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Abstract

The process of transferring knowledge from a source domain to a target domain in the ab-
sence of source data constitutes a formidable obstacle within the field of source-free domain
adaptation, often termed hypothesis adaptation. Conventional methodologies have been
dependent on a robustly trained (strong) source hypothesis to encapsulate the knowledge
pertinent to the source domain. However, this strong hypothesis is prone to overfitting
the source domain, resulting in diminished generalization performance when applied to the
target domain. To mitigate this issue, we advocate for the augmentation of transferable
source knowledge via the integration of multiple (weak) source models that are underfitting.
Furthermore, we propose a novel architectural framework, designated as the Hierarchical
Feature Ensemble (HiFE) framework for Few-Shot Hypotheses Adaptation, which amalga-
mates features from both the strong and intentionally underfit source models. Empirical
evidence from our experiments indicates that these weaker models, while not optimal within
the source domain context, contribute to an enhanced generalization capacity of the resultant
model for the target domain. Moreover, the HiFE framework we introduce demonstrates
superior performance, surpassing other leading baselines across a spectrum of few-shot hy-
pothesis adaptation scenarios.

1 Introduction

Domain adaptation (DA) (Ben-David et al., 2010) refers to the study of leveraging labeled data in a source
domain (SD) to obtain a predicted model for a given target domain (TD) where labels are insu�cient or
unavailable. Conventional DA methods (Ahmed et al., 2021; Jiang et al., 2021; Kang et al., 2019; Sukhija
et al., 2016; Wang et al., 2019) pose a potential risk of exposing private information caused by accessing
the source data. To mitigate this concern, recent studies have introduced source-free DA, also referred to
as hypothesis adaptation (HA) (Liang et al., 2020; Li et al., 2020; Yang et al., 2021; Yi et al., 2023), which
leverages a source model to encode the knowledge from the source domain rather than the source data.
Recently, few-shot HA (FHA) (Chi et al., 2021; Yazdanpanah & Moradi, 2022), which operates e�ectively
in scenarios with limited labeled data from the target domain, has emerged as an appealing approach to
address data scarcity. A typical application area of FHA is medical diagnostics. For instance, when employing
Magnetic Resonance Imaging (MRI) as the SD and X-ray imaging as the TD, FHA can mitigate challenges
such as the inaccessibility of source data owing to patient confidentiality and the scarcity of labeled target
X-ray data. The existing FHA methods aim to adapt a strong model (with the best source accuracy) trained
on the SD to generate a target hypothesis, which is supposed to outperform the one generated solely from
limited target data.

Nevertheless, one single strong model may overfit the SD and perform worse on the TD after the adaptation,
as indicated by the result of an experiment. In this experiment, we adapt models with di�erent accuracies
from the digit dataset SVHN to the target task MNIST. The findings depicted in Figure 1 demonstrate
that even with a straightforward fine-tuning on the TD, under-fitted weak source models (e.g., Model-4
[source acc=76.0%]) exhibit superior performance compared to the strong one (e.g., Model-1 [source acc =
92.2%]). This indicates that some weak hypotheses that convey source knowledge not encoded in

the strong hypothesis could generalize better to the TD. This research is focused on harnessing the
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Figure 1: This figure depicts the FHA process from SVHN to MNIST. Four source models were generated
using the training data from SVHN and fine-tuned with di�erent quantities of samples from MNIST. The
y-axis indicates the performance rank after adaptation, with the highest accuracy in the TD ranked first.
Model-4, despite having the lowest source accuracy (76%), exhibits notably superior performance on the TD
compared to Model-1, which has the highest source accuracy (92.9%).

readily available weak models for single-source FHA tasks. Notably, the routine training of source models
naturally produces a series of weak intermediate models that are usually overlooked and discarded. However,
these models are easily obtainable, as reaching out to the source provider to acquire additional weak models
results in minimal additional cost. This approach is grounded in the practical advantage of utilizing resources
that are often already at hand, yet underutilized.

A new problem: FHAW. Our motivation arises from the above observation that the weak models,
although suboptimal for the source domain, may possess underlying knowledge that could be instrumental
in the target domain. Thus, we propose to study a new problem: few-shot hypotheses adaptation with weak
models (FHAW). Compared with previous single-source FHA approaches (Chi et al., 2021; Liang et al.,
2020) that rely solely on a single strong hypothesis, FHAW aims to utilize several source hypotheses with
varying degrees of accuracy to enhance the diversity of source models. Although some researchers have
advocated utilizing multi-source-hypotheses for HA (Ahmed et al., 2021; Shu et al., 2022; Li et al., 2024),
these approaches operate under the assumption that multiple strong source hypotheses from di�erent domains
are available, making them ine�ective when presented with weak hypotheses. Our research investigates the
significance of weak source hypotheses from the same SD in the HA process, bypassing the need for access
to multiple source domains.

A viable approach to solve FHAW. To mitigate the potential negative transfer arising from weak models
and extract valuable source knowledge for the target task, we have developed a new and e�cient framework
called the Hierarchical Feature Ensemble framework (HiFE) to address FHAW, as illustrated in Figure 2. The
HiFE method employs hierarchical ensemble techniques to enhance the representativeness of intermediate
features. It utilizes weighted residual units (WRU) to aggregate features induced by the source hypotheses,
as illustrated in Figure 2 (b). WRU merges similar features with skip connections to reduce the risk of
forgetting the source knowledge, alleviating the overfitting problem when fine-tuning with few-shot samples.
Furthermore, we incorporate feature decorrelation learning (DeCL) by integrating a correlation penalty term
into the standard classification loss, thereby enhancing the diversity of intermediate features (refer to Figure 2
(c)). Comprehensive results indicate that HiFE delivers state-of-the-art (SOTA) performance across various
domain adaptation tasks.

Main contributions. Our contributions are three-fold:

• To the best of our knowledge, this is the initial investigation into the FHAW problem. FHAW holds
practical relevance in numerous private data-based scenarios, as source providers are inclined to o�er
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"redundant" weak models instead of disclosing sensitive datasets. Our work introduces a fresh perspective
to encoder the source knowledge in the absence of the source data.

• We propose a new framework to aggregate all source hypotheses at the feature level to address the FHAW
problem. We are the first to apply a hierarchical ensemble at the feature level in hypotheses adaptation.
We e�ectively alleviate the over-fitting problem by the design of WRU and improve the generalization of
the final hypothesis by incorporating feature DeCL loss under the few-shot setting.

• The comprehensive evaluation of the proposed HiFE methodology, conducted over an array of benchmark
datasets—including MNIST, SVHN, USPS, CIFAR-10, STL-10, Amazon, DSLR, and Webcam—has es-
tablished that our approach achieves performance on par with or exceeding current SOTA methods in
various Feature Hashing Algorithm (FHA) tasks. Notably, as detailed in Table 2, the HiFE method
surpasses the SOTA by an average accuracy of 4.3% in the digit dataset task USPS æ MNIST. Similarly,
in the task of adapting DSLR to Webcam datasets, as shown in Table 3, HiFE outperforms the SOTA
by 3.6% in accuracy.

2 Related Work

This section presents a brief overview of the literature about traditional domain adaptation, hypothesis
adaptation, multi-hypotheses adaptation, and ensemble methods for hypothesis adaptation.

Domain adaptation (DA). Traditional DA is a subfield of machine learning that focuses on learning a
hypothesis for a TD when labeled data is insu�cient or unavailable by leveraging labeled data from an SD.
Numerous DA methods have been proposed for various tasks such as object classification (Liang et al., 2018),
object detection (Hsu et al., 2020), and semantic segmentation (Zou et al., 2018). Existing approaches for
DA can mainly be categorized into two classes: feature-based DA and instance-based DA. The former aims
to learn a domain-invariant representation by minimizing the domain discrepancy in a shared space (Kang
et al., 2019; Long et al., 2017). For example, Gradually Vanishing Bridge (Cui et al., 2020) uses bi-directional
generation to learn domain-invariant representations. The latter minimizes the discrepancy by re-weighting
the source samples for better training. Despite the success achieved by these methods, they require access to
source data during the learning process, which incurs significant costs in terms of data transfer and storage
as well as risks related to personal information leakage.

Hypothesis adaptation (HA). Researchers have started exploring source-free domain adaptation (SFDA),
namely HA, to mitigate the issues arising from accessing source data. Early works addressed the problem
by fine-tuning the source hypothesis on the target data (Girshick et al., 2014). However, recent studies
have delved into unsupervised DA to investigate the limitations of this straightforward strategy (Ding et al.,
2022; Liang et al., 2020; Yang et al., 2022; Yi et al., 2023). Among these methods, SHOT (Liang et al.,
2020) proposes a representation learning framework to update the feature extractor through information
maximization and self-supervised pseudo-labeling loss. In this framework, pseudo-labels of the target data
are refined using the nearest centroids. Similarly, (Yi et al., 2023) views SFDA as the problem of learning with
label noise and suggests exploiting the early-time training phenomenon to tackle the issue of pseudo-labels.
Notably, these methods rely on large amounts of unlabeled data from the TD to purify the pseudo-labels.
On the other hand, TOHAN (Chi et al., 2021) is the first study to explore the HA under a few-shot setting.
It proposes generating an intermediate domain that is compatible with the TD to facilitate transfer learning.
Many previous works rely on a strong source hypothesis for adaptation, which may not always be the most
suitable one for adapting to a specific TD.

Multi-hypotheses adaptation (MHA). MHA extends the HA paradigm by integrating knowledge from
source hypotheses from multiple domains. To tackle this, model selection methods (Nguyen et al., 2020; You
et al., 2021) have been developed to estimate the transferability of each pre-trained hypothesis. However,
the single selected hypothesis may not be able to carry the rich knowledge encapsulated in all of the source
hypotheses. Thus, some researchers have turned to parameter ensemble methods (Ahmed et al., 2021; Rusu
et al., 2016; Shu et al., 2022; Li et al., 2024). Yet, these approaches often require significant amounts
of unlabeled target data to be e�ective, making them less tenable in the FHA setting. Moreover, these
approaches operate under the assumption that each source hypothesis is a strong one from the corresponding
SD, rendering them ine�ective when presented with weak hypotheses. Besides, these approaches require
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accessing multiple source domains related to the TD, which is often not feasible. Our research focuses on a
more practical and challenging scenario: only one SD is available.

Ensemble methods for HA. Ensemble methods are prominent research in machine learning (Dietterich,
2000; Dong et al., 2020; Sagi & Rokach, 2018; Eilers et al., 2022). These methods have demonstrated
that combining multiple hypotheses is advantageous over a single hypothesis in classification and regression
problems. However, traditional ensemble methods rely on weighted voting for the final decision and lack the
capability of representation learning (Cao et al., 2012). Thus, some researchers have proposed feature-level
ensembling. Studies have demonstrated the e�ectiveness of hierarchical feature representation in improving
classification accuracy (Cai et al., 2018; Su et al., 2009). In FHA, the research on developing hierarchical
feature-level ensemble methods to derive a comprehensive knowledge representation of all source hypotheses
remains limited.

3 Few-Shot Hypotheses Adaptation with Weak Models

3.1 Problem Definition

We address the problem of few-shot hypotheses adaptation with weak models, where several pre-trained
source hypotheses, including one strong and some weak hypotheses, are given. Let X µ Rd be an input
space and Y := {1, . . . , C} be the label space, where C is the number of classes. To formalize the problem
clearly, some definitions are presented as follows.
Definition 1. (Expected and empirical risk). Given a data distribution P over X ◊Y, let H = {h : X æ Y}

be the hypothesis space and h◊ œ H with the parameter ◊ œ �, then the expected and empirical risks are
defined as

L(◊h) = E(x,y)≥P [¸(◊h, x, y)],

L̂(◊h, D) = 1
n

nÿ

i=1
(¸(◊h, xi, yi)),

where ¸ is a proper loss function and D = {(xi, yi)}n
i=1 ≥ P n denotes the i.i.d. n observations.

Definition 2. (Strong Hypothesis). Given a set of hypotheses Ĥ = {hm
}

M
m=1 from domain S with data

D, where M is the hypothesis number, a hypothesis hs œ Ĥ is called a strong hypothesis if ’h œ Ĥ,
L̂(◊hs , D) Æ L̂(◊h, D).
Definition 3. (Weak Hypothesis). Given a set of hypotheses Ĥ = {hm

}
M
m=1 from domain S with data

D, where M is the hypothesis number, a hypothesis hw œ Ĥ is called a weak hypothesis if ÷h œ Ĥ,
L̂(◊h, D) < L̂(◊hw , D).

Problem 1. (Few-Shot Hypotheses Adaptation with Weak Models (FHAW)). Given a set of hypotheses
Ĥ with a strong hypothesis hs and M weak hypotheses {hm

w }
M
m=1 trained on the SD PS(X, Y ), nt target

labeled data Dt = {(xi
t, yi

t)}nt
i=1 that i.i.d. drawn from PT (X, Y ) with nt π ns and PS(X, Y ) ”= PT (X, Y ),

FHAW is to learn a target hypothesis ht : X æ Y with hs, {hm
w }

M
m=1 and Dt to minimize the expected risk

on the TD.

Comparison with FHA. FHA involves the use of a strong hypothesis derived from the SD. However, such
a hypothesis is prone to over-fitting on the SD, and their generalizability towards the TD can be limited.
To address this challenge, we introduce FHAW by leveraging multiple weak hypotheses to facilitate more
e�ective adaptation. These weak hypotheses can be easily obtained by saving model snapshots during the
training of the strong source model with minimal additional cost.

3.2 Addressing FHAW in Principle

We will present a theoretical view based on the PAC-Bayesian framework (Germain et al., 2009; McAllester,
1999; Masegosa, 2020) to demonstrate why we propose to incorporate multiple weak hypotheses for FHA and
why our HiFE framework works. In the PAC-Bayesian framework, each hypothesis h◊ has prior knowledge
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of the hypothesis space �, and this prior distribution fi is updated to a posterior distribution fl after
feeding samples D to h◊. In FHAW, multiple models {h◊i}

M
i=1 are given with ◊i œ �i, ◊ = {◊i}

M
i=1 and

fl(◊) =
rM

i=1 fli(◊i). For a given sample (x, y), we apply the cross-entropy loss ¸(◊, x, y) = ≠ log p(y|x, ◊). A
bound theorem from (Deng et al., 2023) for the model ensemble is restated below, and the related theorems
are shown in B.
Theorem 1. (Model ensemble error bound (Deng et al., 2023)). Given a data distribution P over X ◊ Y,
a set of model parameters {�i}

M
i=1 with associated prior {fii}

M
i=1, where fii is defined over �i with fii(◊i) ≥

N (0, ‡2I), a ” œ (0, 1], a real number c > 0, and fli(◊i) is a Dirac-delta distribution centered around ◊
Õ

i with
fli(◊i) = ”◊

Õ
i
(◊i), then we have that the Efl(◊)(L(◊)) is upper bounded by

1
M

Mÿ

i=1

1
L̂(◊

Õ
i , D) +

1
2cn‡2 Î ◊i Î2 +

di

2cn
log(2fi‡2)

2
≠ V̂(fl(◊), D) +

‘

cnL
,

where V̂(fl(◊), D) is the empirical version of a variance term V(fl(◊)), which is defined as

Efl(◊)E(x,y)≥P

C
1

2Mmax◊p(y|x, ◊)2

Mÿ

i=1

A
p(y|x, ◊i) ≠

1
M

Mÿ

k=1

p(y|x, ◊k)

B2D
,

and ‘ is defined as

log
Efi(◊)ED≥P n

5
e

cn
!qM

i=1
(L(◊i)≠L̂(◊i,D))≠M(V(◊)≠V̂(◊,D))

"6

”
.

In Theorem 1, the variance term V̂(fl(◊), D) measures the diversity of all models (Masegosa, 2020). If there
exists an input sample x such that h◊i(x) ”= h◊j (x), then we have V̂(fl(◊), D) > 0. Therefore, in the setting
of FHAW, adding weak hypotheses increases the diversity of the source models and provides opportunities
to decrease this error bound. Minimizing the first term of the error bound in Theorem 1 is equivalent to
finding ◊ = {◊i}

M
i=1 by min◊

qM
i=1

1
L̂(◊i, D) + ⁄1 Î ◊i Î

2 +⁄2di

2
/M , where di is the dimension of ◊i and ⁄1,

⁄2 > 0 are hyper-parameters. Based on this formula, we propose a hierarchical feature ensemble module to
reduce the dimensionality of features.

4 Few-shot Hypotheses Adaptation via Hierarchical Feature Ensemble

To aggregate knowledge from both strong and weak source hypotheses, we introduce the HiFE framework,
depicted in Figure 2. HiFE hierarchically merges features induced by all the source hypotheses. We assume
each source hypothesis has been embedded with its specific discriminative knowledge about the SD. Hence,
during the aggregation, we use a feature de-correction learning module, making the features as mutually
independent as possible at each level to increase the representative power of the intermediate features. We
describe the design insights of HiFE in Section 4.1 and Section 4.2.

4.1 Hierarchical Feature Ensemble

Ensemble learning is widely recognized as an e�ective approach for combining multiple learning methods
and improving overall performance (Beven & Binley, 1992; Kuczera & Parent, 1998). While ensemble
methods have been utilized for HA in past research (Ahmed et al., 2021), ensemble learning at the feature
representation level has received relatively less attention. However, prior research has shown that hierarchical
feature representations can significantly enhance classification accuracy. We propose a hierarchical feature
ensemble-based approach for FHAW to leverage such benefits. Specifically, our method involves merging
source features that contain knowledge of the SD using a hierarchical feature ensemble module before feeding
them to the final classifier.

To simplify the feature extraction process with the source hypotheses, we follow (Motiian et al., 2017) and
(Ahmed et al., 2021) to decompose each hypothesis h into two modules: a feature encoder g : X æ Rd and a
classifier c : Rd

æ RC , where d denotes the dimension of the output feature. Thus, we have h(x) = c(g(x)),
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Figure 2: The architecture of HiFE framework. Each source hypothesis consists of a feature encoder and a
classifier. We train a model with a hierarchical feature ensemble module to merge features from all source
encoders. In this module, features are grouped according to the cosine similarity, and WRU merges the
grouped features to generate new features for the next layer. Each WRU leverages skip connections to avoid
over-fitting. Besides, we apply the decorrelation learning (DeCL) strategy by adding a correction penalty
term to the loss function to encourage feature diversity. The target classifier ct, initializing with the average
of all the source classifiers, is fixed during the training. Only the parameters of the strong encoder gs and
the hierarchical feature ensemble module are updated.

i.e., h = c ¶ g. In our problem setting, source hypotheses are decomposed to cs ¶ gs and {cm
w ¶ gm

w }
M
m=1.

Features induced by gs, {gm
w }

M
m=1 are fed into the feature ensemble module. Let xi

l denote the i-th feature
at layer l (l œ {0, 1, ..., L}) and {xi

0}
N0
i=1 be the N0 input features. The hierarchical feature ensemble module

aims to aggregate all these features into one single feature x1
L through a hierarchical method so that x1

L
contains as much source knowledge as possible. To this end, we must tackle two questions: 1) which features
to merge and 2) how to merge the chosen features.

1) Which features to merge? According to the Gestalt principles of psychology (Ko�ka, 2013), humans tend
to group similar information during cognitive processing. Taking inspiration from this, we utilize feature
similarity as a metric to group similar input features together from the previous layer for the purpose of
merging. Given a set of Nl features, we first create a similarity matrix S œ RNl◊Nl , where Si,j = cos(xi

l, xj
l )

is the cosine similarity of features xi
l and xj

l . Next, we repeatedly choose two or more features with the
highest similarity and merge them into a new feature for the next layer. Such a hierarchical merge process
repeats until only one output feature is left.

2) How to merge features? In the FHA setting, the small sample size problem limits the feasibility of
maintaining adequate validation sets to assess performance before testing unknown samples. Without such
validation sets, optimizing the model could cause over-fitting to the limited target data, leading to a local
optimum and performance degradation (Goodfellow et al., 2014; Kirkpatrick et al., 2017). To address this
issue, we propose the Weighted Residual Unit (WRU), adding the “shortcut connections” of the input features
to the block output after feature merging (see Figure 2 (b)). The shortcut connections allow the upper
layer’s features to be directly sent to the next layer, maintaining the source knowledge during adaptation
and alleviating the over-fitting problem. Within each WRU, the input features {fi}

K
i=1 are concatenated and

fed into a fully connected (FC) layer, where K is the number of input features. The output of the FC layer
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is denoted as FC({fi}
K
i=1, WFC) with WFC be the learnable parameters of this layer. Unlike the shortcut

connections that perform identity mapping in ResNet (He et al., 2016), we perform a weighted element-wise
addition of {fi}

K
i=1 and FC({fi}

K
i=1, WFC) to balance the influence of di�erent input features induced by the

source hypotheses. The function of WRU can be formalized as follows.

WRU({fi}
K
i=1) = –0 · FC({fi}

K
i=1, WFC) +

Kÿ

i=1
–i · fi, (1)

where {–i}
K
i=0 are the learnable weights. We add the batch normalization and ReLu layers after the weighted

sum for better performance. If the dimension of fi is not equal to that of the output of FC, we can make
a linear projection of fi by extending –i to a square matrice Wi to match the dimension. The application
of WRU allows us to preserve some source knowledge and learn new information from the target samples
simultaneously.

4.2 Decorrelation Learning

It has been commonly agreed that diversity is a success factor of ensemble algorithms. Di�erent opinions from
multiple classifiers are expected to reduce the generalization error. Traditional decorrelation learning (DeCL)
methods encourage diversity explicitly by adding a correlation penalty term to the final error function (Liu
& Yao, 1999; Shi et al., 2018; Wang et al., 2010). When it comes to feature ensemble, learning the features
with good discriminative power is also essential for various high-level vision tasks (Wen et al., 2016; Cheng
et al., 2018). To promote the learning of features widely distributed across the feature space and embed
various forms of source knowledge, we apply DeCL in the feature space to encourage independence between
features in each layer. In this regard, we introduce a cosine similarity penalty to decrease feature correlation
and encourage feature diversity (see Figure 2 (c)). Specifically, we calculate the pairwise square values of
cosine similarities for all features in the same layer and sum them up from all layers. The corresponding
feature DeCL loss is defined as

LDeCL =
Lÿ

l=1

Nl≠1ÿ

i=1

Nlÿ

j=i+1
cos(xi

l, xj
l )2, (2)

where Nl is the number of features at layer l and cos(xi
l, xj

l ) = (xi
l · xj

l )/(Îxi
lÎ · Îxj

l Î). Furthermore, to
enable the adaptation of the ensemble network to the TD, we incorporate the knowledge of TD by fitting
the network to the labeled target data. To accomplish this, we adopt the standard cross-entropy loss, which
is defined as follows,

LCLS = E(xt,yt)≥PT
[CE(ct(A(xt)), yt)], (3)

where CE(·) denotes the cross-entropy loss and A(xt) refers to the output of the feature ensemble module
when fed xt to the source encoders. To summarize, we train the ensemble network using joint supervision
that combines the target supervised loss (Equation (3)) and a feature DeCL penalty term (Equation (2))
with a hyper-parameter — to trade o� the two aspects (Equation (4)). The target supervised loss guides the
network in learning the knowledge from the target samples, while the feature DeCL loss promotes mutual
independence amongst features in each layer, thereby increasing the feature diversity and preserving the
distinct discriminative knowledge of each source hypothesis.

L(—) = (1 ≠ —) · LCLS + — · LDeCL. (4)

5 Experiments

5.1 Experimental Setup

Datasets. We conduct experiments on various standard DA benchmarks to evaluate our approach.1

1The full code is available at https://anonymous.4open.science/r/HFE-DCL-7761.
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Digits. We choose three-digit datasets, i.e., MNIST (M), USPS (U), and SVHN (S) for our experiments.
Following (Motiian et al., 2017; Chi et al., 2021), we experiment with di�erent numbers of target samples
from 1 to 7 per class.

O�ce. We use three domains of the o�ce datasets (Saenko et al., 2010): Amazon (A), DSLR (D), and Web-
cam (W). Each domain contains 31 object classes in the o�ce environment. We conduct several experiments
with di�erent numbers of target samples per class ranging from 1 to 5.

Image classification. We use two image classification benchmarks CIFAR-10 (CF) (Krizhevsky, 2009) and
STL-10 (ST) (Coates et al., 2011). Each benchmark consists of 10 classes of objects, and nine classes are
overlapped. We remove the non-overlapped classes (“monkey” and “frog”) and reduce the tasks to a 9-class
classification problem following the procedure in (Shu et al., 2018). As the two domains are more complex
than digits, we increase the number of target samples to 15 and 20 for each class.

Baseline methods. In the context of the novel FHAW problem setting, we establish our baseline compar-
isons by adapting and refining several established approaches in the field. We conducted a comprehensive
evaluation against four existing methods for HA and their respective variations. Initially, SHOT (Liang et al.,
2020), a hypothesis transfer learning framework tailored for unsupervised HA, served as a foundation. In our
study, we preserved its model adaptation module, tweaking it to leverage labeled target data to support su-
pervised HA, aligning it seamlessly with our experimental setup. The performance outcomes from employing
solely the strong hypothesis with SHOT are denoted as SHOT-strong. The subsequent contender, TOHAN
(Chi et al., 2021), specifically tackles the FHA challenge. Both SHOT and TOHAN are engineered to adapt
a singular hypothesis to the TD independently. To evaluate against our multi-hypotheses adaptation ap-
proach, we extended these methods to SHOT-ens and TOHAN-ens by employing a straightforward ensemble
technique, following the methodology outlined in (Ahmed et al., 2021). Furthermore, we included the models
DECISION (Ahmed et al., 2021) and Bi-ATEN (Li et al., 2024), specifically designed for multi-source-free
unsupervised HA, to contrast with our single-source multi-model HA strategy.

Network architecture. For digit recognition tasks, we employ the same architectures utilized in SHOT
(Liang et al., 2020), namely using the LeNet-5 (LeCun et al., 1998) for MNIST, USPS, and a modified
version of LeNet for the slightly more complex SVHN dataset. For the image classification tasks, we adopt
ResNet-18 and ResNet-50 ((He et al., 2016)) as the backbones for the CIFAR-10/STL-10 and o�ce datasets,
respectively.

Source hypotheses preparation. We train a single optimal hypothesis as a strong source hypothesis for
each SD and save seven intermediate snapshots as weak source hypotheses with varying accuracy levels.
To acquire the hypotheses with di�erent source accuracies, we first set an accuracy range [accmin, accs],
where accmin is a preset value around at 40-60% and accs is an estimation of the accuracy of the strong
hypothesis. Then, we split this range into several uniform intervals and save one model snapshot at each
interval to get weak hypotheses for each SD. The source data can be discarded after getting all the required
source hypotheses. Table 1 shows the source models generated with the source dataset Mnist and their
corresponding accuracy ranges. We generate 12 source models {hi|

12
i=1}. According to our definition in

Section 3, the first 11 models {hi|
11
i=1} are weak source hypotheses, while the last one h12 is the strong

hypothesis. Among these models, we used {hi|
12
i=5} (8 models) in the experiments shown in Table 2 and

Table 7, while all models are prepared for ablation studies. The process of training the target ensemble
hypothesis with HiFE is detailed in Appendix A.

MI AC MI AC MI AC MI AC

h1 [40, 45) h4 [55, 60) h7 [70, 75) h10 [85, 90)
h2 [45, 50) h5 [60, 65) h8 [75, 80) h11 [90, 95)
h3 [50, 55) h6 [65, 70) h9 [80, 85) h12 [95, 100)

Table 1: The model indexes (MI) and their corresponding accuracy range (AC) of source models generated
from the Mnist dataset.
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Tasks Hypothesis Method Number of Target Data per Class Avg
Number 1 2 3 4 5 6 7

U æ M

Single
SHOT-worst 42.1±1.2 44.3±0.8 49.9±1.0 48.4±1.6 50.7±0.6 50.9±1.1 50.9±0.8 48.2
SHOT-best 92.1±1.5 93.4±1.2 93.7±0.9 93.6±1.0 93.7±1.5 93.5±0.8 94.0±0.6 93.4

SHOT-strong 89.8±1.1 90.3±1.3 92.0±1.5 91.3±1.6 92.0±0.7 92.0±0.8 91.9±0.5 91.3

Multiple
SHOT-ens 86.8±1.6 88.5±1.8 90.0±2.1 89.5±2.3 90.5±1.9 90.6±1.0 90.8±1.3 89.5

TOHAN-ens 87.3±1.8 89.7±1.6 90.1±1.6 90.5±1.4 91.2±1.5 92.5±0.9 93.5±0.7 90.7
DECISION 88.7±2.3 88.8±1.8 89.6±2.4 89.8±2.1 90.3±1.7 90.2±1.3 90.5±1.1 89.7
Bi-ATEN 89.5±1.1 90.9±1.2 91.5±0.8 91.1±0.4 92.1±1.2 92.5±2.3 90.5±2.6 91.2

HiFE (ours) 92.7±0.8 94.9±0.2 95.0±0.4 95.2±0.6 95.4±0.5 95.4±0.7 96.1±0.3 95.0

S æ M

Single
SHOT-worst 40.9±1.0 45.1±1.2 50.9±1.1 51.6±0.9 51.7±1.1 51.8±0.8 51.9±0.8 49.1
SHOT-best 74.8±1.4 75.1±1.2 79.8±1.3 79.1±0.9 80.6±1.1 79.8±0.5 79.1±0.6 78.3

SHOT-strong 74.5±2.0 73.5±1.1 78.7±1.8 78.2±1.5 78.8±1.3 78.6±0.9 78.7±0.8 77.3

Multiple
SHOT-ens 75.6±2.2 74.9±1.2 81.2±2.6 81.5±1.4 82.0±1.3 81.6±1.0 81.7±1.5 79.8

TOHAN-ens 79.0±1.9 85.9±2.1 87.5±1.6 89.5±1.1 90.1±1.4 90.6±1.2 91.1±0.9 87.7
DECISION 71.9±1.3 72.1±2.1 72.5±2.0 73.4±1.5 75.0±1.2 76.7±1.5 79.2±1.0 74.4
Bi-ATEN 75.1±1.7 77.2±1.1 77.1±2.3 79.7±2.5 80.1±2.9 82.5±1.9 83.1±1.6 79.3

HiFE (ours) 79.2±2.1 85.7±2.0 88.1±1.0 90.3±0.9 92.2±0.7 92.5±0.9 92.8±1.0 88.7

U æ S

Single
SHOT-worst 15.8±2.1 14.8±1.9 14.7±0.9 14.3±1.5 14.3±1.7 14.0±0.9 14.4±0.5 14.6
SHOT-best 32.6±1.1 32.4±1.6 34.5±1.2 37.3±2.0 38.4±0.8 40.6±0.6 40.5±0.7 36.6

SHOT-strong 32.6±1.1 32.3±1.7 34.3±1.6 37.0±1.3 38.2±0.9 40.2±0.8 40.4±0.9 36.4

Multiple
SHOT-ens 33.3±2.1 32.1±1.8 34.1±1.9 36.5±1.2 38.1±1.4 39.9±0.9 40.4±0.9 36.3

TOHAN-ens 31.7±1.8 31.0±1.4 35.8±1.3 36.9±0.9 40.5±0.6 42.6±0.8 43.1±0.7 37.4
DECISION 30.3±2.1 30.5±2.0 31.2±1.8 31.5±1.9 32.0±1.2 32.1±1.3 32.4±0.9 31.4
Bi-ATEN 31.5±1.5 30.9±1.9 33.5±1.7 33.1±1.8 35.3±1.6 35.3±0.8 37.1±1.4 33.8

HiFE (ours) 33.0±2.0 32.9±1.2 37.5±0.8 39.8±0.8 40.1±1.0 42.7±1.1 43.3±0.9 39.5

Table 2: Classification accuracy±standard deviation (%) on three adaptation tasks of digit datasets. M, U,
and S refer to MNIST, USPS, and SVHN, respectively. The su�xes -best and -worst refer to the best and
worst results after adapting each single source hypothesis. The su�xes -strong and -ens refer to the result
of adapting the strong hypothesis and the ensemble of all hypotheses, respectively. Results of SHOT (Liang
et al., 2020), TOHAN (Chi et al., 2021), DECISION (Ahmed et al., 2021), Bi-ATEN (Li et al., 2024), and
our HiFE are presented. The highest accuracy is marked in bold.

5.2 Result Analysis

Results of digit classification tasks.

We evaluate the e�ectiveness of our approach on six closed-set adaptation tasks for digit classification.
These tasks are by pairwise combinations of the three domains S, M , and U . We report the results of three
tasks in Table 2 (more results can be found in Appendix C). Firstly, as shown in Table 2, there exist some
weak hypotheses that can perform better than the strong hypothesis after adaptation (see the comparison
of SHOT-best and SHOT-strong), supporting our motivation of adopting the weak hypotheses. Moreover,
incorporating the weak hypotheses allows our proposed HiFE to outperform SHOT-strong. For instance,
compared with the average accuracy of SHOT-strong (77.3%), HiFE leads to higher average accuracy (88.7%)
in the task S æ M . Additionally, despite some weak hypotheses with bad adaptation performance (see
SHOT-worst), HiFE can largely avoid the severe negative transfer and achieve the best performance than
previous ensemble approaches. For example, HiFE outperforms the SOTA (TOHAN-ens) by 4.3% in the
average accuracy of U æ M task.

Results of o�ce object classification tasks. We show the results of three closet-set adaptation tasks
with o�ce datasets in Table 3 (more results can be found in Appendix D). The proposed HiFE consistently
improves the adaptation performance, boosting the average accuracy from 60.1% to 64.2% in task W æ A.
While HiFE is designed to adapt source models from a single SD to a TD, our approach also works e�ectively
when the source models come from multiple domains (see Appendix E). In addition, HiFE also outperforms
the SOTA in the partial FHA scenario (as shown in Appendix F).
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Tasks Hypothesis Methods Number of Target Data per Class Average
Number 1 2 3 4 5

A æ D Multiple
SHOT-ens 76.5±1.9 78.6±1.5 78.7±1.7 80.1±0.9 81.2±1.2 79.0

TOHAN-ens 78.5±1.6 79.5±1.3 83.2±0.9 85.1±1.1 87.1±1.1 82.7
DECISION 79.2±1.5 80.2±2.2 80.8±1.2 81.5±2.0 83.5±1.3 81.0
Bi-ATEN 79.1±1.2 81.6±1.4 81.5±0.9 82.1±1.5 84.1±2.1 81.7

HiFE (ours) 79.2±1.0 84.3±0.4 85.7±1.0 86.2±0.9 89.2±0.8 85.0

D æ A Multiple
SHOT-ens 56.8±2.0 58.0±1.9 59.2±1.7 61.8±0.5 62.5±0.9 59.7

TOHAN-ens 58.1±1.3 60.8±1.2 63.1±1.9 63.8±0.8 64.1±0.9 62.0
DECISION 54.1±1.6 54.2±2.5 56.1±2.1 57.4±0.9 58.5±0.7 56.1
Bi-ATEN 55.2±1.3 57.1±2.1 60.3±0.9 61.5±1.1 62.5±1.8 59.3

HiFE (ours) 61.8±1.0 64.7±0.7 67.2±0.6 66.8±1.0 67.5±0.9 65.6

W æ A Multiple
SHOT-ens 55.1±1.2 58.2±1.6 59.9±1.4 60.8±1.1 61.2±1.1 59.0

TOHAN-ens 56.5±1.0 60.1±0.9 60.4±1.2 61.2±0.8 62.5±0.7 60.1
DECISION 54.1±2.1 54.9±1.8 55.6±1.6 56.5±1.2 58.1±1.2 55.8
Bi-ATEN 56.2±1.9 58.4±1.6 58.9±2.2 61.5±1.3 61.7±1.1 59.3

HiFE (ours) 62.5±2.5 65.1±1.5 64.4±1.2 64.3±0.9 64.8±0.8 64.2

Table 3: Classification accuracy±standard deviation (%) on three adaptation tasks of o�ce datasets. A, D,
and W are abbreviations of Amazon, DSLR, and Webcam. The su�x -ens refers to the result of the ensemble
of all adapted hypotheses. Results of SHOT (Liang et al., 2020), TOHAN (Chi et al., 2021), DECISION
(Ahmed et al., 2021), Bi-ATEN (Li et al., 2024), and our HiFE are presented. The bold value represents the
highest accuracy.

Results of image classification tasks. For image classification, we evaluate our approach on two adap-
tation tasks, CF æ ST and ST æ CF . As shown in Table 4, we achieve 1.3% average improvement over
the SOTA ensemble approaches in the CF æ ST task.

Tasks Methods Data Number Average
15 20

CF æ ST

SHOT-ens 70.3±0.4 70.5±0.6 70.4
TOHAN-ens 67.5±0.6 69.8±0.5 68.7
DECISION 70.4±0.4 70.6±0.6 70.5
Bi-ATEN 70.7±0.3 70.9±0.5 70.8

HiFE (ours) 71.6±0.4 71.9±0.3 71.8

ST æ CF

SHOT-ens 53.1±0.6 53.5±0.5 53.3
TOHAN-ens 52.5±0.6 52.6±0.8 52.6
DECISION 54.2±0.5 54.5±0.6 54.4
Bi-ATEN 53.7±0.4 54.6±0.4 54.1

HAFA 55.0±0.3 55.3±0.3 55.2

Table 4: Classification Accuracy±standard deviation (%) on two tasks between CIFAR-10 (CF) and STL-10
(ST).

5.3 Ablation Studies

Ablation study on the feature DeCL loss. We study the advantage of our training loss by incorporating
feature DeCL loss LDeCL in Equation (4) with di�erent — values ranging from 0 to 1.0 with the digit datasets.
In this context, — = 0 corresponds to training the network using only the supervised loss LCLS, while — = 1
corresponds to training the network using only the feature DeCL loss LDeCL. As shown in Table 5, our
optimal results generally occur at — = 0.1, which yields an average improvement of 1.4% compared to the
result obtained when no feature DeCL loss is used (— = 0). Notably, even when the model is trained solely
using the feature DeCL loss LDeCL (— = 1.0), it still achieves an average improvement of 10.9% compared
to the accuracy before the adaptation (WA), demonstrating the e�ectiveness of the feature DeCL loss. We
also visualize the correlation matrixes of the features after the merge at the first layer of the task U æ M
when — = 0.1. As depicted in Figure 3, as the training progresses, the feature DeCL loss guides the decrease
of most of the correlation values between the four features, thereby increasing feature diversity.

Ablation study on the number of weak hypotheses. We conduct an ablation study to analyze the
impact of the number of weak hypotheses on the final performance, providing insights into choosing a proper
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Tasks The Value of — WA
0 0.1 0.2 0.3 0.5 0.7 0.9 1.0

S æ M 93.2 94.0 93.9 93.2 92.3 90.0 86.4 77.0 67.1
S æ U 94.5 95.6 95.6 94.1 92.8 91.2 88.7 82.3 78.2
M æ S 52.2 54.2 54.3 53.2 52.8 52.7 52.1 46.0 23.2
M æ U 96.1 97.1 96.8 96.3 96.1 95.1 94.6 91.2 70.5
U æ S 44.5 46.2 44.5 42.5 40.1 39.6 39.1 33.2 26.2
U æ M 94.9 95.9 95.3 95.1 94.6 92.9 91.3 89.9 88.5
Average 79.2 80.6 80.1 79.1 78.1 76.9 75.4 69.9 59

Table 5: Ablation study on the feature decrrelation learning loss balance parameter — in Equation (4). M,
U, and S are abbreviations of MNIST, USPS, and SVHN. WA indicates the accuracy of the model without
the adaptation. The bold value represents the highest accuracy (%).

(a) e = 0 (b) e = 1
3 Emax (c) e = 2

3 Emax (d) e = Emax

Figure 3: The correlation matrixes of the features after the merge at the first layer on digit task U æ M
when the — value is set to 0.1. (a) ≥ (d) shows the results over di�erent training stages with e, Emax being the
current and maximum number of epochs. As the training continues, we observe that most of the correlation
values between the four features in this layer decrease (the darker the color, the lower the corresponding
correlation value).

number of weak hypotheses to balance the cost and performance. We do this experiment in an adaptation
task from domain Mnist to USPS. We select varying numbers (from 2 to 6) of source hypotheses from the
models provided in Table 1 and make sure the accuracy range of each group of source models is the same.
For each experiment, the selected weak hypotheses started from h5 and ended with h11, ensuring the selected
accuracy range was [60, 95). The results are presented in Exp1≠1 ≥ Exp1≠5 of Table 6. As shown in Table 6,
when the number of weak hypotheses is less than 3, the average accuracy (94.2% in Exp1≠1) is lower than that
when the number of weak hypotheses is greater than 3. Moreover, the average accuracy remains consistent
when the number of weak hypotheses exceeds 3 (see the comparison of the result of Exp1≠3 ≥ Exp1≠5).

Ablation study on the accuracy range of weak hypotheses. To investigate the impact of the accuracy
range of weak hypotheses on the final performance, we leverage the source models presented in Table 1 and
do the digit adaptation task from MNIST to USPS using source models with varying accuracy ranges.
We conducted experiments from Exp2≠1 to Exp2≠4 as outlined in Table 6. Our results indicate that as
the accuracy range increases, the performance after adaptation improves. It is important to note that weak
source models with an accuracy lower than 55% may harm the final performance. Our comparison of Exp2≠1
and Exp2≠5 revealed that using weak hypotheses with such low accuracy resulted in worse performance than
adaptation without weak hypotheses.

Ablation Study on the hierarchical layer number. To investigate the impact of the layer number in
the ensemble module on the final performance, we have experimented with varying number of input features
fed into WRU, which subsequently alters the number of merge layers within the hierarchical feature ensemble
module. we conducted experiments from Exp3≠1 to Exp3≠4, modifying the number of input features for each
WRU. The results are presented in Table 6. Notably, in Exp3≠4, we utilized a simple weighted feature sum
to merge all source features rather than using HEFM with WRU for feature aggregation. When we set the
number of input features for each WRU to 2 or 4, with the corresponding layer number in the ensemble
module to be 4 and 3, respectively, the adaptation average accuracy is similar. However, when the number
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Exp ID HN Weak Hypothesis Weak Hypothesis Indices FN LN Number of Target Data per Class Average
Accuracy Range 1 3 5 7

Exp1≠1 2 [60, 95) h5, h11 2 3 92.0±1.2 94.6±0.7 94.5±0.5 95.6±0.5 94.2
Exp1≠2 3 [60, 95) h5, h8, h11 2 3 92.3±1.0 94.8±0.6 95.7±0.7 96.1±0.7 94.7
Exp1≠3 4 [60, 95) h5, h7, h9, h11 2 3 92.7±1.1 95.2±0.6 96.1±0.5 96.7±0.2 95.2
Exp1≠4 5 [60, 95) h5, h7, h8, h9, h11 2 3 92.6±1.0 95.3±0.7 96.0±0.5 96.6±0.4 95.1
Exp1≠5 6 [60, 95) h5, h6, h7, h8, h9, h11 2 3 92.8±0.9 95.1±0.5 96.2±0.7 96.8±0.5 95.2

Exp2≠1 3 [40, 55) h1, h2, h3 2 3 91.1±0.7 93.8±0.6 94.5±0.8 95.2±0.8 93.7
Exp2≠2 3 [55, 70) h4, h5, h6 2 3 91.5±0.7 94.1±0.6 95.3±0.6 96.0±0.8 94.2
Exp2≠3 3 [70, 85) h7, h8, h9 2 3 92.2±0.6 94.7±0.8 95.7±0.8 96.7±0.6 94.8
Exp2≠4 3 [80, 95) h9, h10, h11 2 3 92.4±0.8 94.8±0.4 96.1±0.8 96.7±0.6 95.0
Exp2≠5 0 - - 1 1 91.5±0.6 94.2±0.6 94.2±0.9 95.5±0.7 93.9

Exp3≠1 7 [60, 95) h5≥11 2 4 93.0±1.4 95.3±0.5 96.0±0.3 96.7±0.3 95.3
Exp3≠2 7 [60, 95) h5≥11 4 3 93.2±1.1 94.9±0.6 96.2±0.5 96.6±0.4 95.2
Exp3≠3 7 [60, 95) h5≥11 8 1 92.3±1.2 93.1±1.0 95.4±0.8 95.6±0.5 94.1
Exp3≠4 7 [60, 95) h5≥11 / 1 92.1±1.0 92.5±0.9 94.8±0.6 95.1±0.7 93.6

Table 6: Classification accuracy±standard deviation (%) on digit adaptation task Mnist æ USPS with
varying parameters including the number of weak hypotheses (HN), the accuracy ranges of the weak hy-
potheses, the number of input features to each WRU (FN), and the layer number (LN) in the hierarchical
feature ensemble module.

of input features for each WRU increases to 8, we apply one WRU to merge the eight source encoders at
once, and the adaptation average accuracy decreases to 94.1%.

6 Limitations and Future Work

HIFE leverages multiple source hypotheses with varying accuracy levels from the source domain to improve
the performance of models in the target domain. By exploiting the diversity of source models, HIFE has
the potential to enhance the generalization capabilities of the adapted models. However, the additional
hypotheses result in increased model transfer and storage costs. Moreover, the increase in the number of
parameters of the target model leads to higher computational costs. Nonetheless, we argue that the benefits
of leveraging multiple source models with di�erent strengths outweigh the costs associated with processing
additional hypotheses, particularly when source data is absent for transfer. With the growing need to
address privacy concerns and mitigate data-sharing challenges in real-world applications, opting for weak
models simplifies collaboration between source providers and users.

For future research, it would be beneficial to investigate methods for generating weak hypotheses with higher
diversity. Although the current experiments obtained weak hypotheses in the same run as generating the
final strong hypotheses for simplicity, there is potential for improvement by obtaining weak hypotheses
through di�erent random seeds, hyperparameter choices, or training on di�erent subsets of the source data.
By increasing the diversity of weak hypotheses, we could obtain better performance after adaptation and
further improve the e�ectiveness of the proposed approach.

7 Conclusion

In this paper, we investigate the potential of utilizing weak source hypotheses for domain adaptation and
introduce a new problem setting termed “few-shot hypotheses adaptation with weak models”. To tackle
this problem, we design a new framework called HiFE, which leverages an array of readily available weak
hypotheses to improve the adaptation performance of a strong source hypothesis. As a result, HiFE signifi-
cantly mitigates the occurrence of over-fitting under the few-shot setting and achieves the SOTA performance
across various adaptation tasks. This research introduces an innovative perspective for addressing the FHA
problem in scenarios where the source data is inaccessible and the target data is limited. Additionally, this
research shed light on the use of a weak source model to boost the practical application of transfer learning
in scenarios where data privacy concerns are on the rise.
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