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ABSTRACT

Domain generalization methods can effectively enhance network performance on
test samples with unknown distributions by isolating gradients between unsta-
ble and stable parameters. However, existing methods employ relatively coarse-
grained partitioning of stable versus unstable parameters, leading to misclassified
unstable parameters that degrade network feature processing capabilities. We first
provide a theoretical analysis of gradient perturbations caused by unstable pa-
rameters. Based on this foundation, we propose Layer-Decomposition Training
(LDT), which conducts fine-grained layer-wise partitioning guided by parame-
ter instability levels, substantially improving parameter update stability. Further-
more, to address gradient amplitude disparities within stable layers and unstable
layers respectively, we introduce a Dynamic Parameter Update (DPU) strategy
that adaptively determines layer-specific update coefficients according to gradient
variations, optimizing feature learning efficiency. Extensive experiments across
diverse tasks (super-resolution, classification, semantic segmentation) and archi-
tectures (Transformer, Mamba, CNN) demonstrate LDT’s superior generalization
capability. Our code is available at ***.

1 INTRODUCTION

With advances in neural networks and computing hardware, neural network-based methods have be-
come dominant across visual tasks, spanning both high-level vision (image classification(Lee et al.,
2025), semantic segmentation(Zhang et al., 2025), object detection(Chen et al., 2025), point cloud
segmentation(TangZaizuo et al., 2023)) and low-level vision (image super-resolution(Zhou et al.,
2023), image generation(Shi et al., 2024)). However, their superior performance critically depends
on the assumption that training and test data share similar distributions.

In real-world scenarios, due to variations in illumination conditions and imaging devices, the test
sample distribution (target domain) and training sample distribution (source domain) exhibit signif-
icant differences, termed as domain shift. Domain shift causes networks that perform well on the
source domain to suffer severe performance degradation on the target domain, which greatly lim-
its their application in high-confidence-demand tasks (e.g., medical diagnosis, autonomous driving,
etc.).

Consequently, domain generalization methods have emerged (Kumar et al., 2022; Pahk et al., 2025;
Wang et al., 2024b), which effectively enhance the generalization capability of networks through
data augmentation strategies (Vaish et al., 2024b; Xu et al., 2025; Zheng et al., 2024) and explicit
learning of domain-invariant features (Huang et al., 2024; Li et al., 2024b). Data augmentation-
based domain generalization methods fall into two categories: (1) Input sample augmentation im-
proves network robustness to different degradation patterns through rotations, crops, and frequency-
domain perturbations of input samples. (2) Network architecture augmentation improves parameter
generalization via perturbations on specific layers or channels (e.g., Dropout (Hinton et al., 2012)).
Explicit domain-invariant feature learning methods enhance model robustness by decomposing input
features into domain-invariant and domain-specific components, then selectively emphasis domain-
invariant representations while suppressing domain-specific variations. (For related work on domain
generalization methods, refer to Appendix A.)
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Figure 1: Comparison with existing methods. Existing methods consist of two stages: a warm-up stage for
initializing the prediction head, and a fine-tuning stage. During fine-tuning, LP-FT (Kumar et al., 2022) fine-
tunes the entire network, while DeFT (Pahk et al., 2025) treats the backbone network as stable layers and the
prediction head as unstable layers, constructing primary and auxiliary networks with cross-freezing of backbone
and prediction head components to stabilize gradient updates. Our proposed LDT method achieves finer-
grained hierarchical separation of stable and unstable layers and incorporates the dynamic parameter update
(DPU) strategy into the parameter update process. Notably, for low-level vision tasks such as super-resolution
(SR), the network’s prediction head is replaced with an upsampling module.

(a) (b) (c)

Figure 2: Gradient stability analysis. (a) Gradient stability analysis for each layer in both the backbone net-
work and prediction head. We feed 600 samples through the network to collect layer-wise gradients without
performing parameter updates, then compute the standard deviation of each layer’s gradients across these sam-
ples. (b) Gradient stability analysis for unstable layers. (c) Gradient stability analysis for stable layers. We
statistically analyze gradient variations in stable layers and unstable layers partitioned by LDT, respectively.

Although existing domain generalization methods have extensively investigated input samples, net-
work architectures, and intermediate features, their exploration of parameter correlations in domain
generalization tasks remains limited.

Two recent works, LPFT (Kumar et al., 2022) and DeFT(Pahk et al., 2025), have conducted pre-
liminary exploration of parameter-to-parameter correlations in networks, focusing on network gen-
eralization in fine-tuning scenarios. There exists a randomly initialized prediction head and a back-
bone network pretrained with large-scale data (ImageNet (Deng et al., 2009)), where the backbone
possesses strong feature processing capability and generalization performance. They argue that dur-
ing fine-tuning, the random parameter distribution in the uninitialized prediction head will perturb
parameter updates in the backbone network, ultimately compromising the network’s overall perfor-
mance and generalization capability. As shown in Figure.1, both LPFT and DeFT methods divide the
training process into a warm-up stage and a fine-tuning stage. During the warm-up stage, they freeze
the backbone network to prevent interference from the prediction head. In the fine-tuning stage, the
LPFT method fine-tunes all network parameters to maximize feature learning efficiency. The DeFT
method maintains isolation between the prediction head and backbone network during fine-tuning
by constructing a dual-branch architecture with cross-freezing of the backbone and prediction head,
thereby preventing interference from the prediction head.

Gradients represent the change in network parameters in response to current input samples. The
network contains unstable parameters that exhibit extreme sensitivity to input feature distributions -
minor variations can trigger severe fluctuations in these parameters. These unstable parameters con-
stitute the fundamental factor impairing network generalization performance. Through theoretical
analysis (Appendix B), we demonstrate these unstable parameters significantly influence parameter
updates throughout all network layers by interfering with gradient propagation.

Due to the stochastic nature of unstable parameter fluctuations, their gradient directions are typically
more random, exhibiting higher variance. Therefore, as shown in Figure.2, we statistically analyze
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Figure 3: Overall framework.

gradient variations of network parameters at the layer-wise level across different input samples,
revealing the following two issues:

• Existing methods (Kumar et al., 2022; Pahk et al., 2025) exhibit insufficient granularity in
partitioning stable and unstable parameters: certain layers in the backbone network demon-
strate significantly higher gradient variance compared to the prediction head (Figure.2a).
These unstable parameters in the backbone network substantially impact parameter updates
across all other layers. Consequently, existing partitioning methods based on backbone-
head differentiation operate at inadequate granularity, leading to misclassification issues.

• Inadequate adaptability in parameter updates: Unstable layers exhibit significant gradient
variance disparities (approximately 10×, Figure.2b). Existing methods apply uniform up-
date strategies across all layers, inevitably causing information loss. (This phenomenon is
more pronounced among stable layers. Figure.2c)

To address the low partitioning granularity issue, we propose the Layer-Decomposition Training
(LDT) strategy. LDT performs layer-wise partition of stable and unstable layers based on gradient
variance of parameters across network layers, and employs subsequent cross-freezing to prevent gra-
dient interference from unstable layers to stable ones, effectively enhancing network generalization.
For the parameter update adaptability problem, we further introduce the Dynamic Parameter Update
(DPU) strategy within LDT framework. DPU projects gradient variance into parameter update co-
efficients, enabling networks to self-adaptively determine update ranges, thereby further improving
generalization performance.

Our main contributions can be summarized as follows:

• We first provide a theoretical analysis of perturbation effects from unstable parameters to
stable parameters. Building on this foundation, we propose Layer-Decomposition Training
(LDT), which mitigates perturbations from unstable layers during training through explicit
separation of stable and unstable layers, effectively enhancing domain generalization.

• We develop a Dynamic Parameter Update (DPU) strategy that adapts update coefficients
based on fluctuation amplitudes, demonstrating superior adaptability compared to conven-
tional EMA methods.

• Our method is architecture-agnostic and task-agnostic, validated across diverse vision tasks
(both high-level and low-level) and architectures (Transformer, Mamba, CNN), demon-
strating LDT’s general effectiveness.

2 METHOD

2.1 PROBLEM SETTING

Given a source domain DS ∈ {DS
1 , · · · , DS

nS} and a target domain DT ∈ {DT
1 , · · · , DT

nT }, which
comprise nS and nT sub-datasets respectively and are disjoint DS∩DT = ∅. We perform supervised
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training of network M on the source domain DS to enhance its generalization performance, i.e.,
achieve satisfactory performance on target domain DT that are unknown during training.

2.2 OVERALL FRAMEWORK

As shown in Figure.3, the training procedure of LDT consists of two components: (1) Identifica-
tion of stable and unstable layers, and (2) Gradient isolation and stabilization. The identification
component contains two sub-stages: the Warm-Up stage initializes the prediction head, while the
Layer Selection stage performs fine-grained layer-wise partitioning of stable and unstable layers. In
the gradient isolation component, the network is duplicated into two copies (primary and auxiliary
networks) with alternating layer freezing: unstable layers are frozen in the primary network while
stable layers remain trainable; conversely, stable layers are frozen in the auxiliary network while
unstable layers are made trainable. During simultaneous training of both networks, the proposed
Dynamic Parameter Update strategy (DPU, Section 2.4) adaptively adjusts the frozen parameters
in both networks. After training completion, frozen layers from both networks are extracted and
combined into a new composite network for test-time inference. (See Appendix C for the complete
training pipeline pseudocode)

2.3 LAYER-DECOMPOSITION TRAINING (LDT)

2.3.1 MOTIVATION

The gradient represents the change in network parameters induced by current inputs, where larger
gradients indicate more significant parameter modifications. When a sample is fed into the net-
work, large gradients primarily arise from two scenarios: (1) parameters possess strong feature
processing capabilities and exhibit stronger feedback to current inputs; (2) parameters are overly
sensitive to input samples, where minor input variations cause large parameter fluctuations, thereby
generating large gradients. In the second scenario, the parameters exhibit high sensitivity to do-
main shift, severely degrading performance on target domains with unknown distributions. More
critically, during network training, unstable parameters (second scenario) interfere with the
gradients of stable parameters (see Appendix B for theoretical proof). Furthermore, through
iterative training (forward propagation-gradient computation-parameter updates), this interference
becomes progressively amplified. Therefore, we aim to decouple unstable parameters’ interference
with stable ones while stabilizing updates of unstable parameters.

2.3.2 IDENTIFICATION OF UNSTABLE AND STABLE LAYERS

Since the training sample distribution is relatively uniform, (as discussed in the preceding subsec-
tion) the first case results in stable, directionally consistent parameter updates with low gradient
variance. In contrast, parameters in the second scenario exhibit random fluctuations with stochastic
update directions and high variance. Therefore, we propose to partition parameters based on vari-
ance, using layers as the partition unit - treating layers with high gradient variance as unstable and
those with low variance as stable. Notably, to prevent interference from randomly initialized weights
when obtaining gradient variance, a warm-up stage is introduced that initializes the network using a
subset of the source domain.

The source domain samples are partitioned into two subsets DS = {DS1 , DS2}. During the warm-
up stage, one source domain subset DS1 is used for network parameter initialization. After network
initialization, the other source domain subset DS2 is fed into the network, where gradients at each
layer are preserved without parameter updates. Subsequently, LDT calculates the variance of each
layer’s gradients across samples from source domain subset DS2 , defining layers with high variance
as unstable layers and those with low variance as stable layers,

NameU = Top N(V ar,RatioU ,M), (1)

NameS = NameAll −NameU , (2)

where NameAll is the set of all layer names in network M , Top N selects the top-ranked layer
names based on each layer’s gradient variance to define unstable layers NameU . The stable
layer name set NameS is the complement of unstable layer NameU name set within the full set
NameAll. RatioU indicates the ratio of unstable layers.
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2.3.3 GRADIENT ISOLATION AND STABILIZATION

As shown in Figure.3, to stabilize parameter updates in unstable layers, inspired by (Kumar et al.,
2022; Pahk et al., 2025), the LDT method adopts a parallel dual-branch training strategy. It dupli-
cates the initialized network from the warm-up stage into two copies: the primary network PM and
auxiliary network AM . Subsequently, LDT freezes the unstable layers in the primary network, pre-
venting gradient updates via the loss function, while employing the Exponential Moving Average
(EMA) algorithm to update primary network’s frozen unstable layer parameters using those from
auxiliary network’s unfrozen unstable layers. This mechanism aims to stabilize the unstable lay-
ers in primary network by leveraging multi-timestep parameters from auxiliary network’s unstable
layers,

P̃ θ
U

t+1 = Wf × P̃ θ
U

t + (1−Wf )×AθU , (3)

where P̃ θ
U

denotes the parameters of the frozen unstable layers in the primary network, AθU cor-
responds to the parameters of the unfrozen unstable layers in the auxiliary network, and Wf is the
parameter update coefficient. A value of Wf closer to 1 indicates that more timesteps of the auxiliary
network’s unstable layer parameters AθU are required to induce changes in the primary network’s
unstable layer parameters P̃ θ

U
.

To eliminate gradient interference from unstable layers to stable layers, the stable layers in the
auxiliary network are frozen, allowing loss function gradients to update only the unstable layers in
auxiliary network. The frozen stable layer parameters in auxiliary network can only be updated via
the unfrozen stable layers in the primary network. This method not only severs gradient interference
from unstable to stable layers (via network freezing), but also enables stable layers to adapt to the
stabilized parameter changes from unstable layers (via EMA).

The forward propagation processes and loss computations for both primary and auxiliary networks
are as follows:

yP = ˜PM(x), where ˜PM = Cat{PLS , P̃L
U}, (4)

yA = ˜AM(x), where ˜AM = Cat{ÃL
S
, ALU}, (5)

∆PθS = grad func(yP , y), ∆AθU = grad func(yA, y), (6)

where PLS and P̃L
U

represent the unfrozen stable layers and frozen unstable layers in the primary
network ˜PM respectively, while ÃL

S
and ALU correspond to the frozen stable layers and unfrozen

unstable layers in the auxiliary network ˜AM . Cat denotes the concatenation of layers from the
collection. x, yP , yA, and y denote the input features, predictions from primary and auxiliary
networks, and the ground truth label, respectively. grad func is the gradient computation function
that acquires the gradients of stable layer parameters in the primary network ∆PθS and the gradients
of unstable layer parameters in the auxiliary network ∆AθU .

In summary, the gradients from the loss function can only update the stable layers in the primary
network and the unstable layers in the auxiliary network. The frozen unstable layers in primary
network and the frozen stable layers in auxiliary network are respectively updated via the EMA
algorithm using the unfrozen unstable layers in auxiliary network and the unfrozen stable layers in
primary network,

PθSt+1 = PθSt −∆PθS , AθUt+1 = AθUt −∆AθU , (7)

Ãθ
S

t+1 = Wf × Ãθ
S

t + (1−Wf )× PθSt+1,

P̃ θ
U

t+1 = Wf × P̃ θ
U

t + (1−Wf )×AθUt+1,
(8)

where PθSt , PθSt+1, AθUt and AθUt+1 represent the parameters of stable layers in the primary network
before and after gradient updates, and the parameters of unstable layers in the auxiliary network be-
fore and after gradient updates, respectively. P̃ θ

U

t , P̃ θ
U

t+1, Ãθ
S

t and Ãθ
S

t+1 represent the parameters
of frozen unstable layers in the primary network before and after EMA updates, and the parameters
of frozen stable layers in the auxiliary network before and after EMA updates, respectively. Wf is
the parameter update coefficient that controls the influence strength from corresponding layers in the
another network on the current layer’s parameter updates. A larger value of Wf indicates weaker
influence on the current layer, and it is typically set to 0.99.
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2.4 DYNAMIC PARAMETER UPDATE

The LDT method effectively avoids gradient interference from unstable to stable layers and stabi-
lizes unstable layers’ gradient updates through its cross-freezing of stable/unstable layers and EMA
algorithm. However, as shown in Figure.2b and Figure.2c, there remains significant variation in
fluctuation magnitudes between layers within the unstable and stable layer groups. If the same pa-
rameter update coefficient Wf is applied to all layers when EMA updating, it would inevitably result
in information loss and counterintuitive behavior.

When a layer exhibits higher variance (greater fluctuation magnitude), it should incorporate param-
eters from more timesteps to stabilize its parameter updates. Conversely, when a layer demonstrates
lower variance, indicating more stable gradient updates and stronger generalization capability, its
feature learning capacity should be enhanced by strengthening its parameter update efficiency.

During the EMA-based parameter update process, where frozen parameters are updated using un-
frozen parameters via the EMA algorithm, a parameter update coefficient Wf closer to 1 implies
lower influence weights of unfrozen parameters on frozen parameters, requiring more timesteps of
unfrozen parameters to induce updates to frozen parameters. Conversely, a smaller Wf corresponds
to higher influence weights of unfrozen parameters, enabling substantial updates to frozen parame-
ters with fewer timesteps of unfrozen parameters. Therefore, we propose to refine the EMA algo-
rithm’s parameter updates for frozen layers by assigning larger update coefficients to high-variance
frozen layers (enabling reference to more timesteps of unfrozen parameters) while giving smaller
coefficients to low-variance frozen layers (allowing significant updates from fewer unfrozen param-
eters), thereby enhancing overall update efficiency.

The dynamic parameter update (DPU) strategy first sorts all stable and unstable layers in descending
order of their variance magnitudes, respectively, and subsequently calculates each layer’s relative
ranking position.

RankSi =
Get index(V arSi , V arS)

NS
, where i ∈ {1 · · ·NS},

RankUj =
Get index(V arUj , V arU )

NU
, where j ∈ {1 · · ·NU},

(9)

where Get index(V arSi , V arS) denotes obtaining the rank order of the i − th stable layer’s vari-
ance V arSi among all stable layer variances V arS , and Get index(V arUj , V arU ) follows the same
principle. NS and NU represent the quantities of stable layers and unstable layers respectively.

Subsequently, DPU calculates the parameter update coefficient for the current layer based on its
obtained ranking position:

WS
i = WS

Base +RankSBase ∗RankSi ,

WU
j = WU

Base +RankUBase ∗RankUj ,
(10)

where WS
i and WU

j denote the parameter update coefficients for the i − th stable layer and j −
th unstable layer, respectively. WS

Base and WU
Base are set to 0.99 and 0.999 respectively, while

RankSBase and RankUBase are configured as 0.01 and 0.001.

Referring to Eq.8, the frozen unstable layers in the primary network and the frozen stable layers in
the auxiliary network are updated using their corresponding parameter update coefficients,

Ãθ
S

t+1 = WS × Ãθ
S

t + (1−WS)× PθSt+1,

P̃ θ
U

t+1 = WU × P̃ θ
U

t + (1−WU )×AθUt+1,
(11)

where WS ∈ {WS
1 , · · · ,WS

NS}, WU ∈ {WU
1 , · · · ,WU

NU } represent the parameter update coeffi-
cients for stable layers in the primary network and unstable layers in the auxiliary network respec-
tively.

2.5 TEST-TIME INFERENCE

After training the dual-branch network using LDT and DPU strategies, we extract (1) the frozen
unstable layers from the primary network and (2) the frozen stable layers from the auxiliary network,

6
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panasonic 132.png

LR SAFMN:31.97 HAT:31.96 MambaIR:32.81

GT +LDT:33.33 +LDT:33.33 +LDT:33.70

Figure 4: Visual comparison of LDT. The large image on the left is the LR image, and the sub-images on
the right are LR, SAFMN, HAT, MambaIR (first row), GT, SAFMN + LDT, HAT + LDT, MambaIR + LDT
(second row). The value following the name represents the PSNR metric of the current patch.

Table 1: Effectiveness validation of LDT. The samples from the Olympus-camera branch are selected as the
source domain, while those from the remaining camera branches constitute the target domain. Performance is
evaluated using PSNR and SSIM metrics. The experiment was repeated three times, with results reported
as mean ± standard deviation.

Method Pan Sony DSC
Baseline 30.81/0.8688 30.81/0.8850 30.22/0.8753

LDT 31.20 ± 0.0883/0.8631 ± 4.58e-4 31.25 ± 0.2768/0.8746 pm 4.79e-3 31.23 ± 0.0923/0.8869 ± 7.02e-4
LDT & DPU 31.36 ± 0.0469/0.8611 ± 6.03e-4 32.15 ± 0.1953/0.8880 ± 3.03e-3 31.51 ± 0.1351/0.8865 ± 1.16e-3

Method IMG Canon
Baseline 30.01/0.8737 30.93/0.8617

LDT 30.17 ± 0.1989/0.8730 ± 5.69e-4 32.33 ± 0.2187/0.9236 ± 1.23e-3
LDT & DPU 30.57 ± 0.1367/0.8705 ± 3.61e-4 32.80 ± 0.2560/0.9246 ± 1.51e-3

then concatenate them to construct the composite network MC. During test-time inference, MC
performs predictions on input samples. This workflow can be formally expressed as:

MC = Cat{ÃL
S
, P̃L

U}, (12)
y = MC(x), (13)

where x and y denote the input sample and its corresponding prediction, respectively.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Datasets: For image SR tasks, we employ the DRealSR dataset (Wei et al., 2020), which consists of
images captured by multiple cameras (Olympus, Pan, Sony, DSC, IMG, Canon). Since each camera
possesses distinct hardware parameters, samples collected by different cameras exhibit significant
domain shift. During experiments, we select images from one or multiple cameras as the source
domain, while using images from the remaining cameras as the target domain. For image classi-
fication tasks, we employ the VLCS dataset (Torralba & Efros, 2011), which comprises the VOC,
LabelMe, Caltech, and SUN datasets. The VOC dataset contains diverse daily-life scene images, the
LabelMe dataset exhibits multi-scene characteristics, the Caltech dataset focuses on specific objects
(e.g., vehicles), and the SUN dataset covers various indoor and outdoor scene images. We adopt the
DomainBed-consistent training strategy, specifically cross-training validation. For semantic seg-
mentation tasks, we employ the Cityscapes (Cordts et al., 2016), BDD100K (Yu et al., 2018), and
Mapillary (Neuhold et al., 2017) datasets, which contain diverse autonomous driving scenarios with
distinct styles.

Network architecture: For SR tasks, we validate the effectiveness of our proposed method on
networks based on CNN, Transformer, and the recently popular Mamba architectures, specifically
SAFMN (Sun et al., 2023), HAT (Chen et al., 2023), and MambaIR (Guo et al., 2024a) respec-
tively. For the image classification task, we employ ResNet-18, ResNet-50(He et al., 2016a), ViT
(Dosovitskiy et al., 2021), and Vision Mamba (Liu et al., 2024) network architectures. For semantic
segmentation tasks, we adopt an architecture consisting of a ResNet-50 He et al. (2016b) backbone
with a DeepLabV3+ Chen et al. (2018) prediction head.

Implementation details:

7
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Table 2: Ablation experiments on stable/unstable layer partitioning criteria

Method Pan Sony DSC IMG Canon
Baseline 30.81/0.8688 30.81/0.8850 30.22/0.8753 30.01/0.8737 30.93/0.8617
Random 30.96/0.8619 30.88/0.8692 31.00/0.8858 30.02/0.8732 32.05/0.9217

Mean 31.18/0.8598 31.86/0.8833 31.28/0.8854 30.47/0.8706 32.39/0.9226
Var/Mean 31.27/0.8615 31.89/0.8849 31.37/0.8870 30.50/0.8717 32.59/0.9248

Var 31.36/0.8611 32.15/0.8880 31.51/0.8865 30.57/0.8705 32.80/0.9246

Table 3: Ablation experiments on training/inference efficiency. The task is image super-resolution,
with training and inference patch sizes set to 48×48 and 200×200 pixels respectively. The network
architecture is based on MambaIR.

Method Training memory (GB) Inf memory (GB) Training time (s) Inf time (s)
Baseline 15.27 2.7 0.6912 658.3287

DeFT (Pahk et al., 2025) 20.30 2.7 1.2566 653.9900
LDT 20.25 2.7 1.2608 643.6736

The input patch sizes are 48× 48 for SR tasks, 224× 224 for classification tasks, and 512× 512 for
semantic segmentation tasks. We employ 4× V100 GPUs as training devices. It is worth noting that
since SR data processing is relatively straightforward and constitutes a pixel-level task, it is more
susceptible to domain shift effects. Consequently, we conducted ablation experiments on the SR
task branch.

3.2 ABLATION EXPERIMENTS

Ablation experiments evaluating (1) diverse source domain training distributions, (2) varying net-
work architectures, (3) LDT’s performance on classification tasks, (4) LDT’s performance on se-
mantic segmentation tasks, and (5) unstable layer partitioning ratios are provided in Appendix D.

3.2.1 ABLATION EXPERIMENTS FOR EACH COMPONENT OF LDT

To validate the effectiveness of our proposed method, we conduct ablation studies for each module.
The performance metrics of models fine-tuned on the source domain and evaluated on the target
domain serve as baseline results.

We first evaluate the network performance with only the Layer-Decomposition Training (LDT) strat-
egy implemented (without DPU). As shown in Table. 1, LDT improves the SR network’s perfor-
mance across all target-domain camera branches, with the most significant PSNR gain of 1.4 dB
observed on the Canon data branch. By isolating gradients between stable and unstable layers, the
LDT strategy prevents perturbations from large parameter fluctuations in unstable layers during sta-
ble layer updates, effectively enhancing parameter update stability. Subsequently, we incorporate
the proposed Dynamic Parameter Update (DPU) strategy with LDT, yielding further performance
improvements on the target domain - notably a 0.4dB PSNR increase on the Sony branch. Through
finer-grained processing of gradient amplitude variations within both unstable and stable layers,
DPU enhances update adaptability and further boosts the network’s generalization capability.

3.2.2 ABLATION EXPERIMENTS ON STABLE/UNSTABLE LAYER PARTITIONING CRITERIA

To verify the impact of stable/unstable layer partitioning criteria on network generalization perfor-
mance, we conducted the following experiments: (1) Random partition, where layers were randomly
assigned as stable or unstable. (2) Gradient magnitude-based partition, where layers were sorted by
their mean gradient magnitudes across input samples, with layers exhibiting larger mean gradients
designated as unstable. (3) Variance-based partition, where layers were sorted by gradient variance
across input samples, assigning those with higher variance as unstable. (4) Normalized gradient vari-
ance partition. Under identical fluctuation amplitudes, layers with higher gradients exhibit greater
variance than those with lower gradients. To eliminate this bias, we implement normalized gradient
variance partitioning (Var/Mean).

As shown in Table.2, random partitioning of stable and unstable layers provides only marginally
improvements in network generalization performance. While the dual-branch training strategy en-
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Table 4: Comparative experiments

Network Pan Sony DSC IMG Canon
IODA (Tang & Yang, 2024) 30.97/0.8594 31.31/0.8807 31.05/0.8852 30.15/0.8728 31.87/0.9216
SRTTA (Deng et al., 2023) 29.88/0.8359 31.24/0.8714 29.93/0.8639 29.78/0.8580 31.88/0.9146

Wang et al. (2024a) 31.28/0.8626 31.53/0.8818 31.34/0.8875 30.42/0.8775 32.72/0.9269
DTAM (Huang et al., 2024) 31.23/0.8615 31.29/0.8773 31.29/0.8864 30.32/0.8747 32.65/0.9256
START (Guo et al., 2024b) 31.28/0.8609 31.41/0.8774 31.29/0.8862 30.33/0.8743 32.70/0.9261

MambaIR + LP-FT (Kumar et al., 2022) 30.99/0.8621 30.97/0.8722 30.82/0.8827 29.93/0.8696 31.64/0.9212
MambaIR + DeFT (Pahk et al., 2025) 31.27/0.8632 31.61/0.8801 31.34/0.8875 30.31/0.8726 32.40/0.9247

MambaIR + LDT 31.36/0.8611 32.15/0.8880 31.51/0.8865 30.57/0.8705 32.80/0.9246

hances parameter update stability via EMA, misclassification between unstable and stable layers re-
duces gradient interference isolation efficiency, ultimately limiting generalization gains. Using mean
gradient magnitude for stable/unstable layer partitioning yields modest generalization improve-
ments, though underperforms LDT’s variance-based method. Large gradients primarily emerge
from two scenarios: (1) the network encountering new distribution samples requiring adaptation,
and (2) certain layers exhibiting excessive sensitivity to input variations. Employing only gradient
averages for layer separation would incorrectly categorize the first scenario’s layers as unstable (sub-
sequently frozen during fine-tuning), thereby impairing the network’s feature learning capacity. As
mentioned in Section 2.3.2, the first scenario produces more coherent parameter updates with lower
gradient variance, owing to the aligned distribution of training samples, whereas the second sce-
nario demonstrates more randomized update directions and larger gradient variance. Using variance
as the metric to distinguish stable and unstable layers effectively distinguishes between these two
scenarios, achieving strong performance across all four camera branches in the target domain. While
normalized variance outperforms variance in certain camera branches, the LDT method adopts vari-
ance as the layer partition metric to preserve methodological simplicity.

3.3 ABLATION EXPERIMENTS ON TRAINING/INFERENCE EFFICIENCY

To validate the method’s impact on computational efficiency, we systematically evaluate GPU mem-
ory consumption during both the training and inference stages for: (1) the baseline method, (2)
DeFT [32], and (3) our proposed LDT, as quantified in Table 3. We further measure the training
time per image and inference time across the entire Olympus-camera branch dataset for all com-
pared methods.

Although DeFT and LDT introduce an auxiliary network, their additional parameters remain frozen
(excluding them from gradient computation), resulting in limited memory overhead. Crucially, dur-
ing inference, LDT maintains identical memory consumption to the baseline since only a single
network processes input images.

3.4 COMPARATIVE EXPERIMENTS

As shown in Table.4, we compare our proposed LDT method with other domain generalization
methods, including parameter-correlation-focused methods LP-FT (Kumar et al., 2022) and DeFT
(Pahk et al., 2025), feature-perturbation-based domain generalization methods START (Guo et al.,
2024b), DTAM(Huang et al., 2024), and Wang et al. (2024a), as well as domain adaptation meth-
ods IODA (Tang & Yang, 2024) and SRTTA (Deng et al., 2023) trained on both source and target
domains. For visual comparisons, refer to Appendix E.

4 CONCLUSION

In this paper, we propose the Layer-Decomposition Training (LDT) strategy, which effectively mit-
igates feature distribution perturbations caused by misclassified unstable layers in existing methods
through layer-wise separation of stable and unstable layers. Furthermore, the proposed Dynamic Pa-
rameter Update (DPU) strategy enhances the network’s adaptability to amplitude variations within
both stable and unstable layers by adaptively determining update coefficients based on gradient oscil-
lation levels, thereby improving generalization performance. Extensive experiments across diverse
tasks and architectures demonstrate LDT’s effectiveness and universality.
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A RELATED WORK

A.1 DATA AUGMENTATION-BASED DOMAIN GENERALIZATION METHODS

Data augmentation strategies (Vaish et al., 2024a; Cao et al., 2022; Wang et al., 2021; Castellini
et al., 2023; Xu et al., 2022) aimed to reduce neural networks’ overfitting problems through data
perturbation and increasing sample feature diversity, thereby improving the networks’ generalization
performance.

For image classification tasks, the Mixup (Zhang et al., 2017) data augmentation method randomly
mixed two images while proportionally transforming the class labels according to the mixing ratio,
effectively increasing the diversity of original samples. CutMix (Yun et al., 2019) randomly cropped
partial regions of images and covered the cropped regions with processed crops from other images.
Liu et al. (2022) designed a token-level Mix strategy specifically for Transformer networks. Islam
et al. (2024) argued that randomly mixing two images may not only omit important portions of the
input images but also introduce label ambiguities. Therefore, they employed a Diffusion architecture
for image generation, avoiding the label ambiguity problem. Fan et al. (2024) designed a data aug-
mentation strategy for instance segmentation tasks, effectively expanding the diversity of training
samples. Wang et al. (2024c) proposed a foreground-background separation-based data augmenta-
tion strategy, where they effectively enhanced training sample diversity by combining foreground
features with different background features. Feng et al. (2019) addressed the overfitting problem
of SR models with small data samples by proposing a Mixup data augmentation strategy, which
directly merged two LR images at random ratios, effectively increasing training sample diversity.
Yoo et al. (2020) argued that existing data augmentation strategies like CutMix could destroy spa-
tial relationships between image pixels, harming SR task performance. Therefore, they adopted a
cross-augmentation method (CutBlur) that pasted HR images onto upsampled LR images and added
upsampled LR images to HR images. They claimed that compared to existing data augmentation
methods, CutBlur not only taught the network how to perform SR but also taught it which regions to
super-resolve, preventing the network from producing overly sharp images. Xiao et al. (2023) first
proposed a data augmentation strategy specifically for light field image SR tasks. They randomly
augmented images using CutBlur on light field images’ unique multi-view images, effectively im-
proving light field SR performance. Chao et al. (2024) further enhanced light field SR performance
by proposing a dual spatial-angular data augmentation strategy based on CutMix. The CutBlur (Mi
& Yang, 2025) method achieved sample diversity expansion by mutually pasting and covering LR
and HR images. However, the ADD method (Zeyu & Yubin, 2025) discovered that CutBlur could
cover high-information regions in images, causing information loss. To address this, they introduced
an attribution algorithm to guide the pasting process, ensuring only low-information regions were
covered each time, effectively preserving information richness.

A.2 DOMAIN-INVARIANT FEATURE LEARNING-BASED DOMAIN GENERALIZATION METHODS

Domain generalization methods targeting domain-invariant features typically decomposed input fea-
tures into domain-invariant and domain-specific components. By preserving learning capacity for
domain-invariant features while reducing sensitivity to domain-specific variations, these methods
effectively enhanced model generalization performance.

Previous domain generalization methods primarily focused on processing either high-level or low-
level features. DomainDrop (Guo et al., 2023), however, operated along the channel dimension by
identifying and suppressing channels containing domain-specific features through channel activa-
tion values. The Dropout method (Hinton et al., 2012) improved network robustness by randomly
dropping connections between layers. However, Wang et al. (2024a) argued that using Dropout in
low-level vision tasks could lead to loss of feature diversity, thereby degrading network performance.
Given this limitation, they proposed a degradation consistency loss that enforced consistent predic-
tions across differently degraded images, thus enhancing network robustness. Ahn et al. (2024)
maintained that image augmentation should not alter the relationships between objects in images.
They constrained objects in augmented images using covariance and employed contrastive learning
to enhance feature discriminability while preserving generalization performance. Chattopadhyay
et al. (2023) investigated domain generalization from virtual to real scenes, noting that ”synthetic
images have less variance in high-frequency components of the amplitude spectra compared to real
images.” Based on this assumption, PASTA perturbed the amplitude spectra of synthetic images in
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the Fourier domain to generate augmented views. DGMamba (Long et al., 2024) conducted domain
generalization research on the recently popular Mamba network architecture (Gu & Dao) . They
addressed the issue of accumulated domain shift caused by iterative hidden state updates in Mamba
networks by proposing a hidden state random shuffling data augmentation strategy. The START
method (Guo et al., 2024b) further refined input feature processing by dividing features into fore-
ground features (affecting predictions) and domain-specific background features based on activation
values. START improved background robustness through style swapping between background fea-
tures and randomly generated features. Huang et al. (2024) improved the foreground/background
feature partitioning strategy. They argued that foreground features determining object predictions
should exhibit high correlation with other patch features. Thus, they identified patches with high co-
variance values as foreground features and others as background. Li et al. (2024a) introduced CLIP
to domain generalization tasks, using text descriptions with CLIP’s text encoder to guide feature
learning, and implemented domain-specific feature filtering through generated channel and spatial
masks, effectively improving network robustness. Cheng et al. (2024) leveraged large language
models to reason about domain-specific and domain-invariant features, constructing a memory bank
from domain-specific features to guide subsequent inference. Zhao et al. (2022) proposed a test-
time domain generalization method, hypothesizing that amplitude images from Fourier transforms
contained feature intensity information (considered as style information and domain-specific). They
therefore augmented amplitude images to enhance robustness and reduced feature distance between
test and source domain samples by incorporating source domain features during testing. Park et al.
(2023) further categorized test samples, retaining those similar to source domain features while
applying style transfer to samples with large distribution gaps. Yu & Hwang (2024) added noise
prompts around input images to reduce distribution distance between test and source domain sam-
ples.

Existing domain generalization methods primarily investigated three directions: input samples, in-
termediate features, and network architectures, while largely neglecting parameter correlation anal-
ysis. Due to gradient backpropagation through layers, parameter updates exhibited strong interde-
pendencies, where fluctuations in individual parameters induced network-wide perturbations that
significantly degraded generalization performance.

Kumar et al. (2022) discovered that linear probing demonstrated superior performance compared
to full fine-tuning when handling samples with large domain shifts, while full fine-tuning outper-
formed linear probing on data with smaller distribution shifts. Therefore, they divided the training
process into two stages: first initializing the prediction head using linear probing, then adjusting
the entire network through full fine-tuning, effectively enhancing network robustness. Pahk et al.
(2025) observed that backbone networks pre-trained on large datasets demonstrated superior feature
extraction capabilities compared to randomly initialized prediction heads. They demonstrated that
joint fine-tuning of both components enabled the prediction head to perturb backbone features, con-
sequently degrading its representational capacity. To mitigate this, they decoupled the fine-tuning
processes of the backbone and prediction head, while introducing a parallel auxiliary network to
stabilize parameter updates in both components.

The method of distinguishing stable and unstable parameters simply by separating backbone net-
work and prediction head was naive. As shown in Figure.2 in the main paper, during network
training, certain layers in the backbone network exhibited greater instability compared to the predic-
tion head, which could impair the backbone’s feature processing capability. Furthermore, existing
parameter update strategies applied identical weight coefficients to layers with different stability lev-
els, showing limited adaptability. To address these issues, we proposed Layer-decoupled Training
(LDT), which further reduced feature corruption from unstable layers through finer-grained layer
decomposition. We also introduced the Dynamic Parameter Update (DPU) strategy that adaptively
adjusted update weights according to each layer’s stability characteristics, achieving superior adapt-
ability.

B THEORETICAL PROOFS

Theorem. Following (Kumar et al., 2022; Pahk et al., 2025), for clarity of explanation, we simplify
the network into two modules, S and U , where S denotes stable layers, which exhibit more stable
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parameter updates (lower gradient variance), and U denotes Unstable layers, which exhibit unstable
parameter updates (higher gradient variance).

At time step t + 1 of network parameter updates, the gradient ∆St+1 of stable layers S shows
strong correlation with the gradient ∆Ut of unstable layers U at time step t. This can be expressed
as ∆St+1 = f(∆St,∆Ut, x), where ∆St denotes the gradient of stable layers S at step t, and x
represents the input data.

Proof. At time step t+ 1, the network’s prediction can be expressed as:

yt+1 = (St −∆St)(Ut −∆Ut)x. (14)

When the loss function is the L1 loss adopted in super-resolution tasks, i.e., LossL1 = yt+1 − y,
where y denotes the ground truth label. At time step t+1, the gradient of module S can be expressed
as:

∆SL1
t+1 = (1− ∂∆St

∂St
)(Ut −∆Ut)x+ (St −∆St)(−

∂∆Ut

∂∆St

∂∆St

∂St
). (15)

From Eq.15, it can be observed that at time step t+1, the gradient of module S is influenced by the
gradient ∆Ut of module U at time t. Consequently, the instability characteristics in unstable layers
ultimately affect parameter updates in stable layers, thereby interfering with the overall network’s
predictive performance. Eq.15 can be simplified as ∆SL1

t+1 = fL1(∆St,∆Ut, x).

Assuming the loss function is the L2 loss commonly employed in high-level vision tasks, i.e.,
LossL2 = (yt+1 − y)2, the gradient of module S at time step t+ 1 can be expressed as:

∆SL2
t+1 = 2[(St −∆St)(Ut −∆Ut)x− y] ∗ fL1(∆St,∆Ut, x), (16)

where fL1(∆St,∆Ut, x) represents the gradient update magnitude at time step t + 1 under the L1
loss.

From Eq. 16, it can similarly be observed that at time step t + 1, the gradient update of module S
remains correlated with the gradient update of module U at time t.

When the loss function is the cross-entropy employed for classification tasks, i.e., LossCross =
ylog(y), the gradient of module S at time step t+ 1 can be expressed as:

∆SCross
t+1 = y

fL1(∆St,∆Ut, x)

(St −∆St)(Ut −∆Ut)x
. (17)

From Eq. 17, it can similarly be observed that in classification tasks, the gradient update of module
S at time step t+ 1 is also influenced by the gradient of module U at time t.

Through Eq. 15, 16, and 17, it can be observed that the gradient updates of unstable layers U
significantly influence subsequent gradient updates of stable layers S parameters. Therefore, the
gradient of stable layers S at time step t+ 1 can be expressed as ∆St+1 = f(∆St,∆Ut, x), where
∆St denotes the gradient of stable layers S at step t, and x represents the input data.

C PSEUDOCODE OF OVERALL TRAINING PIPLINE

We formalize LDT’s complete training procedure through pseudocode: Algorithm.1 presents the
identification of stable and unstable layers, while Algorithm 2 details the gradient isolation and
stabilization mechanism.

D ADDITIONAL ABLATION EXPERIMENTS

D.1 ABLATION EXPERIMENTS ON DIFFERENT SOURCE DOMAIN SAMPLE DISTRIBUTIONS

As shown in Table.5, to validate the robustness of the LDT method across varying source domain
sample distributions, we individually designated the Olympus and Pan camera branches as the source
domain. Additionally, we conducted experiments with multiple source domains by forming pairwise
combinations of two out of the three data branches (Olympus, Pan and Sony) as the source domain.
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Table 5: Ablation experiments on different source domain sample distributions. We employ the
abbreviations O for Olympus, Pa for Pan, S for Sony, D for DSC, I for IMG, and C for Canon.
Olympus + FT, S + FT, and Pa + FT denote the performance of the network on the target-domain
camera branches after naive fine-tuning on the Olympus, Sony, and Pan camera branches respec-
tively, which we use as baselines.

Source T1 T2 T3 T4 T5
Olympus + FT Pa:30.81/0.8688 S:30.81/0.8850 D:30.22/0.8753 I:30.01/0.8737 C:30.93/0.8617

Olympus + LDT Pa:31.36/0.8611 S:32.15/0.8880 D:31.51/0.8865 I:30.57/0.8705 C:32.80/0.9246
Pa+ FT Olympus:30.65/0.8596 S:31.59/0.8854 D:31.50/0.8906 I:30.04/0.8715 C:32.50/0.9262

Pa +LDT Olympus:30.65/0.8569 S:31.76/0.8856 D:31.57/0.8890 I:30.20/0.8693 C:32.51/0.9238
Olympus + FT Pa:30.81/0.8688 S:30.81/0.8850 D:30.22/0.8753 I:30.01/0.8737 C:30.93/0.8617

Olympus + Pa + LDT - S:31.95/0.8862 D:31.63/0.8915 I:30.38/0.8737 C:32.92/0.9260
Olympus + S + LDT Pa:31.41/0.8648 - D:31.32/0.8875 I:30.41/0.8751 C:32.40/0.9225

S + FT Olympus:30.69/0.8528 Pa:31.27/0.8621 D:31.35/0.8842 I:30.30/0.8720 C:32.48/0.9223
S + Pa + LDT Olympus:30.81/0.8574 - D:31.55/0.8872 I:30.35/0.8709 C:32.65/0.9239

D.2 ABLATION EXPERIMENTS ON DIFFERENT NETWORK ARCHITECTURES

To validate the robustness of the LDT method across different network architectures, we conduct
performance evaluations on three distinct frameworks: the CNN-based SAFMN (Sun et al., 2023),
the Transformer-based HAT (Chen et al., 2023), and the recently popular Mamba-based MambaIR
(Guo et al., 2024a) networks. As demonstrated in Table.6, LDT achieves consistent generalization
improvements across all architectures, with the most significant performance gain observed on the
Canon camera branch of MambaIR network, where the PSNR metric improves by 1.61dB.

Table 6: Ablation experiments on different network architectures

Network Pan Sony DSC IMG Canon
HAT (Chen et al., 2023) 30.45/0.8448 31.43/0.8751 30.63/0.8725 29.99/0.8596 31.86/0.9146

HAT+LDT 31.34/0.8630 31.39/0.8771 31.47/0.8896 30.29/0.8713 32.32/0.9208
SAFMN (Sun et al., 2023) 30.46/0.8449 31.44/0.8753 30.64/0.8729 29.99/0.8597 31.86/0.9148

SAFMN+LDT 31.03/0.8583 30.92/0.8712 31.06/0.8835 29.99/0.8727 31.88/0.9209
MambaIR (Guo et al., 2024a) 30.81/0.8688 30.81/0.8850 30.22/0.8753 30.01/0.8737 30.93/0.8617

MambaIR +LDT 31.36/0.8611 32.15/0.8880 31.51/0.8865 30.57/0.8705 32.80/0.9246

Table 7: DG for image classification.

Network C L V S Mean
Resnet18 + FT 0.9929 0.7363 0.6341 0.7941 0.7894

Resnet18 + DeFT (Pahk et al., 2025) 0.9965 0.7439 0.6433 0.8133 0.7992
Resnet18 + LDT 0.9965 0.7514 0.6860 0.8281 0.8155

Resnet50 +FT 0.9929 0.7345 0.6371 0.8148 0.7949
Resnet50 + DeFT (Pahk et al., 2025) 0.9929 0.7345 0.6418 0.8222 0.7978

Resnet50 + LDT 1.0000 0.7684 0.7058 0.8415 0.8289
Vit +FT 0.9965 0.7797 0.6570 0.8207 0.8135

Vit + DeFT (Pahk et al., 2025) 0.9929 0.7589 0.6433 0.7807 0.7940
Vit + LDT 1.0000 0.7589 0.6951 0.8400 0.8235

Vision Mamba + FT 1.0000 0.7684 0.6600 0.7956 0.8060
Vision Mamba + DeFT (Pahk et al., 2025) 1.0000 0.7759 0.6768 0.8430 0.8239

Vision Mamba + LDT 1.0000 0.7928 0.7043 0.8326 0.8324

D.3 ABLATION EXPERIMENTS ON IMAGE CLASSIFICATION TASK

To verify the effectiveness of LDT on high-level vision tasks, we evaluate LDT’s performance on
image classification. As shown in Table.7, LDT demonstrates consistent performance improvements
across different data branches. The most significant improvement occurs in the V branch, where
LDT achieves a 5.19% accuracy gain over baseline methods when using ResNet-18 as the backbone
network.
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Table 8: DG for semantic segmentation.

Method Source domain Target domain 1 Target domain 2
FT

Cityscapes
BDD100K:30.7881 Mapillary:34.9942

DeFT (Pahk et al., 2025) BDD100K:42.4037 Mapillary:48.3825
LDT BDD100K:43.6769 Mapillary:51.6588

Table 9: Ablation experiments on stable/unstable layer partitioning criteria

Ratio Pan Sony DSC IMG Canon
0.1 30.73/0.8506 31.79/0.8828 30.89/0.8775 30.19/0.8633 32.10 /0.9184
0.3 31.28/0.8589 31.86/0.8800 31.41/0.8854 30.36/0.8681 32.44/0.9191
0.4 31.36/0.8611 32.15/0.8880 31.51/0.8865 30.57/0.8705 32.80/0.9246
0.5 31.37/0.8633 31.69/0.8805 31.43/0.8883 30.36/0.8724 32.54/0.9237
0.6 31.25/0.8632 31.32/0.8755 31.24/0.8877 30.21/0.8731 32.40/0.9229
0.7 31.28/0.8628 31.24/0.8741 31.26/0.8875 30.20/0.8735 32.44/0.9237
0.9 31.04/0.8623 31.00/0.8712 31.04/0.8858 29.95/0.8723 32.07/0.9209

D.4 ABLATION EXPERIMENTS ON SEMANTIC SEGMENTATION TASK

As shown in Table.8, we evaluate the performance of the LDT method on semantic segmentation
tasks. LDT demonstrates consistent performance improvements across different data branches.

D.4.1 ABLATION EXPERIMENTS ON UNSTABLE LAYER PARTITIONING RATIOS

To investigate how the unstable layer partitioning ratio RatioU affects network generalization, we
sample values between 0.1 and 0.9 at intervals of 0.2 (with finer 0.1 intervals near the optimal ratio),
using these sampled values as the partitioning thresholds. As shown in Table.9, the network achieves
optimal generalization performance when selecting ratios of 0.4 or 0.5.

Input: The source domain subset DS
1 contains input samples x and ground-truth labels y,

network M , ratio of unstable layers RatioU ;
Output: Initialized network M , name set of stable layers NameS , name set of unstable layers

NameU ;
// Warm-up stage

1 M̃ = Frozen by name(M,Backbone name) // Freeze the backbone network
2 for i← 1 to Nwarm−up do
3 y = M̃(x);
4 Loss = func(y, y); // func is L1 loss for SR tasks, cross-entropy

or L2 loss for high-level tasks
5 Loss.backward(); // Update prediction head
6 end
// Layer selection stage

7 M = Unfreeze(M̃);
8 Grad = Collect network gradients(M); // Collect gradients over all

samples.
9 for i← 1 to len(M) do

// Compute the gradient variance for each layer.
10 V ari = Comput var(Grad);
11 end
12 NameU = Top N(V ar,RatioU ,M);
13 NameS = NameAll −NameU ; // NameAll: name set of all layers
14 return M , NameS , NameU ;

Algorithm 1: Identification of stable and unstable layers
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Input: Another source domain subset DS
2 contains input samples x and ground-truth labels y,

network M , name set of stable layers NameS , name set of unstable layers NameU ;
Output: Trained network MC;

1 for i← 1 to Ntraining do
2 PM,AM = Copy(M);

3 ˜PM = Frozen by name(PM,NameU ); // where ˜PM = {PLS , P̃L
U}

4 ˜AM = Frozen by name(AM,NameS); // where ˜AM = {ÃL
S
, ALU}

5 yP = ˜PM(x);
6 yA = ˜AM(x);
7 LossP = func(yP , y);
8 LossA = func(yA, y);
9 LossP .backward(); // Update unfrozen stable layers PLS in the

primary network.
10 LossA.backward(); // Update unfrozen unstable layers ALU in the

auxiliary network.
// DPU

11 WS ,WU = Get Update Coefficients(V arS , V arU ); // Refer to Eq.9 and
10 in the main paper

12 Update EMA(P̃L
U
, ALU ,WU ); // Update frozen unstable layers P̃L

U

in the primary network. Refer to Eq.11 in the main paper

13 Update EMA(ÃL
S
, PLS ,WS); // Update frozen stable layers ÃL

S
in

the auxiliary network.
14 end
15 MC = Cat{ÃL

S
, P̃L

U}; // Concatenate frozen stable layers from
auxiliary network and unstable layers from primary network.

16 return MC;
Algorithm 2: Gradient isolation and stabilization
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E VISUALIZATION RESULTS

As shown in Figure.5, we compared the proposed LDT with other domain generalization methods.
LDT demonstrated superior detail restoration and noise suppression.

Sony 53.png

LR ZSSR: 29.60 IODA: 29.90 SRTTA: 29.42 Navi: 30.02

GT START :28.75 LP-FT: 28.92 DeFT: 30.45 LDT: 30.76

Sony 53.png

LR ZSSR: 35.96 IODA: 34.29 SRTTA: 35.89 Navi: 35.07

GT START: 33.02 LP-FT: 33.65 DeFT: 35.01 LDT: 35.97

Figure 5: Visual comparison. The large image on the left is the LR image, and the sub-images on
the right are LR, ZSSR (Shocher et al., 2018), IODA (Tang & Yang, 2024), SRTTA (Deng et al.,
2023), Wang et al. (2024a)(Navi)(first row), GT, START (Guo et al., 2024b), LP-FT (Kumar et al.,
2022), DeFT (Pahk et al., 2025), LDT (second row). Please zoom-in on screen.
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F STATEMENT ON LLM USAGE

We used a Large Language Model (LLM), specifically ChatGPT, solely for language polishing and
improving the readability of the manuscript. The LLM was not used to generate ideas, conduct
experiments, analyze results, or contribute to the research methodology. All scientific content, in-
cluding the conceptualization, design, implementation, and validation of the work, was entirely
carried out by the authors.
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