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Figure 1: Given a partial image of a dog, can you precisely determine the location of its tail? Existing Masked
Image Modeling (MIM) models like MAE (He et al., 2021) and I-JEPA (Assran et al., 2023) predict tokens
deterministically and do not model location uncertainties (a), We propose to predict target tokens in stochastic
positions (StoP) which prevents overfitting to fixed target locations. Changing existing positional embeddings
with StoP leads to improved MIM performance on downstream tasks including linear probing on ImageNet (b).

ABSTRACT

Masked Image Modeling (MIM) is a promising self-supervised learning approach
that enables learning from unlabeled images. Despite its recent success, learn-
ing good representations through MIM remains challenging because it requires
predicting the right semantic content in accurate locations. For example, given
an incomplete picture of a dog, we can guess that there is a tail, but we cannot
determine its exact location. In this work, we propose to incorporate location un-
certainty to MIM by using stochastic positional embeddings (StoP). Specifically,
we condition the model on stochastic masked token positions drawn from a gaus-
sian distribution. We show that using StoP reduces overfitting to location features
and guides the model toward learning features that are more robust to location un-
certainties. Quantitatively, using StoP improves downstream MIM performance
on a variety of downstream tasks. For example, linear probing on ImageNet using
ViT-B is improved by +1.7%, and by 2.5% for ViT-H using 1% of the data.

1 INTRODUCTION

Masked Image Modeling (MIM) enables learning from unlabeled images by reconstructing masked
parts of the image given the rest of the image as context. Recently, new MIM methods have
emerged (Xie et al., 2021; Bao et al., 2021; He et al., 2021; Assran et al., 2023). Masked Auto-
Encoders (MAE) (He et al., 2021) are trained to minimize a reconstruction error in pixel space, and
I-JEPA (Assran et al., 2023) reconstructs image features. MIM is appealing compared to invariance-
based self-supervised learning methods like DiNO (Caron et al., 2021) and iBOT (Zhou et al., 2021)
as MIM do not suffer from the same limitations, namely it does not require heavy use of hand-crafted
augmentations (Xiao et al.; He et al., 2021) or a uniform cluster prior (Assran et al., 2022).

Despite the recent success of MIM, we argue that learning good representations using MIM remains
challenging due to location uncertainties because it requires predicting the right semantic content in
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accurate locations. For example, given an incomplete picture of a dog (see Figure 1a), we can guess
that there is a tail but we cannot determine its exact location as it can naturally appear in multiple
plausible locations. Without explicitly modeling this location uncertainty, existing MIM models like
MAE and I-JEPA might overfit on semantic content in arbitrary locations.

In this work, we propose to address location uncertainty in MIM by turning existing MIM models
into stochastic ones. Instead of training the model to make predictions in exact locations, we propose
to use Stochastic Positional embeddings (StoP) to introduce noise to the masked token’s positions,
implicitly forcing the model to make stochastic predictions. StoP guides the model towards learning
features that are more resilient to location uncertainties, such as the fact that a tail exists somewhere
in a broad region of the image, and this in turn leads to improved performance (Figure 1b).

Specifically, we model the location of every masked token as a random variable with a Gaussian
distribution where its mean is the position of the patch, and the covariance matrix is learned. We
find that it is crucial to design StoP carefully so that the model does not merely scale down the
covariance matrix weights to overcome the noise and propose to use regularization to alleviate this
difficulty.

Our contributions are as follows. First, we propose the idea of Stochastic Positional embeddings
(StoP) and apply it to MIM to address the location uncertainty in MIM, namely that the location of
semantic features is stochastic. Second, we demonstrate that adding StoP to I-JEPA, a recent MIM
approach, leads to improved performance on a variety of downstream tasks, highlighting its effec-
tiveness. Lastly, StoP can be simply plugged into existing models, requiring only three additional
lines of code, without adding any runtime or memory overhead.

2 RELATED WORK

Masked image modeling (MIM). There is a significant body of research exploring visual repre-
sentation learning by predicting corrupted sensory inputs. Denoising autoencoders (Vincent et al.,
2010), for example, use random noise as input corruption, while context encoders (Pathak et al.,
2016) regress an entire image region based on its surrounding. The idea behind masked image mod-
eling (He et al., 2021; Xie et al., 2021; Bao et al., 2021) has emerged as a way to address image
denoising. In this approach, a Vision Transformer (Dosovitskiy et al., 2020) is used to reconstruct
missing input patches. The Masked Autoencoders (MAE) architecture (He et al., 2021), for ex-
ample, efficiently reconstructs missing patches in pixel space and achieves strong performance on
large labeled datasets. Other approaches, such as BEiT (Bao et al., 2021), predict a latent code
obtained using a pretrained tokenizer. However, pixel-level pre-training has been shown to outper-
form BEiT in fine-tuning. SimMiM (Xie et al., 2021) explores simple reconstruction targets like
color clusters but shows no significant advantages over pixel space reconstruction. Recently, Image-
JEPA (I-JEPA) (Assran et al., 2023; LeCun, 2022) was proposed as a non-generative approach for
self-supervised learning of semantic image representations. I-JEPA predicts the representations of
various target blocks in an image from a single context block to guide it toward producing seman-
tic representations. Our approach builds on this line of work and we propose to deal with location
uncertainty using stochastic positional embeddings which was not explored before.

Positional Embeddings in Transformers. One of the core components of the Transformer archi-
tecture (Vaswani et al., 2017) is the Self-Attention block, which is a permutation invariant function,
e.g, changing the order of the input tokens does not change the function output. Consequently, it is
necessary to feed input tokens together with their positional embedding to describe their location.
Absolute positional embeddings like fixed 2D sinusoidal features (Bello et al., 2019) or learned
location features are the prevalent type of positional embeddings for the Vision Transformer (Doso-
vitskiy et al., 2020). Relative positional embeddings have recently gained popularity in NLP due
to their ability to address the gap between the training and testing sequence length (Su et al., 2021;
Chu et al., 2021; Press et al., 2021). For example, Press et al. (2021) proposed ALiBi to bias
self-attention to assign higher confidence to neighboring locations, and SPE (Liutkus et al., 2021)
proposed a stochastic approximation for relative positional embedding in linear transformers. Dif-
ferently, we propose to use stochastic positional embeddings to tackle location uncertainties in MIM,
and our approach can be easily applied on top of any existing deterministic variant.
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Figure 2: Masked image modeling using stochastic positional embeddings (StoP). The predictor g� pre-
dicts target tokens given masked tokens with stochastic positions mi and context tokens cj that were obtained
via f✓ . StoP is applied to masked tokens only, leading to features that are more robust to location uncertainties.

Invariance-based methods. These methods incorporate a loss that encourages similarity between
augmented views of the the same image while avoiding a trivial solution. For example, contrastive
learning prevents collapse by introducing negative examples (Hadsell et al., 2006; Dosovitskiy et al.,
2014; Chen et al., 2020a; He et al., 2019; Chen et al., 2020b; Dwibedi et al., 2021). This can
be achieved using a memory bank of previous instances (Wu et al., 2018; Oord et al., 2018; Tian
et al., 2019; Misra & van der Maaten, 2020). However, there are also non-contrastive solutions
that have been proposed. Of particular interest, a momentum encoder has been shown to prevent
collapse even without negative pairs (Grill et al., 2020; Caron et al., 2021; Salakhutdinov & Hinton,
2007). Other methods include stopping the gradient to one branch (Chen & He, 2021) or applying
regularization using batch statistics (Zbontar et al., 2021; Bardes et al., 2021; 2022; Ermolov et al.,
2020; Hua et al., 2021). MoCo v3 Chen et al. (2021), then DiNO (Caron et al., 2021) extended these
approaches for Vision Transformer, and iBOT (Zhou et al., 2021) proposed to add a MIM loss to
DiNO. These approaches perform extremely well on ImageNet linear-probing, yet they rely on batch
statistics, struggle under non-uniform distributions (Assran et al., 2022), and require hand-crafted
image augmentations (Xiao et al.). Our approach is based on MIM, an alternative learning paradigm
requiring less assumptions on batch statistics or handcrafted invariances.

3 MASKED IMAGE MODELING WITH STOP

We start by describing our stochastic positional embeddings (StoP) approach in Section 3.1, and
then describe how to train a MIM with StoP in Section 3.2. A high-level schematic view of the
model is included in Figure 2, and a pseudo-code implementation is included in Algorithm 1.

3.1 STOCHASTIC POSITIONAL EMBEDDING (STOP)

In Vision Transformers, the position of a patch i is encoded via an embedding vector  i. A common
choice is to learn a vector embedding of the patch position or to use a fixed sine and cosine location
features in different frequencies (Vaswani et al., 2017; Dosovitskiy et al., 2020). To reduce overfit-
ting to location features, we wish to replace this deterministic mapping with a stochastic map. This
involves a few crucial steps, including defining the distribution of the stochastic positions, parame-
terizing it appropriately, and implementing measures to prevent the model from reducing the impact
of the noise to the point where it becomes negligible.

Given a position i, we denote by  ̂i the random variable providing the position embedding. We
assume that  ̂i is distributed as Gaussian whose mean is the fixed embedding  i, and covariance
matrix ⌃ 2 Rdp⇥dp :

 ̂i ⇠ N( i,⌃) (1)

Naturally, we want to learn an optimal ⌃. However, this is challenging for two reasons. First,
learning might result in the optimization process setting the values of ⌃ to zero, leading to no
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randomness. We refer to this case as a degenerate determinism solution. Second, the sampling
process of  ̂ is non-differential, and therefore we cannot derive gradients to directly optimize it with
SGD.

To solve these issues, we start by paramertizing ⌃, then describe how to avoid degenerate determin-
ism, and the reparametrization trick to derive a differential algorithm. We start by parameterizing ⌃,
and use a general formulation of a low-rank covariance matrix:

⌃ = �AAT (2)

Where A 2 Rdp⇥de is a learned matrix and � 2 R+ is a positive scalar hyperparameter used to con-
trol the Noise to Signal Ratio (NSR). By learning matrix A, this formulation is flexibile enough, e.g,
it is possible learning to assign small variance to low-res location features, while assigning higher
variance to higher-frequency features, and also capturing correlations between location features.

Reparametrization Trick. Since  ̂ is sampled from a parameterized distribution, it is not immedi-
ately clear how to optimize over the learned parameters of the distribution A, because the sampling
operation is non-differentiable in A. However, a standard trick in these cases is to reparameterize
the distribution so that only sampling is from a fixed distribution that does not depend on A (e.g.,
see Kingma & Welling (2013)). Specifically, we generate samples from  ̂ by first sampling a vector
ni 2 Rde from a standard Gaussian distribution: ni ⇠ N(0,�I). Then we set  ̂ to the following
function:

 ̂i = Ani +  i (3)

The resulting distribution of  ̂ is equal to that in Equation 1, however, we can now differentiate
directly through A.

Avoiding a degenerate deterministic solution. Without posing any constraints on A, it is easy for
the model to scale down the noise by setting A = 0, thus  ̂ =  , making the prediction problem
deterministic again, and thereby easier. This would collapse the positional embedding back to the
deterministic case, and we will lose the advantage of noisy spatial predictions. The main idea is
to prevent this is to regularize A and we describe this in more detail in Section 3.2 (“Avoiding a
degenerate deterministic solution”), and analyze this further in Section 4.3.

3.2 MASKED IMAGE MODELING WITH STOP Algorithm 1 MIM w/ StoP pseudo-code.
1: Input: num iterations K, image dist S, hy-

perparam �, positional embeddings  
2: Params: A, b, m̃, encoder f✓ , predictor g�
3: for i = 1, 2, ...,K do

4: Ix ⇠ S
5: p patchify(Ix)
6: (x,Bx), (y,By) mask(p)
7: sx  f✓(x)
8: # apply StoP
9: n ⇠ N (0,�I)

10: m = An + By + m̃
11: c = Asx + b+  Bx

12: # predict targets
13: ŝy  g�(c,m)
14: sy  get target(y)
15: loss L(ŝy, sy)
16: sgd step(loss; {✓,�, A, b, m̃})
17: end for

Algorithm 2: Masked Image Modeling

with StoP. In practice, adding StoP to
MIM requires only a minor implementa-
tion change, highlighted in light gray.

Next, we proceed to describe in more detail how to
apply StoP to Masked Image Modeling (MIM), see
pseudo code impl. in Algorithm 1. The main idea
in MIM is to predict target masked tokens based on
contextual blocks from the same image. We introduce
StoP in “Masked tokens in stochastic locations”.

Patchification. Given an image, we apply the standard
tokenization proposed by Dosovitskiy et al. (2020).
Specifically, given an input image Ix 2 RH⇥W⇥3, it
is first patchified into a sequence of non-overlapping
image patches p̂ = (p̂1, ..., p̂k) where p̂i 2 RH

0⇥W
0⇥3

and K = HW

H0W 0 is the number of patches. Then, each
patch is projected to Rde through a linear fully con-
nected layer. Next, for every patch p̂i the positional
embedding features of the ith token are added to it,
resulting in the patchified set p = {p1, ...pK}.

Masking. Let x = {pi|i 2 Bx} be the set of context
patches where Bx denotes the set of context indices
(e.g, the visible tokens in Figure 2). We denote by
By the indices of the target patches y. The context and
target patches are chosen via random masking as in He
et al. (2021) or by sampling target continuous blocks as in Assran et al. (2023).
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Context Encoding. First, the context tokens are processed via an encoder model f✓ to obtain deep
representations: sx = f✓(x), Where sxi 2 Rde is the ith context token representation.

Masked tokens in stochastic locations. We then define the set of context and masked tokens:

ci =  i +Asxi + b mj =  j +Anj + m̃

Note that here the masked token mj has a stochastic position obtained via the reparametrization
trick (see Eq. 3), while the context token ci has a deterministic position. m̃ is a learned bias used to
signify a masked token, and it is shared across all masked token positions.

Avoiding a degenerate deterministic solution. Importantly, the matrix A is used to linearly project
every context token sxi and every noise token nj . The motivation for using A to project both the
context features and noise can be understood by considering two extreme cases: When A = 0, there
is complete certainty about the positional embeddings but all context is lost (Asxi = 0). On the
other hand, when A is large the context information is preserved, but due to the large magnitude of
A the noise is amplified and camouflages the positional embedding features of the masked tokens:
Anj +  j . This dual role of matrix A forces the model to balance between location certainty and
the influence of context features in predictions. It optimizes the trade-off for each feature, balancing
their presence in predictions against the need for precise spatial locations. 1 This can also be viewed
as a regularization of A and we analyze this in Section 4.3.

Prediction and Loss. Then, we can apply a predictor function g� to predict the target features ŝy =
g�(c,m). To supervise the prediction, the ground truth sy = {syi}i2By is obtained either by using
the raw RGB pixels or via a latent representation of the pixels. The loss 1

|By|
P

i2By
L(syi , ŝyi) is

then applied to minimize the prediction error.

3.3 OPTIMAL PREDICTOR

Our approach relies on using stochastic positional embeddings. Here we provide further analysis of
this prediction setting and show that the optimal prediction is indeed to perform spatial smoothing.
Consider a random variable X (corresponding to the context in our case. For simplicity assume X
is just the positional embedding of the context) that is used to predict a variable Y (corresponding
to the target in our case). But now instead of predicting from X , we use a noise variable Z that is
independent of both X,Y , and provide the predictor with only the noisy result R = g(X,Z). Here
g is some mixing function (in our case g(x, z) = x+ z). We next derive the optimal predictor f(R)
in this case. Formally we want to minimize:

ER,Y [(f(R)� Y )2] (4)

Proposition 1. If Z is a Gaussian with zero mean and unit variance, the optimal predictor that
minimizes Equation 4 is:

f(r) =

Z

x

E[Y |X = x]
1p
2⇡

e�0.5(x�r)2dx

Therefore, the optimal predictor amounts to a convolution of the clean expected values with a Gaus-
sian. See Appendix A for a proof of this proposition.

4 EXPERIMENTS AND RESULTS

Next, we turn to discuss the main experiments presented in the paper. In Section 4.1, we describe
the application of StoP to various downstream tasks including image recognition, dense prediction,
and low-level vision tasks. In Section 4.2 we discuss the ablation study and design choices.

4.1 DOWNSTREAM TASKS

We conducted pre-training of StoP on top of I-JEPA, which is a state-of-the-art MIM model. We
train on IN-1k for a period of 600 epochs using ViT-B/16 and ViT-L/16 architectures for the encoder

1Note that an implicit assumption here is that  and sx have fixed magnitude. This is true for sine-cosine
features and for sx which are layer normalized by the transformer last layer.
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Arch Method 1%, last layer 100%, last layer 100%, last 4 layers

ViT-B/16 I-JEPA 57.1 70.9 72.9
+StoP 60.3 (+3.2%) 72.6 (+1.7%) 74.5 (+1.6%)

ViT-L/16 I-JEPA 64.2 76.1 77.5
+StoP 65.1 (+0.9%) 77.1 (+1.0%) 78.5 (+1.0%)

ViT-H/14 I-JEPA 62.9 78.2 79.3
+StoP 65.4 (+2.5%) 79.0 (+0.8%) 79.6 (+0.3%)

Table 1: Using StoP compared to deterministic sinusoidal positional embeddings on IN-1k. StoP leads
to consistent linear probing improvement in all settings. For example, when applying linear probing on trained
ViT-H model with StoP, using only 1% of the labeled data and using averaged pooled features from the last
layer, StoP achieves +2.5% improvement. I-JEPA uses sinusoidal positional embeddings.

and predictor or for 300 epochs when using ViT-H/14. Subsequently, we proceeded to evaluate
the model’s performance on a variety of downstream tasks. We include the full implementation
details, and provide additional results and comparisons to other approaches (e.g, invariance-based
approaches) in Appendix B.

Image recognition. For image classification, we evaluated the StoP model linear probing per-
formance on multiple datasets, including ImageNet (IN-1k) (Russakovsky et al., 2015), Places
205 (Zhou et al., 2014a), iNaturalist 2018 (Van Horn et al., 2018), and CIFAR 100 (Krizhevsky,
2009). These datasets vary in their size, their purpose, and the geographical environments from
which the images were captured. For example, IN-1k contains over 1.2 million images compared to
CIFAR-100 which contains only 60, 000 images, and while IN-1k is focused on object recognition,
Places is focused on scene recognition.

Method Arch. Epochs Top-1

data2vec ViT-L/16 1600 77.3

MAE ViT-B/16 1600 68.0
ViT-L/16 1600 76.0
ViT-H/14 1600 76.6

I-JEPA ViT-B/16 600 70.9
ViT-L/16 600 76.1
ViT-H/14 300 78.2

+StoP (ours) ViT-B/16 600 72.6
ViT-L/16 600 77.1
ViT-H/14 300 79.0

Table 2: Linear-evaluation on IN-1k. Replac-
ing sinusoidal positional embeddings with StoP in I-
JEPA significantly improves linear probing results.

Method Arch. J-Mean F-Mean J&F Mean

MAE
ViT-B/16 49.4 52.6 50.9
ViT-L/16 52.5 54.3 53.4
ViT-H/14 54.0 57.0 55.5

I-JEPA ViT-B/16 56.1 56.2 56.1
ViT-L/16 56.1 55.7 55.9
ViT-H/14 58.5 60.9 59.7

+StoP
ViT-B/16 56.6 57.3 57.0
ViT-L/16 58.1 58.7 58.4
ViT-H/14 58.9 61.2 60.1

Table 3: Video objects semi-supervised segmenta-

tion. MIM with StoP learn features in a finer level of
granularity. Results reported on DAVIS 2017 dataset.

In Table 1, we present the linear probing image
classification results conducted on IN-1k under
different linear evaluation protocols using dif-
ferent amounts of data, and by aggregating fea-
tures from different layers. E.g, “100%, last
4 layers” applies linear probing on the entire
IN-1k data and the representation of each im-
age is comprised of a concatenation of four fea-
ture vectors, each one summarizes information
from its corresponding layer via average pool-
ing. In Table 2 we compare linear probing re-
sults of common MIM methods on IN-1k, re-
porting past published performance. In Table 2
all perform linear probing over the output from
the last layer.

StoP leads to consistent gains using all architec-
tures. For example, +2.5% linear probing per-
formance gains with ViT-H using 1% of the la-
beled data and 1.6% when using features from
the last 4 layer using ViT-B on the full IN-
1k data. Furthermore, using StoP leads to im-
provements in downstream linear probing tasks
(see Table 4). For example, StoP leads to 3.3%
improvement on iNAT using ViT-H and 1.3%
on counting. This confirms that the learned rep-
resentations lead to improvements in a large va-
riety of image recognition tasks. On full fine-
tuning using 1% of the labeled data, we ob-
serve similar performance improvements (see
Table 5), e.g, +2.3% improvements on Top-1
accuracy using ViT-L model. We provide the full finetuning results in the Appendix.
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Method Arch. CIFAR100 Places205 iNat18 CLEVR/Count CLEVR/Dist

data2vec ViT-L/16 81.6 54.6 28.1 85.3 71.3

MAE
ViT-B/16 68.1 49.2 26.8 86.6 70.8
ViT-L/16 77.4 54.4 33.0 92.1 73.0
ViT-H/14 77.3 55.0 32.9 90.5 72.4

I-JEPA
ViT-B/16 69.2 53.4 43.4 82.2 70.7
ViT-L/16 83.6 56.5 48.4 85.6 71.2
ViT-H/14 87.5 58.4 47.6 86.7 72.4

+StoP
ViT-B/16 81.2 54.3 44.7 83.7 71.3
ViT-L/16 84.7 57.2 49.2 85.7 70.2
ViT-H/14 87.7 58.4 50.9 88.0 72.5

Table 4: Linear-probe transfer for various downstream tasks. Linear-evaluation on downstream image
classification, object counting, and depth ordering tasks. Using StoP instead of sinusoidal deterministic posi-
tions leads to improvements on all tasks. E.g, +3.3% on iNAT18 and +1.3% on Counting.

Counting and depth ordering. We assess the downstream performance on tasks that require
fine-grained objects representations like counting and depth ordering using the CLEVR (Johnson
et al., 2017) dataset. Table 4 provides evidence that the representations learned by StoP significantly
improve counting (+1.3%) and slightly improve depth ordering (+0.1%).

Dense prediction. To evaluate how well StoP performs on dense prediction tasks, e.g, tasks that re-
quire fine-grained spatial representations, we utilized the learned models for semi-supervised video
object segmentation on the DAVIS 2017 (Pont-Tuset et al., 2017) dataset. We follow previous works
(e.g Jabri et al. (2020); Caron et al. (2021)) and use the pretrained model to extract frames features
and use patch-level affinities between frames to track the first segmentation mask. We include video
semi-supervised video-object segmentation by tracking results in Table 3. We find that StoP sig-
nificantly improves over I-JEPA with deterministic sinusoidal location features. For example, we
observe +2.5% J&F improvement using ViT-L.

4.2 ABLATION STUDY

Method Epochs Top-1

Sine Cosine 600 69.4
StoP (ours) 600 71.7

Table 5: Finetuning results over IN-

1k with 1% labels. Adding StoP to I-
JEPA significantly improves finetuning
using ViT-L/16 architecture.

Our primary focus is to evaluate the effectiveness of stochastic
positional embeddings (StoP). To demonstrate this, we evalu-
ated various design options. For each setting, we implemented
the encoder and predictor using ViT-B architecture and pre-
trained them for 300 epochs on IN-1k based on the I-JEPA (As-
sran et al., 2023) MIM model. We then assessed the linear
probing performance on IN-1k using only 1% of the labels.

StoP compared to deterministic positional embeddings.

The most common choices for positional embeddings for Vision Transformers are sine-cosine
location features (also used in MAE, I-JEPA) and learned positional embedding. We evaluate the
MIM downstream performance using each of these options and using StoP (see Table 6). Our re-
sults confirm that using StoP leads to significant (+3.2%) improvement compared to all counterparts.

Learned vs. predefined covariance matrix. To confirm that learning the covariance matrix
⌃ = �AAT (and specifically A) is beneficial compared to using a predefined covariance matrix,
we compare to stochastic positional embeddings with a predefined covariance matrix ⌃ = �I ,
without any learning. We compare both options using different � hyperparameter values. Figure 3
indicates that it is advantageous to learn ⌃ rather than use fixed parameters. Our findings show that
setting the hyperparameter value to � = 0.25 leads to an improvement of 3.5% points compared to
deterministic positional embeddings (� = 0).

Application of StoP to different tokens. We apply StoP to context and/or masked tokens. The
results in Table 7 confirm our design choice, showing that StoP is most beneficial when applied
solely to masked tokens positional embeddings and not to the context tokens.
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Figure 3: Learned vs. predefined stochastic po-

sitions. Using learned covariance matrix as in StoP,
e.g, ⌃ = �AAT leads to +3.5% improvement com-
pared to smaller gains with a fixed covariance matrix
⌃ = �I . Accuracy is based on linear probing using
1% of the data from IN-1k.

Figure 4: Increasing � induces regularization.

Changing the prior � (where ⌃ = �AAT ) induces
regularization over A and increases the norm of the
masked token, likely to preserve its information rela-
tive to the added noise.

Method Top-1

Sine Cosine 54.3
Learned Pos. Embedding 54.4
Stochastic Positions (StoP) 57.8

Table 6: Different positional embeddings. Lin-
ear probing on IN-1K using only 1% of the labels.
Stochastic Positions (StoP) outperforms other com-
mon deterministic variants by 3.3%.

Method Top-1

No Noise (Sine Cosine) 54.3
Context tokens only 55.1
Masked + context tokens 56.8
Masked tokens only 57.8

Table 7: Applying noise to different tokens. Ap-
plying learned noise to context and/or masked to-
kens positional embeddings (sine-cosine). Linear
probing accuracy using 1% of the data from IN-1k.

4.3 ANALYSIS

To explain how stochastic positional embeddings affect MIM, we analyze the learned model weights,
visualize the stochastic positional embeddings, and visualize the reconstructed image features.

StoP induces regularization. The matrix A is used to project both noise tokens and context em-
bedding tokens, therefore, we hypothesize that StoP implicitly regularized A. To test this hypothesis
we train models using StoP changing only the hyperparam � (see Figure 4). We find that increasing
the value of � leads to a decrease in the norm of A, which can be viewed as regularization. On the
other hand, increasing � leads to an increase in the norm of the masked token bias m̃. We speculate
that the masked token bias increases in scale to prevent losing its information relative to the noise.

To further analyze this phenomenon, we train additional models while applying l1 regularization on
A while keeping the positional embeddings of masked tokens deterministic. We find that simply
regularizing the predictor projection layer leads to 1.5% improvement over no-noise. However,
applying StoP leads to higher performance gains (+3.5%). Therefore, we conclude that StoP can
only be partially explained by regularization.

Stochastic positional embedding visualization.
Method Top-1

Sine Cosine 54.3
x2 Low res (bilinear resize) 52.1
x2 Low res (max pooling) 54.1
Stochastic Positions (StoP) 57.8

Table 8: Low resolution prediction.
We evaluated the performance of StoP
against models that predict features on
lower scales via max pooling or bilinear
resizing. Reporting linear evaluation re-
sults on IN-1K using 1% of the labels.

To visualize how StoP affects the similarity between different
positions, we plot the similarity matrix between a stochas-
tic position embedding query and the predefined sine-cosine
deterministic positions (Figure 5). With StoP, we find that
query locations are more similar to a wider range of neighbor-
ing locations. We build on this observation and train models
to investigate if StoP performance could be achieved through
predicting lower-scale features. We trained models to predict
features in both the original scale and a downscaled version
by a factor of 2, using bilinear resizing and max pooling for
downscaling. However, we found that predicting lower scale features does not improve performance
(see Table 8).

Prediction visualization. We include heatmap visualization to visualize the similarity of a pre-
dicted token to all other tokens within the same image (see Figure 6). For a given image, mask,
and a masked patch of interest, we apply cosine similarity between the predicted patch and all other
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Figure 5: Similarity matrices of deterministic and

stochastic positional embedding (StoP) to a query

position. Each row represents the similarity given
a different query position. StoP leads to spatially
smooth similarity matrix, thereby making it hard to
distinguish the exact location of a given patch.

Figure 6: Feature visualization. We plot the simi-
larity between the predicted features of a given patch
(marked in white within the masked black area) and
the other tokens in the same image. Using StoP pro-
duces features that are more semantic than location
based. Patches predicted by I-JEPA tend to have
strong correlation with the target location features.

token representations within the same image, followed by a softmax. For I-JEPA with sine-cosine
positional embeddings, the visualization indicates that adjacent tokens tend to share similar features,
implying a correlation between the features and spatial location. In contrast, StoP produces predic-
tions correlated with non-neighboring small areas. We speculate that using StoP leads to learning
features that are more semantic and prevents overfitting to location features.

5 LIMITATIONS

We applied StoP to I-JEPA which performs image reconstruction in the feature space. However,
our attempts to apply StoP to MIM that use pixel based reconstruction, mainly MAE, were not
successful. We speculate that adding StoP to MAE might make pixel reconstruction too difficult
to achieve. Additionally, StoP tackles location uncertainty but not appearance uncertainty, which
we believe is implicitly modeled by reconstructing tokens in feature space. Also, when modeling
stochastic positions it may might be possible to condition the noise on the input image, namely
the context tokens. We leave this extension for future work. Lastly, while combining StoP with
MIM shows significant improvements, invariance-based approaches still perform slightly better (e.g,
iBOT) than MIM approaches.

6 CONCLUSION

In this work, we proposed to use stochastic positional embedding (StoP) to tackles location un-
certainties in the MIM task. By conditioning on stochastic masked tokens positions, our model
learns features that are more robust to location uncertainties. The effectiveness of this approach is
demonstrated on various datasets and downstream tasks, outperforming existing MIM methods and
highlighting its potential for self-supervised learning. Based on our experiments and visualizations,
by modeling location uncertainties with StoP, models suffer less from overfitting to location features.
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