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Abstract

While theories of discourse and cognitive
science have long recognized the value of
unhurried pacing, recent dialogue research
tends to minimize friction in conversational
systems. Yet, frictionless dialogue risks
fostering uncritical reliance on Al outputs,
which can obscure implicit assumptions
and lead to unintended consequences. To
meet this challenge, we propose integrat-
ing positive friction into conversational Al,
which promotes user reflection on goals,
critical thinking on system response, and
subsequent re-conditioning of Al systems.
We hypothesize systems can improve goal
alignment, modeling of user mental states,
and task success by deliberately slowing
down conversations in strategic moments
to ask questions, reveal assumptions, or
pause. We present an ontology of positive
friction and collect expert human annota-
tions on multi-domain and embodied goal-
oriented corpora. Experiments on these cor-
pora, along with simulated interactions us-
ing state-of-the-art systems, suggest incor-
porating friction not only fosters account-
able decision-making, but also enhances
machine understanding of user beliefs and
goals, and increases task success rates.!

1 Introduction

Theories of common ground reveal how the
rhythm and timing of dialogue shape the dynamics
of interaction, fostering clarity and mutual under-
standing (Stalnaker, 1978; Tannen, 1989; Wilkes-
Gibbs and Clark, 1992; Zellner, 1994). They claim
productive interactions involve a dynamic inter-
play of questioning, challenging assumptions, dis-
closing beliefs, and offering elaborations—actions
that momentarily slow the dialogue but ultimately
enhance reasoning and collaboration. Meanwhile,

!Code, data, and guidelines will be made public.
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Figure 1: We characterize positive friction in dialogues
to better model user goals, beliefs, and assumptions.
This paper introduces an ontology of positive friction
“movements” such as reflective pausing (= ), over-
specification (»»> ), or assumption reveal (=»). We
show that frictive conversations increase user satisfac-
tion and task success, despite creating longer dialogues.

current LL.M-based conversational systems are
trained on user preferences, conflating superficial
sentiment with the nuanced, underlying sub-goals
of communication. This strategy biases systems
toward specific length preferences (Geishauser
et al., 2024; Zhang et al., 2024) without consid-
ering the long-term value of individual utterances.

To resolve this issue, we argue that conversa-
tional systems should incorporate deliberate mo-
ments of positive friction—movements that decel-
erate the dialogue to reveal the underlying goals
and assumptions of both interlocutors. To moti-
vate this position, we present an ontology to char-
acterize communicative acts that incorporate posi-
tive friction. We study this ontology and its utility



in goal-oriented collaborations between humans
and Al systems. This approach models nuanced
conversational actions and opens new avenues for
evaluating dialogue systems. Our work advocates
for a shift in dialogue system design, prioritizing
long-term collaboration over short-term efficiency
to build more reliable systems in terms of both
user interfacing and system response.

Our argument is rooted in the perspective that
utterances in a dialogue hold different valence —
the impact of an utterance on dialogue speed. In-
directly, modifying dialogue speed adjusts con-
versational flow to make time for improved com-
mon ground and modeling of user mental states.
For instance, in Figure 1, pausing to say “Hmm,
let me check the fridge” redirects the course of
the interaction to a valuable outcome previously
unknown to the user. Current dialogue systems
may not accomplish this because both dialogue
management policies (Li et al., 2016, 2017) and
evaluation frameworks (Liu et al., 2016; Li et al.,
2021; Braggaar et al., 2024) favor frictionless
and efficient conversations (e.g., penalizing each
additional conversational turn). Addressing this
disparity in valence, our positive friction ontol-
ogy has significant implications for shaping re-
ward policies in dialogue management systems
and evaluation metrics.

In line with the above argument, we ask,

1. What counts as positive friction?
2. Does friction improve modeling of user goals?
3. Does this equate to improved task success?

To answer these questions, we introduce the con-
cept of positive friction in relation to goal-oriented
conversations (§3). We develop a novel mul-
timodal taxonomy that integrates cognitive and
linguistic theories of discourse to classify vari-
ous types of frictive movements (§3.1), and col-
lect human annotations for two tasks: detecting
and generating friction movements (§3.2). We
further highlight the relationship between friction
and traditional dialogue acts in three conversation
datasets (§3.4): MultiwOZ, TEACh, and Persua-
sionForGood. We demonstrate the benefits of pos-
itive friction in real-time task-oriented dialogues,
finding improvement in both modeling of user
mental states (§4.1) and user goals while requir-
ing fewer overall actions (§4.2). We conclude by
discussing new methodologies for dialogue evalu-
ation through the lens of positive friction (§4.3).

2 Related Work

Slowing down user experiences through friction is
typically viewed as undesirable, due to the risk of
increased user frustration. However, frictionless
experiences on social media (Anderson and Wood,
2021), smartphone apps (Lee et al., 2010), and
online platforms (Lembke, 2023) that exploit the
brain’s short-term reward mechanisms (Fishbein
and Ajzen, 2011) could be detrimental to users’
long-term goals (Ericson, 2022), especially in-
creasing sycophancy when uncertain (Sicilia et al.,
2024). To promote reflective interactions that are
more beneficial in the long term, we propose in-
corporating positive friction into dialogues.
Cognitive science has studied how the human
brain employs different neural systems for short-
and long-term goals (Evans, 2003; McClure et al.,
2007; Diekhof and Gruber, 2010). Friction oc-
curs at the interface of these two systems, by
moving the user away from instinctive System-1
thinking into reflective System-2 thinking. Sub-
sequently, design philosophies such as slow tech-
nology (Hallnds and Redstrom, 2001) and unde-
sign thinking (Pierce, 2014) promote reflection
by intentionally designing friction into user ex-
perience. Various works have explored the po-
tential of slowing down interactions to reduce
errors (Back et al., 2010; Brumby et al., 2013;
Soboczenski et al., 2013), disrupt “mindless” in-
teractions (Cox et al., 2016; Ruiz et al., 2024),
challenge users (Cairns et al., 2014) and promote
behavior change (Cecchinato et al., 2015). These
examples show the importance of technological
designs that promote reflective user thinking.
Similar benefits have been observed when
human-Al interactions are deliberately deceler-
ated. Abstention (De Stefano et al., 2000) and
deferral (Mozannar et al., 2023; Lemmer et al.,
2023) improve Al reliability under uncertainty,
while nudges (Caraban et al., 2019), epistemic
markers (Zhou et al., 2024; Kim et al., 2024)
and cognitive forcing functions (Buginca et al.,
2021; Park et al., 2019; Ma et al., 2024) can miti-
gate over-reliance. In embodied and multimodal
settings, employing friction to build more com-
mon ground facilitates better human-machine in-
teraction (Marge and Rudnicky; Chai et al., 2016;
Hough and Schlangen, 2017; Carlmeyer et al.,
2018; Sicilia et al., 2023; Atwell et al., 2024).
However, these frictive behaviors are not natu-
rally built into modern LLM-based dialogue sys-
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Figure 2: A comparative example of conversations based on TEACh and MultiWOZ datasets. Frictionless conver-
sations take fewer turns, but may not result in successful completion of the task given by the user. Conversations
with multiple positive friction movements lead to longer but ultimately more successful conversations.

tems. Zhou et al. (2024) find that LLMs rarely
express uncertainty, even when they are incor-
rect. They trace this behavior to RLHF preference
datasets, where LLM outputs with uncertainty ex-
pressions were usually rejected by human raters.
Further, LLMs’ tendency for sycophancy (Sharma
et al., 2023; Malmqvist, 2024) and hallucination
instead of abstaining (Huang et al., 2023) are
further indications of their aversion to introduc-
ing friction. Fostering mindful interactions with
LLM-based systems requires intentional inclusion
of friction (Collins et al., 2024). To facilitate this
goal, we draw on theories of communication and
discourse (Stalnaker, 1978; Tannen, 1989; Wilkes-
Gibbs and Clark, 1992) and develop a novel tax-
onomy that codifies friction in goal-oriented dia-
logue. Our taxonomy provides a scaffolding for
designing training and inference methods that en-
able LLMs to engage users in a collaborative, re-
flective reasoning process, leading to more reliable
and satisfying human-Al interactions.

3 Positive Friction in Dialogue

We introduce the concept of positive friction for
goal-oriented dialogue, and our taxonomy that
captures different types of friction movements
(§3.1). We further use our taxonomy’s categories
to annotate two dialogue datasets (§3.2), and dis-
cuss their relationship to dialogue acts (§3.4).

Definition 1 (Positive Friction) Positive frictions
are intentional movements that slow down the
course of an interaction in order to yield positive
long-term impact. These movements may not be
strictly necessary for task completion, and may
be perceived as intrusive or unwelcome by the
user, but can encourage System-2 thinking (Evans,
2003) such as reflection on uncertain assumptions
by both users and Al systems.>

Figure 2 illustrates the differences between fric-
tionless conversations and those with multiple
frictions. In frictionless conversations, assump-
tions are not revealed, no questions are asked, and
no reasoning is shared. The interaction is shorter
but may result in undesirable outcomes (e.g. a
restaurant booking that does not fit the user’s pref-
erences). On the other hand, positive friction fre-
quently stalls the conversation by asking questions
and providing additional information and explana-
tions, thereby encouraging incremental steering of
the conversation.

We build on concepts from cognitive science
and discourse literature to codify unique classes
for different positive friction movements, which
can be used in addition to dialogue acts to better
capture mind perception capabilities (Waytz et al.,
2010) inherent to human conversations.

This definition is constructed using behavioral science
literature (Caraban et al., 2019; Chen and Schmidt, 2024).



Friction Movements

Example Utterances

Contextual Assumption Reveal
Conversational Assumption Reveal
Metacognitive Assumption Reveal

“that’s the mug i think we have to use"
"I assume you mean the center of town. We have many hotels in Cambridge."
“Yes, I think there’s been some confusion.”

Conversational Pause
Embodied Pause
Recalibrating Pause

“hmm,” “...”, “Let me think,” “Let’s see,” “I’ll check now...”
[slowly approaches the target instead of directly grabbing]
"Let’s go back to lodgings for a moment.”

Reinforcement

(Turn t) “Do you want a room for Thursday for 3 people, 2 nights?”
(Turn t 4+ 1) “There are no guesthouses for 3 people for 2 nights starting on Thursday.”
(Turn ¢ + 2) “Should I book it for 3 people for 2 nights starting from Thursday?”

Elaborative Overspecification
Confirmative Overspecification

“i cleaned the mug.” (both interlocutors can see this)
“Good news! I was able to book two rooms for 5 nights at Finches B&B for you.”

Contextual Probing
Conversational Probing:
Plan-Level Probing

"Which drawer should I open?”, "What area in Cambridge would you like to stay?"
“What did you say again?”, "You said you wanted tomatoes in your sandwich, right?"
“What’s the next step [ need to do?”, "Will we need this mug again later?"

Table 1: Examples from the MultiWOZ and TEACh datasets for all subcategories of friction movements. Subcate-
gories can be extended or modified according to the specific conversational setting or dataset under consideration.

3.1 Taxonomy of Friction Movements

Reflective Pause: The speaker pauses while

We introduce a new taxonomy of positive friction
movements that can change the course of an inter-
action with minimal short-term intrusions, result-
ing in a long-term positive outcome. We define
several high-level categories and subcategories for
different friction movements.

While high-level categories are based on prior
dialogue theories introduced by linguistics and
cognitive science literature, the sub-categories
are based on a pragmatic classification approach,
where the setting of the conversation is used to dis-
tinguish classes. Please refer to Table 1 for exam-
ples of these classes.

Assumption Reveal: The speaker reveals their
subjective assumptions or beliefs about the envi-
ronment, actions, or other interlocutors. Reveal-
ing these assumptions uncovers information pre-
viously hidden from one interlocutor (or implicitly
assumed) and opens up new avenues for conversa-
tion. This category is based on belief coordina-
tion (Wilkes-Gibbs and Clark, 1992).

* Contextual Assumption Reveal: The speaker
reveals assumptions about the environment.

* Conversational Assumption Reveal: The
speaker reveals assumptions about previously
mentioned utterances in the conversation.

* Metacognitive Assumption Reveal: The
speaker reveals their assumptions about their
own or the other interlocutor’s reasoning, plans
or goals in the conversation.

producing an utterance or breaks their sentence to

depict uncertainty, a sudden change in the environ-

ment, or a new action being taken. This movement
is analogous to the pause types studied by Zellner

(1994); Fors (2015); Reed (2017).

* Conversational Pause: Verbal or non-verbal
cues that depict internal reflection.

* Embodied Pause: While interacting with the
environment, the speaker intentionally pauses
using their physical body.

* Recalibrating Pause: When a change in plan
occurs, the speaker intentionally pauses and
changes the course of action.

Reinforcement: The speaker restates their own
previous utterance for emphasis, rewinding the
flow of the conversation. This movement is similar
to “repetition in discourse” (Tannen, 1989).

Overspecification: The speaker relays addi-
tional, overly-specific information that was not
requested, but may nevertheless be useful to
the other interlocutor. This category is based
on bounded-rational overspecification (Tourtouri
et al., 2021) which posits that humans are only
moderately Gricean during conversations (Man-

gold and Pobel, 1988; Engelhardt et al., 2006).

* Elaborative Overspecification: The speaker
gives more details, specificity, or additional ex-
planation about their actions or the environ-
ment. This adds to the conversation what was
already known by both interlocutors.

* Confirmative Overspecification: The speaker



confirms and elaborates the actions, choices, or
beliefs. Examples include a repetition of pre-
vious utterances, elaborate responses to yes/no
questions, or longer than necessary responses.

Probing: The speaker poses a question regard-

ing an external aspect of the conversation, such

as the environment, the actions, or the interlocu-
tors, redirecting the flow of the conversation to the
other interlocutor. This movement is built on com-

munal inquiry basis of discourse (Stalnaker, 1978;

Roberts, 2012).

* Contextual Probing: The speaker asks a ques-
tion regarding the environment, actions, or in-
terlocutors in an effort to better understand the
context and resolve ambiguities.

* Conversational Probing: The speaker asks a
question to clarify something previously men-
tioned in the conversation.

* Plan-level Probing: The speaker asks a ques-
tion regarding the goal, reasoning, or future
steps in order to plan out their actions better.

Depending on the context and conversation to
which these movements are applied, new subcate-
gories can be introduced for each higher-level cat-
egory. In the following data collection effort, we
use these subcategories to validate this proposed
hierarchy. In subsequent sections of the paper, we
use only higher-level categories to investigate the
applicability of positive friction as a concept.

3.2 Human Annotation of Friction

To test the empirical validity of our ontology, we
collect human annotations on two collaborative,
task-oriented dialogue datasets.

Data We use two datasets, MultiWOZ and
TEACH, for the annotations. These datasets are
chosen specifically due to their wide range of
multi-domain/embodied tasks, allowing us to ob-
serve the role of positive friction. We extract all
dialogues from both datasets. For the annotator’s
convenience, in TEACh dialogues, we only show
textual utterances, not the interaction’s video feed.

Annotation Protocol We hired 10 engineering
undergraduate students and administered a short
lecture on the linguistic and cognitive science
background of positive friction in conversations—
they are henceforth referred to as expert annota-
tors. Next, expert annotators were presented with
an annotation interface and asked to complete two
tasks: detection and production. Participants were

given an information sheet that outlined task de-
tails and the benefits and risks of participating in
this study. Participation was voluntary and anno-
tators were compensated $15/hour.® In total, 430
minutes were spent on annotating 714 questions.

Task 1: Positive Friction Detection Each an-
notator is provided with two randomly selected
dialogues, one from MultiWOZ and one from
TEACh. For each turn in both dialogues, the an-
notator is asked to select the friction movement
corresponding to that turn (or “No friction”, if
none applies). Additionally, for inter-annotator
agreement calculations, all annotators annotate
one common dialogue from each of MultiwOZ
and TEACh. In total, for this task, 494 utterances
were annotated with 284 distinct questions and 21
shared questions among annotators. On average,
each annotator annotated 17+ 12 turns of dialogue
for TEACh and 12 + 5 turns for MultiwOZ.

We calculate inter-annotator agreement using
Cohen’s Kappa (heatmap in Appendix §B). The
highest agreement is around 0.42 for category-
level and 0.38 for subcategory-level, which points
to a fair to moderate level agreement. Instances
of disagreement stem from the subjectivity of
when to use friction. These kappa scores are
comparable to other discourse-level annotation
paradigms such as in the STAC (~0.5) (Asher
et al., 2016) and Potsdam Commentary (~0.28)
Corpora (Stede and Neumann, 2014).

Task 2: Positive Friction Production Annota-
tors are provided with a partial dialogue until a
randomly-selected turn (50% user turns, and 50%
assistant turns). They are then asked to generate
a reply to the last utterance containing a friction
movement of their choice. They are allowed to se-
lect multiple friction movements and write an ut-
terance for each, or write a reply on the "other"
category if nothing is appropriate. Each annota-
tor generates frictive responses for 20 randomly-
selected partial dialogues each from MultiWwOZ
and TEACh. In total, 220 dialogues are given to
all annotators, with 200 distinct dialogues, and 2
dialogues common among all annotators.

We find that people prefer to use questions to
create friction most of the time (a result visible in

3This annotation protocol is approved by our institution’s
IRB committee. Out of the 10 participants, data from 1 par-
ticipant was dropped due to validation errors. The annotation
interface can be found in Appendix §A.
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Figure 3: Distribution of 50 utterances sampled from annotated dialogue acts (left) belonging to three dialogue
datasets into friction categories (right), as annotated by GPT-40. Most dialogue acts can occur both with and
without friction. For example, in TEACh, failure notifications may lack friction, reveal assumptions by suggesting

alternatives, or overspecify failure details.

the histograms found in the Appendix §C). Ques-
tions can be essential, but other forms of fric-
tion are also used. In fact, in real-world conver-
sations, the histogram follows a Zipfian distribu-
tion (Piantadosi, 2014), whereby there is a tailing
end in the histogram that accounts for a signifi-
cant amount of less common but important uses of
other friction movements.

3.3 Automatic Detection of Friction

In addition to the human annotations for positive
friction detection, we investigate a simple auto-
mated approach for friction detection that uses
LLMs for proxy annotation. We prompt Open Al’s
GPT-40* with the same annotation manual pro-
vided to human annotators (as system prompt) and
further prompt the model to determine a category-
level friction movement. When compared to each
human annotator, GPT-40 has an average Cohen’s
Kappa of about 0.34 across all turns and about
0.20 on the smaller subset of turns that all anno-
tators shared. GPT-40’s agreement with the ma-
jority vote of all annotators is moderate at 0.50.
Appendix §D contains a detailed analysis.

3.4 Friction Categories Extend Dialogue Acts

We further study the connection between friction
and other bottom-up ontological efforts, namely
dialogue acts. Dialogue acts are categorizations
of utterances that represent a specific intent. As
such, it is natural to consider the relationship be-
tween friction and traditional dialogue act cate-
gories. Can the same dialogue act occur in both
frictive and non-frictive forms? Are some dia-
logue acts inherently frictive? Which friction cate-

*gpt-40-2024-08-06

gories are most commonly represented in existing
dialogue datasets?

We focus on three conversational datasets
that have dialogue act annotations: Multi-
WOZ (Budzianowski et al., 2018), TEACh (Pad-
makumar et al.,, 2021), and PersuasionFor-
Good (Wang et al., 2019).> We annotate 50 ut-
terances from each dialogue act in these datasets,
using the automated GPT-40 annotation procedure
described in § 3.3.

Figure 3 shows the distribution of utterances in
each dialogue act that were annotated as each of
the five friction super-categories (as well as “No
Friction”). We highlight several takeaways. 1) Al-
most all dialogue acts, across all three datasets, are
expressed both with and without friction. 2) Dia-
logue acts comprising requests (“Request” in Mul-
tiWwOZ, “Request Instruction” and ‘“Request Ob-
ject Loc.” in TEACh, “Personal Inquiry” in Per-
suasionForGood) are inherently frictive in nature,
since they probe for information about the envi-
ronment or the user’s preferences. 3) The most
common forms of friction applied are “Probing”
and “Overspecification”. 4) The prevalence of
other friction categories depends on the dialogue
data and task. Due to the embodied nature of
TEACH, reflective pauses are more commonly ob-
served. Similarly, several persuasion strategies
in PersuasionForGood rely on revealing user as-
sumptions and reinforcement.

3For PersuasionForGood, we use the persuasion strategy
annotations as dialogue acts.
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4 The Utility of Friction

This section highlights how friction improves the
modeling of users’ mental states, while also high-
lighting its relationship to timing and utterance va-
lence (§4.1). We also show how friction helps to
accomplish user goals (§4.2).

4.1 A “Valencing” Act: Friction Helps Model
User Mental States

Previous analyses (§3.4) show friction movements
can refine and extend existing taxonomies of di-
alogue utterances (e.g., acts or persuasion strate-
gies). In this section, we provide an initial study to
determine whether introducing friction into utter-
ances can impact a model’s ability to infer mental
states in task-oriented dialogue.

Experimental Setup We focus on inferring user
satisfaction in the MultiWOZ task (Eric et al.,
2020), using annotations collected by Sun et al.
(2021). Tacitly, this task requires modeling the
user’s mental state regarding goal achievement.
We use the average anticipated user satisfaction
of the annotation cohort, which is a score on a
5-point scale. For 1000 randomly sampled dia-
logues, we compute predictions of the user satis-
faction for the conversation, using the method of
Sicilia and Alikhani (2024). This method prompts
language models to infer the intensity of user be-
liefs on a continuous scale, producing state-of-the-
art results on our current setting (i.e., user satis-
faction in MultiWwOZ). We report averaged results
across GPT-4o0, LLaMA-3.1 8B and 70B (Touvron
et al., 2023), and Mixtral 7x8Bv0.1 and 8x22B
(Jiang et al., 2024). For each conversation, we
also sample a random turn and annotate the fric-
tion movement using the automated procedure de-
scribed in §3.3. For each friction category, we also
report the average turn number at which the sam-
ple happens and the average total dialogue length.

Hypothesis Testing Our sampling strategy en-
sures independence of each data point, so unob-
served turns are modeled as having a common (un-
observed) effect on the prediction errors or other
statistics. Specifically, we test the null hypothesis:
the category of friction—including no friction—
that occurs at any random turn does not impact
the user modeling errors, length, etc. of the dia-
logue. Under this null, regardless of unobserved
turns, there should be no observed effects of a spe-
cific friction category across the whole dialogue.
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Figure 4: Mean squared error inferring user satisfaction
from dialogue history within MultiWOZ. This task re-
quires modeling user mental states. Kruskal-Wallis test
for difference is significant. Visual inspection shows
introducing friction reduces user modeling errors.

If that is not the case, we reject the null: some spe-
cific friction category, occurring at a random turn,
has impact on the remaining dialogue.

Friction Improves User Modeling In Figure 4,
we show bar plots of average squared model er-
rors with 95% confidence intervals when inferring
user satisfaction grouped by friction movements.
An interesting finding is that model errors—at in-
ferring user satisfaction—tend to decrease for con-
versations when certain types of friction are iden-
tified. Indeed, a Kruskall-Wallis test for difference
in error distribution (under the observation of fric-
tion) rejects the null that the distributions are the
same. This result may be due to the nature of fric-
tion, which slows down the conversation to reveal
more information about user goals or beliefs.

Friction Impacts Timing Next, we address the
hypothesis that friction movements slow down
the dialogue, inducing higher valence and longer,
more thoughtful conversations. In Figure 5, we
also show when (on average) different friction
movements were observed, as well as the total av-
erage length of dialogues where we observed spe-
cific friction movements. Results indicate the re-
lationship between friction and timing in human-
human “Wizard of Oz” data. Use of friction move-
ments (e.g., reveal and pause) tends to lengthen a
dialogue or “slow it down.” Other friction cate-
gories (e.g., probing) tend to occur early in a dia-
logue, showing friction is used at strategic times.

Takeaway These results confirm our initial hy-
potheses about the utility of friction in inferring
user mental states, its impact on dialogue length,
and its strategic use in human conversation.
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Figure 5: When each friction movement occurs (i.e.,
average index of observation) as well as average total
dialogue length for each movement. Corpora consists
of human “Wizard of Oz” data (i.e., MultiwWOZ; Eric
et al., 2020). Results show humans strategically use
friction at different time points (p < 0.01) and friction
often “slows down” conversations (p = 0.1).

4.2 A Guiding Force: Friction Helps To
Accomplish User Goals

In this section, we apply the proposed friction tax-
onomy to goal-oriented conversational settings in
a dynamic manner and study its impact on overall
task success. Our experiments focus on two sce-
narios: (i) multi-domain booking agent, and (ii)
embodied conversational system.

Experimental Setup We utilize the widely
adopted MultiwOZ (Budzianowski et al., 2018)
and ALFWorld (Shridhar et al., 2020b) datasets
for our experiments on multi-domain booking and
embodied scenarios, respectively. While both set-
tings are text-based, they differ in the level of task
embodiment. To generate dialogues for Multi-
WOZ, we employ AutoTOD (Xu et al., 2024) as
the assistant model. For ALFWorld, we enhance
the original ReAct framework with additional dia-
logue capabilities (Dongre et al., 2024) as there is
no inherent dialogue. Additionally, for both cases,
we leverage GPT-40-mini as the user simulator
to generate the user utterances when prompted
with the dialogue level user goals and previous
conversation context. In these experiments, we
only consider a subset of high-level friction cat-
egories (assumption reveal, overspecification, and
probing) based on the most frequently-occurring
movements in these datasets as also shown in Fig-
ure 3. Friction is introduced by adding definitions
of friction categories and in-context examples in
the LLM prompt.

The generations for both datasets are evaluated
on task completion. For MultiwOZ, we adopt Au-
toTOD’s (Xu et al., 2024) online Success metric,

where Success is defined as the system’s ability
to identify the correct entity and provide all the
attributes requested by the user. For ALFWorld,
we use Task Success Rate (Shridhar et al., 2020a)
where a task is successfully completed if, at the
end of the action sequence, the objects are in the
correct positions and states. We report the average
task success over three runs to account for the vari-
ability in LLM responses. For more details, please
refer to Appendix § E and §F.

Friction Improves Success on Multi-Domain
Tasks Table 2 summarizes the results of incor-
porating friction into task-oriented conversations.
We observe an improvement of approximately
3-6% in task Success for MultiWOZ. The system
introduces assumption reveal and probing to clar-
ify hidden assumptions and ambiguities, which
contributes to improved task success. Overspec-
ification, on the other hand, is typically introduced
during the confirmation of an entity booking. In
this case, the system explicitly restates all con-
straints provided by the user. This detailed spec-
ification assists the user in continuing the con-
versation in the correct direction, resulting in a
higher performance than the other two categories.
The model achieves the highest task success (62.8)
when it incorporates all three friction categories,
highlighting their combined effectiveness in im-
proving task-oriented conversations. In this setup,
the model generates a higher number of friction
turns, with 56% (33% Probing and 23% Overspec-
ification) of the total turns containing friction.

Friction Improves Success on Embodied Tasks
In ALFWorld, we investigate different friction
strategies in agent-user dialogue interactions.
While any dialogue introduced by the agent inher-
ently adds friction by temporarily pausing task ex-
ecution, our results demonstrate that this friction
can be beneficial. As shown in Table 2 and Figure
6, the baseline “No Dialogue” approach achieves
a 51.49% success rate but requires a high num-
ber of physical actions (19.9) as it progresses to-
wards the goal without any user input. By intro-
ducing probing as a friction strategy, where the
agent strategically pauses to ask clarification ques-
tions about task-critical information, we observe a
significant improvement in task success (58.96%).
This approach not only increases the success rate
but also substantially reduces the required physi-
cal actions to 6.1, while maintaining minimal di-



MultiwOZ ALFWorld
Friction . .
Fric. Avg. Fric. Avg.
Movement Success (%) Turns Success (%) Turns
No Friction 56.40 £23 0.0 4.8 51.49 £ 038 0.0 0.0
Assumption Reveal 59.00 + 1.3 24.9 4.5 52.18 £0.9 12.2 6.1
Probing 59.87 £ 08 31.2 4.6 58.96 + 2.2 17.0 8.5
Overspecification 61.93 £ 038 243 4.7 52.93 £238 19.6 9.8
All three 62.80 + 1.3 56.1 4.8 46.06 + 1.3 26.4 13.2
Table 2: The table illustrates the impact of introducing friction on the overall task success of goal-oriented

conversations from MultiWOZ and ALFWorld test data. Success indicates the fraction of conversations where
the system satisfies all the user requirements. In MultiWOZ, “None” refers to the AutoTOD baseline (without
friction), while in ALFWorld, it denotes the ReAct baseline (actions only, no dialogue).
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Figure 6: Impact of different friction strategies on task
completion in ALFWorld. The figure quantifies the im-
pact of dialogue as friction through turns and actions.

alogue overhead (2.2 turns in successful trajec-
tories). These results demonstrate that introduc-
ing friction through strategic interactions can lead
to more efficient task execution, despite the addi-
tional interaction time, by enabling better agent-
user communication and task understanding.

In ALFWorld with all three friction categories,
we see a decrease in success rate compared to
MultiWOZ. We conjecture that this decrease is
due to the step limit in the execution environ-
ment. When all three friction strategies are ap-
plied, they start consuming more steps for think-
ing and speaking (from 8.5 steps with Probing to
13.2 in All Three) instead of physical acts to en-
able the agent to progress toward task completion,
resulting in a decrease in task success.

Takeaway For both MultiWOZ and ALFWorld,
applying friction categories improves task success

in goal-oriented conversations. The result demon-
strates that incorporating friction can enhance the
agent’s understanding of user goals, resulting in
higher task success. Qualitative examples of fric-
tive conversations are provided in Figure 6.

4.3 Discussion: Open Questions &
Implications

We now discuss some important questions for syn-
thesizing a path forward for the use of friction in
conversational system design.

Are all questions friction? As seen in the re-
sults of Table 2 and Figure 6, probing brings
major gains in task success. In addition, Fig-
ure 3 shows that question-based dialogue acts
such as Request or Confirmare almost always
mapped to Probing. This raises the question of
whether all questions are inherently frictive since
the interlocutor could always proceed without ask-
ing by making assumptions instead. A qualitative
analysis of our annotations reveals that questions
are also used in non-frictive ways (e.g. “Want to
try another option?”’) that are intended to move the
conversation forward. Further, we also see ques-
tions used to achieve means other than probing,
such as revealing assumptions (“I think the mug
is clean?”’). Hence, current data shows that not
all questions are friction, but qualitatively, humans
prefer to ask questions in frictive moments. This
nuanced perspective on how humans ask questions
suggests more work is needed to study how dia-
logue systems represent uncertainty and ask ques-
tions. Our taxonomy provides a useful characteri-
zation of probing behavior for this purpose.

Are all utterances friction? The results in Fig-
ure 7 show that introducing any utterance or
friction movement significantly reduces physical



MultiwOz

User Goal: Getting information for an attraction in Cambridge called Christ's College. Also looking
for a place to stay. The hotel should be a guesthouse and have 4 stars, and should include free
parking, free wifi for 4 people and 5 nights starting from Friday.

User: | am looking for Christ's College

System: | found Christ's College for you. It is located on Saint Andrew's Street in the center area.
The entrance fee is free, and it is open daily from 9 a.m. to 5 p.m., except during the Easter term.
The phone number is 01223334900. Is there anything else you would like to know? [No Friction]

User: Can you provide me with the postcode for Christ's College?

System: The postcode for Christ's College is CB2 3BU. If you need any more information, feel
free to ask! [No Friction]

User: | am looking for a place to stay. The hotel should have a 4-star rating, include free
parking and free wifi, and be a guesthouse.

System: | found several 4-star guesthouses with free parking and wifi. Could you please specify
your preferred area or price range to help narrow down the options? [Probing]

User: | don't have a specific area or price range in mind. Please choose one that meets the
criteria.

System: | recommend the "Acorn Guest House" which is located at 154 Chesterton Road in the
north area. It has a 4-star rating, offers free parking and wifi, and the price for a double room is
£75. Would you like me to book a room for you? [Assumption Reveal, Probing]

User: Yes, please book it for 4 people for 5 nights starting from Friday.
System: | have successfully booked 4 rooms at Acorn Guest House for 5 nights starting from

Friday. Your reference number is NNLJ970F. Is there anything else | can assist you with?
[Overspecification]

User Goal: Make the system examine the alarmclock with the desklamp.

Environmental Context: You are in the middle of a room. Looking quickly around you, you see a
bed 1, a desk 2, a desk 1, a drawer 6, a drawer 5, a drawer 4, a drawer 3, a drawer 2, a drawer
1, a garbagecan 1, a laundryhamper 1, a safe 1, a shelf 6, a shelf 5, a shelf 4, a shelf 3, a shelf 2,
and a shelf 1.

System thinks: To solve the task, | need to find and take an alarmclock, then find and use a
desklamp. First, | need to find an alarmclock. Let me check with the user.

System speaks: | need to find an alarmclock. An alarmclock is more likely to appear in drawer
(1-6), desk (1-2), shelf (1-6), bed (1), garbagecan (1), laundryhamper (1).

User: Sure, that sounds good to me.

System speaks: Can you recommend where | should start looking for the alarmclock first?

User: Sure, you should start by looking for the alarmclock on desk 2.

System acts: go to desk 2. You see an alarmclock 1.
System thinks: Now | find an alarmclock 1. Next, | need to take it.

System acts: pick up the alarmclock 1 from the desk 2.

System thinks: Now | have the alarmclock. Next, | need to find a desklamp to examine it. Let
me check with the user.

System speaks: | found the alarmclock. | will now find the desklamp and then use it to
examine the alarmclock.

User: You should look for the desklamp on desk 1 first.

System acts: go to desk 1. You see a bowl 1, a desklamp 1, a mug 1, and a pencil 1.
System thinks: Now | find a desklamp 1. Next, | need to use it to examine the alarmclock.

System acts: turn on the desklamp 1.

Figure 7: Examples of frictive dialogues in MultiWwOZ and ALFWorld. These illustrate how friction impacts
decision-making and execution in multi-domain booking agent & text-based embodied conversational system

actions. Cognitive science literature supports
this finding, suggesting that conversations reduce
physical acts while fostering collaboration. Then,
can any utterance be considered positive friction?
While they may be in embodied settings—where
utterances inherently add turns—our MultiwOZ
experiments indicate that not all utterances qualify
as friction in text-only domains. In embodied in-
teractions, utterances disrupt action flow, empha-
sizing the dual nature of friction as both a turn-
level and discourse-level phenomenon. Whether
an utterance is considered friction ultimately de-
pends on its context as an interruption, underscor-
ing the need for dialogue policies that address both
turn- and interaction-level dynamics.

How can friction be incorporated into reward
mechanisms? Preference ratings for RLHF
datasets are typically not collected over multi-
step human-LM interactions. Consequently, re-
ward models can optimize short-term user satis-
faction over longer-horizon collaboration goals,
and thus friction movements are not naturally built
into RL-trained dialogue policies. We believe our
taxonomy can be used as meta-labels, providing
scaffolding for both collecting preference ratings
with an emphasis on utterance valence (as demon-
strated in §4.1), and for designing reward models
that emphasize collaboratively building common
ground over multiple interactions.

When does friction become negative? In this
work, we advocate for momentarily slowing down

dialogues to achieve better long-horizon out-
comes. However, introducing too much friction
(in the form of too much reflection or probing
without taking any actions) can increase user frus-
tration and disengagement, having a negative im-
pact in the long term. Therefore, evaluating fric-
tive movements in LLMs necessitates new eval-
uation paradigms that adequately balance short-
term efficiency and utterance valence with long-
term task completion. Further, each user has dif-
ferent requirements in the efficiency vs. efficacy
trade-off, and thus the amount of friction intro-
duced could be personalized to the observed pref-
erences of the user.

5 Conclusion

Our taxonomy and experiments reveal that incre-
mentally building common ground via positive
friction is beneficial for goal-oriented dialogue,
both in terms of improving task success (§4.2)
and modeling user mental states (§4.1). Overall,
we observe that considering friction is a fresh and
fluid perspective for dialogue systems that builds
on theories of cognition, discourse, and dialogue.
Friction has future implications in addressing the
valence disparity in dialogue management poli-
cies, and allowing users to reflect on their own
reasoning instead of relying on the generations
of frictionless LLMs. We further plan to investi-
gate the optimal timing and application of differ-
ent types of friction in goal-oriented dialogues.



Ethics Statement

Our study contains two main points of ethical con-
sideration: use of human subjects during annota-
tion of friction, and use of LLMs in automatic fric-
tion detection. We have followed the guidelines of
our institution’s IRB protocols during the recruit-
ment and administration of the annotations. Fur-
ther, we use closed-source LLMs (e.g. GPT-40)
in our experimental setups and automatic friction
detection, and we acknowledge that these models
may perpetuate biases in their training data that is
unknown to the public. As our datasets do not con-
tain controversial utterances or emotionally bur-
dening topics, we do not anticipate bias creation
and laundering due to our use of LLMs.

Limitations

We have evaluated the utility of our friction strate-
gies using traditional metrics such as user satis-
faction and task success. However, this new lens
of including more positive instances of friction
into dialogue systems to better model user mental
states opens up avenues for developing new gen-
eration metrics focused on it. An important aspect
of evaluation is the distinction between short-term
versus long-term goals (as defined in §3) and val-
ues and how to measure them in a conversation. In
addition to traditional metrics of number of turns,
lexical diversity, final task success, we posit that
it is important to maximize long-term goals over
short-term gains. These can be defined specific to
each dataset, and need to be evaluated accordingly.
For instance, in the embodied setting in §4.2, we
used the count of API calls to physical actions and
the reduction of them as a way of measuring the
effects of friction.
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A Annotation Interface

Task 2: Generation Questions
Jump to Question: [Question 1

. N . Please read the following interaction until the blank and think about a way to fill in the blank with a
Task 1: Detection Questions reply containing a friction movement. Then please choose that friction movement using the
) checkboxes and write your reply with that friction. You can choose multiple friction movements, or
Jump to Question: (Question 1 | write a reply on the "other" category if nothing is appropriate.
Please read the following dialogue. There is an italicized turn. For this specific turn, please choose an appropriate FOLLOWER: hello how may i help
friction movement from below. You can choose multiple friction movements, or no friction if you don't observe any INSTRUCTOR: hi
friction at that turn. INSTRUCTOR: put the cook on furniture
INSTRUCTOR: book
INSTRUCTOR: the book is in the small room
FOLLOWER: hello how may i hel
wmeyihelp FOLLOWER:
INSTRUCTOR: hi
INSTRUCTOR: put the cook on furniture
INSTRUCTOR: book Your Answer:
INSTRUCTOR: the book is in the small room
FOLLOWER: done . Assumption Reveal
FOLLOWER: how else can i help you "
INSTRUCTOR: good job o O Contextual Assumption Reveal
INSTRUCTOR: thank you

o O i ion Reveal
Your Answer: o 0 Metacognitive Assumption Reveal
« Assumption Reveal « U Reflective Pause
o [) Contextual Assumption Reveal o O C ional Pause[ |
o () Conversational Assumption Reveal O Embodied Pause |
N mbodied Pause
o [ Metacognitive Assumption Reveal °
+ Reflective Pause o 0 Pause
o [) Conversational Pause o
o () Embodied Pause « O Reinforcement |
o [J Recalibrating Pause . Overspecification
+ Reinforcement . 0 ive O jon[ |
o [ Reinforcement
+ Overspecification > ) Confirmative Overspecification
o [ Elaborative Overspecification
X « @ Probing
o [ Confirmative Overspecification

« Probing o [J Contextual Probing

o [ Contextual Probing o [ Conversational Probing |
o O Conversational Probing

o [ Plan-level Probing o [ Plan-level Probing |

« No Friction « O Other
o O No Friction

Figure 8: This figure shows the annotation interface used for the human data collection of this study. Left corre-
sponds to the detection task while the right one is the production task.
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Figure 9: This figure shows the category and subcategory level Cohen’s kappa agreement scores for all the anno-
tators. The highest measurements are between annotators 6 and 7. Both axes correspond to annotator IDs.



C Histograms of Friction Movements in Human Annotation
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Figure 10: Histograms of friction movement categories and subcategories for the collected friction detection an-
notations.
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Figure 11: Histograms of friction movement categories and subcategories for the collected friction production
annotations.

D Detailed Analysis of Automatic Detection of Friction
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Figure 12: Cohen’s Kappa for GPT-40 and in-sample majority vote, averaged across different voter groups. On
average, GPT-40 agrees with out-of-sample voters more, demonstrating that automated annotation may better
represent diverse opinions outside of the collected annotations.



Overall, these agreements are more consistent than those observed among human annotators. Fig-
ure 12 also compares GPT-40 with a majority vote, focusing specifically on how well both annotation
methods represent the opinion of annotators outside of the sample used to compute the majority. Specif-
ically, we use only 5 of 9 annotators to compute the majority check performance on the held-out remain-
der. As expected, a majority vote is the best representation of voters within a sample. Meanwhile, the
majority vote may not be representative of other populations outside the sample used to compute the
majority. In these cases, the automated assignments given by GPT-40 appear to be more representative,
suggesting the subjective nature of the task may cause traditional majority vote annotation to be over-fit.
We use GPT-4o to assign friction categories in the remainder of this work, since it is most cost-effective
and since the human majority vote has limited robustness with respect to the choice in annotators.

E Details of MultiwWOZ & AutoTOD Setup

The MultiWOZ dataset comprises task-oriented conversations in which users interact with an agent
to book hotels, restaurants, attractions, trains, and taxis. The task involves modeling a conversa-
tional agent that understands the user’s goal and takes necessary actions to complete the booking. Let
D = {(Uy), (S1,U1), ...(St, Us) } be the dialogue history till turn ¢ where S; and U; be the system and
user utterance at turn ¢, respectively. The task of the dialogue system is to generate S; after each turn
t such that it helps the user to complete the user goal. In this work, we incorporate friction into Auto-
TOD (Xu et al., 2024), a state-of-the-art task-oriented dialogue generation model. AutoTOD utilizes the
ReAct (Yao et al., 2023) framework, incorporating an instruction schema that integrates task descriptions
and external APIs, enabling the system to automatically determine the appropriate action and generate
the system responses. Let P represent AutoTOD’s prompt for generating the system response Sy+1. To
incorporate the friction classes, we modify P to P,. . . which includes the definition of the friction
class alongside an in-context example for each class. We use GPT-4o0-mini as the LLM backbone and
use temperature O for all the generations.

For MultiWwOZ, task completion is traditionally evaluated using two metrics - Inform and Suc-
cess (Budzianowski et al., 2018). The Inform metric evaluates whether the system identifies the correct
entity for the user. The Success metric is stricter than Inform which determines whether the system
provides all the required attributes for the identified entity. Since we are introducing friction turns, a
direct comparison of the generated and ground-truth response is not possible. This is why we adopt
AutoTOD’s (Xu et al., 2024) online version of Success. The evaluation leverages GPT-40-mini to check
if all the user goals have been accomplished given the dialogue context through a question-answering
task. Since the process involves GPT-4 call, we take an average of 3 runs to report the final Success
metric. The online evaluation setup requires a user simulator to generate the next user utterance. We
use GPT-40-mini as our user simulator that takes the user’s goals and dialogue history. and generates
Uiy1. The goal and the initial user simulator utterance (Uy) are directly taken from the MultiWOZ test
dataset. The conversation concludes when the user simulator determines that the goal has been achieved
and produces a special termination signal. The experiments are performed on 100 randomly selected
conversations from the MultiWwOZ test data.

F Details of the Alfworld Setup

ALFWorld is a simulated environment based on the TextWorld framework (C6té et al., 2019) and aligned
with the embodied ALFRED benchmark (Shridhar et al., 2020a). It provides a text-based interface for
interacting with various physical tasks. ALFWorld comprises six categories of tasks, including finding
hidden objects (e.g., locating a key inside a cabinet), moving objects (e.g., placing a cup on a table), ma-
nipulating objects with other objects (e.g., heating a potato in a microwave), and examining objects (e.g.,
inspecting a book under a desklamp). Each task instance in ALFWorld consists of more than 50 locations
and requires an expert policy more than 50 steps to solve the task. Thus, the task requires understand-
ing the environment, executing multi-step plans, and maintaining task-relevant state information. In our
experiments we evaluate on 134 unseen evaluation games from the dataset.

To model the dialogue agent, we extend the original ReAct(Yao et al., 2023) setup with additional



dialogue capabilities for the agent (Dongre et al., 2024). It is important to note that the original setup
does not include any dialogues and involves only actions. This is why the extension is necessary because
we introduce friction through dialogues. The agent can ask contextually relevant questions (e.g., "Where
should I search for the knife in the kitchen?") and seek information effectively.

Assume that an embodied agent operates in this environment. At time step ¢, it receives an observation
o¢ from the environment, where o; € O, where O represents the observation space. The agent executes
an action a; € A. Ideally, the agent’s decision-making is based on a policy 7 : C — A where C where C
represents the context space. The context c; encapsulates the relevant information available to the agent
at time step ¢, including the current observation and the history of previous observations and actions:
ct = (01,a1,-++ 041,01, 0¢).

In our environment, the embodied agent operates as follows: At each time step ¢, the agent receives
an observation o; from the environment, where o, € O, with O representing the space of possible
observations. Based on this, the agent executes an action a; € A, where A is the action space.

The agent’s behavior is governed by a policy m : C — A, where C denotes the context space. The
context c; encapsulates all relevant information available at time step ¢, including the current observation
and the history of prior observations and actions. Formally, this is represented as:

Ct = (0170/1,02,&2, s 7Ot—17at—170t)-



