the
iter. error as the total proportion of deliberately introduced errors:

iter. error = P (l ̸= o) = P (l = 1, o = 0)︸ ︷︷ ︸
underthink rate

+P (l = 0, o = 1)︸ ︷︷ ︸
overthink rate

. (11)

We further distinguish the impacts of overthinking and underthinking. Here, overthinking refers
to cases where the decider incorrectly signals continue, while underthinking corresponds to cases
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Figure 10: Iteration-decider accuracy vs. epoch (Qwen3-0.6B).

Table 17: TaH performance under different iteration-decider error rates. All values are reported in
percentages.

Iter. Error (%) Underthink (%) Overthink (%) MATH100 Accuracy (%)
0.0 0.0 0.0 80.0
2.8 2.8 0.0 78.0
10.0 1.5 8.5 55.4
15.0 2.1 12.9 45.2
20.0 2.5 17.5 27.1
22.1 0.0 22.1 21.6

where it incorrectly signals stop. Table 17 shows how TaH’s MATH100 accuracy varies with differ-
ent iteration error rates. We quantify these effects by fitting a linear model to the data:

accuracy = −1.41× underthink rate − 2.73× overthink rate + 0.81.

This analysis indicates that inaccurate iteration decisions are the main factor behind the performance
gap between TaH and its oracle variant, with overthinking being the dominant source of performance
gaps.

A.3.6 DUO-CAUSAL ATTENTION PATTERN

We perform forward computation on 100 samples, each with a length of 128 tokens. Figure 11
shows the average attention weights of three representative attention heads in the second iteration of
the TaH model. The left panel illustrates a head that mainly attends to keys from the first iteration.
The middle panel shows a head focusing on keys from the second iteration. The right panel displays
a head with a balanced attention distribution. These results suggest that the TaH model, under the
duo-causal attention mechanism, can automatically learn diverse attention patterns across layers and
heads.

Figure 12 further presents the total attention scores assigned to keys in the first iteration. It can be
seen that the first layer tends to focus more on keys from the second iteration. Different layers also
exhibit varying attention behaviors.

A.4 IMPLEMENTATION DETAILS

A.4.1 DUO-CAUSAL ATTENTION IMPLEMENTATION

Figure 14 illustrates the implementation of duo-causal attention, with the formal definitions provided
below.

(1) KV cache concatenation. At depth d, we form the visible K/V sequence by concatenating all
shallower-to-current depths along the sequence dimension:

KV(≤d) = [KV(1) ; KV(2) ; · · · ; KV(d) ].

This realizes the accessible set in Equation 5, allowing deeper iterations to access all shallower
iterations while preserving positional causality. The KV cache is managed by iteration depth during
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Figure 11: TaH duo-causal attention pattern.

Figure 12: TaH mean and standard deviation of
attention weights (key from iteration 1) across
layers in iteration 2.
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Figure 13: Validation perplexity for different
training schemes.

decoding, as shown in Figure 14(b). The fragmented KV-cache management strategy is standard in
existing LLM serving systems (Kwon et al., 2023; Zheng et al., 2024).

(2) Two-dimensional causal mask. For a query (i, d), a key (j, k) is attendable iff j ≤ i and k ≤ d.
We implement this as an additive attention mask with 0 for allowed entries and −∞ otherwise,
enforcing positional and iteration causality jointly. Figure 14(c) visualize the landscape of the duo-
causal attention mask. When d = 1 for all tokens, the rule reduces to standard causal attention.

(3) Compatibility with efficient attention. The mask is provided in the standard additive form
and the concatenated K/V remain contiguous along the sequence dimension, matching the usual
scaled dot-product attention interface. As a result, duo-causal attention is directly compatible with
optimized kernels such as FlashAttention, without kernel modifications.

A.5 ADDTIONAL RELATED WORK

Instead of using the shared model parameter multiple times through latent iteration, previous work
also proposes layer skipping methods for dynamic computing allocation.

Layer Skipping. Layer skipping aims to accelerate LLM inference by dynamically bypassing cer-
tain layers for specific tokens. Some methods use a learnable module to make real-time skipping
decisions. MoD (Raposo et al., 2024) uses a top-k router to select a subset of tokens for processing,
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Figure 14: Duo-causal attention implementation. (a) Conceptual TaH example with dynamic itera-
tion depths. Each cell denotes a token–depth pair (token id, iter depth). (b) Each iteration maintains
its own KV cache. (c) KV caches from all iterations are concatenated into a 1D sequence and
processed with standard attention under a duo-causal mask. The duo-causal mask is conceptually
partitioned into blocks by iteration depth. The diagonal blocks use a standard causal mask, while
off-diagonal blocks use reduced causal masks that enforce the duo-causal rules.

while FlexiDepth (Luo et al., 2025) uses a plug-in router to determine whether a layer should be
bypassed. Others use a fixed strategy to skip layers. SkipDecode (Del Corro et al., 2023) enforces a
monotonically decreasing number of active layers during generation. However, these methods still
require loading the entire model’s parameters, resulting in a large memory access overhead. Instead
of skipping some layers, TaH adds computational depth by allowing core tokens to undergo mul-
tiple refinement iterations. This approach provides greater computational depth without increasing
the model’s parameter count.

A.6 LIMITATIONS AND FUTURE WORK

Comparison with Official Qwen3 Models. Official Qwen3 models are trained on different data
distributions and scales, and use different training procedures, including on-policy distillation (Yang
et al., 2025). By contrast, our models use SFT only on limited, publicly accessible data. Conse-
quently, performance may differ between the two.

Future Work. We consider advanced training techniques largely orthogonal to TaH. Promising
directions include: (1) integrating TaH with online distillation to provide stronger supervision; (2)
applying reinforcement learning to optimize the compute–accuracy trade-off and to learn continua-
tion policies beyond imitation. Due to resource constraints, this work focuses on SFT with public
data; we leave these combinations for future work.

A.7 USE OF LARGE LANGUAGE MODELS (LLMS)

Large language models (e.g., GPT-5, Gemini) were used exclusively for proofreading and minor
copyediting. They were not employed to generate scientific content, contribute to research ideation,
or design methods. All research ideas, methods, and conclusions are solely the responsibility of the
authors.
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A.8 EXAMPLES

We use an example question from AIME25 and responses from Standard, TaH and AlwaysThink to
provide an intuitive understanding of our method. Only TaH can successfully answer this question.
Blue-highlighted tokens indicate positions that undergo two iterations.

Text 1. Question

On △ABC points A,D,E, and B lie that order on side AB with AD = 4, DE = 16, and
EB = 8. Points A,F,G, and C lie in that order on side AC with AF = 13, FG = 52, and
GC = 26. Let M be the reflection of D through F , and let N be the reflection of G through
E. Quadrilateral DEGF has area 288. Find the area of heptagon AFNBCEM .
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Text 2. Standard Re-
sponse

Okay, let me try to
figure out this problem
step by step. It’s about a
heptagon formed by re-
flecting points and find-
ing its area. . . . We have
triangle ABC. On side
AB, points A,D,E,
and B are in that or-
der. The lengths are
given as AD = 4,
DE = 16, and EB =
8. So AB = 28
. . . On side AC, points
A,F,G, and C are in
that order with AF =
13, FG = 52, and
GC = 26. So AC = 91
. . . Let me place point
A at (0, 0) and B at
(28, 0) . . . Let C be at
(91, h) . . . Then D =
(4, 0), E = (20, 0),
F =

(
13, 13h

91

)
, G =(

65, 65h
91

)
. . .

Area of quadrilateral
DEGF can be cal-
culated . . . Applying
the shoelace formula
. . . Area = 1

2 · 1248h
91 =

624h
91 = 6h

So with 288: 6h =
288 ⇒ h = 288

6 = 48
Reflections: M is the
reflection of D through
F and N is the reflec-
tion of G through E
. . .M = (22, 0), N =
(−39, 0), B = (28, 0),
C = (91, 48), E =
(20, 0) . . .
Using the shoelace for-
mula for AFNBCEM
in order . . . Sum = 0 +
0+0+1344+(−960)+
0 + 0 = 384
Take absolute value and
multiply by 1/2: Area
= 1

2 · |384| = 192
. . .
Final Answer 192 ✗

Text 3. TaH Response

Okay, let’s try to tackle
this geometry problem.
It seems a bit complex
with all these points
and reflections, . . . First,
let me visualize trian-
gle ABC. Points D, E,
and B are on side AB
with AD = 4, DE = 16,
and EB = 8. . . . Let me
set up a coordinate sys-
tem. Let’s place point
A at the origin (0, 0)
. . . Then, since AB is
a line segment, let me
assume AB is along
the x-axis. So point
B would be at (28, 0)
. . . Now, points F , G, C
are on AC . . . Let me
define coordinates for C
as (cx, cy) . . .
. . .
Compute the sum of
xiyi+1 − xi+1yi for
each i . . .
Sum of all terms: 0 +
1300cy

91 + 0− >
52cy
91 =

(1300−52)cy
91 =

1248cy
91

Then, the area is 1
2 ·∣∣∣ 1248cy91

∣∣∣ = 624cy
91

. . .
Compute the area of
this heptagon . . .
Using shoelace formula
. . .
Term2: −240 Term3:
840 Term4: 1176
Term5: −840 Term6:
240 . . .
Sum: 0 − 240 + 840 +
1176−840+240+0 =
1176
Take absolute value and
multiply by 1/2: Area
= 1

2 · |1176| = 588
. . .
Final Answer 588 ✓

Text 4. AlwaysThink
Response

Okay, so I need to find
the area of the hep-
tagon AFNBCEM. Let
me first try to visualize
the problem. There’s
triangle ABC. On side
AB, there are points A,
D, E, and B. The order
is A, D, E, B. The dis-
tances given are AD=4,
DE=16, and EB=8. So,
starting at A, moving 4
units to D, then 16 units
to E, then 8 units to B.
So, the total length of
AB is AD + DE + EB
= 4 + 16 + 8 = 28 units.
Got that.
. . .
Points in order: D(4,0),
E(20,0), F(13,h),
G(65,h), back to
D(4,0).
Compute the terms:
. . .
Sum these terms: 0 +
20h−52h−4h = −36h
Take absolute value
and multiply by
1/2: Area =
(1/2) ∗ | − 36h| =
(1/2) ∗ 36|h| = 18|h|
But the area is given as
288, so 18|h| = 288 ⇒
|h| = 16.
. . .
Now, apply the shoelace
formula . . . Therefore,
total sum is 8640/17
Take absolute value
and multiply by
1/2: Area =
(1/2) ∗ |8640/17| =
8640/34 = 4320/17 ≈
254.1176
. . .
Therefore, the answer is
4320/17.

Final Answer
4320

117
✗
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