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ABSTRACT

Vision-language models (VLMs) have shown impressive zero- and few-shot perfor-
mance on real-world visual question answering (VQA) benchmarks, alluding to
their capabilities as visual reasoning engines. However, existing works (typically)
use benchmarks that conflate “pure” visual reasoning with world knowledge, and
also have questions that involve a limited number of reasoning steps. Thus, it
remains unclear whether a VLM’s apparent visual reasoning performance is due
to its world knowledge, or due to actual visual reasoning capabilities. To clar-
ify this ambiguity, we systematically benchmark and dissect the zero-shot visual
reasoning capabilities of VLMs through synthetic datasets that require minimal
world knowledge, and allow for analysis over a broad range of reasoning steps.
We specifically focus on evaluating the impact of conveying scene information as
either visual embeddings or purely textual scene descriptions to the underlying
large language model (LLM) of the VLM. We notably find that the underlying
LLMs, when provided textual scene descriptions, consistently perform significantly
better compared to being provided visual embeddings. Our work comprehensively
identifies limitations of VLMs for compositional visual reasoning, and highlights
the important role that LLMs can play in scene understanding and visual reasoning.

1 INTRODUCTION

We perform systematic analyses of zero-shot visual reasoning capabilities in Vision-and-Language
Models (VLMs) and their backbone Large-Language Models (LLMs) using synthetic datasets CLEVR
(Johnson et al., 2017) and PTR (Hong et al.} 2021). These datasets require minimal world knowledge
and provide complete scene metadata, which overcomes a major limitation of traditional VQA
benchmarks that conflate visual reasoning with factual or world knowledge (Goyal et al., 2017}
Marino et al.,|2019; | Hudson & Manning),2019). This approach thus enables us to benchmark the pure
visual reasoning and scene understanding capabilities uninfluenced by a VLM’s world knowledge.

We comprehensively evaluated state-of-the-art VLMs and LLMs over various factors such as the
scale of the models, question complexity due to reasoning step lengths, the type of reasoning required
by different question categories, and the impact of conveying scene information through visual
embeddings versus purely textual descriptions. Our work: i) Demonstrates, for the first time, the
ability of LLMs to perform visual reasoning and scene understanding when prompted with text-based
scene metadata; ii) Reveals that LLMs, when provided with ground-truth textual descriptions of
scenes, exhibit superior performance in compositional reasoning and scene understanding tasks,
compared to Vision Language Models that rely on visual embeddings; iii) Underscores the inherent
limitations in current VLMs’ visual reasoning abilities; iv) Emphasizes the substantial, yet under-
explored, potential of LLMs in the realm of visual understanding and interpretation.

2 EXPERIMENTS AND FINDINGS

We used three instruction-tuned VLMs: BLIP2-Flan-T5-XL (3B), BLIP2-Flan-T5-XXL (11B) (Li
et al., |2023b)) and GPT-4V. These were compared to their LLM counterparts: Flan-T5-XL (3B),
Flan-T5-XXL (11B) (Chung et al.| [2022) and GPT-4. We used 2 synthetic datasets (CLEVR and
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Figure 1: VLM versus VLM+Metadata versus LLM performance on CLEVR and PTR.
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Figure 2: LLM versus VLM performance of Flan-T5-XXL, analyzed by length of functional program.

PTR). As shown in the experimental setup in Figure[3] we compared the “traditional VLM” (i.e. an
LLM receiving scene information as visual embeddings from a base vision model) against an LLM
simply receiving a completely textual representation of the scene. We found that LLMs consistently
outperform VLMs that utilize the same base LLMs, as shown in Figure[T} Specifically, BLIP2-
Flan-T5 using only its base LLM (Flan-T5) without the visual front-end achieved ~18% higher
accuracy on PTR, while GPT-4 was ~17% more accurate than GPT-4V on CLEVR. In general,
models with scene metadata (LLM and VLM+metadata) obtained significantly better accuracies than
VLM-only models, suggesting scene metadata embeddings are potentially more informative and
amenable for reasoning than passing only visual embeddings to the VLM decoder. This is not an
a-priori obvious finding, as one might expect that visual embeddings are better representations
than text for spatial reasoning, for instance.

Additionally, to verify that lower VLM performance is not merely due to poor transfer to synthetic
images, we also evaluated on the real-world compositional VQA dataset, GQA (Hudson & Manning,
2019). As shown in Table 2] (in the Appendix), we similarly found LLMs with scene metadata
performed significantly better than VLMs on GQA. Another key finding is that for questions which
can be solved in 2 to 5 “reasoning steps”’, LLMs showed performance levels which are significantly
above chance, suggesting that LLMs may in fact possess reasonable capabilities as zero-shot visual
reasoning engines. This is an important finding as the LLMs were able to answer questions which
require multi-step reasoning and are not necessarily observed during model pretraining. Both LLMs
and VLMs generally showed declining performance as the number of “reasoning steps” increases.

The LLM performed better than the VLM in most question categories. Most notably, both LLMs
and VLMs have their worst performance on the “analogy” question family of the PTR dataset. This
indicates that model reasoning was not complex enough to create analogies, a process which involved
multiple stages of reasoning, including identifying the relevant relationships, applying it to a new
context, and generating or selecting the correct answer. Another observation is that the VLM when
provided with the scene metadata in addition to the image performed ~2% better than the base
LLM only in the case of GPT-4, but not BLIP2. This indicates that the visual frontend for GPT-4
provided additional benefits to the LLM for visual reasoning. The “question family” analysis revealed
limitations in current LLMs regarding their ability to create visual representations from textual
descriptions. Unlike humans who can easily visualize and understand scenes from text, LLMs still
struggle to generate abstract representations for complex reasoning and analogical tasks.
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A APPENDIX

A.1 RESULTS AND ANALYSES

Language Model Visual Language Model
Standard Prompting Standard Prompting

Complete Scene
information extracted
from the Metadata

Vocabulary Setup Prompt Vocabulary Setup Prompt
Standard Prompt Standard Prompt
Vocabulary Prompt Standard Prompt
The objects or things can have the following categories: 'Bed’, Now answer the following question in one word:

'Cart', 'Chair', 'Refrigerator’, "Table'. The different parts of the things
can have the following categories: arm’, 'arm horizontal bar', ‘arm

vertical bar', ‘back’, ‘behind’, 'body’, ‘central support', ‘door’, ‘drawer’, Question: what is the color of the legs of the
‘leg’, 'leg bar', ‘pedestal’, 'seat’, 'shelf, 'sleep area, 'top’, 'wheel'. The | | thing that has the same color of back as the
things or objects can move in the following directions to make object with a central support?

themselves stable: 'front', 'left', 'right'. The objects or their parts can

have the following colors: 'blue’, ‘brown’, ‘cyan’, 'gray’, ‘'green’,

‘purple’, 'red’, 'yellow'. For numeric answers, give an answer in Answer:
inteaers and not in words.

Figure 3: Experimental setup, using the same prompts for both VLMs and their pure-LLM variants.

A.1.1 COMPARING LLMS WITH SCENE DESCRIPTIONS VERSUS VLMS

LLMs with scene descriptions outperform VLMs: Figure[T|shows the impact of visual grounding
using BLIP-2 on the reasoning effectiveness of the models. Pure LLMs generally outperform or have
similar performance to their counterpart VLM models across both scales and datasets. A t-test was
performed to test if the pure LLMs performed better than VLMs. A p-value of 0.0088 indicates that
the difference is statistically significant. This might seem counter-intuitive, as one might expect the
VLM to be able to effectively utilize the “visual frontend” provided by the image encoder used in
the BLIP-2 setup for querying the relevant aspects of the image. There are 2 possible explanations:
1) There are underlying issues in the VLM architecture which prevent the visual front-end from
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Figure 4: LLM versus VLM model performance of Flan-T5-XXL on CLEVR and PTR, organized by
question family.

providing relevant information to the model. 2) The complexity of the tasks is not enough that a visual
front-end which queries only the relevant information from the scene can be better than providing the
complete, unfiltered information to the reasoning engine: which in this case is the LLM. To guard
against data contamination (i.e. LLMs trained on CLEVR or PTR), we ran image-free baselines
(Appendix [A.8), which performed at chance, indicating no contamination.

LLM advantage for CLEVR versus PTR: The difference in performance between the LLM and
the VLM is more pronounced in PTR than CLEVR. For CLEVR, the LLM outperforms the VLM
by roughly 6-7%, while for PTR the gap is roughly 17-18%. One possible explanation is that the
objects in PTR are more complex, with multiple parts, hence the task for the VLM’s visual frontend
is more challenging, and more errors and uncertainty are introduced. Providing the ground-truth
scene description to the LLM eliminates this challenging visual frontend task. Conversely, the objects
in CLEVR are simple geometric objects, hence access to the ground-truth scene description provides
less of an advantage to the LLM.

Analysis by number of “reasoning steps”: Both CLEVR and PTR provide functional programs
which programmatically describe the solution for the reasoning tasks. We used the length of these
functional programs as a proxy for the number of “reasoning steps” needed. We analyzed the results
by number of “reasoning steps” (Fig.[2). For questions requiring relatively fewer “reasoning steps”
(up to around 12-17), LLMs generally outperform VLMs. As seen in Fig. 2] (right), for PTR, both
LLMs and VLMs generally show declining performance as the number of “reasoning steps” increases,
unsurprisingly. However, when it comes to CLEVR (Fig. [2] left), the performance of VLMs seems to
be somewhat independent of the number of “reasoning steps”. This could be due to the nature of the
CLEVR dataset. CLEVR questions are usually abstract and require deep reasoning, regardless of
the number of steps. As such, even tasks with fewer steps might be inherently complex in nature,
demanding similar levels of abstraction and reasoning as tasks with more steps.

Moreover, because CLEVR consists of geometric shapes rather than recognizable object parts, the
VLMs may not gain as much valuable information from the visual encoder for each additional
reasoning step. It is important to note that while the program length provides a heuristic for reasoning
complexity, it might not always perfectly capture the cognitive complexity for humans. However, it is
still worthwhile to study the impact of length of functional programs on performance.

Analysis by question family (CLEVR): The LLM performs better than the VLM in most categories
(Fig. ] left). The “exist” and “query attribute” categories show the most significant difference in
performance, with the LLM noticeably better. Interestingly, the multimodal model performs better
in the “count” category for Flan-T5 while it is comparable to the LLM in the case of GPT-4. The
observed results could potentially be explained by a few factors. For the LLMs, the “exist” and
“query attribute” questions are the most straightforward tasks since this information requires a direct
lookup from the scene metadata which already contains this information. The VLMs, on the other
hand, require identification of the correct object(s) and their attributes even for “exist” and “query
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Figure 5: LLM versus VLM model performance of GPT-4 on CLEVR and PTR, organized by
question family.
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Figure 6: LLM versus VLM performance of GPT-4, analyzed by length of functional program.

attribute” questions. For “counting” questions, on the other hand, it’s possible that VLMs, with
their ability to process visual data, are more efficient in tasks like counting where visual cues can be
valuable. One interesting observation is that GPT-4V is significantly better than Flan-T5 in “exist”
category of CLEVR while both GPT-4 LLM and VLM are worse than Flan-T5 in “count” category.
This could point to potential advantages in reasoning abilities of the two models for those specific
question categories.

Analysis by question family (PTR): The LLM outperforms the VLM across all question families
on PTR (Fig. [ right). The largest performance gap is observed in the “concept” and “relation”
categories. “Concept” questions in PTR evaluate a model’s capability to understand and reason about
basic part-whole relations. Similar to the findings in CLEVR, the question families which require
simple “lookups” from the metadata for the LLM have the largest gap in performance. Interestingly,
the performance of LLMs on “arithmetic” questions is better than VLMs for this dataset (unlike the
“count” questions in CLEVR). This can be attributed to the fact that the level of reasoning required
for arithmetic questions is much higher. While such questions in CLEVR were limited to counting
objects or comparing numbers, PTR questions require making complex selections of object parts
based before performing arithmetic operations.

Visual analogy questions in the PTR dataset require complex reasoning that pose significant challenges
for both LLMs and VLMs. This is evident from both the models having their worst performance
on the “analogy” question family. This process involves multiple stages of reasoning, including
identifying the relevant relationship, applying it to a new context, and generating or selecting the
correct answer. The models must not only identify the relationship between A and B, but also
accurately project it onto C and D. This complexity could make these tasks particularly challenging
for both types of models. Additionally, the geometric and spatial properties involved in analogical
reasoning may be difficult for both models.

Note that “count” category from CLEVR and “Analogy” category from PTR remain as the most
difficult reasoning categories. We also observe that there are common trends in performance on
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question categories across the the Blip2-Flan-T5 as well as the GPT-4 models on both the CLEVR and
the PTR datasets. This highlights the fact that the question family analysis indeed show a significant
bottleneck in the general reasoning abilities of VLMs.

This question family can also provide insights into the abilities of LLMs to make visual representations
of textual descriptions. When provided such a text description of a scene, most humans will try to
create a visualization to easily identify the parts or objects which are relevant to the problem at hand.
This ability to generate abstract representations from descriptions, or use visual inputs to perform
complex projections and analogies still seems to be lacking in existing systems.

Drawbacks of current VLM Architecture: VLMs, even those leveraging LLMs, have inherent
architectural bottlenecks that may hinder their performance. During inference, they function in two
separate phases: 1) visual information querying, where the model’s visual frontend extracts scene
details based on an initial text query, and 2) text generation, where the LLM uses this extracted
information for reasoning and response. This process lacks a feedback loop, preventing the LLM
from requesting additional visual information if needed during the generation phase. In contrast,
when LLMs receive full scene descriptions in text form, they can access the entire description while
generating responses, thereby better retrieving relevant information to answer the question. These
drawbacks of VLM architecture are further evidenced by the fact that even when given access to
scene metadata, VLMs consistently perform similar to LLMs. This indicates that they are unable to
take significant advantage of the additional visual information.

VLM performance on synthetic vs real images. One concern of using VLMs on synthetic datasets
is that the vision models are not trained on synthetic data, which could lead to lower performance
compared to LLMs. We conducted experiments on the GQA (Hudson & Manning, |2019) dataset
using a similar LLM vs VLM comparison, and confirmed that the LLMs also performed better than
VLMs on natural images. Full analysis and results are in Appendix[A.7]

A.2 LIMITATIONS AND FUTURE WORK

More varied tasks. We used datasets for physical reasoning, due to the availability of comprehensive
scene metadata and minimal dependency on world knowledge. Future work can extend to a broader
range of visual reasoning tasks, such as abstract data interpretation (Kafle et al., 2018]), image-based
statement classification (Suhr et al., [2017)), etc.

Future work. We plan to extend our study by benchmarking some of the latest instructed-generation
capable VLMs such as Otter (Li et al.,2023a), MultiModal-GPT (Gong et al., 2023)) and InstructBLIP
(Dai et al., 2023)) besides recent LLMs such as Chat-GLM (Du et al., [2022), Vicuna (Chiang et al.,
2023)), OPT (Zhang et al.,|2022)) and Bloom (Scao et al.|[2023) in order to capture trends, bottlenecks
and emergent properties for visual reasoning.

A.3 EXPERIMENT CODE AND REPRODUCIBILITY

All the relevant code and scripts to process the dataset, run all experiments and evaluate the results is
available with the supplemental submission . The code uses 2 major libraries for the experiments:

1. The huggingface transformers library for LLM experiments.
2. The Salesforce-LAVIS library for VLM experiments.

Setup instructions have been included in markdown where required.

The 3 major datasets used (CLEVR, PTR and GQA), can be downloaded from these links:

1. CLEVR
2. PTR
3. [GQA

The experiment code can be found in the code folder provided along with the supplemental submission.
The folder structure is provided in the README.md in the root folder and separate files are provided
to process the dataset as well as run each experiment for the different model families on different
datasets.


https://huggingface.co/docs/transformers/index
https://github.com/salesforce/LAVIS.git
https://cs.stanford.edu/people/jcjohns/clevr/
http://ptr.csail.mit.edu/
https://cs.stanford.edu/people/dorarad/gqa/index.html
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A.4 EXAMPLES OF REASONING STEP COMPLEXITIES

More details about the the reasoning steps and question families can be found within the papers of
the respective datasets:

- CLEVR Dataset [Figure 2 of the paperJohnson et al.| (2017)]
- PTR Dataset [Figure 1 of the paper[Hong et al.| (2021))

A.5 EXAMPLE OF VLM vs LLM

Figure 7: Example of a PTR scene.

Figure [7]shows a scene used in the evaluation of the GPT-4 and GPT-4 Vision models from the PTR
dataset. The following was one of the questions asked to the models:“what is the color of the legs of
the thing that has the same color of back as the object with a central support?”’

Figure 8] shows the reasoning steps required to reach the answer starting from the scene input.The
correct answer for this question was “red”. The following were the answers provided by the LLM
and the VLM:

- GPT-4 (LLM + scene metadata): “red”
- GPT-4 Vision (VLM): “cyan”

As we can see, the LLM arrives at the answer correctly, while the VLM fails to do so. This example
concretely shows the complex reasoning required to arrive at the answer, as well as a case where the
LLM performs better at reasoning than the VLM.

A.6 FULL EXPERIMENTAL RESULTS

The results for all experiments performed are given in the Table ]|
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Figure 8: Reasoning steps required at the answer for the question “what is the color of the legs of the
thing that has the same color of back as the object with a central support?”. The Green Node signifies
the input step while the Red node signifies the output step. The arrows indicate the flow of reasoning.

Table 1: Experiment Results

| Model | Scale (Billions of parameters) | Dataset | Type | Accuracy
FLAN TS5 3.00 CLEVR Llm 0.463932
FLAN TS 3.00 CLEVR | VIim 0.396497
FLAN T5 3.00 CLEVR | VIm._metadata 0.455474
FLAN T5 11.00 CLEVR Llm 0.463932
FLAN TS5 11.00 CLEVR Vim 0.402938
FLAN TS 11.00 CLEVR | VIim._metadata 0.481456
GPT 0.35 CLEVR Llm 0.095729
GPT 1.30 CLEVR | Llm 0.175713
GPT 6.70 CLEVR Llm 0.296915
GPT 175.00 CLEVR Llm 0.409037
GPT 1800.00 CLEVR Llm 0.556250
GPT 1800.00 CLEVR | VIim 0.450970
GPT 1800.00 CLEVR | VIm._metadata 0.584013
OPT 2.70 CLEVR Vim 0.138835
FLAN TS5 3.00 PTR Llm 0.508657
FLAN TS5 3.00 PTR Vim 0.336524
FLAN TS 3.00 PTR VIm_metadata 0.488672
FLAN T5 11.00 PTR Llm 0.531447
FLAN T5 11.00 PTR Vim 0.352028
FLAN TS5 11.00 PTR VIm_metadata 0.522143
GPT 0.35 PTR Llm 0.038419
GPT 1.30 PTR Llm 0.149849
GPT 6.70 PTR Llm 0.242263
GPT 175.00 PTR Llm 0.461586
GPT 1800.00 PTR Llm 0.586389
GPT 1800.00 PTR Vim 0.409767
GPT 1800.00 PTR Vim_metadata 0.601770
OPT 2.70 PTR Vim 0.276101

A.7 GQA EXPERIMENTS

The GQA dataset was used to test the experimental setup on a dataset which uses natural images
instead of synthetically generated images. This was done in order to check the fairness of the VLM
vs LLM comparision on the original datasets. The rationale behind this was that the Visual encoders
in the VLMs were not trained on synthetic images, which affect the performance on the datasets
selected in the original paper. The GQA dataset was as it provided access to comprehensive scene
metadata as well as functional programs to arrive at the answer, similar to the (Johnson et al.,2017)
and (Hong et al., |2021)) datasets used in the main experiments.

Analysis of the results. We can see that the LLM outperforms the VLM on the dataset, as well
as over the length of functional programs and question families. This result is consistent with the
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findings of the main paper. It is important to note that there are not many questions with a large length
of the functional programs in the dataset, the scene metadata covers all the important relationships and
informations in a more verbose manner and the answers seem to be generally simpler to answer than
the synthetic datasets, which could explain a relatively larger gap in the LLM vs VLM performance.

Table 2: Experiment Results on Sampled GQA Dataset
\ Model \ Dataset | Accuracy |

Flan-T5 XXL Sampled GQA Dataset 78.72
Blip-2 Flan-T5 XXL | Sampled GQA Dataset 56.81

A.8 IMAGE-FREE BASELINE AND RANDOM CHANCE

The following tables provide the probabilities of getting an answer correct by randomly picking an
option from the question vocabulary for CLEVR [3]as well as for the PTR[]. The image free baselines
for GPT-4 on CLEVR and PTR were 36.85% and 10.16 % respectively. Image free baseline results
indicate that the model performance in the absence of scene metadata is basically random chance.

Table 3: Random Chance and Total Questions for CLEVR

| Category | Random Chance (%) | Total Questions |
exist 50.00 20196
colors 12.50 13404
material 50.00 30545
compare attribute 50.00 35422
shape 33.33 13544
size 50.00 10094
count 10.00 13273
compare numbers 50.00 13513

| Overall random chance \ 36.86 \

Table 4: Random Chance and Total Questions for PTR
| Category | Random Chance (%) | Total Questions |

concept 2.63 38972
relation 4.35 22905
physics 50.00 7413
analogy 5.26 7472
arithmetic 8.33 14958

| Overall random chance \ 8.03 \

The code required to run the experiments as well as the analysis has been provided with the supple-
mental submission under the “image_free” folder.
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