Under review as a conference paper at ICLR 2026

THINK-AT-HARD: SELECTIVE LATENT ITERATIONS TO
IMPROVE REASONING LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Improving reasoning capabilities of Large Language Models (LLMs), especially
under parameter constraints, is crucial for real-world applications. Prior work
proposes recurrent transformers, which allocate a fixed number of extra iterations
per token to improve generation quality. After the first, standard forward pass,
instead of verbalization, last-layer hidden states are fed back as inputs for addi-
tional iterations to refine token predictions. Yet we identify a latent overthinking
phenomenon: easy token predictions that are already correct after the first pass are
sometimes revised into errors in additional iterations. To address this, we propose
Think-at-Hard (TaH), a dynamic latent thinking method that iterates deeper only
at hard tokens. It employs a lightweight neural decider to trigger latent iterations,
only at tokens that are likely incorrect after the standard forward pass. During la-
tent iterations, Low-Rank Adaptation (LoRA) modules shift the LLM’s objective
from general next-token prediction to focused hard-token refinement. We further
introduce a duo-causal attention mechanism that extends attention from token se-
quence dimension to an additional iteration depth dimension. This enables cross-
iteration information flow while maintaining full sequential parallelism. Experi-
ments show that TaH boosts LLM reasoning performance across five challenging
benchmarks while maintaining the same parameter count. Compared with base-
lines that iterate twice for all output tokens, TaH delivers 8.1-11.3% accuracy
gains while exempting 94% of tokens from the second iteration. Against strong
single-iteration Qwen3 models finetuned with the same data, it also delivers 4.0-
5.0% accuracy gains. When allowing <3% additional parameters from LoRA and
iteration decider, the gains increase to 8.5-12.6% and 5.3-5.4%, respectively.

1 INTRODUCTION

(a) user query: How many numbers from 1-100 contain the digit “7”? (b) direct reply 1 direct reply 3
always think-twice think-at-hard oracle both v

direct reply: I'll reason v We can list

. . X 8% both X
overthink at think at 12%, 1 7%.,
simple tokens hard tokens 83% —— 85% —) O v-x
3 9 0,
think-twice reply: I'll directly X We can split v K O x->v

Figure 1: Selective iteration can mitigate latent overthinking. (a) Toy example. Uniform latent itera-
tion (always think-twice) can fix wrong predictions, but may also overthink and corrupt correct ones.
(b) Next-token prediction accuracy of finetuned Qwen3-1.7B variants. Always think-twice causes
more errors than corrections over direct reply. In contrast, the think-at-hard oracle, which iterates
only when the first-pass prediction is wrong, achieves substantial improvements with minimal harm.
While this oracle signal is unavailable in practice, it highlights the potential of selective iteration.

Recent advances in Large Language Model (LLM) reasoning have enabled broad applications across
diverse domains (Jaech et al.l [2024; |Guo et al.| 2025} [Yang et al., [2025). With tens to hundreds of
billions of parameters, LLMs can generate complex Chain-of-Thought (CoT) to solve challenging
tasks. At the same time, smaller language models have also drawn increasing attention. With only
a few billion parameters, they offer compelling alternatives: lower costs, faster inference, and suit-
ability for edge computing (Abdin et al.| 2024} Team et al., 2025; |Wang et al., 2025a).

Under review as a conference paper at ICLR 2026

At this crossroad, enhancing reasoning capabilities under parameter constraints becomes a central
challenge. A common approach is to distill smaller models to mimic LLM CoT trajectories using
next-token prediction supervision. However, not all tokens are equally predictable: certain tokens
encode critical logic or reasoning directions that are fundamentally harder to predict (Lin et al.,
2024} [Fu et al., 2025a; [Wang et al., 2025b). With limited computation per output token, small
models quickly hit a performance ceiling and mispredict some of these tokens. Once critical errors
occur, the reasoning trajectory can irrecoverably diverge and produce drastically different outcomes.

Prior work proposes recurrent transformers to address this parameter—performance para-
dox (Hutchins et al.l [2022; [Saunshi et al., [2025; [Zeng et al., 2025). Instead of verbalizing the
next token immediately after one forward pass, these models typically feed the last-layer hidden
states back into the LLM for additional passes in the latent space. Each pass refines the hidden
representation without producing tokens. After a fixed number of iteration depths, the final hidden
states are passed to the language modeling head to generate the next token. By uniformly allocating
extra iterations per token, these models increase inference depth without enlarging parameter count,
potentially benefiting hard reasoning tokens.

However, we identify a latent overthinking problem in fixed-depth recurrent transformers, where
excessive iterations revise correct answers into wrong ones. As shown in Figure |1} finetuning
Qwen3-1.7B-Base to always perform two iterations per token yields even more errors than the
single-iteration baseline on the Open-R1 dataset (Hugging Facel [2025)). This occurs because most
tokens are already predicted correctly in the first iteration, such as coherence or suffix tokens. Sim-
ilar to overthinking in explicit CoT reasoning (Wu et al., 2025), latent overthinking on these easy
tokens degrades performance despite extra computation. While the opposite latent underthinking
exists for tokens that need more iterations to correctly predict, such cases are rarer. We define to-
kens that cannot be accurately predicted in a single forward pass as hard tokens, and ask our central
question:

Can LLMs selectively dedicate latent iterations only to hard tokens?

If achieved, different iterations could specialize in distinct prediction focuses for more effective
latent reasoning. Oracle experiments validate this approach: as shown in Table] a think-at-hard
oracle improves MATH accuracy by 25-28%.

Achieving dynamic latent iteration presents three main challenges. First, the model architecture
should enable cross-depth attention, allowing each iteration to access full context. This is crucial
because when early tokens skip deeper iterations, later tokens must still access their representations
from shallower depths. Meanwhile, this cross-depth flow cannot compromise the sequence-level
parallelism essential for efficient training and prefilling. Second, the model must adapt to changing
objectives and distributions across iterations, while maximizing parameter reuse. Third, training
must remain stable despite tight coupling dependencies: the iteration policy depends on prediction
quality at each depth, while that quality depends on which tokens the policy sends to each depth.

To address these challenges, we propose TaH, a dynamic latent thinking method that selectively ap-
plies deeper iterations only to hard tokens. As shown in Figure 2] TaH employs a neural decider to
determine whether to continue iterating or verbalize each token. We design a duo-causal attention
mechanism to enable cross-depth attention and full sequence parallelism. To specialize deeper iter-
ations for hard-token refinement and preserve strong first-pass predictions, we apply LoRA adapters
solely at iterations d > 1. TaH is stably trained by aligning both LLM backbone and iteration
decider with a static oracle iteration policy. We summarize our contributions as follows.

* Selective Latent Iteration. We identify the latent overthinking phenomenon, revealing
how false corrections harm easy tokens at redundant iterations. This insight guides our
new paradigm where latent iteration depth adapts to token difficulty.

* Specialized Model Architecture. We develop a model architecture that natively supports
selective iteration depths. The dedicated duo-causal attention mechanism, LoRA adapters,
and iteration decider enable efficient cross-depth information flow, objective transitions,
and dynamic depth selection.

* Stable Training. We introduce a stable training scheme that uses a static oracle policy
to decouple model adaptation and policy learning. It overcomes the circular dependency
between iteration decisions and prediction quality.

Under review as a conference paper at ICLR 2026

Experiments show that TaH consistently improves reasoning performance. Finetuned from Qwen3-
0.6B-Base and 1.7B-Base with aligned parameter count, TaH achieves an average accuracy gain of
4.0-5.0% over standard single-iteration variants across five reasoning benchmarks, while applying
deeper thinking to only 6% of tokens. With less than 3% additional parameters, these gains further
increase to 5.3-5.4%. Compared with AlwaysThink which applies two iterations to all tokens, the
gains are 8.1-11.3% and 8.5-12.6%, validating TaH’s high effectiveness.

2 RELATED WORK

Unlike standard LLMs that verbalize at every autoregressive step, latent thinking shifts part of gen-
eration away from explicit natural-language CoT in order to improve reasoning (L1 et al., 2025)).

Signal-guided Control. These methods keep reasoning in token space but steers computation by
inserting control tokens. Early work shows that simple filler tokens (e.g., dots) can mimic some
benefits of CoT (Pfau et al. 2024). Building on this, later work expands the LLM vocabulary
with [PAUSE] tokens and learns where to insert them for extra compute before predicting the
next token (Goyal et al., 2024; [Kim et al.l 2025). They are lightweight and easily integrable, but
constrained to the discrete-token interventions with limited latent controls.

Latent Optimization. These methods perform autoregressive reasoning directly in internal repre-
sentations, emitting little or no intermediate text. They distill and compress CoT into latent continu-
ous embeddings through various strategies. Coconut and CCoT progressively replace text with latent
thinking under final response supervision (Hao et al.l 2024; |Cheng & Van Durme, [2024)); Token as-
sorted and HCoT compress CoT spans to embeddings with hidden-state alignment (Su et al.|, 2025}
Liu et al.| 2024). SoftThink directly applies logit-weighted embeddings for latent iterations (Zhang
et al., 2025b). While offering efficiency gains and flexible control over hidden trajectories, these
methods sacrifice reasoning interpretability, with training-based ones further requiring heavy miti-
gation from strong verbal LLMs.

Recurrent Transformers. These methods interleave latent and verbal reasoning, introducing latent
iterations before each token verbalization. After a standard forward pass, these methods feed latent
states back as next-iteration inputs for a fixed number of iterations, then verbalize the output token.
Existing approaches differ in the formation of next-iteration input. For example, Looped Trans-
former reuses last-layer hidden states directly (Saunshi et al., 2025} |Geiping et al.| 2025)), whereas
Ponder uses logit-weighted embeddings (Equation 4) (Zeng et al., [2025). Recurrent transformers
combine advantages of visible reasoning trajectories with latent exploration. By reusing the pa-
rameters across iterations, it achieves deeper computation per token without parameter increases.
However, the fixed depth burdens each iteration with both easy and hard tokens, potentially causing
false corrections for already-correct predictions.

Positioning. TaH belongs to the recurrent transformer family but extends this paradigm signifi-
cantly. It selectively allocates latent iterations to refine hard tokens, improving reasoning quality
with specialized objectives across iterations. While concurrent works (Bae et al.| 2025} Zhu et al.,
2025)) also enable selective recursion, they require complete model retraining. TaH instead lever-
ages existing pre-trained models, adding depth-aware LoRA and duo-causal attention to improve
reasoning with minimal finetuning overhead.

3 PRELIMINARY

Autoregressive LLMs. Modern LLMs generate text through an autoregressive next-token predic-
tion process. It includes a prefill stage and a decode stage (Radford et al., [2018};2019; Kwon et al.,
2023)). In the prefill stage, the model processes the entire input sequence in parallel; in the decode
stage, it consumes one new token at a time along with cached history to predict the next token.

Formally, let ¢; denote the token at position i and ; € R” its embedding. Let E € R"*" be the
embedding matrix, so x; = E[t;] when ¢, is treated as an index. Here, v and h are the vocabulary
size and hidden dimension. The output projection matrix is Wy, € R"*? (equal to E'T if tied).
Given the context T<; = [to, ..., t;] with embeddings X<; = [zo, ..., z;], the model § produces a

Under review as a conference paper at ICLR 2026

think-thrice: C3 iter i embed.
attentlci_n < iter 3 D
computation § 0 think-twice: = }'

= . "ter decider

C] C] 2 D D D iter 2 D D LLM w.LoRA B ‘
standard: (=] €CP \erbalize

token token iter 1 D D D iter i — 1T embed. thinking
(a) causal attention (b) duo-causal attention (c) model arch. input: O O3 t token

Figure 2: TaH Overview. (a) Regular causal attention: tokens attend only to previous positions. (b)
Our duo-causal attention: tokens attend to both previous positions and shallower iteration depths,
maintaining 2D causality. (c) Model architecture: TaH selectively iterates or verbalizes tokens. It
uses LoRA at deeper iterations to shift from next-token prediction to hard-token refinement. A
neural decider determines whether to continue iterating or output the token.

last-layer hidden state y; for token t;:
yi = Po(z; | X<i) € R (D
The next-token distribution p; and sample are:
pi = softmax(Woly;) €RY, tip1 = S(pi), 2

where S is a sampling rule such as greedy or nucleus sampling. Decoding repeats until an end-of-
sequence token is generated.

Causal Attention. To respect autoregression, modern LLMs apply causal attention. As shown in
Figure [2a), each position attends only to itself and earlier positions, consistent with Equation [I]
This design brings two key benefits: (1) it enables parallel training with next-token prediction and
shifted logits, avoiding the need for token-by-token generation; and (2) it allows efficient inference
by caching Key/Value states of past tokens instead of recomputing them.

Recurrent Transformers. Recurrent transformers introduce an inner loop that iterates in latent
space before verbalizing each output token. Let d € {1,2, ...} denote the iteration depth (written

as a superscript), and set x§0) = Elt;]. At each iteration, recurrent transformers update y; with
causal attention on the hidden states of the current iteration:

d d d d d d
y = Pl | X)), XY =" 2l), 3)

An inner transition then produces the next-depth embedding. For example, Loop (Saunshi et al.,

2025)) simply sets xEdH) = ygd), while Ponder (Zeng et al.,|2025) uses a logit-weighted embeddings:

xEdH) = softmax(Wo—Elyfd)) E = pl(-d)E. “4)
In practice, it uses the top-100 logits instead of full logits for efficiency.

(dmax)

Verbalization occurs at a fixed maximum depth d,.x shared by all tokens, where y, is trans-

formed into the next token ¢, , resembling Equation

4 TAH DESIGN

We expand the motivations and key designs of TaH in this section, including the duo-causal attention
mechanism (Section[d.T)), model architecture (Section[4.2), and training scheme (Section[4.3).

4.1 Duo-CAUSAL ATTENTION

Motivation. In recurrent transformers, attention typically operates within each iteration. For fixed-
depth methods, standard causal attention on the current iteration’s Key and Value states already
incorporates all context (Equation [3). However, dynamic iteration depths pose a challenge: to-
kens iterating at a deeper level cannot access the hidden states of previous tokens that verbalized
at shallower depths. This creates a dilemma. On one hand, tokens require up-to-date states of all

Under review as a conference paper at ICLR 2026

previous tokens for rich semantic context. On the other hand, efficient training requires all tokens
at depth d be computable in parallel, without depending on previous tokens’ deeper states (d’ > d)
that have not yet been computed. Existing approaches compromise on one of these aspects. Some
sacrifice parallelism by allowing attention to deeper iterations, forcing sequential generation during
training (Hao et al., [2024); others preserve parallelism by restricting attention to only the initial
iteration’s KVs (Bae et al., 2025). To resolve this dilemma, we introduce a simple yet effective
mechanism to maximize cross-depth information flow while maintaining high parallelism.

Duo-causal Attention Mechanism. As shown in Figure b), duo-causal attention extends causal-
ity to two dimensions, letting tokens attend across both previous positions and shallower iteration
depths. Formally, we extend the accessible set from Equation [3|to

xX5Y = (2™ < k<d). 5)

When all tokens iterate only once (as in standard transformers), this naturally reduces to regular
causal attention. The duo-causal design achieves both full parallel training and cross-depth infor-
mation flow. At depth d, all tokens compute their depth-d representations simultaneously using only
and all information from depths 1 through d.

Implementation-wise, duo-causal attention is fully compatible with attention kernels like FlashAt-
tention (Dao et al., 2022; |Daol 2024} [Shah et al., [2024)), or other sparse implementations (Fu et al.,
2025b; [Zhang et all 2025a). As detailed in Appendix [A.4.1] we simply maintain separate KV caches
per iteration depth and flatten the 2D (token, depth) grid into a 1D sequence by concatenating deeper
KV caches after shallower ones (Figure [I4). Positional encodings are applied based solely on the
original token index, invariant to iteration depth. The duo-causal constraint is then enforced via a
modified additive attention mask, requiring no custom CUDA kernels.

4.2 MODEL ARCHITECTURE

Motivation. Previous fixed-depth recurrent transformers use identical weights across all iterations.
However, we find that over 85% of next-tokens are correctly predicted at the first iteration (Fig-
ure [T[(b)) This suggests deeper iterations serve a different objective: they refine the first iteration’s
prediction rather than predicting further ahead to the next-next token. This mirrors deep LLMs,
where shallow layers predict next tokens for deeper layers to refine (Belrose et al., [2023; [Schuster
et al.l 2022} Bae et al., [2023). While deep LLMs naturally handle this shift through distinct pa-
rameters per depth, recurrent transformers must accommodate both objectives with shared weights,
potentially limiting performance. Moreover, fixed iteration depths can cause latent overthinking,
motivating our dynamic approach.

Backbone Model. To address the objective shift, we apply a LoRA adapter (Hu et al.,|2022) to the
shared LLM backbone only for iterations d > 1. As shown in Figure2]c), this allows the base LLM
to focus on latent embeddings, while the adapter handles the objective shift. It preserves strong
next-token prediction at d = 1, alleviating interference from deeper iterations. We also add residual
connections across iterations to simplify the refinement and improve gradient flow. Formally, at
depth d, we compute

yl(d) _ Ped(%(-d) ‘X(éd)) (6)
with depth-specific parameters
0y =0ford=1, 0 =0+ Aford > 1,

where 6 and A denote the LLM and LoRA weights, respectively. The next-iteration inputs use logit-
weighted embeddings (Equation; verbalization follows standard sampling (Equation. Each y(d)

?
either continues iterating or verbalizes according to the decider Z.

Iteration Decider. We use a lightweight MLP as the iteration decider Z,4 to determine whether
each token should continue iterating or verbalize. After each iteration, it processes concatenated
hidden states from shallow, middle, and final layers of the backbone LLM to predict a continuation
probability:

&Y = T(h) € 0,1].
(

. . . . d .
During inference, token ¢ verbalizes when c;) falls below threshold cireshold OF reaches maximum

depth dpax.

Under review as a conference paper at ICLR 2026

4.3 TRAINING SCHEME

We employ a two-stage training scheme: first finetune the backbone model for dynamic iteration,
then the iteration decider, all using an oracle policy.

Motivation. As shown in Figure c), the backbone network 6, and the neural iteration decider
1y are tightly coupled: the backbone generates hidden states as inputs for the decider, while the
decider controls the backbone’s KV cache and iterations. Training both simultaneously causes in-
stability due to mutual distribution shifts. Therefore, we adopt a stable two-stage approach where
both components are sequentially trained to align an oracle iteration policy 7.

Oracle Iteration Policy 7. To guide training, we define an oracle policy 7 that determines token
difficulty using a frozen reference LLM, following |Fu et al.[(2025a). A token is classified as easy if
the reference model correctly predicts it with a single forward pass, and hard otherwise. Throughout
the paper, we use the supervised fine-tuned (SFT) variant of the base model as the reference model.

Formally, let £;, ; denote the reference model’s top-1 prediction and ¢; . ; the ground-truth token. For
explanation simplicity, we assume maximum iteration depth dy,.x = 2 in Equation [/} the general
case is detailed in Appendix The oracle iteration depth d”™ is:

d7f = 1+ 1[tiy1 # tiga], (N
where 1[] is the indicator function. The per-depth continuation label becomes:
e = 1ld<df], ®)

indicating whether iteration should continue at depth d. Table[d]and Figure[I] verify the effectiveness
of the oracle policy.

Stage 1: Backbone supervision under 7. We optimize the backbone LLM (# and LoRA adapter
A) with 7-guided iteration execution. The loss is standard next-token prediction at the oracle-
determined depth:
dr
Lerr(0,4) = Y ~logp} 1)(ti+1);
i

where pgdi) is the next-token distribution at position ¢, depth d7 . This preserves first-iteration accu-

racy for easy tokens while training deeper iterations to refine hard tokens.

Stage 2: Decider imitation under frozen backbone. We freeze the backbone model (6, A) and
train the iteration decider ¢ to imitate the oracle policy’s continuation decisions. We minimize binary
cross-entropy with class reweighting for label imbalance:

min{dmax—1,d] }

Lacl0) = =3 3 |wli) e log el + (1=) log (1 -) .
i d=1

where cgd) is the ground-truth continuation label, égd) is the predicted probability, and w

the occurrence ratio of stop label divided by continue label, respectively.

(d)

stop/cont. 18

Our two-stage scheme stabilizes training by decoupling backbone learning (conditioned on a fixed
m) from policy learning (imitation of 7).

5 EXPERIMENT

5.1 SETUP

We present key configurations here, with more detailed setups in the Appendix.

Baselines. We compare diverse methods under equal parameter budgets, using Qwen3-0.6B-Base
and Qwen3-1.7B-Base (Yang et al.| [2025)) as backbones. We compare TaH over several fixed-depth
strategies: (1) Standard, which always verbalizes directly and reduces to the original Qwen model;
(2) AlwaysThink, which applies the maximum number of latent iterations to all tokens; (3) SoftThink,

Under review as a conference paper at ICLR 2026

w

— TaH
— Standard

Validation PPL
N

620 1586 1.573 1.569 1.573
1 1473 1428 1.409 1.401 1.401
1 2 3 4 5
Epoch

Figure 3: Training dynamics of the LLM back-
bone on Qwen3-0.6B-Base. TaH converges
rapidly and achieves lower perplexity.

-# TaH . 80.3
--- Standard A
AlWaySThlnk ... Tereads

Accuracy

[ee]
o

1.0 09 08 07 06 05
Continuation Threshold
Figure 4: GSM8K accuracy with respect to con-

tinuation threshold. Numbers in brackets indi-
cate the percentage of tokens that iterate twice.

following official baseline implementation (Zhang et al., | 2025b) on top of the Standard model. Un-
less otherwise specified, both TaH and AlwaysThink use a maximum of two iterations. We also
compare with dynamic query routing via matrix factorization (Ong et al., |[2024), routing between
MobileLLM-R1-360M (Zhao et al., 2025) and Qwen3-1.7B, as well as between Qwen3-0.6B and
Qwen3-4B, to match average parameter sizes of 0.6B and 1.7B.

TaH Setup. Before training, we prune one layer from the base model so that TaH matches the
parameter count of baselines. The layer is chosen to minimize the increase in validation loss. We
also report results for an unpruned variant, TaH+, which adds less than 3% extra parameters from
LoRA and iteration decider. The detailed parameter composition is shown in Table[6 Following (Ful
et al.,[2025a), we set the continuation threshold ciresholda = 0.9 with about 6% of tokens being iterated
twice. The oracle policy 7 uses Qwen3-0.6B, 1.7B and 4B as reference models to determine token
difficulty during training.

Training Scheme. All models are trained on the math subset of Open-R1 (Hugging Face| 2025)
using supervised finetuning. To fit memory and compute limits, we exclude responses longer than
8,192 tokens; 4B models additionally truncate at 4,096 tokens; all other training settings follow the
official Open-R1 script. The filtered dataset contains 300M tokens, with 1% reserved for validation.
Each method is sufficiently trained for 5 epochs, and we select the checkpoint with the lowest vali-
dation loss as the final model. All backbones are initialized from the corresponding Qwen3-Base.

Evaluation Setup. We evaluate across challenging reasoning benchmarks, including
GSMSK (Cobbe et al.l 2021), MATH500 (Hendrycks et al., |2021), AMC23 (American Mathe-
matics Competitions), AIME25 (American Invitational Mathematics Examination), and Olympiad-
Bench (He et al., |2024). The maximum generation length is set to 8,192 tokens for all benchmarks,
except GSMS8K which uses 4,096 due to its simpler problems and larger size. Performance is re-
ported as pass@1 under a zero-shot chain-of-thought setting, using sampling temperature 0.6. For
large datasets (MATHS00, OlympiadBench, GSM8K), we generate one sample per problem; for
small datasets (AMC23, AIME25), we generate eight samples per problem.

5.2 PERFORMANCE

Benchmark Evaluation. We validate TaH’s reasoning ability through extensive tests across five
challenging math benchmarks. Table [I] presents performance results for models at 0.6B and 1.7B
parameter sizes. Starting from strong Qwen3-Base models, we observe that existing approaches
show limited effectiveness: fixed-depth recurrent transformers (AlwaysThink) and query routing fail
to consistently outperform the standard direct-answer baseline. SoftThink provides improvements
on some cases, yet remain marginal overall. In contrast, TaH achieves consistent gains, delivering
average improvements of 4.0% and 5.0% for the 0.6B and 1.7B models, respectively. Our enhanced
variant (TaH+), which only adds less than 3% additional parameters, pushes these gains to 5.3% and
5.4%. Relative to AlwaysThink, the gains are 8.1-11.3% for TaH, and 8.5-12.6% for TaH+.

Training Dynamics. During stage 1 (LLM backbone training), guided by the oracle policy that only
triggers a second iteration on hard tokens, TaH converges notably faster than the Standard baseline. It
also achieves much lower perplexity on the validation dataset as shown in Figure[3] During stage 2

Under review as a conference paper at ICLR 2026

Table 1: Accuracy comparison of different baselines across five benchmarks and two model sizes.
Subscripts indicate improvement over Standard. The top two scores for each task and model size
are highlighted in bold.

\ Method
Param. Benchmark \Standard Routing SoftThink AlwaysThink TaH TaH+
AIME25 4.2 1.0 2.5 1.5 4.2 5.0
OlympiadBench 18.8 7.4 19.4 10.2 23.9 24.0
AMC23 23.4 10.9 24.1 15.6 32.5 30.6
0.6B MATHS500 47.2 27.3 48.8 32.8 51.2 54.2
GSMB8K 62.5 45.6 61.3 54.6 604.4 68.8
Average \ 31.2 18.5 31.2 22.9 35.2/+40 36.5/+53
AIME25 13.3 10.2 12.9 10.0 17.9 14.6
OlympiadBench 33.0 30.6 334 30.0 38.8 41.2
AMC23 42.2 42.2 43.1 42.5 48.4 51.2
1.7B MATHS00 68.4 60.0 68.8 61.8 74.4 73.0
GSMB8K 82.1 71.2 79.6 79.3 84.5 85.8
Average 47.8 36.8 47.6 44.7 52.8/+5.0 53.2/+5.4
AIME25 23.3 22.5 22.5 30.4 28.3
OlympiadBench | 47.7 45.0 50.1 50.5 52.0
AMC23 62.8 60.9 64.1 OOM 70.3 70.6
4B MATH500 82.8 76.1 83.2 84.4 85.6
GSMSK 90.5 85.3 90.9 90.4 91.5
Average | 614 58.0 62.2 - 65.2/+38 65.6/+4.2

(iteration-decider training), the neural decider successfully imitates the oracle strategy, reaching
about 83% accuracy at predicting iteration decisions of oracle labels, as shown in Figure[I0}

Adding Iteration Depth. We train a 1.7B TaH with maximum three iteration (TaH-3). TaH-3 yields
5.8% average gain over Standard, and 0.8% over TaH-2. Detailed results are in Appendix

Generalizability. We further study generalization when TaH is evaluated out of domain (OOD) or
trained on broader data mixtures. First, when trained only on math data, TaH+ still improves OOD
STEM performance on MMLU-STEM (4.7% and 2.9% for 0.6B and 1.7B respectively), indicating
that the learned thinking patterns transfer robustly across domains. Second, finetuning Qwen3-1.7B-
Base on a balanced OpenR 1 mixture of math, QA, and code shows that TaH+ yields consistent gains
over Standard across all categories, improving the overall average accuracy by 6.8%. See additional
experiment and performance details in Appendix[A.2.1]

5.3 DESIGN CHOICE EXPLORATION

We demonstrate the effectiveness and robustness of TaH by finetuning our model with alternative
model architectures and training schemes, or altering the continuation thresholds. All results are
reported on MATH500, AMC23 and OlympiadBench (Olym.).

Model Architecture. (1) Iteration Scheme. As shown in Table[2] TaH’s dynamic iteration scheme
outperforms the Standard and AlwaysThink alternatives, confirming the benefit of avoiding latent
underthinking and overthinking. Note that for Standard, duo-causal attention degenerates to regular
causal attention. (2) Duo-Causal Attention. Replacing duo-causal attention with standard causal
attention variants causes significant drops: (a) attending only to the first iteration (Causal-iterl)
drops 5.4%; (b) attending only to the current iteration (Causal) drops even larger at 8.5%. The
latter failure confirms duo-causal attention’s essential role for cross-depth information flow. (3)
LoRA and residual connections. Removing LoRA and residual connections leads to consistent
drops, confirming their beneficial roles in objective transition across iterations.

Under review as a conference paper at ICLR 2026

Table 2: Ablation of iteration scheme, attention mechanism and architecture designs on TaH-0.6B.

Ablation | Iter. Scheme Attention LoRA Residual MATH500 AMC23 Olym. Average
Base \ TaH Duo-causal v vo| 512 325 239 35.9/+00
Standard 47.2 234 18.8 29.8/-6.1

Scheme | 1\ aysThink DUo-causal v v 32.8 156 102 19.5/ 164
. Causal-iter1 47.8 24.4 194 30.5/-54
Attention| TaH Causal v 420 238 164 274/ ss
X v 51.6 297 224 34.6/-13

Arch, TaH Duo-causal X 492 225 212 31.0/-49

Table 3: Ablation study on training schemes.

Supervision Iter. Policy \MATHSOO AMC23 Olympiadbench Average

Token-only Oracle ‘ 51.2 32.5 23.9 35.9

Token+latent Oracle \ 494 29.6 15.9 31.6 /—43

Token-onl Iter. decider 44.8 24.1 17.3 28.7 /-12
Y Dynamic 11.0 2.8 2.7 5.5/-304

Training Scheme. (1) Supervision type. Inspired by early exit methods, a common alternative
supervises all iteration depths with next-token labels to enable flexible early termination. It enforces
accurate prediction at depth 1 even for hard tokens. As shown in Table 3] such roken+latent super-
vision underperforms our token-only approach that supervises only at oracle-determined depths. It
aligns with our intuition that different iterations should focus on tokens of different difficulties. (2)
Iteration policy during LLM training. We compare our static oracle strategy 7 with two alter-
natives. The iter. decider trains the decider first then uses it during backbone training, but suffers
from the coupling challenge discussed in Section[d.3] The dynamic recalculates the oracle using the
evolving backbone in Equation [/| encountering the same coupling challenge and causing training
collapse. These results support our backbone training recipe: using next-token supervision with
oracle iteration policy.

Continuation Threshold. As shown in Figure[4] TaH maintains robust performance across different
continuation thresholds and iteration ratios. We empirically set cpreshola = 0.9 for all evaluations.

5.4 BEHAVIOR ANALYSIS

Latent Overthinking. To analyze latent thinking patterns, we verbalize tokens from all iteration
depths using their last-layer hidden states. The oracle method uses the oracle policy 7 from Sec-
tion @ for iteration decision. (1) Generation. Since ground-truth tokens are unavailable during
generation, we use predictions from the stronger DeepSeek-R1-Distill-Qwen-32B model (Guo et al.,
2025)) as proxy labels. Table[d] shows that the oracle policy substantially improves performance by
verbalizing correct predictions immediately while iterating only on incorrect ones. With our trained

. . Iteration 1 Iteration
Training Inference Accuracy 10p2 fokens soted by Py oken) = P(e")> O] argmar p) = oken)
o
Standard Standard 52 I — S
; ; 15% S
AlwaysThink AlwaysThink 38/—14 i o Wait"
AlwaysThink TaH-Oracle 77 /+25 50 - S
- ngon ? e 'Therefore"mm
TaH-Oracle TaH-Decider 54/+ 2 2%& TSoull

TaH-Oracle TaH-Oracle 80/+28

Figure 5: Next-token prediction changes across
Table 4: Impact of iteration schemes on Qwen3- iterations. Top2 tokens that think-twice most are
0.6B (first 100 MATHS500 samples). visualized.

Under review as a conference paper at ICLR 2026

iteration decider approximating the oracle, TaH outperforms both Standard and AlwaysThink base-
lines. However, the ideal oracle policy achieves even higher gains, indicating future potential. (2)
Next-token prediction. We evaluate next-token prediction accuracy on the Open-R1 dataset, using
the test model itself as the reference model in 7. Figure[I]reveals that AlwaysThink produces more
incorrect than correct revisions, demonstrating latent overthinking. In contrast, oracle-controlled
iterations substantially increase correct revisions by selectively targeting hard tokens.

Token Alternation Patterns. We analyze which tokens TaH selects for deeper iteration. On the
validation set, But and So emerge as top candidates, with iteration probabilities of 34% and 18%,
respectively. These tokens signal critical contrasting or causal relationships, confirming that models
benefit from additional processing at logically complex junctures. Figure [3] illustrates how TaH
alternates predictions after iteration at these key tokens, suggesting logic refinement behavior. See
Appendix [A.3.4]for detailed analysis.

Attention Pattern. We visualize the attention pattern of TaH. As discussed in Figure and
Appendix the duo-causal attention automatically focuses on different iterations in different
heads, extracting broader contexts from multiple depths.

Iteration and FLOPs. Tables [I0] and [T1]report the average iteration count, per-token FLOPs, and
memory access cost of TaH. TaH matches the FLOPs of the Standard baseline (averaging 1.06
iterations per token), while significantly undercutting AlwaysThink (2.00 iterations), which incurs
~ 2.2x FLOPs and memory access. When tested on an NVIDIA A800-80GB GPU, TaH achieves a
2.48x speedup over AlwaysThink and reduces peak memory usage by 1.48 x. See Appendices[A.2.7]
and for more details.

6 CONCLUSION

We present TaH, a selective latent thinking method that iterates deeper only on hard tokens. Archi-
tecturally, TaH introduces duo-causal attention, depth-specific LoRA, and a neural iteration decider
to facilitate dynamic depths. An oracle policy guides the stable two-stage training for the tightly
coupled LLM backbone and decider. Across five reasoning benchmarks, TaH improves accuracy by
4.0-5.4% over strong baselines with minimal overhead (<3% additional parameters and ~6% extra
iterations), establishing a new paradigm for better reasoning within the current parameter budgets.

10

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This study raises no ethical issues, it did not involve human subjects or sensitive personal data.

REPRODUCIBILITY STATEMENT

This paper provides sufficient information to reproduce the reported results. All experiments were
conducted using publicly available datasets together with open-source models and code. Appendix A
details implementation aspects, including data selection, hyperparameters, and training procedures.
To facilitate full reproducibility, we will release the code, configuration files, and model checkpoints
upon publication.

REFERENCES

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen
Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, et al. Phi-3 technical report: A
highly capable language model locally on your phone. arXiv preprint arXiv:2404.14219, 2024.
URL https://arxiv.org/abs/2404.142109.

Sangmin Bae, Jongwoo Ko, Hwanjun Song, and Se-Young Yun. Fast and robust early-exiting frame-
work for autoregressive language models with synchronized parallel decoding. arXiv preprint
arXiv:2310.05424, 2023.

Sangmin Bae, Yujin Kim, Reza Bayat, Sungnyun Kim, Jiyoun Ha, Tal Schuster, Adam Fisch, Hrayr
Harutyunyan, Ziwei Ji, Aaron Courville, et al. Mixture-of-recursions: Learning dynamic recur-
sive depths for adaptive token-level computation. arXiv preprint arXiv:2507.10524, 2025.

Nora Belrose, Zach Furman, Logan Smith, Danny Halawi, Igor Ostrovsky, Lev McKinney, Stella
Biderman, and Jacob Steinhardt. Eliciting latent predictions from transformers with the tuned
lens. arXiv preprint arXiv:2303.08112, 2023.

Yanxi Chen, Xuchen Pan, Yaliang Li, Bolin Ding, and Jingren Zhou. Ee-llm: Large-scale train-
ing and inference of early-exit large language models with 3d parallelism. arXiv preprint
arXiv:2312.04916, 2023.

Jeffrey Cheng and Benjamin Van Durme. Compressed chain of thought: Efficient reasoning through
dense representations. arXiv preprint arXiv:2412.13171,2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In Inter-
national Conference on Learning Representations (ICLR), 2024.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast and
memory-efficient exact attention with IO-awareness. In Advances in Neural Information Process-
ing Systems (NeurlPS), 2022.

Luciano Del Corro, Allie Del Giorno, Sahaj Agarwal, Bin Yu, Ahmed Awadallah, and Subhabrata
Mukherjee. Skipdecode: Autoregressive skip decoding with batching and caching for efficient
Ilm inference. arXiv preprint arXiv:2307.02628, 2023.

Tianyu Fu, Yi Ge, Yichen You, Enshu Liu, Zhihang Yuan, Guohao Dai, Shengen Yan, Huazhong
Yang, and Yu Wang. R2r: Efficiently navigating divergent reasoning paths with small-large model
token routing. arXiv preprint arXiv:2505.21600, 2025a.

Tianyu Fu, Haofeng Huang, Xuefei Ning, Genghan Zhang, Boju Chen, Tianqi Wu, Hongyi Wang,
Zixiao Huang, Shiyao Li, Shengen Yan, et al. Mixture of attention spans: Optimizing llm infer-
ence efficiency with heterogeneous sliding-window lengths. In Second Conference on Language
Modeling, 2025b.

11

https://arxiv.org/abs/2404.14219

Under review as a conference paper at ICLR 2026

Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R Bartoldson,
Bhavya Kailkhura, Abhinav Bhatele, and Tom Goldstein. Scaling up test-time compute with
latent reasoning: A recurrent depth approach. arXiv preprint arXiv:2502.05171, 2025.

Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar, and Vaish-
navh Nagarajan. Think before you speak: Training language models with pause tokens. URL
https://arxiv. org/abs/2310.02226, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
Tian. Training large language models to reason in a continuous latent space. arXiv preprint
arXiv:2412.06769, 2024.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
promoting agi with olympiad-level bilingual multimodal scientific problems. arXiv preprint
arXiv:2402.14008, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Hugging Face. Open rl: A fully open reproduction of deepseek-rl, January 2025. URL https:
//github.com/huggingface/open—-rll

DeLesley Hutchins, Imanol Schlag, Yuhuai Wu, Ethan Dyer, and Behnam Neyshabur. Block-
recurrent transformers. Advances in neural information processing systems, 35:33248-33261,
2022.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai ol system card. arXiv
preprint arXiv:2412.16720, 2024.

Eunki Kim, Sangryul Kim, and James Thorne. Learning to insert [pause] tokens for better reasoning.
arXiv preprint arXiv:2506.03616, 2025.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th symposium on operating systems princi-
ples, pp. 611-626, 2023.

Jindong Li, Yali Fu, Li Fan, Jiahong Liu, Yao Shu, Chengwei Qin, Menglin Yang, Irwin King, and
Rex Ying. Implicit reasoning in large language models: A comprehensive survey. arXiv preprint
arXiv:2509.02350, 2025.

Zhenghao Lin, Zhibin Gou, Yeyun Gong, Xiao Liu, Yelong Shen, Ruochen Xu, Chen Lin, Yujiu
Yang, Jian Jiao, Nan Duan, et al. Rho-1: Not all tokens are what you need. arXiv preprint
arXiv:2404.07965, 2024.

Tiangiao Liu, Zui Chen, Zitao Liu, Mi Tian, and Weiqi Luo. Expediting and elevating large language
model reasoning via hidden chain-of-thought decoding. arXiv preprint arXiv:2409.08561, 2024.

Xuan Luo, Weizhi Wang, and Xifeng Yan. Adaptive layer-skipping in pre-trained llms. arXiv
preprint arXiv:2503.23798, 2025.

12

https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1

Under review as a conference paper at ICLR 2026

Wenheng Ma, Xinhao Yang, Shulin Zeng, Tengxuan Liu, Libo Shen, Hongyi Wang, Shiyao Li,
Ke Hong, Zhenhua Zhu, Xuefei Ning, Tsung-Yi Ho, Guohao Dai, and Yu Wang. Cd-llm: A
heterogeneous multi-fpga system for batched decoding of 70b+ llms using a compute-dedicated
architecture. ACM Trans. Reconfigurable Technol. Syst., October 2025. ISSN 1936-7406. doi:
10.1145/3771288. URL |https://doi.org/10.1145/3771288. Just Accepted.

Isaac Ong, Amjad Almabhairi, Vincent Wu, Wei-Lin Chiang, Tianhao Wu, Joseph E Gonzalez,
M Waleed Kadous, and Ion Stoica. Routellm: Learning to route 1lms with preference data. arXiv
preprint arXiv:2406.18665, 2024.

Jacob Pfau, William Merrill, and Samuel R Bowman. Let’s think dot by dot: Hidden computation
in transformer language models. URL https://arxiv. org/abs/2404.15758, 2404, 2024.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-
standing by generative pre-training. OpenAl blog, 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

David Raposo, Sam Ritter, Blake Richards, Timothy Lillicrap, Peter Conway Humphreys, and
Adam Santoro. Mixture-of-depths: Dynamically allocating compute in transformer-based lan-
guage models. arXiv preprint arXiv:2404.02258, 2024.

Nikunj Saunshi, Nishanth Dikkala, Zhiyuan Li, Sanjiv Kumar, and Sashank J Reddi. Reasoning
with latent thoughts: On the power of looped transformers. arXiv preprint arXiv:2502.17416,
2025.

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Tran, Yi Tay, and Donald
Metzler. Confident adaptive language modeling. Advances in Neural Information Processing
Systems, 35:17456-17472, 2022.

Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and Tri Dao.
Flashattention-3: Fast and accurate attention with asynchrony and low-precision. Advances in
Neural Information Processing Systems, 37:68658—-68685, 2024.

DiJia Su, Hanlin Zhu, Yingchen Xu, Jiantao Jiao, Yuandong Tian, and Qinqing Zheng. Token
assorted: Mixing latent and text tokens for improved language model reasoning. arXiv preprint
arXiv:2502.03275, 2025.

MiniCPM Team, Chaojun Xiao, Yuxuan Li, Xu Han, Yuzhuo Bai, Jie Cai, Haotian Chen, Wen-
tong Chen, Xin Cong, Ganqu Cui, Ning Ding, Shengdan Fan, Yewei Fang, Zixuan Fu, Wenyu
Guan, Yitong Guan, Junshao Guo, Yufeng Han, Bingxiang He, Yuxiang Huang, Cunliang Kong,
Qiuzuo Li, Zhen Li, Dan Liu, Biyuan Lin, Yankai Lin, Xiang Long, Quanyu Lu, Yaxi Lu,
Peiyan Luo, Hongya Lyu, Litu Ou, Yinxu Pan, Zekai Qu, Qundong Shi, Zijun Song, Jiayuan
Su, Zhou Su, Ao Sun, Xianghui Sun, Peijun Tang, Fangzheng Wang, Feng Wang, Shuo Wang,
Yudong Wang, Yesai Wu, Zhenyu Xiao, Jie Xie, Zihao Xie, Yukun Yan, Jiarui Yuan, Kaihuo
Zhang, Lei Zhang, Linyue Zhang, Xueren Zhang, Yudi Zhang, Hengyu Zhao, Weilin Zhao,
Weilun Zhao, Yuangian Zhao, Zhi Zheng, Ge Zhou, Jie Zhou, Wei Zhou, Zihan Zhou, Zix-
uan Zhou, Zhiyuan Liu, Guoyang Zeng, Chao Jia, Dahai Li, and Maosong Sun. Minicpm4:
Ultra-efficient Ilms on end devices. arXiv preprint arXiv:2506.07900, 2025. URL https:
//arxiv.org/abs/2506.07900.

Chenyu Wang, Zishen Wan, Hao Kang, Emma Chen, Zhiqgiang Xie, Tushar Krishna, Vijay Janapa
Reddi, and Yilun Du. Slm-mux: Orchestrating small language models for reasoning. arXiv
preprint arXiv:2510.05077, 2025a.

Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
Jianxin Yang, Zhenru Zhang, et al. Beyond the 80/20 rule: High-entropy minority tokens drive
effective reinforcement learning for 1lm reasoning. arXiv preprint arXiv:2506.01939, 2025b.

Yuyang Wu, Yifei Wang, Ziyu Ye, Tianqi Du, Stefanie Jegelka, and Yisen Wang. When more is
less: Understanding chain-of-thought length in llms. arXiv preprint arXiv:2502.07266, 2025.

13

https://doi.org/10.1145/3771288
https://arxiv.org/abs/2506.07900
https://arxiv.org/abs/2506.07900

Under review as a conference paper at ICLR 2026

Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du, Hanxiao Liu, Yifeng Lu, Percy S Liang,
Quoc V Le, Tengyu Ma, and Adams Wei Yu. Doremi: Optimizing data mixtures speeds up
language model pretraining. Advances in Neural Information Processing Systems, 36:69798—
69818, 2023.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Fan Yang, Xinhao Yang, Hongyi Wang, Zehao Wang, Zhenhua Zhu, Shulin Zeng, and Yu Wang.
Glitches: Gpu-fpga llm inference through a collaborative heterogeneous system. In 2024 IEEE
High Performance Extreme Computing Conference (HPEC), pp. 1-7. IEEE, 2024.

Boyi Zeng, Shixiang Song, Siyuan Huang, Yixuan Wang, He Li, Ziwei He, Xinbing Wang, Zhiyu
Li, and Zhouhan Lin. Pretraining language models to ponder in continuous space. arXiv preprint
arXiv:2505.20674, 2025.

Jintao Zhang, Chendong Xiang, Haofeng Huang, Jia Wei, Haocheng Xi, Jun Zhu, and Jianfei Chen.
Spargeattention: Accurate and training-free sparse attention accelerating any model inference. In
International Conference on Machine Learning (ICML 2025), 2025a.

Zhen Zhang, Xuehai He, Weixiang Yan, Ao Shen, Chenyang Zhao, Shuohang Wang, Yelong Shen,
and Xin Eric Wang. Soft thinking: Unlocking the reasoning potential of llms in continuous
concept space. arXiv preprint arXiv:2505.15778, 2025b.

Changsheng Zhao, Ernie Chang, Zechun Liu, Chia-Jung Chang, Wei Wen, Chen Lai, Rick Cao,
Yuandong Tian, Raghuraman Krishnamoorthi, Yangyang Shi, et al. Mobilellm-rl: Exploring
the limits of sub-billion language model reasoners with open training recipes. arXiv preprint
arXiv:2509.24945, 2025.

Lianmin Zheng, Liangsheng Yin, Zhigiang Xie, Chuyue Livia Sun, Jeff Huang, Cody Hao Yu, Shiyi
Cao, Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Sglang: Efficient execution of
structured language model programs. Advances in neural information processing systems, 37:
62557-62583, 2024.

Rui-Jie Zhu, Zixuan Wang, Kai Hua, Tianyu Zhang, Ziniu Li, Haoran Que, Boyi Wei, Zixin Wen,

Fan Yin, He Xing, et al. Scaling latent reasoning via looped language models. arXiv preprint
arXiv:2510.25741, 2025.

14

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 ADDITIONAL EXPERIMENT SETUPS
A.1.1 TRAINING RECIPE

We follow the official training setup of Open-R1 (Hugging Facel 2025). For Standard, TaH, and
TaH+, we use a maximum sequence length of 8192 tokens. For AlwaysThink, we reduce the maxi-
mum length to 4096 due to its substantially higher memory usage during training. Detailed training
hyperparameters are listed in Table 5]

A.1.2 BASELINE SETUPS

Routing. The query-level routing baseline selects a model from a candidate pair for each question.
In our experiments, we use two pairs: (1) MobileLLM-R1-360M, Qwen3-1.7B, and (2) Qwen3-
0.6B, Qwen3-4B. All candidate models are SFT-trained under the same settings as the Standard
baseline (Section[3). For each pair, the routing ratio is calibrated so that the average active parameter
count matches our 0.6B and 1.7B targets, respectively.

AlwaysThink. AlwaysThink uses the exact same architecture as TaH, but substitutes the iteration
decider to one that always iterates twice.

A.1.3 PARAMETER BREAKDOWN

Table [6] reports the parameter breakdown of the Standard, TaH, and TaH+ methods. To offset the
additional parameters introduced by TaH through LoRA and the iteration decider, we remove one
layer from the LLM backbone, ensuring a fair comparison. In practical deployments, we recommend
TaH+, which adds only about 3% additional parameters.

A.1.4 LATENT OVERTHINKING ANALYSIS SETUP

We set up an oracle experiment to estimate the performance upper bound of our method. The
oracle employs the DeepSeek-R1-Distill-Qwen-32B model as a dynamic label generator, replacing
the MLP-based iteration decider. During each iteration, we compare the token predictions from the
label generator with those from the TaH model. The model continues to iterate only when the top-1
predictions of these two models differ. Due to resource constraints and computational overhead,
we evaluated the accuracy only on the first 100 samples from the MATHS500 dataset, denoted as
MATH100 throughout the paper.

A.2 ADDITIONAL EXPERIMENTAL RESULTS

A.2.1 GENERALIZABILITY

General Training and Evaluation. To verify generalizability, we expanded our training and evalu-
ation to diverse domains. We followed the exact protocol from the main paper to finetune Qwen3-
1.7B-Base. The only modification was replacing the math-only dataset with a balanced subset of
OpenR1 (100k samples total) covering all task splits, ensuring a fair comparison by maintaining the

Table 5: Training hyperparameters.

Hyperparameter Value

learning rate 4e-5

max grad norm 0.2

training epochs 5

global batch size 128

warmup ratio 0.03

Ir scheduler cosine (min-Ir ratio 0.1)
precision bfloat16

15

Under review as a conference paper at ICLR 2026

Table 6: Parameter breakdown of Standard, TaH, and TaH+. Counts are reported using M (million)
and B (billion).

Param. Method \Backbone LoRA Iter. Decider Total

Standard 596M - - 596M
0.6B TaH 580M 10M M 595M
TaH+ 596M 10M SM 611M
Standard 1.72B - - 1.72B
1.7B TaH 1.67B 34M 18M 1.72B
TaH+ 1.72B 34M 18M 1.77B

Table 7: Performance of Qwen3-1.7B models trained on a general OpenR1 mixture (math, QA, and
code) across downstream benchmarks.

Category Dataset \ Standard SoftThink AlwaysThink TaH+
Math MATHS500 67.8 64.8 63.2 72.6
AMC23 39.7 40.3 40.9 48.4
QA GPQA 30.3 333 30.5 394
MMLU-STEM 74.1 73.5 69.6 76.6
Code HumanEval+ 44.2 44.5 25.6 48.2
MBPP+ 27.2 27.8 16.4 39.0
Average | 472 47.4 41.0 54.0/+68

same data scale. As shown in Table TaH+ achieves consistent improvements across math, QA, and
coding domains, with an average performance gain of 6.8%. This demonstrates TaH’s effectiveness
on diverse reasoning and generation tasks beyond pure mathematics.

Out-Of-Domain (OOD) Performance. We further evaluated the zero-shot generalization capability
of models trained solely on math datasets from the main paper. As shown in Table] TaH+ demon-
strates consistent improvements not only on in-domain math benchmarks (MATH500, AMC23) but
also on out-of-domain tasks like MMLU-STEM. This indicates that the thinking patterns learned by
TaH+ on math problems are robust and transferrable to broader scientific reasoning tasks.

A.2.2 REAL-WORLD EFFICIENCY

Setup. We investigate the real-world efficiency of different 1.7B models under our cur-
rent implementation. All measurements were obtained on a single A800 GPU with a batch
size of 1 and a maximum output length of 8192 tokens, using a challenging AIME25 prob-

Table 8: Performance of math-only trained models (0.6B and 1.7B) on in-domain math benchmarks
and the out-of-domain STEM benchmark (MMLU-STEM).

Param. Benchmark \Standard SoftThink AlwaysThink TaH+

MATHS00 47.2 48.8 32.8 54.2

0.6 AMC23 23.4 24.1 15.6 30.6
’ MMLU-STEM 51.6 514 42.6 56.3
Average | 407 41.4 30.3 47.0
MATHS00 68.4 68.8 61.8 73.0

17 AMC23 42.2 43.1 42.5 51.2
’ MMLU-STEM 70.8 70.6 63.8 73.7
Average | 60.5 60.8 56.0 66.0

16

Under review as a conference paper at ICLR 2026

Table 9: Real-world decoding performance on a single A800 GPU, including maximum memory
usage (GB), decoding latency (s), throughput (tokens/s), and per-component time breakdown.

Metric \ Standard \ TaH \ AlwaysThink
Memory (GB) 4.3 4.6 6.8

Latency (s) 210.6 301.4 747.2
Throughput (tok/s) 38.9 27.2 11.0
Component | Latency (s) Ratio(%) | Latency (s) Ratio(%) | Latency (s) Ratio(%)
Iter-1 Forward 210.6 100.0 229.8 76.2 224.1 30.0
Iter-2 Forward - - 29.6 9.8 384.7 51.5
Iter. Decider - - 10.5 3.5 - -
LoRA Switching - - 7.5 2.5 91.1 12.2
Other - - 24.1 8.0 47.4 6.3

lem where all three methods reached the token limit. Memory usage was profiled using
torch.cuda.memory._record.memory_history.

Memory. As shown in Table 0] TaH introduces minimal memory overhead of +7% over Standard,
even at an extensive length of 8192 tokens. In contrast, AlwaysThink increases memory usage by
58%. This surge is primarily due to its dense iteration doubling the KV cache size, whereas TaH
keeps the cache compact by skipping the second iteration for 94% of tokens.

Latency Breakdown. We report the decoding latency, throughput, and a detailed time breakdown
for Standard, AlwaysThink, and TaH in Table[9] Here, Iter-1 forward and Iter-2 forward denote the
total forward-pass time spent on the first and second latent iterations, respectively; Iter decider is
the time for the iteration decider network to judge whether to continue iterating or verbalize; LoRA
switching is the overhead of switching LoRA adapters; and Other includes tensor initialization,
concatenation, and related bookkeeping.

Discussion. We note that our current implementation is not yet optimized at the system level, so
there remains room for further efficiency improvements. For example, the LoRA Switching and
Other overheads (bookkeeping) are relatively high due to the Python-level implementation of dy-
namic control flow. These engineering optimizations are largely orthogonal to the algorithmic de-
sign of TaH, and we plan to continue refining the implementation to further reduce latency and
memory overhead. The theoretical FLOPs and memory access analysis of TaH are provided in

Appendix [A23]
A.2.3 THEORETICAL EFFICIENCY ANALYSIS

Following prior work [Hoffmann et al.| (2022)); [Yang et al| (2024)); [Ma et al] (2025), we analyze

the computational and memory access overhead of TaH relative to the Standard and AlwaysThink
baselines. Table [T0] presents the average number of input/output tokens and latent iterations per
token across five benchmarks. We use these statistics to calculate the theoretical computation and
memory access costs for each method.

As shown in Table[TT] TaH incurs only a marginal increase in cost per token (1.04 to 1.05x) com-
pared to the Standard baseline. In comparison, AlwaysThink is prohibitively expensive, requiring
2.19 to 2.27x more computation and memory access. These theoretical results confirm that TaH ex-
ceeds the reasoning benefits of fixed-depth recurrent transformers without the substantial efficiency
penalty.

A.2.4 ITERATION DEPTH BEYOND TwO

Hard Token Labeling. Previous works have proposed many methods to evaluate the hardness

of each tokens in the training data, like through excess loss (Lin et al., 2024} 2023),
entropy (Wang et al,[2025b} [Chen et al.} [2023)) and prediction difference (Fu et al., 2025a).

For shallow iteration budgets within two (Dy,.x < 2), we adopt the prediction difference policy. It
simply labels the tokens that do not yield top-1 in next-token prediction at the first iteration as hard

17

Under review as a conference paper at ICLR 2026

Table 10: Input tokens (shared across methods) and output token / iteration statistics for Standard,
AlwaysThink, TaH, and TaH+.

| Standard | AlwaysThink | TaH \ TaH+

Param. Dataset In. | Out. Tter. | Out. TIter. | Out. Tter. | Out. Iter.
AIME25 159 | 7450 1.00 | 7316 2.00 | 7648 1.05 7486 1.06
OlympiadBench 100 | 6599 1.00 | 6622 2.00 | 6631 1.09 | 6513 1.06

0.6B AMC23 85 6377 1.00 | 6368 2.00 | 6242 1.05 | 6145 1.05
’ MATHS500 71 4823 1.00 | 5350 2.00 | 4877 1.05 | 4793 1.06
GSM&K 61 1955 1.00 | 2844 2.00 1923 1.07 1791 1.07
Average ratio — ‘ 1.00x 1.00x ‘ 1.02x 2.00x ‘ 1.00x 1.06x ‘ 097x 1.06x

AIME25 159 | 7195 1.00 | 7173 2.00 | 7496 1.06 | 7498 1.06
OlympiadBench 100 | 6008 1.00 | 6484 2.00 | 6387 1.06 | 6258 1.06

178 AMC23 85 5681 1.00 | 7543 2.00 | 6122 1.04 | 5852 1.06
’ MATHS500 71 4004 1.00 | 4414 2.00 | 4233 1.06 | 4286 1.06
GSMS8K 61 1451 1.00 1644 2.00 1721 1.08 1686 1.08
Average ratio - ‘ 1.00x 1.00x ‘ 1.13x 2.00x ‘ 1.09x 1.06x ‘ 1.07x 1.06x

Table 11: Decoding computation (GFLOPs) and memory access (GB) per output token for Standard,
AlwaysThink, TaH and TaH+ methods.

| Standard | AlwaysThink | TaH \ TaH+

Param. Dataset | Comp. Mem. | Comp. Mem. | Comp. Mem. | Comp. Mem.
AIME25 147 138 | 335 314 | 1.52 143 | 1.57 147
OlympiadBench | 1.41 132 | 321 3.02 | 1.51 142 | 1.50 1.41

0.6B AMC23 140 131 | 3.17 297 | 143 134 | 146 137
’ MATHS500 1.31 122 | 298 280 | 1.35 126 | 1.39 1.31
GSMSK 1.14 106 | 254 238 | 1.19 1.12 | 1.22 1.14
Averageratio | 1.00x 1.00x | 227x 227x | 1.04x 1.04x | 1.06x 1.06x
AIME25 431 4.03 | 945 883 | 451 421 | 464 434
OlympiadBench | 4.16 3.88 | 9.18 8.58 | 436 4.07 | 448 4.18

1.7B AMC23 412 385 | 954 891 | 424 396 | 443 4.13
) MATHS500 392 366 | 845 7.89 | 410 3.83 | 423 395
GSMSK 362 338 | 748 698 | 3.87 3.61 | 398 3.72

Averageratio | 1.00x 1.00x | 2.19x 2.19x | 1.05x 1.05x | 1.08x 1.08x

tokens. Formally, we use a binary halting rule:

o - {O, if h; =0 (easy token)

Dimax, ifh; =1 (hard token) ©)

If the iteration depth goes beyond 2 (Dy,ax > 2), we use the reference model’s cross-entropy as a
non-binary indicator of difficulty. Define

ref 0
0" = —logp{ptin)-
We then map difficulty to halting depth via monotone quantile binning:
H' = LQuantileRank(égef) . DmaXJ , (10)

where QuantileRank(-) € [0, 1] is the empirical CDF over the training set (higher loss = deeper
halting). This induces per-depth continuation labels cz(-d) =Wd < H]|ford € {0,1,..., Dpax}-

Experiment Result. Specifically, we train a 1.7B TaH with a maximum per-token iteration count
of 3, using oracle labels generated by the method described above. As shown in Table [12] TaH-3
achieves a further improvement of 0.8 % on average over TaH-2.

18

Under review as a conference paper at ICLR 2026

Table 12: Performance comparison between TaH-2 and TaH-3 (maximum per-token iterations of
2 and 3, respectively). Iter.2 and Iter.3 denote the per-token percentages executing two and three
iterations, respectively.

| Standard | TaH-2 | TaH-3
Param. Dataset | Acc. | Acc. Iter.2 | Acc. Tter2 Iter.3
MATHS500 68.4 74.4 5.6 72.6 5.3 0.2
GSMS8K 82.1 84.5 7.5 84.8 7.6 03
178 AMC23 42.2 48.4 4.2 48.7 5.1 0.1
’ OlympiadBench 33.0 388 57 | 416 54 0.2
AIME25 13.3 17.9 6.0 204 5.3 0.1
Average | 478 | 528 58 | 536 57 0.2

Table 13: Performance on MATHS500 and GSM8K-500 (first 500 GSMS8K samples)

‘ Method
Dataset | Standard-0.6B Ponder-1.4B
MATHS500 47.2 2.0
GSM8K-500 62.8 1.8
Avg. \ 55 1.9

A.2.5 ADDITIONAL LATENT THINKING METHODS

Some latent thinking methods requires pre-training and uses base model other than Qwen3. We
also compare with these methods, including Ponder (Zeng et al. [2025). Specifically, we adopt the
released pretrained PonderingPythia-1.4B as the base model and perform SFT on the same train-
ing data. We observe that the fine-tuned model learns the stylistic patterns of the training data,
but still underperforms substantially, which may be attributable to the limited capability of the
PonderingPythia-1.4B backbone.

A.2.6 TRAINING RECIPE INFLUENCE

Figure [[3] expands Table [3] by showing validation perplexity dynamics across different supervision
signals and iteration policies. The naming convention matches Table 3] TaH with token-only super-
vision and the oracle policy yields lower perplexity than iter. decider and token+latent. Although
the dynamic policy achieves the lowest perplexity, it fails on downstream tasks and often produces
infinite-loop generations.

A.3 ADDITIONAL ANALYSIS
A.3.1 ORACLE PoLICY AND HARD TOKEN ANALYSIS

Metrics for Hard Token Labeling. We investigate different metrics for defining hard tokens to
validate our choice of top-1 prediction mismatch. We compare three labeling strategies:

1. Top-1 Mismatch (TaH Default): Labels a token as hard if the reference model’s greedy
prediction differs from the ground truth.

2. Entropy (TaH-Entropy): Labels a token as hard if the reference model’s prediction entropy
exceeds a threshold.

3. Cross-Entropy (TaH-CE): Labels a token as hard if the reference model’s cross-entropy
loss exceeds a threshold.

To ensure a fair comparison, for TuH-Entropy and TaH-CE, we set the thresholds such that the
number of hard tokens in each sample matches the total ratio from the default Top-1 Mismatch
policy. This isolates the impact of which tokens are selected, rather than how many.

19

Under review as a conference paper at ICLR 2026

| — TaH-CE
a 3 — TaH-Entropy
c — TaH
el — Standard
-+
3
= 2
>
| e— -
1 2 3 4 5

Epoch

Figure 6: Validation loss curves of 0.6B models trained with different oracle labeling metrics. The
default Top-1 Mismatch policy yields the lowest validation loss.

Table 14: Performance comparison of different difficulty metrics (Entropy, Cross-Entropy, and Top-
1 Accuracy) on 0.6B models. All methods mark the same total number of tokens as "hard.”

Method MATHS00 AMC23 OlympiadBench Average
TaH-Entropy 42.0 21.9 16.9 26.9
TaH-CE 474 21.2 20.4 29.7
TaH 51.2 32,5 239 359

Figure [6] compares the validation loss, and Table [T4] reports downstream accuracy on 0.6B models.
While cross-entropy (TaH-CE) improves over entropy labeling (TaH-Entropy), the Top-1 Mismatch
policy (TaH) achieves superior performance across all benchmarks. This empirically verifies that
directly targeting tokens where the model’s top-1 prediction is wrong is the most effective way to
identify hard tokens for TaH.

Labeling Robustness. We investigate the robustness of hard-token labels with respect to the choice
of reference model. We do so by analyzing the consistency of hard-token identification across
different model scales (e.g., Qwen3-0.6B, 1.7B, and 4B).

First, we quantify the agreement between models. As shown in Figure [/} hard tokens exhibit high
consistency across scales. Notably, even a smaller, less accurate reference model (1.7B) successfully
identifies 81% of the hard tokens for a larger model (4B).

Second, to understand the quality of this overlap, we partition tokens into an overlap set (marked
as hard by both models) and a non-overlap set (marked as hard by only one model). We plot
the cross-entropy loss under each reference model in Figure [§] We observe that overlap tokens
have substantially higher average cross-entropy (= 2.0x) than non-overlap tokens for all reference
models. This indicates that either reference model can identify this core set of “hard” tokens, which
corresponds to positions of genuine, high uncertainty. It reveals a consensus on hardness among
models even of different sizes.

4.8 3.2 4.1 2.8
Qwen3-0.68 Qwen3-1.7B Qwen3-1.78 Qwen3-4B
(a) Overlap between Qwen3-0.6B and 1.7B (b) Overlap between Qwen3-1.7B and 4B

Figure 7: Venn diagrams illustrating the overlap of hard-token labels between different reference
models. The high overlap proportions indicate that ’hard” tokens are largely consistent across model
scales.

20

Under review as a conference paper at ICLR 2026

2 4 6 8 10 2 4 6 8 10
Cross Entropy Cross Entropy

(a) Qwen3-1.7B: cross-entropy of overlap vs. non- (b) Qwen3-0.6B: cross-entropy of overlap vs. non-
overlap hard tokens (w.r.t. Qwen3-0.6B). overlap hard tokens (w.r.t. Qwen3-1.7B).

overlap tokens 17.5
m= non-overlap tokens

okens
a

2

6 8 1 2

6 8 1

4 4
Cross Entropy Cross Entropy

(c) Qwen3-4B: cross-entropy of overlap vs. non- (d) Qwen3-1.7B: cross-entropy of overlap vs. non-
overlap hard tokens (w.r.t. Qwen3-1.7B). overlap hard tokens (w.r.t. Qwen3-4B).

Figure 8: Token-level cross-entropy distributions of overlap and non-overlap hard tokens across
different reference model pairs. For each pair of reference models (e.g., Qwen3-1.7B and Qwen3-
0.6B), we plot the cross-entropy of tokens labeled as hard by both models (overlap) and by only one
model (non-overlap) on both reference models.

Table 15: Iteration decider behavior and downstream gains on different validation subsets. The
decider is trained once on general OpenR1 and evaluated without retraining.

Metric Math Code QA
Iteration Percentage 7.8% 10.7% 26.6%
Iteration Accuracy 86.7% 823% 76.6%

Benchmark Gain over Standard +6.8% +7.9% +5.8%

A.3.2 ITERATION DECIDER ROBUSTNESS

We evaluate the iteration decider, trained on the general OpenR1 corpus, across three validation
subsets (Math, Code, and QA) to quantify its robustness and cross-domain generalizability. As
summarized in Table[T3] the decider maintains high decision accuracy across all domains without
any retraining.

Despite being invoked on only 7.8-26.6% of tokens, the decider consistently yields 5.8-7.9% ab-
solute accuracy gains over the standard single-pass baseline on all three domains. Moreover, the
decider automatically adjusts its iteration rate according to task difficulty: it iterates more frequently
on QA (26.6%) than on Math (7.8%), even under a fixed threshold cgyresholg = 0.9. This behavior
indicates that the decider responds to intrinsic uncertainty signals in the model’s predictive distri-
bution rather than memorizing domain-specific patterns, consistent with the token-level difficulty

analysis in Appendix[A.3.3]

A.3.3 HARD TOKEN IDENTIFIABILITY

Why is the iteration decider robust and generalizable across tasks? We investigate this by analyzing
the intrinsic properties of "hard” tokens.

21

Under review as a conference paper at ICLR 2026

hard tokens under oracle policy
= other tokens.

hard tokens under oracle policy
== other tokens.

Averac hard tokens under oracle policy
0.68 = other tokens.

15 05 10 1s 20 25 30 15
Entropy. Entropy. Entropy.

(a) Math (b) Science (c) Code

Figure 9: Output Logit entropy distribution at the first iteration of TaH, categorized by oracle policy’s
difficulty labels (hard token) on the OpenR1 validation set (Math, QA, Code). The distinct separation
between distributions confirms that TaH’s internal logits provide a strong, task-agnostic signal for
identifying hard tokens.

Table 16: Conditional probabilities of continuation confidence and next-token distribution.

Token Ty P(c™) > cpeshola | 0 = T1) Token Ty P(t2) =Ty | t() = T)

So 13.63%
But 34.3% Wait 12.17%
Therefore 8.95%
So 28.17%
So 17.7% Therefore 13.67%
But 4.89%

We compute the token entropy of hard and easy tokens across three diverse subsets of the OpenR 1
dataset (Math, Science, and Code). As shown in Figure EL hard tokens exhibit a universal signature
of significantly higher entropy (> 5x) compared to easy tokens. This distinct separation confirms
that "hardness” is an intrinsic, robustly identifiable property of the model’s predictive state, rather
than a complex, task-specific pattern. Given this clear signal, the neural iteration decider can easily
learn reliable classification strategies that generalize well across different domains.

A.3.4 TOKEN ALTERNATION PATTERN

We analyze tokens that most frequently trigger a second iteration (’think-twice” tokens). For each
token type ¢, we compute the continuation rate

Pr (01(1) > Citreshold | Ti = 1),

using the inference threshold cipreshold = 0.9 (Section @ We estimate this quantity on the Open-
R1 validation set and, for diagnostics, randomly sample 10K token positions (=20.4% of tokens)
to track whether the next-token prediction switches between depth 1 and depth 2. This setting
quantifies which token types most often trigger an additional iteration and how often iteration alters
the predicted next token.

A.3.5 ITERATION DECISION ERROR

We analyze how iteration decision accuracy affects TaH’s end-to-end response quality, since iteration
decider will not be perfect as shown in Figure [T0] To this end, we randomly inject errors into
the oracle iteration-decider predictions at different rates. Formally, we denote the original oracle
prediction as the label | € {0,1} and the altered prediction as the output o € {0, 1}. We define the
iter. error as the total proportion of deliberately introduced errors:

iter. error = P(l #0) = P(l=1,0=0)+P(l=0,0=1). (11)

underthink rate overthink rate

We further distinguish the impacts of overthinking and underthinking. Here, overthinking refers
to cases where the decider incorrectly signals continue, while underthinking corresponds to cases

22

Under review as a conference paper at ICLR 2026

o
o

Iter. Decider Acc.
o©
(o)}

1 2
Epoch
Figure 10: Iteration-decider accuracy vs. epoch (Qwen3-0.6B).

Table 17: TaH performance under different iteration-decider error rates. All values are reported in
percentages.

Iter. Error (%) Underthink (%) Overthink (%) \ MATH100 Accuracy (%)

0.0 0.0 0.0 80.0
2.8 2.8 0.0 78.0
10.0 1.5 8.5 554
15.0 2.1 12.9 45.2
20.0 2.5 17.5 27.1
221 0.0 221 21.6

where it incorrectly signals stop. Table|17|shows how TaH’s MATH100 accuracy varies with differ-
ent iteration error rates. We quantify these effects by fitting a linear model to the data:

accuracy = —1.41 x underthink rate — 2.73 x overthink rate 4 0.81.

This analysis indicates that inaccurate iteration decisions are the main factor behind the performance
gap between TaH and its oracle variant, with overthinking being the dominant source of performance

gaps.
A.3.6 DUO-CAUSAL ATTENTION PATTERN

We perform forward computation on 100 samples, each with a length of 128 tokens. Figure [TT]
shows the average attention weights of three representative attention heads in the second iteration of
the TaH model. The left panel illustrates a head that mainly attends to keys from the first iteration.
The middle panel shows a head focusing on keys from the second iteration. The right panel displays
a head with a balanced attention distribution. These results suggest that the TaH model, under the
duo-causal attention mechanism, can automatically learn diverse attention patterns across layers and
heads.

Figure (12| further presents the total attention scores assigned to keys in the first iteration. It can be
seen that the first layer tends to focus more on keys from the second iteration. Different layers also
exhibit varying attention behaviors.

A.4 IMPLEMENTATION DETAILS
A.4.1 DUO-CAUSAL ATTENTION IMPLEMENTATION

Figure[[4]illustrates the implementation of duo-causal attention, with the formal definitions provided
below.

(1) KV cache concatenation. At depth d, we form the visible K/V sequence by concatenating all
shallower-to-current depths along the sequence dimension:

KVED — [KV(l) : Kv® Ceees Kv@].
This realizes the accessible set in Equation [3] allowing deeper iterations to access all shallower

iterations while preserving positional causality. The KV cache is managed by iteration depth during

23

Under review as a conference paper at ICLR 2026

L0 HO - Key in iter.1 L9 H6 - Key in iter.1 L8 H14 - Key in iter.1

le-3

2.00

1.75

1.50

Query Positions

1.25

LO HO - Key in iter.2 L9 H6 - Key in iter.2 L8 H14 - Key in iter.2 11.00

Attention Weight

r0.75

r0.50

r0.25

Query Positions

—-0.00

Key Positions Key Positions Key Positions

Figure 11: TaH duo-causal attention pattern.

Iter. decider
Dynamic

PPL

~a~ K1 mean

K1 sum attention (+ std)
Validation
NN W
o w o

TaH
Token+latent

04 1.5 —
02 1 2 3 4 5
S S R R R R Epoch

2 1a
Layer

Figure 12: TaH mean and standard deviation of Figure 13: Validation perplexity for different
attention weights (key from iteration 1) across training schemes.
layers in iteration 2.

decoding, as shown in Figure [T4|b). The fragmented K'V-cache management strategy is standard in
existing LLM serving systems (Kwon et al., 2023 [Zheng et al., 2024).

(2) Two-dimensional causal mask. For a query (i, d), a key (j, k) is attendable iff j < i and k < d.
We implement this as an additive attention mask with 0 for allowed entries and —oo otherwise,
enforcing positional and iteration causality jointly. Figure[I4c) visualize the landscape of the duo-
causal attention mask. When d = 1 for all tokens, the rule reduces to standard causal attention.

(3) Compatibility with efficient attention. The mask is provided in the standard additive form
and the concatenated K/V remain contiguous along the sequence dimension, matching the usual
scaled dot-product attention interface. As a result, duo-causal attention is directly compatible with
optimized kernels such as FlashAttention, without kernel modifications.

A.5 ADDTIONAL RELATED WORK

Instead of using the shared model parameter multiple times through latent iteration, previous work
also proposes layer skipping methods for dynamic computing allocation.

Layer Skipping. Layer skipping aims to accelerate LLM inference by dynamically bypassing cer-
tain layers for specific tokens. Some methods use a learnable module to make real-time skipping
decisions. MoD (Raposo et al.,|2024) uses a top-k router to select a subset of tokens for processing,

24

Under review as a conference paper at ICLR 2026

key
iter 1 iter 2 iter 3

(2 62 (-2
3,2
Sl

token
(a) concept

(token id, iter depth)

iter depth

iter 1

iter 3 @
iter 2 3,2
iter 1 m

(b) storage (c) attention computation

[]
[]
[]

1

iter 2

iter 3

query
Eo|PEE EEEE

Figure 14: Duo-causal attention implementation. (a) Conceptual TaH example with dynamic itera-
tion depths. Each cell denotes a token—depth pair (token id, iter depth). (b) Each iteration maintains
its own KV cache. (c) KV caches from all iterations are concatenated into a 1D sequence and
processed with standard attention under a duo-causal mask. The duo-causal mask is conceptually
partitioned into blocks by iteration depth. The diagonal blocks use a standard causal mask, while
off-diagonal blocks use reduced causal masks that enforce the duo-causal rules.

while FlexiDepth (Luo et al., 2025)) uses a plug-in router to determine whether a layer should be
bypassed. Others use a fixed strategy to skip layers. SkipDecode (Del Corro et al.,2023)) enforces a
monotonically decreasing number of active layers during generation. However, these methods still
require loading the entire model’s parameters, resulting in a large memory access overhead. Instead
of skipping some layers, TaH adds computational depth by allowing core tokens to undergo mul-
tiple refinement iterations. This approach provides greater computational depth without increasing
the model’s parameter count.

A.6 LIMITATIONS AND FUTURE WORK

Comparison with Official Qwen3 Models. Official Qwen3 models are trained on different data
distributions and scales, and use different training procedures, including on-policy distillation (Yang
et al.; 2025). By contrast, our models use SFT only on limited, publicly accessible data. Conse-
quently, performance may differ between the two.

Future Work. We consider advanced training techniques largely orthogonal to TaH. Promising
directions include: (1) integrating TaH with online distillation to provide stronger supervision; (2)
applying reinforcement learning to optimize the compute—accuracy trade-off and to learn continua-
tion policies beyond imitation. Due to resource constraints, this work focuses on SFT with public
data; we leave these combinations for future work.

A.7 USE OF LARGE LANGUAGE MODELS (LLMS)

Large language models (e.g., GPT-5, Gemini) were used exclusively for proofreading and minor
copyediting. They were not employed to generate scientific content, contribute to research ideation,
or design methods. All research ideas, methods, and conclusions are solely the responsibility of the
authors.

25

Under review as a conference paper at ICLR 2026

A.8 EXAMPLES

We use an example question from AIME25 and responses from Standard, TaH and AlwaysThink to
provide an intuitive understanding of our method. Only TaH can successfully answer this question.
Blue-highlighted tokens indicate positions that undergo two iterations.

Text 1. Question

On AABC points A, D, E, and B lie that order on side AB with AD = 4, DE = 16, and
EB = 8. Points A, F, G, and C lie in that order on side AC with AF' = 13, FG = 52, and
GC = 26. Let M be the reflection of D through F', and let IV be the reflection of GG through
E. Quadrilateral D EGF has area 288. Find the area of heptagon AF N BCEM.

26

Under review as a conference paper at ICLR 2026

Text 2. Standard Re-
sponse

Okay, let me try to
figure out this problem
step by step. It’s about a
heptagon formed by re-
flecting points and find-
ing its area. ... We have
triangle ABC. On side
AB, points A,D,E,
and B are in that or-
der. The lengths are
given as AD = 4,
DFE = 16, and EB =
8 So AB = 28
...On side AC, points
A, F,G, and C are in
that order with AF =
13, FG = 52, and
GC = 26.So AC =91
...Let me place point
A at (0,0) and B at
(28,0) ...Let C be at

Area of quadrilateral
DEGF can be cal-

culated ... Applying
the shoelace formula

_ 1 1248h __
...Area = 3 - 5T —
624h = 6h

SO with 288: 6h —
288 = h = 288 — 48
Reflections: M is the
reflection of D through
F and N is the reflec-
tion of G through E
..M = (22,0), N =
(39,0), B = (28,0),
C = (91,48), F =
(20,0) ...

Using the shoelace for-
mula for AFN BCEM
in order ...Sum = 0 +
0+0+1344+(—960)+
0+0=384

Take absolute value and
multiply by 1/2: Area

=1./384] =192
Final Answer X

Text 3. TaH Response

Okay, let’s try to tackle
this geometry problem.
It seems a bit complex
with all these points
and reflections, . . . First,
let me visualize trian-
gle ABC. Points D, E,
and B are on side AB
with AD = 4, DE = 16,
and EB = 8. ...Let me
set up a coordinate sys-
tem. Let’s place point
A at the origin (0,0)
...Then, since AB is
a line segment, let me
assume AB is along
the z-axis. So point
B would be at (28,0)
...Now, points F', G, C
are on AC ...Let me
define coordinates for C'
as (¢, ¢y) ...

Compute the sum of

TilYit1l — Tip1y; for

eachi ...

%})}1&8 of all term%:2 0+

< 40— > 9? =

(1300—52)c, _ 1248c,
91 91

Then, the area is % -

2
1248c, | _ 624c,
91 | = o1

Compute the area of
this heptagon ...
Using shoelace formula

Term2: —240 Term3:
840 Term4: 1176
Term5: -840 Termb6:
240 ...

Sum: 0 — 240 + 840 +
1176 —840+240+0 =
1176

Take absolute value and
multiply by 1/2: Area

= 1-]1176| = 588
Final Answer v

Text 4. AlwaysThink
Response

Okay, so I need to find
the area of the hep-
tagon AFNBCEM. Let
me first try to visualize
the problem. There’s
triangle ABC. On side
AB, there are points A,
D, E, and B. The order
is A, D, E, B. The dis-
tances given are AD=4,
DE=16, and EB=8. So,
starting at A, moving 4
units to D, then 16 units
to E, then 8 units to B.
So, the total length of
AB is AD + DE + EB
=4+ 16 + 8 = 28 units.
Got that.

Points in order: D(4,0),

E(20,0), F(13,h),
G(65,h), back to
D(4,0).

Compute the terms:

Sum these terms: 0 +
20h—52h—4h = —36h

Take absolute value
and multiply by
1/2: Area =

(1/2) = | — 36h| =
(1/2) * 36|h| = 18|h]
But the area is given as
288, s0 18|h| = 288 =
|h| = 16.

Now, apply the shoelace
formula ...Therefore,
total sum is 8640/17
Take absolute value
and multiply by
1/2: Area =
(1/2) = |8640/17| =
8640/34 = 4320/17 =~
254.1176

;[:l;erefore, the answer is
4320/17.

4320

117 X

Final Answer

27

	Introduction
	Related Work
	Preliminary
	TaH Design
	Duo-Causal Attention
	Model Architecture
	Training Scheme

	Experiment
	Setup
	Performance
	Design Choice Exploration
	Behavior Analysis

	Conclusion
	Appendix
	Additional Experiment Setups
	Training Recipe
	Baseline Setups
	Parameter Breakdown
	Latent Overthinking Analysis Setup

	Additional Experimental Results
	Generalizability
	Real-world Efficiency
	Theoretical Efficiency Analysis
	Iteration Depth Beyond Two
	Additional Latent Thinking Methods
	Training Recipe Influence

	Additional Analysis
	Oracle Policy and Hard Token Analysis
	Iteration Decider Robustness
	Hard Token Identifiability
	Token Alternation Pattern
	Iteration Decision Error
	Duo-causal Attention Pattern

	Implementation Details
	Duo-causal attention implementation

	Addtional Related Work
	Limitations and Future Work
	Use of Large Language Models (LLMs)
	Examples

