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Figure 1: Left: Dr. GRPO introduces simple yet significant modifications to address the biases in GRPO (Shao et al., 2024),
by removing the length and std normalization terms. Right: Our unbiased optimizer effectively prevents the model from
generating progressively longer incorrect responses, thereby enhancing token efficiency.

Abstract

DeepSeek-R1-Zero has shown that reinforcement
learning (RL) at scale can directly enhance the
reasoning capabilities of LLMs without super-
vised fine-tuning. In this work, we critically ex-
amine R1-Zero-like training by analyzing its two
core components: base models and RL. We in-
vestigate a wide range of base models, including
DeepSeek-V3-Base, to understand how pretrain-
ing characteristics influence RL performance. Our
analysis reveals that DeepSeek-V3-Base already
exhibit “Aha moment”’, while Qwen2.5 base
models demonstrate strong reasoning capabil-
ities even without prompt templates, suggest-
ing potential pretraining biases. Additionally, we
identify an optimization bias in Group Relative
Policy Optimization (GRPO), which artificially
increases response length (especially for incor-
rect outputs) during training. To address this, we
introduce , an unbiased optimization
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method that improves token efficiency while main-
taining reasoning performance. Leveraging these
insights, we present a minimalist R1-Zero recipe
that achieves 43.3% accuracy on AIME 2024 with
a 7B base model, establishing a new state-of-the-
art.

1. Introduction

DeepSeek-R1-Zero (Guo et al., 2025) revolutionizes the
pipeline of large language model (LLM) post-training by
introducing the RI-Zero-like training paradigm: directly
applying RL to base LLMs without relying on supervised
fine-tuning (SFT) as a preliminary step. This new paradigm
is appealing due to its simplicity and the demonstrated RL
scaling phenomenon: the model reasoning capabilities
improve along with a continual increase in model’s response
length. This phenomenon is also accompanied by the “Aha
moment”, at which the model learns emergent skills such as
self-reflections.

In this paper, we aim to understand R1-Zero-like training
by studying two essential components: base models and RL.
In the first part, we investigate various attributes of base
models, with the focus on the Qwen2.5 model family (Yang
et al., 2024a;b), which has been used in recent attempts to
reproduce R1-Zero (Pan et al., 2025; Zeng et al., 2025; Liu
et al., 2025b; Hu et al., 2025), as well as DeepSeek-V3-
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Figure 2: Model performance comparison. Qat-Zero-7B is RL-tuned with our minimalist recipe described in Sec. 1 (third
paragraph). Please see App. B for more results.

Base (Liu et al., 2024), from which the real R1-Zero model Overview of takeaways

was RL-tuned. In the second part, we identify the bias in : ;
A ! * (Sec. 2.1) Template is crucial to make base models
optimization of GRPO (Shao et al., 2024), which may lead answer questions instead of completing sentences.

to progresm.vely longer. mcolrrect responses. To th.lS epd, we Tn addition, all base models already possess math-
propose a simple modification to eliminate the bias, i.e., to g - g

. . solving capability prior to RL.
get GRPO Done Right ( ), which leads to better
token efficiency (highlighted in Fig. 1).

(Sec. 2.2) Intriguingly, Qwen-2.5 base models get
an immediate ~ 60% improvement by not using
template, making us hypothesize that they may pre-
train on concatenated question-answer texts when
cooking the models.

Our analysis on base models and RL suggests a minimalist
recipe for R1-Zero-like training: we RL-tune Qwen2.5-
Math-7B using the (unbiased) Dr. GRPO algorithm on
MATH (Hendrycks et al., 2021) level 3-5 questions with

the Qwen-Math template, and achieve state-of-the-art per- (Sec. 2.3) Nearly all base models already exhibit the

formance (Fig. 2) with only 27 hours compute on 8 x A100 “Aha moment”, including DeepSeek-V3-Base.
GPUs. We hope our findings presented in this paper, mod-

els released, and the codebase open-sourced! could benefit * (Sec. 3.1, Sec. 3.2) Dr. GRPO effectively fixes
future research in the field. As an overview, we summarize GRPO’s bias in optimization, achieving better to-
the takeaways of this paper in the box on the right. ken efficiency.

(Sec. 3.3) Model-template mismatch can destroy
2. Analysis on Base Models reasoning capabilities before RL reconstructs it.

In this section, we scrutinize a wide range of base mod- )
els, including the Qwen-2.5 family (Yang et al., 2024a;b), (Sec. 3.4) Math pretraining on Llama-3.2-3B im-
Llama-3.1 (Grattafiori et al., 2024) and DeepSeek series (Liu proves its RL ceiling.

et al., 2024; Shao et al., 2024; Guo et al., 2025), asking them

500 questions sampled from the MATH (Hendrycks et al.,

2021) training set and analyzing their responses.

question-answering capabilities effectively elicited through
appropriate templates, thereby functioning as a question-
answering base policy 7y (+|q). In addition to the RI tem-
Since training from a base model is a fundamental setting plate (Template 1) in Guo et al. (2025), we consider the
of the R1-Zero-like paradigm, we first investigate whether Owen-Math template (Template 2) used by Zeng et al.
widely used open-source base models, which are typically (2025), as well as No template (Template 3): Experimental
trained for sentence completion (i.e., pp(x)), can have their  settings. We include Qwen2.5-Math-1.5B, Qwen2.5-Math-
7B, Qwen2.5-7B, Llama-3.1-8B, DeepSeek-Math-7B and
DeepSeek-V3-Base-685B for experiments. For each model,
we first apply No template to get the model responses, then

2.1. R1-Zero Trainability: Templates Construct
Exploratory Base Policies

LOur code and models are available at https://github.
com/sail-sg/understand-rl-zero.
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Template 1 (RI template). A conversation between User and Assistant. The User asks a question, and the Assis-
tant solves it. The Assistant first thinks about the reasoning process in the mind and then provides the User with
the answer. The reasoning process is enclosed within <think> </think> and answer is enclosed within <answer>
</answer> tags, respectively, i.e., <think> reasoning process here </think>> <answer> answer here </answer>.\nUser:
{question}\nAssistant: <think>

Template 2 (Qwen-Math template). <|im_start|>system\nPlease reason step by step, and put your final answer within

\\boxed{}.<|im_end|>\n<|im_start |>user\n{question}
<|im_end|>\n<|im_start| >assistant\n

Template 3 (No template). {question}

let GPT-40-mini to judge whether the model responses are in
an answering format (regardless of quality) or in a sentence-
completion pattern. We record the percentage of responses
that tend to answer the question as the metric. We then
apply both R1 template and Qwen-Math template to obtain
model responses, and determine the most suitable template
for each model based on the metric. Finally, we evaluate
the pass@8 accuracy of each model with the corresponding
template to assess whether the base policies can explore
rewarding trajectories for RL improvement.

Results. The left plot of Fig. 3 shows how well base models
(with or without templates) answer the provided questions.
We observe that Llama and DeepSeek models all improve
the answering ability by employing the proper template (R1
template). However, Qwen2.5 models work best (with 100%
answering rate) when no template is used. This intriguing
property motivates further investigation, as discussed in
Sec. 2.2. Meanwhile, the lowest answering rate with no tem-
plate suggests that DeepSeek-V3-Base is a nearly pure base
model. This observation motivates us to explore whether a
pure base model like DeepSeek-V3-Base demonstrates the
Aha moment (Sec. 2.3). The middle plot of Fig. 3 shows the
pass@8 accuracy of different base models (with template) at
different sampling temperatures. This metric can serve as an
indicator of base policy’s exploration ability. For example,
if a base policy cannot even sample a single trajectory that
leads to the correct final answer, it is impossible for RL to
improve the policy because there is no reward signal. Our
results demonstrate that all tested models are exploratory
(thus ready for RL), with Qwen2.5 models performing the
best (even surpassing DeekSeek-V3-Base). This might par-
tially explain that most R1-Zero projects (Zeng et al., 2025;
Hu et al., 2025) are based on Qwen2.5 models.

2.2. Qwen-2.5 Models Unlock the Best Performance
When Discarding Template

We next dig into the intriguing observation (c.f. Fig. 3(Left))

that all Qwen2.5 base models readily serve as chat models

even without any template. We take a step further to evaluate

the reasoning ability of Qwen2.5-Math models on five stan-

dard benchmarks: AIME 2024 (Li et al., 2024), AMC (Li
et al., 2024), MATHS500 (Hendrycks et al., 2021), Minerva
Math (Lewkowycz et al., 2022), and OlympiadBench (He
et al., 2024). Following common practice, we use greedy
decoding and limit the sampling budget to 3000 tokens.

As shown in Table 1, not using any template can drastically
boost the average performance, resulting in an improvement
of about 60% compared to the traditional 4-shot prompting.
Since Qwen2.5-Math (Yang et al., 2024b) uses chat model’s
data (question-answer pairs) during the pretraining stage, we
hypothesize that they might pretrain on the concatenated text
to maximize log py(q; o) directly. If our hypothesis turns
out true, we shall be more careful about using Qwen2.5
models to reproduce DeepSeek-R1-Zero, since the base
models are already SFT-like without templates.

2.3. Aha Moment Already Appears in Base Models
Including DeepSeek-V3-Base
One of the most inspiring results of DeepSeek-R1-Zero is
the emergence of self-reflection behaviors, a.k.a., Aha mo-
ment, through pure RL training. A few prior studies (Liu
et al., 2025b; Yeo et al., 2025) have suggested that there
may not be Aha moment in open-source R1 replications be-
cause the base models they use already exhibit self-reflection
keywords. However, they have not tested DeepSeek-V3-
Base, on which the real R1-Zero model was RL-tuned. We
complete this missing piece by hosting DeepSeek-V3-Base-
685B ourselves and investigating its responses to the 500
MATH questions with the R1 template. From the right plot
of Fig. 3, we can observe that DeepSeek-V3-Base also gen-
erates a decent amount of self-reflections, further validating
the claims of Liu et al. (2025b). We also show examples
in App. D (Fig. 11) where DeepSeek-V3-Base generates
keywords such as “Aha” and “wait”.

An additional important question is whether self-reflection
behaviors are associated with improved model performance
after RL training. To investigate this, we host DeepSeek-
R1-Zero and analyze its responses to the same questions
from the MATH dataset. Although self-reflection behaviors
occur more frequently in R1-Zero, we observe that these
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Figure 3: Model attributes across three aspects. Question-Answering Ability: the extent to which a pretrained language
model provides a direct answer to a question rather than continuing or expanding upon it; Exploration Ability: pass@8§
measures how well base models explore; Self-Reflection: counts are obtained through cross-validation between keyword-
based detection and LLM-based detection, as detailed in Appendix C.

Base model + Template AIME24 AMC MATHS500 Minerva OlympiadBench  Avg.
Qwen2.5-Math-1.5B
(4-shot prompting) 0.0 20.0 50.4 12.1 15.9 19.7
R1 template 0.0 9.6 21.2 6.6 22 7.9
Qwen template 20.0 32.5 33.0 12.5 22.8 24.2
No template 16.7 434 61.8 15.1 28.4 33.1
Qwen2.5-Math-7B
(4-shot prompting) 33 22.5 61.6 10.7 20.9 23.8
R1 template 0.0 0.0 0.0 0.0 0.1 0.0
Qwen template 16.7 38.6 50.6 9.9 16.6 26.5
No template 0.2 45.8 69.0 21.3 34.7 38.2

Table 1: Qwen2.5-Math models might be pretrained on concatenated question-answer text, resulting in peak performance

when no template is applied.

behaviors are not positively correlated with higher accuracy.
Detailed analysis can be found in App. E.

3. Analysis on Reinforcement Learning
Language model generation can be formulated as a token-
level Markov Decision Process (MDP) M = (S, A, 7, po).
At each generation step ¢, the state s; € S is the concatena-
tion of the input question and the output response generated
so far: s; = q;0<t = [q1,-..,9M,01, ..., 0t—1]. The pol-
icy mo(+|s¢) will select the next token o; from the vocabulary
A, resulting in a deterministic transition to the next state
St4+1 = S¢; [04]. The generation process starts from sampling
an initial state s; = q ~ po from a set of questions, and
stops when the autoregressive policy generates the [eos]
token or exhausts the budget.

Typically, we maximize the entropy-regularized objec-

tive (Schulman et al., 2017a):

J(mg) = E E

a~pg lo~mg(+|q)

[R(q,0)]
— BDseslmoCla) || merCl]]. (D

where R(q,0) = Eltc;ll r(s¢,04) is the return (Sutton &
Barto, 2018) of the trajectory q; 0, and 7t is a reference pol-
icy. The KL regularization term is usually adopted (8 > 0)
for reinforcement learning from human feedback (Chris-
tiano et al., 2017), where 7 is a reward model learned from
data collected by 7. In this case, regularization helps pre-
vent 7y from deviating too far from the distribution where
the reward model is accurate (Jaques et al., 2019; Stiennon
et al., 2020). However, RL-tuning reasoning models typ-
ically employs rule-based verifiers as r (Lambert et al.,
2024), eliminating the concerns of distributional shift. This



Understanding R1-Zero-Like Training: A Critical Perspective

allows us to remove the KL term, which not only saves the
memory and computation required by 7 during training,
but also potentially leads to better performance for R1-Zero-
like training (Hu et al., 2025). We will assume § = 0
throughout this paper.

Policy optimization algorithms. To optimize 7y with the
above objective (Eq. (1) with 3 = 0), Proximal Policy
Optimization (PPO) (Schulman et al., 2017b) maximizes
the following surrogate objective:

Trpo(m9) = Equpg,onmg, (la)

o mo(oi|a,020)
Z min | ——————_ Ay,

=1 Toga(0t]@, 0<t)

mo (01|, 0<t) i

cli ,1—e, 1+€)A
p(ﬂ-gold(ot‘qvo<t) A

} @

where 7y, is the policy before the update, € is the clipping
hyperparameter, and Ay is an estimator of the advantage
function of the ¢-th token. A standard way to estimate
Ay is to compute the Generalized Advantage Estimation
(GAE) (Schulman et al., 2015) with a learned value model
V. However, in the context of LLM RL-tuning, learning
the value model is computationally expensive, so methods
that estimate A, without Vi are practically preferred. For
example, Shao et al. (2024) proposed GRPO, which first
samples a group of responses {01, ...,0¢} per question
and computes their returns R = {R1,..., R}, then sets

1 R;—mean(R
the advantage of all tokens from o; as A; = W)()
3.1. GRPO Leads to Biased Optimization
In Deepseek-R1-Zero (Guo et al., 2025), a notable trend is
the consistent increase in response length throughout the
training process. This is frequently interpreted as an indi-
cation of the development of advanced reasoning abilities
such as self-reflection. Recent studies (Pan et al., 2025;
Zeng et al., 2025; Hu et al., 2025) have replicated this phe-
nomenon using various algorithms and implementations.
However, we argue that the observed increase in response
length may also be attributed to a bias inherent in the
GRPO (Shao et al., 2024) objective function:

Jarpo(mo) :EQNPQv {0} 1~mo,,, (1)

G |oi|
lz 1 min 79 (0i,¢|q, 0i,<¢) A,
G 3 o] —1 7r9old(0i7i|ch 0i,<t)

A, = R(q,0;) — mean({R(q,01),-.., R(q, OG)})7

7T'9(Oi,t|Q7 0i,<t)

ﬂ-gold(oiwt‘q7 0i,<t)

clip( d—e14e)A,

3

where

with the return R(q, 0;) typically only including the out-
come verifiable reward in LLM reasoning (the analysis also
applies to process reward cases).

Compared to the objective function in Eq. (2), GRPO intro-
duces two biases (see also Fig. 4):

* Response-level length bias: This arises from dividing
by |o;|. For positive advantages (A, ; > 0, indicating
a correct response), this bias results in greater gradi-
ent updates for shorter responses, leading the policy
to favor brevity in correct answers. Conversely, for
negative advantages (AM < 0, indicating an incorrect
response), longer responses are penalized less due to
their larger |o;|, causing the policy to prefer lengthier
responses among incorrect ones.

¢ Question-level difficulty bias: This is caused
by dividing the centered outcome reward by
std({R(q,01),...,R(q,0¢)}).  Questions with
lower standard deviations (e.g., those that are too easy
or too hard, with the outcome rewards being almost all
1 or 0) are given higher weights during policy updates.
While advantage normalization is a common trick in
RL (Andrychowicz et al., 2021), it is typically com-
puted across an entire batch. In contrast, question-level
normalization results in varying weights in the objec-
tive for different questions, leading to a difficulty bias
in optimization.
Length Bias Also Exists in Open-Source PPO Implemen-
tations. We also examined several popular open-source
implementations of vanilla PPO algorithms for LLM post-
training. To our surprise, all of these implementations nor-
malize the loss by response length (see listing 1 and Ta-
ble 2), which misaligns with the PPO objective as defined in
Eq. (2). This formulation-implementation misalignment was
present even before the publication of GRPO. We speculate
that the misalignment might originate from the pretraining
stage (Shoeybi et al., 2019), where all tokens are packed into
a fixed-length context and normalizing the loss by the con-
text length (i.e., computing 1oss .mean (-1) ) improves
the numerical stability. However, in the RL-tuning stage,
typical implementations (von Werra et al., 2020) normalize
the loss by the response length, which is not a constant,
introducing an unintended length bias.

Repository | Code Link | Unbiased?
trl (von Werra et al., 2020) | PPO Loss | X
OpenRLHF (Hu et al., 2024) ‘ PPO Loss ‘ X
verl (Sheng et al., 2024) | PPOLoss | X
SimpleRL-Zero (Zeng et al., 2025) ‘ PPO Loss ‘ X
Open-Reasoner-Zero (Hu et al., 2025) | PPO Loss | X

Table 2: Many open-sourced PPO implementations contain
length bias.


https://github.com/huggingface/trl/blob/07cfe1677e552b7d5c92b7740e5b2f0b057661d8/trl/trainer/ppo_trainer.py#L573C1-L574C1
https://github.com/OpenRLHF/OpenRLHF/blob/15d31511d7f63c410bdbea8be34854aafc90c0ac/openrlhf/models/loss.py#L76
https://github.com/volcengine/verl/blob/c6dc8b73cf011aa75b8c6a47b0322f50aed800ad/verl/trainer/ppo/core_algos.py#L301
https://github.com/hkust-nlp/simpleRL-reason/blob/41c9a893ea17dc4b5399dc2e5a14a53d81b373f6/train/openrlhf/models/loss.py#L48
https://github.com/Open-Reasoner-Zero/Open-Reasoner-Zero/blob/e008f6d95f0b9a0e992f6b8bac912515b50a4634/orz/ppo/actors.py#L130
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Figure 4: Illustration of the biases in GRPO. Note that the effective advantage of GRPO a; ; is equivalent to a reweighted
version of the unbiased advantage A; ; = R(q, 0;) — mean(R). The terms std(R) and |o;| could bias the optimization by
assigning different weights to different questions and responses, as denoted by the sizes of the blue circles and the lengths of
the orange arrows. Upward arrows indicate positive advantages, and vice versa.

Listing 1: Comparison between a typical open-source PPO loss implementation that is biased (red) and our implementation
(green). MAX_TOKENS is a global constant during the entire training (unless budget curriculum is enabled), which specifies

the maximum number of generation tokens. Other constants also work with differences in gradient norm.

def masked_mean (tensor, mask, dim):

= return (tensor * mask).sum(axis=dim)
+ return (tensor x mask) .sum(axis=-1)
ppo_loss = ... # compute per-token ppo

response_mask = ...

/ mask.sum(axis=dim)
/ MAX_TOKENS

loss

# per-token response mask

# per-response length normalization (e.g., OpenRLHF)
loss_variantl = masked_mean (ppo_loss, response_mask, dim=-1) .mean ()
# OR per-batch length normalization (e.g., trl, verl)

loss_variant2 = masked_mean (ppo_loss,

response_mask, dim=None) .mean ()

3.2. Dr. GRPO: Group Relative Policy Optimization
Done Right

To avoid the aforementioned optimization bias in

GRPO, we propose to simply remove the ‘Ol—l
and  std({R(q,01),...,R(q,0¢)})  normalization
terms. Meanwhile, to faithfully implement the un-

biased optimization objective, we could replace the
mask.sum(axis=dim) with a constant value (e.g.,
generation budget) in the masked.mean function in
listing 1, as highlighted by the line in green. Notably, these
simple modifications recover the PPO objective in Eq. (2),
with the advantage estimated by Monte Carlo return with an
unbiased baseline (Sutton & Barto, 2018). We give detailed
derivations in App. A. We refer to our new optimization
algorithm as Dr. GRPO. We next experimentally validate
its effectiveness.

Experimental settings. We implement our algorithm using
Oat (Liu et al., 2025a), a modular, research-friendly and
efficient LLM RL framework. We adopt the Qwen2.5-1.5B
base model and the R1 template (Template 1) for online
RL-tuning. We implement the verification-based reward
function using Math-Verify?, with the following minimalis-
tic rule:

1 if o contains the correct final answer to q
0 otherwise

R(q,0) = {

https://github.com/huggingface/
Math-Verify.

We run RL on questions sampled from the
MATH (Hendrycks et al., 2021) training dataset, and com-
pare the vanilla GRPO with the proposed Dr. GRPO. We
evaluate the online model on five benchmarks: AIME2024,
AMC, MATH500, Minerva Math and OlympiadBench.
More experimental details including hyperparameters can
be found in App. F.

Results. We report various metrics in Fig. 5 to demonstrate
that Dr. GRPO can effectively mitigate the optimization bias
and lead to better token efficiency. In particular, we first
note that both GRPO and Dr. GRPO exhibit similar trend
to DeepSeek-R1-Zero (Guo et al., 2025), namely their re-
sponse length increases along with training reward (Plots 1
& 2). However, we observe that GRPO tends to continually
generate longer responses even when the reward improve-
ment slows down (Plot 2). Although such a phenomenon is
often referred to as the “emergence” of long-CoT through
RL (Zeng et al., 2025; Hu et al., 2025), we argue that it is
also confounded by the response-level length bias (Sec. 3.1)
during optimization®. In contrast, by computing the un-
biased policy gradients, Dr. GRPO prevents the response
length from growing wildly during training (Plot 2). More-
over, on evaluation benchmarks, the length of incorrect re-
sponses is substantially reduced by Dr. GRPO compared to

3We note that both Zeng et al. (2025) and Hu et al. (2025)
employ PPO, which is unbiased by formulation. However, their
loss implementations still introduce the length bias (see listing 1).
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Figure 5: Comparison of Dr. GRPO and GRPO in terms of training dynamics (Top) and evaluation results (Bottom).

the baseline (Plot 4), suggesting that an unbiased optimizer
also mitigates overthinking (Chen et al., 2024).

3.3. A Duet of Template and Question Set Coverage in
RL dynamics

Recall that the Qwen2.5-Math base models can readily an-
swer questions with high accuracy without any prompt tem-
plate (Sec. 2.2). Based on this intriguing observation, we are
interested in how different templates affect the RL training.
Furthermore, given the general belief that larger question set
coverage leads to better performance (Luo et al., 2025; Hu
et al., 2025), we also study the interaction between different
templates and different levels of question coverage.

Experimental settings. Starting from the Qwen2.5-Math-
1.5B base model, we apply R1 template, Qwen-Math
template and No template respectively to run RL using
Dr. GRPO. All experiments are repeated for different ques-
tion sets that are detailed in Table 3.

Results. Fig. 6 shows the RL curves of different runs, from
which we can make several interesting observations: 1) Tem-
plates determine the performance of the initial policies, but
RL can improve all policies to a comparable performance
of ~ 40% (given a proper question set); 2) When using the
R1 template, question sets have a significant impact on the
dynamics of RL, with too narrow coverage leading to lower
plateau performance. However, when using the Qwen-Math
template, the best final performance is attained by RL on
GSM-8K, demonstrating that training on much simpler (and
0.0.d.) questions can largely improve (nearly double) the
test accuracy on harder questions. From these observations,
we draw the following insights:

» The Qwen2.5-Math-1.5B base model already possesses
strong math-solving capabilities (see the starting point
in the right plot of Fig. 6). Applying templates in
fact destroys the capability before RL reconstructs it.
This implies that we should be more conservative in
claiming the huge gains brought about by pure RL.

* When there is a large mismatch between base models
and templates (e.g., R1 template mismatches Qwen2.5-
Math-1.5B), the policy improvement mainly comes
from RL-tuning, thus requiring question set to have
good coverage (left plot of Fig. 6). Otherwise, even
a small and completely o.0.d. question set could in-
duce the reasoning ability equally well, by reinforcing
useful reasoning behaviors instead of infusing new
knowledge.

3.4. Domain-Specific Pretraining Improves RL Ceiling

Recent successful R1-Zero-like replications of math rea-
soners mostly employ Qwen2.5 base models as the ini-
tial policies (Zeng et al., 2025; Cui et al., 2025; Hu et al.,
2025), which are already strong math solvers and exhibit
self-reflection patterns (Sec. 2.2 and 2.3). In this section we
hope to explore the other side: can R1-Zero-like training
succeed on originally weak (in terms of math reasoning)
base models? We answer this question affirmatively, with
the observation that math pretraining would improve the
ceiling of RL.

Experimental settings. We adopt the Llama-3.2-3B base
model as our starting point, and use the unbiased Dr. GRPO
algorithm for RL-tuning with the R1 template. We hypothe-
size that domain-specific pretraining would help RL, hence
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Question set | # |

Description

ORZ
MATH 12k
GSM 8k
ASDiv 2k

57k | Combining AIME, Numina-Math, Tulu3 MATH; diverse and large amount
High-school math competition questions
Simpler grade-school math questions
Basic algebra (+ — x—+) questions

Table 3: Different question sets that have different levels of difficulty and coverage.

R1 Template Qwen-Math Template No Template
) M
Q
g 30
>
(%)
©
5 20
3 —— ORZ-57K —— ORZ-57K —— ORZ-57K
S —— MATH-12K —— MATH-12K —— MATH-12K
10 —— GSM-8K —— GSM-8K —— GSM-8K
ASDiv-2K ASDiv-2K ASDiv-2K
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Figure 6: The average benchmark accuracy of different {template, question set} combinations during RL training.
Base Models Algorithms 3 prove the vanilla Llama base model, but the gain is minimal.
18 12k g After continual pretraining (and concatenated continual pre-
Q) (1] .. .
s Lok 2 training) to embed math domain knowledge, Llama models
> 12 . . .
3 £ can show much stronger RL performance, validating our
= . .. N .. . .
2 s 08k g hypothesis. We also revisit the GRPO’s optimization bias
< ‘ o6k 3 with the Llama base model. The right plot of Fig. 7 com-
o 00 200 300 © 00 200 300 § pares the model performance and response length trained

Policy iteration step
= Llama3.2-3B NuminaQA
= | lama3.2-3B FineMath
= |lama3.2-3B

Policy iteration step

= Dr. GRPO
GRPO

Figure 7: Left: The average benchmark performance curves
of different base models. Right: The comparison between
Dr. GRPO and GRPO with respect to reasoning accuracy
(solid lines) and model response length (dashed lines).

we adopt the Llama-3.2-3B-FineMath*, which is contin-
ual pretrained on the FineMath dataset (Allal et al., 2025).
Moreover, as we hypothesize that Qwen2.5 models are likely
to be pretrained on concatenated question-response texts
(Sec. 2.2), we similarly prepare a concatenated dataset from
NuminaMath-1.5 (LI et al., 2024), and continual pretrain
Llama-3.2-3B-FineMath for 2 epochs with learning rate le-
5. We refer to the concatanated continual pretrained model
as Llama-3.2-3B-NuminaQA.

Results. We present the RL curves of different base models
in the left plot of Fig. 7. We observe that RL can even im-

*nttps://huggingface.co/HuggingFaceTB/
FineMath-Llama-3B.

with GRPO and Dr. GRPO. We can clearly see that GRPO
can produce the “double-increase” phenomenon, potentially
leading to a misperception that long-CoT can also emerge
on Llama models after math pretraining. Unfortunately, the
increase of length might be due to the optimization bias
(Sec. 3.1), which can be effectively mitigated by the pro-
posed Dr. GRPO (Sec. 3.2 & right plot of Fig. 7).

4. Closing Remarks

We have taken a critical perspective to examine base models
used for R1-Zero-like training, as well as algorithms used
for RL. Through the analysis, we demystified how pretrain-
ing biases influence RL outcomes and how optimization
choices, like GRPO, can unintentionally shape model be-
havior. With the proposed Dr. GRPO, we offer a simple fix
that improves token efficiency while preserving reasoning
performance. Our results show that scaling RL can be both
effective and efficient—sometimes, less really is more.
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A. Policy Gradient Derivations

In the context of RL for LLM post-training, we typically maximize the value of

)= E_|, E R, @
a~po |o~me(-|a)
where R(q,0) = | ‘ r(q, 0<;) is the return (Sutton & Barto, 2018) of the trajectory q; o, and r(q, 0<;) represents the

token-level reward for t th token in response o.

The Monte Carlo policy gradient (Sutton & Barto, 2018) of Eq. (4) is
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where B(q, o) is a variance reduction term, which is invariant with respect to o; so that
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Typically, we set B(q,0«;) = A IE(Elq 3 )[ L?‘:t (g, 0<y)], which is the expected cumulative reward in the future
>t~ ("|q,0<t

(also known as the value of the current state), and denote A(0:|q, 0<+) = Z,lf,":t r(q,0<y) — B(q, 0<;) as the advantage.
In the case of outcome reward, Z‘t?l:t r(q,0<y) = ZL":‘I r(q,0<:) = R(q,0).

By setting B(q, 0<;) = mean({R(q,01),...,R(q,0¢)}), the policy gradient of Eq. (5) becomes

Q
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where
i R(q,0;) —mean({R(q,01),...,R(q,0¢)}) .

it =
std({R — q,06)})
We adopt the PPO (Schulman et al., 2017b) objective to compute Eq. (6):
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from which we conclude that both std and |o| should not appear in the RL objective.

Unbiasedness of fl” We note that fliyt computed above is equivalent to that of REINFORCE Leave-One-Out (RLOO) (Ah-
madian et al., 2024; Kool et al., 2019) up to a scaling factor, which can be subsumed into the learning rate without affecting
the RL dynamics. Specifically,

G
G < G G 1
G_1 A= mR((L 0;) — ma;}?(% )
G
G 1 1
= mR(% 0;) — G-1 Z _R(OL 0;) — mR(% 0;)
Jj=1,j#i
= Agee.

B. Detailed Benchmark Results

We show the detailed benchmark results for three scales (1.5B, 3B and 7B) in Table 4. We also include the instruct models
at the same scale and R1-Distill models for comparison. Note that since we employ the Qwen2.5-Math base models, which
have a context length of 4k, we thus limit the generation budget at 3k for all baselines compared. For models that are trained
for a longer context (OpenReasoner-Zero end R1-Distill-Qwen), we also report their performance at 8k generation budget.

Base model + Method | AIME24 | AMC | MATH500 | Minerva | OlympiadBench | Avg.
Qwen2.5-Math-1.5B 20.0 | 325 33.0 12.5 22.8 24.2
Qwen2.5-Math-1.5B* 16.7 | 43.4 61.8 15.1 28.4 33.1
Oat-Zero-1.5B 20.0 | 53.0 74.2 25.7 37.6 42.1
R1-Distill-Qwen-1.5B @ 3k 2.5 21.7 522 16.3 17.3 22.0
R1-Distill-Qwen-1.5B @ 8k 20.0 494 77.4 25.0 35.8 41.5
Qwen2.5-Math-1.5B-Instruct 10.0 | 48.2 74.2 26.5 40.2 39.8
Llama-3.2-3B 0.0 2.4 6.4 6.3 1.3 33

+ RL w. Dr. GRPO 33 7.2 10.0 11.0 22 6.8
Llama-3.2-3B-FineMath 0.0 3.6 18.4 5.9 22 6.0

+ RL w. Dr. GRPO 33 10.8 38.0 12.9 9.0 14.8
Llama-3.2-3B-NuminaQA 0.0 0.0 0.6 0.0 0.1 0.14

+ RL w. Dr. GRPO (Oat-Zero-3B)| 6.7 18.1 50.0 14.3 14.7 20.7
Llama-3.2-3B-Instruct 6.7 15.7 38.8 11.8 12.6 17.1
Qwen2.5-Math-7B 16.7 | 38.6 50.6 9.9 16.6 26.5
Qwen2.5-Math-7B* 0.2 45.8 69.0 213 34.7 38.2
SimpleRL-Zero-7B 26.7 | 60.2 78.2 27.6 40.3 46.6
PRIME-Zero-7B 16.7 | 62.7 83.8 36.0 40.9 48.0
OpenReasoner-Zero-7B @ 3k 13.3 | 47.0 79.2 31.6 44.0 43.0
OpenReasoner-Zero-7B @ 8k 133 | 542 82.4 31.6 47.9 459
Oat-Zero-7B 433 | 62.7 80.0 30.1 41.0 514
R1-Distill-Qwen-7B @ 3k 10.0 | 26.2 60.1 23.0 23.1 28.5
R1-Distill-Qwen-7B @ 8k 333 68.4 88.1 35.9 47.7 54.7
Qwen2.5-Math-7B-Instruct 16.7 | 53.0 83.6 29.8 42.7 45.1

Table 4: A comparison on benchmark scores. Qat-Zero models are RL-tuned by our minimalist recipe (Sec. 1). * means we
employ the best template (no template) to generate answers, such that the test scores are highest and can faithfully reflect the
capabilities of the base models.

C. Keyword-based Detection and LL.M-Based Identification of Self-Reflection Behaviors

We construct a pool of carefully selected keywords and phrases that signal self-reflection behaviors in the LLM’s responses.
However, LLM-generated responses often contain hallucinations and off-topic content, leading to the presence of simple,
ambiguous keywords that do not necessarily indicate genuine self-reflection. For instance, terms like “wait” and “try again”
frequently result in false positive detections. To reduce false positives, we maintain a small, highly selective keyword pool
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consisting of terms that are strongly indicative of self-reflection. In our experiment, the keyword pool is limited to: recheck,
rethink, reassess, reevaluate, re-evaluate, reevaluation, re-examine, reexamine, reconsider, reanalyze, double-check, check
again, think again, verify again, and go over the steps.

103

Count of self-reflection keywords

Keywords

B Qwen2.5-Math-1.5B I Qwen2.5-7B W DeepSeek-Math-7B
Il Qwen2.5-Math-7B s Llama-3.1-8B DeepSeek-V3-Base-685B

Figure 8: Count of keyword occurrences out of 40,000 responses (500 questions x 8 responses per question x 10
temperatures). y is in log scale.

We present the occurrences of various keywords in the responses generated by different models in Figure 8. Interestingly,
different model families emphasize different keywords. For instance, phrases such as “check again”, “double-check”,

99 <, CEINT3

“re-evaluate”, “re-examine”, “recheck”, “reconsider”, and “verify again” appear most frequently in the Qwen2.5 family. In
contrast, “re-evaluate”, “re-examine”, and “verify again” do not appear in the responses of the DeepSeek family, while
Llama models frequently use the phrase “think again.” We hypothesize that this phenomenon results from differences in the

pretraining data, particularly in relation to reasoning and mathematics.

Although we meticulously select the keyword pool, it may still be insufficient to identify some implicit behaviors of
self-reflection that do not contain a specific keyword. Additionally, it can lead to false positives, as illustrated in Case (a) of
Figure 9. To address these limitations and more accurately assess the self-reflection capability of base models, we leverage
stronger LLMs (GPT—-4o0-mini in our experiments) to analyze the responses and determine whether they exhibit explicit
self-reflection (e.g., keywords like recheck” and “’reevaluate”) or implicit self-reflection (e.g., more sophisticated patterns
that cannot be easily captured through keyword matching). This approach helps distinguish true self-reflection behaviors
from superficial or incidental use of related terms.

While LLM-based detection effectively filters out false positives from keyword-based detection and identifies implicit
self-reflection behaviors, it can still misclassify responses, particularly when they are lengthy and complex. For instance,
Case (b) in Figure 9 shows a false positive in LLM-based detection, where the response is categorized as self-reflection by
the LLM but does not actually exhibit self-reflection. This type of error can be filtered out by keyword-based detection.
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Case(a): What is the smallest positive Case(b): What is the greatest multiple of 3

multiple of 23 that is 4 more than a  that is less than 500 and is also a multiple of
multiple of 89? 4?
Response Response
To find the smallest positive multiple To find the greatest multiple of 3 that is
of 23 that, ... less than 500 and is also a multiple of 4, I
Start with the smallest possible value need to first consider the greatest multiple
of k by checking if they satisfy the of 4 less than 500, which is 496. However,
equation. If not, increase k and check 496 is not a multiple of 3. I then need to
again. consider the next multiple of 4, which is
492. 492 is a multiple of 3, since 492 / 3 =
Now, trying k = 21: 23 -21 =483 ... 164 with no remainder.</think>

<answer> 492 <answer>

Figure 9: Case (a): a false positive in keyword-based detection. Case (b): a false positive in LLM-based detection.

To enhance robustness, we integrate keyword-based and LL.M-based detection through cross-validation. The combined
detection results, along with the individual results from keyword-based and LLM-based methods, are presented in Figure 10.

Keyword-based Detection LLM-based Detection Cross Detection
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Figure 10: Comparison of keyword-based detection, LLM-based detection, and cross detection. Self-reflections are counted
at the question level across 500 questions, where a question is marked as having self-reflection if at least one of its eight
responses exhibits self-reflection.

D. Examples of Aha Moment in DeepSeek-V3-Base

Fig. 11 shows two examples to demonstrate that the DeepSeek-V3-Base model already exhibits the so-called “aha moment”
even before the RL-tuning.

E. Comparison Between DeepSeek-V3-Base and DeepSeek-R1-Zero

We analyze DeepSeek-V3-Base and DeepSeek-R1-Zero to understand changes in model behavior during R1-Zero training.
In Fig. 12, we present the breakdown of response categories across difficulty levels for 500 MATH questions evaluated on
both models. The results indicate that most incorrect responses are corrected after RL training, demonstrating substantial
performance gains from R1-Zero training. Meanwhile, we find an increase in unformatted responses, which aligns with the
observation in (Liu et al., 2025b).

In Table 5, we report the average response lengths across categories. Note that truncated responses would fall into any of the
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— Question(a): An element is randomly cho- Question(b): Find the least positive inte-  —

sen from among the first 15 rows ... ger n such that 1/sin45° sin46°+...
Response Response
In Pascal’s Triangle, every row starts First, I notice that the left-hand side of
and ends with 1, ... the equation has the form ...
Simplifying, I get ...
This can be calculated as: *awkward Aha! I can use this to get sin(a + 2b) =
silence* Wait, I'm overthinking. Let’s try sin((a+b) +b) = 3sin(a + b) ...
again. The number of elements in the This looks messy, but I notice that it has
first n rows of Pascal’s Triangle is the form sina cos b + cos a sin b again.

(mn+1)1/[2!* (n—1)1]. This gives me an idea. Maybe I can ...

Figure 11: Cases showing that DeepSeek-V3-Base already exhibits “Aha moment” even before RL tunning.

DeepSeek-V3-Base DeepSeek-R1-Zero
0 8001 m
]
n
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n
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1 3 1 2 3 4 5
Level Level
B correct incorrect unformatted truncated

Figure 12: Breakdown of response categories across difficulty levels in
the MATH dataset for DeepSeek-V3-Base and DeepSeek-R1-Zero.

Category Base Rl1-Zero
Unformatted 880.7 7870.3
Correct 621.3 4965.4
Incorrect 1038.9 8206.1

Table 5: Average response string lengths across
categories for DeepSeek-V3-Base (Base) and
DeepSeek-R1-Zero (R1-Zero).

other three categories if a larger context size were used; thus, we exclude them from the table. The results show a substantial
increase in response lengths across all categories, including correct responses, consistent with the results in the Fig. 3 of
Guo et al. (2025). However, the average length of incorrect responses is notably longer than that of correct responses.
We hypothesize this is because more challenging questions generally require longer responses due to increased reasoning
complexity, and incorrect responses are more likely to originate from harder questions, resulting in a longer average length.

Self-reflection does not necessarily imply higher accuracy. To in-
vestigate whether self-reflection behaviors are associated with model
performance during the inference (acknowledging that self-reflection
may improve exploration during training—a potential positive effect
outside this section’s scope), we analyze questions that elicit at least
one response with self-reflection from DeepSeek-R1-Zero across eight
trials. For each question, we sample 100 responses and divide them
into two groups: those with self-reflection and those without. We then
compute the accuracy difference between these two groups for each ques-
tion. As shown in Fig. 13, the results indicate that nearly half responses
with self-reflection do not achieve higher accuracy than those without
self-reflection, suggesting that self-reflection does not necessarily imply
higher inference-stage accuracy for DeepSeek-R1-Zero.
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Figure 13: Accuracy difference between
responses with and without self-reflection
for each question (responses sampled from
DeepSeek-R1-Zero).
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F. Detailed Experimental Settings

All our experiments are performed on 8 x A100 GPUs and finished in about one day. We enable the actor-learner collocation
supported by Oat (Liu et al., 2025a) to optimize the training efficiency. We show the experimental configurations in Table 6.

Parameter Value
ACTOR

Maximum response length 3000 tokens
Sampling temperature 1.0
(top P, top k) (1.0,-1)
Number of responses per question 8

LEARNER
Optimizer AdamW
Adam parameters (51, B2) (0.9, 0.95)
Weight decay 0.0
Gradient norm clipping 1.0
Learning rate scheduler Constant
Warm up steps 3% of training steps
Inner proximal update epoch 1
KL loss coefficient 0.0
KL penalty coefficient 0.0
Policy clipping parameter 0.2

Table 6: Hyperparameter configurations used in all experiments.

G. Prompts Used for GPT-As-A-Judge

Prompt for checking the model’s question-answering ability.

Prompt for Checking Question-Answering Ability

I will send you a question and a long response generated by an LLM. Your task is to determine whether the output
attempts to answer the question or not. The output may sometimes include irrelevant content, hallucinations, or
random, off-topic responses.

Please classify the output into one of the following categories:

Output Format:

Your response must start with a single integer (0 or 1), followed by a brief explanation.

e Return 0: — The output is not trying to answer the question (e.g., irrelevant content, random talking,
hallucinations). Example output: ‘O: The response is off-topic and does not address the question.*

* Return 1: — The output attempts to answer the question, regardless of how complete or accurate the answer is.
Example output: ‘1: The response engages with the question, even if the answer is incomplete or incorrect.

Question: {question}
Response: {response}
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Prompt for LLM-based detection to determine whether a response contains self-reflection behaviors.

LLM-based Detection for Self-Reflection

I will send you a mathematical question along with a detailed response. Your task is to determine whether the
response is attempting to answer the question. If the response is off-topic, hallucinated, random talk, or otherwise
irrelevant, mark it as 0. Otherwise, assess whether the response exhibits self-reflection.

Categorization Rules:

1. Category 0: The response is off-topic, nonsensical, incoherent, overly repetitive, or lacks logical reasoning.

» Example cases:

— The response does not relate to the question.
— It contains meaningless or hallucinated content.
— It consists of excessive repetition without coherence.

2. Category 1: The response attempts to answer the question but does not exhibit self-reflection.

* Example cases:

— The response directly solves the problem without revisiting steps.
— No attempt is made to verify the correctness of the answer or explore alternative solutions.

3. Category 2: The response demonstrates self-reflection at any level.

* This may include:

— Explicit self-reflection keywords, such as: *recheck, rethink, reassess, reevaluate, re-evaluate,
reevaluation, re-examine, reexamine, reconsider, reanalyze, double-check, check again, think again,
verify again, go over the steps*, etc.

— Implicit self-reflection behaviors, such as revisiting the solution, questioning assumptions, or
considering alternative approaches without explicit keywords.
* If any form of self-reflection is present, always categorize it as 2, regardless of correctness or answer
quality.

4. Category 3: The response consists solely of Python code for calculations without exhibiting self-reflection.
* Example cases:
— The response only provides a Python script to compute the solution without any verification, re-

evaluation, or alternative considerations.

Output Format:

Your response should first provide a very brief explanation of your analysis, followed by a single category number
(0, 1, 2, or 3) at the end. You must include the category number at the end of your response.
Example outputs:

* ‘The response is off-topic and does not attempt to answer the question. 0.°

“The response provides a direct solution without self-reflection. 1.

‘The response demonstrates self-reflection. 2.°
* ‘The response consists solely of Python code without any self-reflection. 3.

Question: {question}
Response: {response}
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