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Abstract

Federated Learning (FL) confronts a significant challenge known as data hetero-
geneity, which impairs model performance and convergence. Existing methods
have made notable progress in addressing this issue. However, improving perfor-
mance in certain heterogeneity scenarios remains an overlooked question: How
robust are these methods to deploy under diverse heterogeneity scenarios? To
answer this, we conduct comprehensive evaluations across varied heterogeneity
scenarios, showing that most existing methods exhibit limited robustness. Mean-
while, insights from these experiments highlight that sharing statistical information
can mitigate heterogeneity by enabling clients to update with a global perspec-
tive. Motivated by this, we propose FedGPS (Federated Goal-Path Synergy), a
novel framework that seamlessly integrates statistical distribution and gradient
information from others. Specifically, FedGPS statically modifies each client’s
learning objective to implicitly model the global data distribution using surro-
gate information, while dynamically adjusting local update directions with gra-
dient information from other clients at each round. Extensive experiments show
that FedGPS outperforms state-of-the-art methods across diverse heterogeneity
scenarios, validating its effectiveness and robustness. The code is available at:
https://github.com/CUHK-AIM-Group/FedGPS.

1 Introduction

Federated Learning (FL) facilitates collaborative model training across distributed data sources,
garnering substantial interest in recent years [1, 2, 3, 4]. Its primary goal is to keep data localized
to protect sensitive information while harnessing contributions from other participants to enhance
individual models [5, 6] or construct a superior global model [7]. However, this decentralized
paradigm encounters data heterogeneity [8, 9] (also known as statistical heterogeneity), due to the
variations in client devices, geographic locations, and annotation processes [10, 11]. This departure
from the assumption of independent and identically distributed (i.i.d.) data presents a substantial
challenge, complicating the training of distributed networks across diverse data distributions to
achieve robust generalization on the overall data distribution [8, 12].

To enhance performance in FL, numerous studies have advanced efforts to mitigate the impact of
data heterogeneity [13, 14, 15, 16]. FedAvg [7] introduces the paradigm of local training followed
by aggregation. Moreover, several studies have refined the learning objective of local training by
incorporating constraints to mitigate client drift [11, 12, 17, 18]. Client sampling [19, 20] and global
aggregation weight adjustments [21, 22] have also been tailored to adapt to heterogeneity scenarios.
Additionally, information-sharing strategies [23, 14, 15] have emerged as a promising approach
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(a) SVHN (b) CIFAR-10

Figure 1: Nemenyi post-hoc test results on the performance under (a) SVHN and (b) CIFAR-10.
Black horizontal lines indicate the critical distance (CD).

to mitigate heterogeneity, though they often require increased communication or computational
resources and demand careful privacy considerations to protect sensitive data.

Distributed environments are inherently complicated, leading to diverse scenarios involving different
clients. As a result, dataset heterogeneity varies across settings. To assess the robustness of algorithms
under various data distribution scenarios, we raise a previously underexplored question:

To what extent do existing methods maintain robustness across diverse scenarios, and by what
mechanisms is this robustness achieved?

The results presented in Fig. 1, Tabs. 1, 2, 3 and 4 show that most methods exhibit limited robustness,
as indicated by the CD intervals that overlap between methods. This overlap highlights the challenges
these methods face in adapting to diverse data distributions. Nevertheless, the findings indicate
that statistical information from other clients provides valuable insights for refining local updates.
Moreover, sharing detailed information risks privacy leakage, which contravenes the core principles
of FL, while coarse-grained statistics, such as CCVR [13], sharing the mean and covariance of logits,
offer only marginal improvements in adaptability across varied scenarios. Thus, determining which
statistical information to use and how to leverage it effectively remains a significant challenge.

First, we revisit the objective of FL, wherein each client trains a model on its local data distribution,
and these models are aggregated with the expectation of achieving robust generalization across
the global data distribution. However, this process often introduces a distribution gap due to data
heterogeneity. (1) Distribution-Level: Inspired by [14, 24], we introduce a static modification to the
goal of local training, enabling implicit learning of the global data distribution through a privacy-
free surrogate distribution via a two-stage statistical information alignment process, as depicted in
Fig. 3(a). Stage 1, the local data distribution is aligned with a local surrogate distribution using the
local model. Stage 2, the local surrogate distribution is aligned with a global surrogate distribution.
Through these stages, the divergence between the local and global distributions is effectively bounded,
improving generalization while maintaining privacy.

Furthermore, achieving effective distribution alignment becomes difficult when the distribution shift
is substantial or the amount of data available per round is limited (e.g., low client sampling rate). (2)
Gradient-Level: Drawing inspiration from [25], we propose incorporating gradient information from
other clients prior to determining the local update direction. This strategy highlights the importance
of utilizing insights from other clients’ gradients to dynamically adjust the local optimization path
at each step, ensuring a more globally consistent update direction. Moreover, theoretical analysis
reveals that careful parameter tuning of this gradient term can further rectify the update direction,
resulting in a measurable reduction in the global model’s loss function. Building on this two-
level alignment strategy, we introduce FedGPS, a synergistic framework that integrates goal and
path coordination, designed to ensure robustness in label-distribution-agnostic scenarios. Extensive
experiments conducted on three benchmark datasets confirm the effectiveness of FedGPS, showcasing
its superior performance across diverse scenarios.

Our contributions are summarized as follows:

• We comprehensively evaluate existing federated learning methods designed to address
heterogeneity, showing that most exhibit limited robustness across diverse distribution
partitions. Our findings highlight the significant potential of leveraging statistical information
from other clients to enhance performance.
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• Motivated by these insights, we attempt to propose a new framework to adapt to various
heterogeneity scenarios called FedGPS, which incorporates statistical information from
other clients from two perspectives. At the distribution level, we constrain local models
to learn data distribution aligned with the global distribution using surrogate information.
Concurrently, we refine the update direction at each step based on other client information
at the gradient view, enabling a more holistic optimization process.

• Extensive experiments with our framework across diverse settings and benchmark datasets
demonstrate the efficacy of FedGPS. Our results show that FedGPS surpasses existing
methods, achieving robust and SOTA performance across various distribution splits.

2 Related Work

Federated Learning (FL) enables localized data processing to preserve sensitive information, but
this often results in data heterogeneity due to diverse data collection conditions. To mitigate this,
several strategies have been developed to align local optimization with global objectives. For instance,
FedProx [11] incorporates a proximal term to limit divergence between local and global parameters,
ensuring more stable updates. Similarly, SCAFFOLD [12] introduces a control variate to correct local
updates, while PAdaMFed [18] enhances convergence by integrating gradients and control terms from
consecutive rounds to better estimate the global optimization direction. Another promising approach
focuses on achieving a flatter loss landscape to enhance model robustness against heterogeneity.
Techniques such as FedSAM [26], MoFedSAM [27], FedGAMMA [28], and FedLESAM [29]
perturb local parameters before updates, improving generalization and robustness, as supported
by sharpness-aware minimization principles [30]. Sharing information among participants has
garnered increasing attention. FedProto [31] shares class prototypes instead of model parameters,
preserving privacy while inspiring subsequent approaches such as FedProK [32] and PILORA [33].
Additionally, generative models [34, 35] and local statistical methods [13] have been effectively
employed to address heterogeneity challenges, enhancing model robustness across diverse data
distributions. However, these methods may raise additional privacy concerns, prompting exploration
of privacy-preserving mechanisms [36].

On the server side, optimizing client selection strategies [37, 38, 39] is crucial for minimizing
communication overhead by prioritizing clients most relevant to the global model, thereby improving
efficiency. Advanced aggregation techniques further address heterogeneity. FedDisco [21] employs
discrepancy-aware weights that consider factors beyond mere data size, while other works revisit
aggregation protocols for improved performance [40]. Some methods design different aggregation
methods on the server side, such as FedMR [41]. Server-side generative approaches, such as data-
free knowledge distillation [42, 43], have also been explored to mitigate heterogeneity, offering a
complementary perspective to client-side innovations. Besides, FL has also received a lot of attention
in many areas, e.g, healthcare [44, 45] and transportation [46].

3 Preliminary

Federated Learning. In a typical federated learning setup [7, 47], data samples are distributed across
a set of K participating clients S = {1, 2, . . . ,K}, without being centralized on a server. Each client
k ∈ S maintains a local model parameterized by θk and collaboratively contributes to training a
global model parameterized by θ. For each client k, the i-th data sample ξk,i := (xk,i, yk,i), is drawn
from its private local distribution Dk. Then, the federated learning process can thus be formulated as
the following optimization problem:

θ∗ = argmin
θ∈R|θ|

F (θ) :=

K∑
k=1

pkFk(θk), (1)

where pk represents the weight of client k. This equation captures the goal of FL, which seeks to get
the optimal global model θ∗ that minimizes the global objective F (θ) by optimizing local objectives
Fk(θk) for each client, expressed as:

Fk(θk) := Eξk∼Dk
[ℓ(θk; ξk)] , (2)

where ℓ(·, ·) is the loss function, e.g., cross-entropy in a supervised learning task. The local update at
t-th round usually follows the conventional stochastic gradient descent (SGD) with ηl denoting the
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(c) Distribution divergence measure
Figure 2: (a) and (b) are examples of data distribution scenarios generated using the Dirichlet partition
method under the CIFAR-10 dataset across 10 clients. All scenarios use the same heterogeneity
control factor of α = 0.1, but vary the random seed to produce different heterogeneous distributions.
(c) The divergence between local and global surrogate distributions is computed as the FL training
proceeds with different ratios of client sampling, also means the proportion of the data that participates
in the global update at each federated training round. The divergence is computed every 5 rounds.
local step size as follows:

θt+1
k = θtk − ηl∇Fk(θ

t
k; ξk). (3)

The locally updated models are uploaded to the server, which derives a new global model through
an aggregation mechanism AGG(·) based on the t-th round collected local data (e.g., Eq(1)), global
model θt, and the global step size ηg:

θt+1 = AGG(ηg;θ
t; {θt+1

k }k∈St), (4)

where St denotes the set of clients participating in the t-th training round.
Definition 3.1 (Wasserstein Distance). Consider two probability distributions µ and ν over the data
space X × Y , where X ⊂ Rd is the feature space and Y is the label space. Given a distance metric
d on X × Y , the p-Wasserstein distance between mu and nu, for any p ≥ 1, is defined as:

Wp(µ, ν) :=

(
inf

γ∈Γ(µ,ν)

∫
(x,y)∼µ,(x′,y′)∼ν

d((x, y), (x′, y′))p dγ((x, y), (x′, y′))

)1/p

,

where Γ(µ, ν) is the set of all joint distributions γ with marginals µ and ν, respectively.

4 Methodology

This section details our proposed “FedGPS” framework. We begin by outlining the motivation behind
FedGPS(Sec. 4.1). Subsequently, we describe how statistical information is leveraged from two
perspectives: the distribution view (Sec. 4.2) and the gradient perspective (Sec. 4.3).

4.1 Motivation

Performance degradation in FL stems from the divergence between local and global data distribu-
tions. Training on shifted local distributions Dk while expecting generalization on the global i.i.d.
distribution Dg naturally creates a distribution gap. This can be expressed as:

θ∗ = argmin
θ

EDg
[F (AGG(θk))] ,where θk = argmin

θk

EDk
[Fk(θk, ξk)] . (5)

Consequently, this divergence results in a performance gap with respect to the global distribution.
The distribution shift can be quantified using the p-Wasserstein distance based on Definition 3.1.

To address this gap, existing methods often share distribution-related information. For example,
FedProto [31] shares class-specific average embeddings as prototypes, while FLGAN [48] uses
synthetic data from a Conditional GAN (CGAN) [49]. However, these approaches, which involve
sharing raw data-derived information, introduce privacy risks. Additionally, VHL [14] employs
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Figure 3: (a) Static goal-oriented objective. This objective is composed of two stages: local distri-
bution aligns with local surrogate distribution (Alignment at local), and local surrogate distribution
aligns with global surrogate distribution (Alignment with global). (b) Dynamic path-oriented rectifi-
cation corrects the original update direction by the gradient of other clients for a new update path.

domain adaptation [50] with virtual homogeneity data, yet this data still exhibits distribution shifts,
as virtual data is trained on shifted models at each client.

Drawing on our evaluations and prior work [14, 24], we introduce a privacy-preserving surrogate
distribution (e.g., sampled from distinct Gaussian distributions) to tackle the distribution gap in
federated learning (FL). This surrogate improves FL performance by minimizing the upper bound of
the global model’s generalization error through a two-stage alignment process. However, alignment
quality varies with the volume of training data per round. For instance, in low client participation
scenarios involving approximately 10% data per round, the surrogate distribution gap between global
and local models (red line in Fig. 2(c)) exceeds that observed with 50% data participation (pink
line). This insight prompts us to investigate the parameter space, where model updates gain a more
global perspective by leveraging statistical information that partially reflects the data distribution.
Unlike prior approaches that focus on a single aspect, our method coordinates both distribution and
parameter spaces, enhancing robustness across diverse FL heterogeneous scenarios.

4.2 Static Goal-oriented Objective

Building on the motivation outlined above, we propose a static goal-oriented objective function that
changes each client’s learning goal to better generalize on the global distribution Dg by a two-stage
alignment (as depicted in Fig. 3(a)), rather than solely optimizing for the local distributionDk. Firstly,
we give the formal definition of the surrogate dataset in Definition 4.1.

Definition 4.1 (Surrogate Dataset). FedGPS assigns a distinct Gaussian distribution to each class in
the original dataset. The surrogate datasetDs is then generated by sampling from these class-specific
Gaussian distributions, with each client holding the same surrogate dataset Ds.

Then, we decompose the model parameters θ into a classifier h and a feature extractor ψ (where
θ = h ◦ ψ) cause we perform the alignment in the feature space. Pk represents the probability
distribution of the local data in the feature space, induced by applying the feature extractor ψk to
samples ξk, where ξk ∼ Dk. Following, Ps

k is the distribution of k-th local surrogate distribution
with Ds, and the global surrogate distribution Ps is aggregated at the server side. Specifically, we
give the formal definition of local surrogate distribution and global surrogate distribution as follows:

Definition 4.2 (Local Surrogate Distribution). For a client k in a federated learning system, the
local surrogate distribution Ps

k is conceptually defined as the set of feature embeddings obtained by
passing each data point from the surrogate dataset through the k-th local model’s feature extractor
ψk at the client side.

In the implementation, to ensure privacy and reduce communication overhead, what is transmitted to
the server is a compressed, privacy-preserving statistical representation of the surrogate distribution.
Typically, these embeddings are then aggregated Es

k,c = 1
|Ds

c |
∑
ξsc∼Ds ψk(ξ

c
s) to form a set of

class-wise prototype vectors (e.g., 512-dimensional), with each prototype representing a specific
class c. This distribution serves as a compact proxy for the local surrogate distribution.
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Definition 4.3 (Global Surrogate Distribution). At the server side, the global surrogate distribution
Ps is defined as the set of feature embeddings obtained by passing each data point from the surrogate
dataset through the global extractor ψ.

To alleviate the burden of the global surrogate distribution compute, the global surrogate distribution
is replaced with the aggregation of selected local surrogate prototypes Es

c =
∑

k∈St
Es
k,c at round t.

Furthermore, we introduce the following theorem to formalize the new objective and quantify the
alignment between the local and global distributions, which establishes bounds on the Wasserstein-1
distance between the distribution gap we analyzed before.
Theorem 4.4. Given the global feature distributionPg , the local feature distributionPk, the surrogate
distributions Ps (global) and Ps

k (local for the k-th client) over their corresponding data space.
Suppose there exists κ ≥ 0 such that W1(Pk,D,Pg,D) ≤ κ under distribution D. If the following
conditions hold:

W1(Ps
k ,Pk) ≤ ϵ1, W1(Ps

k ,Ps) ≤ ϵ2,
where W1 is the Wasserstein-1 distance as defined in Definition 3.1. then the Wasserstein-1 distance
between Pg and Ps is bounded as:

W1(Pg,Ps) ≤ ϵ1 + ϵ2 + κ.

Remark 1. This theorem establishes a key relationship between local and global feature distributions.
Specifically, suppose each client’s local surrogate feature distribution Ps

k closely approximates its
true local feature distribution Pk within a tolerance of ϵ1 (Stage 1). Additionally, assume Ps

k aligns
with the global surrogate feature distribution Ps within a tolerance of ϵ2 (Stage 1). Furthermore, let
the local and global feature extractors produce similar outputs for identical data, within a tolerance
of κ. Under these conditions, the global model’s feature distribution Pg will closely resemble Ps

(Detailed proof can be found in the Appendix A).

The bound ϵ1 + ϵ2 + κ ensures that a model trained on surrogate data generalizes effectively to the
true global data. In practice, ϵ1 and ϵ2 can be optimized using distribution-matching losses, while κ
can be minimized through parameter regularization. Accordingly, our local optimization goal of each
client can be formulated as follows:
Fk(θk) := Eξk∼Dk

ℓ(θk; ξk) + Eξs∼Dsℓ(θk; ξs) + λ1d(Pk,Ps
k) + λ2d(Ps,Ps

k) + λ3∥θk∥2, (6)
where the first two terms enhance the generalization of the local model θk on both the local data
distribution Dk and the surrogate data distribution Ds. The function d(·, ·) quantifies the distance
between distributions, such as the Wasserstein-1 distance. The terms weighted by hyperparameters
λ1, λ2, and λ3 control the trade-off between terms, which are tuned to optimize performance.

4.3 Dynamic Path-oriented Rectification

To overcome the limitations of scarce data involved every round in achieving distribution alignment
(demonstrated by Fig. 2(c)), we develop another technique, dynamic path-oriented gradient
rectification, to bolster model robustness. Our motivation draws a high-level concept from the model
replacement strategy in the backdoor of federated models [25]. In this scenario, the malicious client
exploits a deep understanding of the aggregation mechanism and the collective dynamics of benign
clients. By precisely predicting the contributions of other clients’ updates to the global model, the
attacker meticulously designs and scales their malicious update. The key insight is that awareness of
the aggregated influence from other clients confers substantial leverage in shaping the global model.

We define the gradient statistical information from other clients in Definition 4.5. Then we elaborate
on how to utilize this information to improve the local update from a more global perspective at the
gradient level (as depicted in Fig. 3(b)).
Definition 4.5 (Non-Self Gradient at Round t of client i, δtθi). In a FL framework with a client set
K, let θt−1 denote the global model parameters at the end of round t− 1, and St−1 ⊆ K the subset
of clients selected for round t − 1 and |St−1| ≥ 2. For each client k ∈ K, ∆t−1

θk
be the updated

information of client k at round t− 1, where ∆t−1
θk

= θtk − θ
t−1
k . Let ηg and ηl denote the global

and local update steps, respectively.

For a client i ∈ K, the Non-Self Gradient at round t of client i, denoted δtθi , is defined as:

δtθi = −ηgηl
1

|St−1 \ {i}|
∑

k∈St−1\{i}

∆t−1
θk

,
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Table 1: Top-1 accuracy of baselines and our method FedGPS with 5 different heterogeneous scenarios
on CIFAR-10, heterogeneity degree α = 0.1, local epochs E = 1 and total client number K = 10.

Dataset: CIFAR-10 Heterogeneity Level:α = 0.1 Client Number:K = 10, Client Sampling Rate: 50% Total Communication Round:T = 500 Local Epochs:E = 1

Diff Scenario Heterogeneous scenario 1 Heterogeneous scenario 2 Heterogeneous scenario 3 Heterogeneous scenario 4 Heterogeneous scenario 5

Centralized Training Acc=xxx%
ACC↑ ROUND ↓ SpeedUp↑ ACC↑ ROUND ↓ SpeedUp↑ ACC↑ ROUND ↓ SpeedUp↑ ACC↑ ROUND ↓ SpeedUp↑ ACC↑ ROUND ↓ SpeedUp↑

Methods Target Acc=84% Target Acc=79% Target Acc=80% Target Acc=68% Target Acc=65% Mean Acc± Std

FedAvg 84.21 340 1.0× 79.13 301 1.0× 80.63 416 1.0× 68.62 189 1.0× 65.86 415 1.0× 75.69± 7.99

FedAvgM 85.74 181 1.9× 81.78 200 1.5× 81.35 310 1.3× 70.15 348 0.5× 67.51 233 1.8× 77.31± 7.98

FedProx 86.13 181 1.9× 83.12 179 1.7× 82.37 219 1.9× 76.62 175 1.1× 68.81 168 2.5× 79.41± 6.85

SCAFFOLD 82.39 None None 80.78 412 0.7× 79.08 None None 71.83 193 1.0× 68.43 175 2.4× 76.50± 6.05

CCVR 84.30 391 0.9× 83.28 136 2.2× 83.20 192 2.2× 76.57 53 3.6× 74.72 66 6.3× 80.41± 4.42

VHL 89.07 116 2.9× 87.20 131 2.3× 86.83 210 2.0× 84.30 89 2.1× 81.05 160 2.6× 85.69± 3.10

FedASAM 86.49 270 1.3× 81.99 211 1.4× 80.45 310 1.3× 73.11 188 1.0× 66.68 348 1.2× 77.74± 7.84

FedExp 84.00 270 1.3× 79.25 211 1.4× 79.60 None None 71.55 188 1.0× 66.66 315 1.3× 76.21± 6.97

FedDecorr 85.76 339 1.0× 84.07 244 1.2× 81.38 358 1.2× 73.14 181 1.0× 73.77 212 2.0× 79.62± 5.85

FedDisco 85.69 270 1.3× 81.84 191 1.6× 80.42 364 1.1× 70.37 188 1.0× 69.94 315 1.3× 77.65± 7.11

FedInit 86.84 339 1.0× 83.49 244 1.2× 80.48 414 1.0× 69.44 318 0.6× 68.04 175 2.4× 77.66± 8.46

FedLESAM 88.80 151 2.3× 85.52 120 2.5× 84.24 233 1.8× 78.99 90 2.1× 74.18 119 3.5× 82.35± 5.77

NUCFL 83.76 None None 79.45 378 0.8× 79.76 None None 68.78 210 0.9× 65.78 487 0.9× 75.51± 7.77

FedGPS(Ours) 90.31 139 2.4× 88.45 119 2.5× 87.78 158 2.6× 85.06 89 2.1× 82.04 137 3.0× 86.73± 3.23

Table 2: Top-1 accuracy of baselines and our method FedGPS with 5 different heterogeneous scenarios
on SVHN, heterogeneity degree α = 0.1, local epochs E = 1 and total client number K = 10.

Dataset: SVHN Heterogeneity Level:α = 0.1 Client Number:K = 10, Client Sampling Rate: 50% Total Communication Round:T = 500 Local Epochs:E = 1

Diff Scenario Heterogeneous scenario 1 Heterogeneous scenario 2 Heterogeneous scenario 3 Heterogeneous scenario 4 Heterogeneous scenario 5

Centralized Training Acc=84%
ACC↑ ROUND ↓ SpeedUp↑ ACC↑ ROUND ↓ SpeedUp↑ ACC↑ ROUND ↓ SpeedUp↑ ACC↑ ROUND ↓ SpeedUp↑ ACC↑ ROUND ↓ SpeedUp↑

Methods Target Acc=85% Target Acc=92% Target Acc=92% Target Acc=92% Target Acc=92% Mean Acc± Std

FedAvg 85.61 151 1.0× 92.56 102 1.0× 92.73 100 1.0× 92.08 340 1.0× 92.11 65 1.0× 91.02± 2.72

FedAvgM 88.64 150 1.0× 92.41 110 0.9× 92.34 99 1.0× 92.30 144 2.4× 93.34 64 1.0× 91.81± 1.82

FedProx 88.65 102 1.5× 93.07 107 1.0× 93.13 154 0.6× 92.56 104 3.3× 92.94 64 1.0× 92.07± 1.92

SCAFFOLD 87.88 98 1.5× 91.58 None None 92.22 75 1.3× 91.86 None None 91.74 None None 91.06± 1.79

CCVR 89.77 27 5.6× 91.41 None None 92.68 56 1.8× 92.08 214 1.6× 92.65 91 0.7× 91.72± 1.21

VHL 93.57 43 3.5× 94.89 110 0.9× 94.99 93 1.1× 94.96 85 4.0× 94.90 64 1.0× 94.66± 0.61

FedASAM 88.14 150 1.0× 92.56 107 1.0× 92.82 92 1.1× 92.65 116 2.9× 93.19 64 1.0× 91.87± 2.10

FedExp 86.24 150 1.0× 92.11 110 0.9× 91.87 None None 92.03 339 1.0× 92.83 64 1.0× 91.02± 2.70

FedDecorr 89.82 80 1.9× 92.99 235 0.4× 93.02 71 1.4× 93.19 182 1.9× 93.11 64 1.0× 92.43± 1.46

FedDisco 84.54 None None 92.80 100 1.0× 92.50 99 1.0× 91.91 None None 92.83 64 1.0× 90.92± 3.58

FedInit 86.69 368 0.4× 90.50 None None 93.83 180 0.6× 93.16 134 2.5× 93.61 64 1.0× 91.56± 3.03

FedLESAM 89.29 165 0.9× 93.62 173 0.6× 94.86 63 1.6× 93.78 134 2.5× 94.71 64 1.0× 93.25± 2.28

NUCFL 86.49 118 1.3× 90.53 None None 91.93 None None 91.36 None None 91.92 None None 90.45± 2.28

FedGPS(Ours) 94.20 65 2.3× 95.20 67 1.5× 95.29 49 2.0× 95.23 72 4.7× 95.08 39 1.7× 95.00± 0.45

where St−1 \ {i} is the set of clients in St−1 excluding client i, and |St−1 \ {i}| is its cardinality.

By integrating this definition, the local client concurrently considers non-self gradient information
before computing the update direction, as this information subtly conveys the underlying data
distribution from others, which can be expressed as:

ĝt+1,e+1
k = ∇Fk(θ

t+1,e
k + λg

δtθk
∥δtθk∥

). (7)

Here, e represents the e-th local update iteration within a total of E local epochs per round. The

expression
δtθk

∥δtθk∥
denotes a unit vector aligned with the direction of δtθk . We employ the λg

δtθk
∥δtθk∥

instead of δtθk to focus exclusively on the update direction from other clients, with the hyperparameter
λg providing adjustable scaling to optimize performance. Lastly, the local model θt+1,e+1

k updated
by the new rectified path as follows:

θt+1,e+1
k = θt+1,e

k − ηlĝt+1,e+1
k . (8)

This term is deemed dynamic as the gradient path is adjusted at each update iteration. The local
update direction is consistently refined using statistical gradient information from other clients.

5 Experiments

We organize this section as follows: (a) Detailed description of all the evaluated methods in our
comprehensive evaluation (Sec 5.1); (b) The implementation and experimental settings we followed
(Sec 5.2); (c) The main results and observations to demonstrate the efficacy of FedGPS (Sec 5.3); (d)
Ablation study on two modules of FedGPS (Sec. 5.4).
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Table 3: Top-1 accuracy of baselines and our method FedGPS with 5 different heterogeneous scenarios
on CIFAR-100, heterogeneity degree α = 0.1, local epochs E = 1 and total client number K = 10.

Dataset: CIFAR-100 Heterogeneity Level:α = 0.1 Client Number:K = 10, Client Sampling Rate: 50% Total Communication Round:T = 500 Local Epochs:E = 1

Diff Scenario Heterogeneous scenario 1 Heterogeneous scenario 2 Heterogeneous scenario 3 Heterogeneous scenario 4 Heterogeneous scenario 5

Centralized Training Acc=78%
ACC↑ ROUND ↓ SpeedUp↑ ACC↑ ROUND ↓ SpeedUp↑ ACC↑ ROUND ↓ SpeedUp↑ ACC↑ ROUND ↓ SpeedUp↑ ACC↑ ROUND ↓ SpeedUp↑

Methods Target Acc=69% Target Acc=69% Target Acc=69% Target Acc=70% Target Acc=66% Mean Acc± Std

FedAvg 69.89 500 1.0× 69.08 411 1.0× 69.13 471 1.0× 70.62 429 1.0× 66.54 436 1.0× 69.05± 1.54

FedAvgM 70.10 350 1.4× 69.44 476 0.9× 69.69 400 1.2× 70.52 434 1.0× 66.85 491 0.9× 69.32± 1.44

FedProx 69.36 460 1.1× 67.46 None None 68.31 None None 69.45 None None 65.23 None None 67.96± 1.73

SCAFFOLD 63.78 None None 63.13 None None 64.45 None None 65.32 None None 60.34 None None 63.40± 1.90

CCVR - - - - - - - - - - - - - - - -
VHL 70.93 324 1.5× 69.99 407 1.0× 70.08 401 1.2× 71.03 405 1.1× 68.77 306 1.4× 70.16± 0.91

FedASAM 70.04 350 1.4× 68.95 None None 69.32 389 1.2× 70.74 434 1.0× 66.52 428 1.0× 69.11± 1.60

FedExp 69.72 413 1.2× 69.00 476 0.9× 69.61 428 1.1× 70.43 433 1.0× 65.31 None None 68.81± 2.02

FedDecorr 68.91 None None 68.88 None None 68.11 None None 70.19 458 0.9× 62.93 None None 68.38± 2.31

FedDisco 69.50 428 1.2× 68.55 None None 69.13 427 1.1× 70.71 427 1.0× 65.80 None None 68.71± 1.63

FedInit 67.87 None None 66.92 None None 66.82 None None 69.41 None None 63.55 None None 66.91± 2.15

FedLESAM 68.84 None None 67.31 None None 66.57 None None 67.82 None None 65.61 None None 67.23± 1.23

NUCFL 68.29 None None 67.94 None None 65.47 None None 67.81 None None 64.44 None None 66.79± 1.72

FedGPS(Ours) 71.14 336 1.5× 70.58 427 1.0× 70.50 374 1.3× 71.44 400 1.1× 69.79 292 1.5× 70.69± 0.64

5.1 Evaluated Details

Compared Methods: We evaluate the FL methods that alleviate data heterogeneity from different
perspectives. 1) FedAvg [7] is the fundamental work in FL; 2) FedAvgM [51] accumulate model
updates with momentum; 3) FedProx [11] constrain the divergence between local and global models;
4) SCAFFOLD [12] use extra term to correct the local gradients; 5) CCVR [13] share statistical logits
to sample rectification data at the server side; 6) VHL [14] use virtual homogeneity data to constrain
model by domain adaptation. 7) FedASAM [26] and FedLESAMS [29] use the insight of sharpness
aware minimization; 8) FedExp [52] is inspired by Projection Onto Convex Sets (POCS) to select
global step size adaptively; 9) FedDecorr [53, 54] constrain the feature covariance matrix due to the
dimension collapse; 10) FedDisco [21] adjusts the aggregation weight based on discrepancy between
clients; 11) FedInit [55] improves the local consistency by related initialization; 12) NUCFL [56]
calibrates local classifier after local training.

Datasets, Models and Metrics: Following [3, 14, 57], we evaluate our method on three standard
datasets: CIFAR-10, CIFAR-100 [58], and SVHN [59]. In line with prior work [57, 60], we use
ResNet-18 for CIFAR-10 and SVHN, and ResNet-50 for CIFAR-100. We report three metrics related
to communication efficiency and performance, building on previous work [14, 15]: (1) “ACC”: the
best accuracy achieved during training, with the target accuracy set as the best performance of FedAvg
to provide a lower bound for evaluation; (2) “ROUND”: the communication round required to reach
the target accuracy; and (3) “SpeedUp”: the speedup factor compared to FedAvg.

5.2 Implementation Details

Federated Settings: To simulate a heterogeneous data distribution across clients, we employ the
Dirichlet partitioning method, a common approach in recent FL works [8, 57, 51]. This method draws
client data proportions q from a Dirichlet distribution, q ∼ Dir(αp), where α is the concentration
parameter that controls the degree of heterogeneity. We use α = 0.1, but vary the random seed
to generate multiple distinct heterogeneous data distributions. Examples of these distributions are
shown in Fig. 2(a) and 2(b). We simulate cross-silo scenarios using 10 clients and cross-device
scenarios using 100 clients. We set the sampling rate λs as 50% for cross-silos and 10% for cross-
devices scenario. We set local epochs E = 1 (results for different local epochs are shown in the
Appendix D.3).

Experimental Details: To ensure a fair and direct comparison, all methods were evaluated under
identical conditions, including the same data partitioning, sampling rate, local epochs, and communi-
cation rounds. We use the SGD optimizer with 0.01 learning rate and 0.9 momentum, 1e-5 weight
decay (also denoted as λ3). Among the hyperparameters, λ1 and λ2 were both set to 0.1, and λg is
fixed at 0.5 for the main experiments (Details can be seen in the Appendix C).

5.3 Main Results

Our evaluation results on CIFAR-10, SVHN, and CIFAR-100 are shown respectively in Tabs. 1,
2, 3 and 4. Additionally, if a method fails to produce valid results, e.g., NaN loss, we denote its
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Table 4: Top-1 accuracy of baselines and our method FedGPS with 5 different heterogeneous scenarios
on CIFAR-10, heterogeneity degree α = 0.1, local epochs E = 1 and total client number K = 100.

Dataset: CIFAR-10 Heterogeneity Level:α = 0.1 Client Number:K = 100, Client Sampling Rate: 10% Total Communication Round:T = 500 Local Epochs:E = 1

Diff Scenario Heterogeneous scenario 1 Heterogeneous scenario 2 Heterogeneous scenario 3 Heterogeneous scenario 4 Heterogeneous scenario 5

Centralized Training Acc=xxx%
ACC↑ ROUND ↓ SpeedUp↑ ACC↑ ROUND ↓ SpeedUp↑ ACC↑ ROUND ↓ SpeedUp↑ ACC↑ ROUND ↓ SpeedUp↑ ACC↑ ROUND ↓ SpeedUp↑

Methods Target Acc=48% Target Acc=48% Target Acc=57% Target Acc=39% Target Acc=39% Mean Acc± Std

FedAvg 48.22 449 1.0× 48.23 452 1.0× 57.61 482 1.0× 39.96 479 1.0× 39.41 498 1.0× 46.69± 7.45

FedAvgM 58.80 303 1.5× 60.07 363 1.2× 66.40 414 1.2× 46.89 291 1.6× 45.21 432 1.2× 55.47± 9.09

FedProx 52.84 357 1.3× 54.18 364 1.2× 63.04 481 1.0× 44.11 370 1.3× 42.90 432 1.2× 51.41± 8.23

SCAFFOLD 60.17 202 2.2× 62.34 158 2.9× 58.24 335 1.4× 60.75 44 10.9× 60.90 37 13.5× 60.48± 1.49

CCVR 64.06 69 6.5× 68.93 76 5.9× 62.63 291 1.7× 62.82 38 12.6× 61.73 31 16.1× 64.03± 2.86

VHL 72.70 128 3.5× 70.21 201 2.2× 76.12 235 2.1× 68.18 143 3.3× 62.44 129 3.9× 69.93± 5.13

FedASAM 46.35 None None 45.32 None None 54.35 None None 41.50 478 1.0× 33.62 None None 44.23± 7.55

FedExp 38.26 None None 46.76 None None 56.61 None None 43.33 367 1.3× 37.55 None None 44.50± 7.75

FedDecorr 63.69 303 1.5× 66.58 268 1.7× 69.92 337 1.4× - - - - - - 66.73± 3.12

FedDisco - - - - - - - - - - - - - - - -
FedInit 71.01 130 3.5× 72.09 138 3.3× 75.76 336 1.4× 62.96 90 5.3× 67.38 88 5.7× 69.84± 4.87

FedLESAM 72.64 110 4.1× 75.48 146 3.1× 75.47 234 2.1× 77.56 75 6.4× 73.73 75 6.6× 74.98± 1.88

NUCFL 53.72 323 1.4× 52.85 297 1.5× 53.80 None None 49.47 231 2.1× 46.17 356 1.4× 51.20± 3.32

FedGPS(Ours) 78.32 102 4.4× 76.97 155 2.9× 76.27 232 2.1× 78.12 94 5.1× 75.53 76 6.6× 77.04± 1.19

CIFAR-10 SVHN CIFAR-100
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Figure 4: The visualization of the ablation study and convergence of FedGPS compared with other
baselines. Due to the large volume of baselines, we select the top 5 baselines to plot.

performance as “-” in our results. Based on our experiments, we outline several key observations that
highlight the characteristics of the evaluated methods and provide insights for future research:

Observation 1: Absence of SOTA Methods Across Scenarios. The results indicate that most
methods exhibit limited robustness across various scenarios. For instance, VHL demonstrates superior
performance compared to other methods under the setting α = 0.1,K = 10, λs = 50%. However,
on the same dataset with α = 0.1,K = 100, λs = 10%, its performance degrades significantly.
Similar patterns are observed in other methods, suggesting that the performance of a given method
can vary substantially across different settings.

Observation 2: Value of global classifier calibration. Global classifier calibration proves to
be effective in certain contexts. For example, CCVR employs logits-based statistical information
sampled from a Gaussian distribution to calibrate the classifier (h) globally. This approach reduces
the number of communication rounds required to achieve the target accuracy on specific datasets,
also stabilizes the training curve. As shown in Tab. 4, under certain distributions, CCVR achieves the
target accuracy with fewer communication rounds compared to our method, despite lower overall
performance. This observation inspires future research to enhance performance using such techniques.

Observation 3: Performance variability across settings. The performance of methods varies
significantly across different settings, indicating a need for improved adaptability or meticulous
hyperparameter tuning. For instance, FedASAM and FedExp outperform vanilla FedAvg under
α = 0.1,K = 10, λs = 50%, but struggle to surpass FedAvg under α = 0.1,K = 100, λs = 10%.
Similarly, many methods achieve performance comparable to or worse than FedAvg on CIFAR-100,
underscoring the challenge of generalizing across diverse datasets and configurations.

Our experimental results demonstrate that FedGPS consistently achieves state-of-the-art (SOTA) per-
formance across diverse federated learning settings and datasets. As reported in Tab. 1, FedGPS sur-
passes the best baseline methods under various heterogeneous scenarios. However, its performance
gains on SVHN are modest, as vanilla FedAvg already approximates centralized training perfor-
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mance in these scenarios, limiting the potential for improvement in distributed settings. In more
challenging environments, such as those detailed in Tab. 3, FedGPS exhibits substantially greater
improvements. Crucially, FedGPS prioritizes robustness across heterogeneous data partitions over
optimizing for specific scenarios’ performance, a design choice that enhances its generalization
ability. The convergence rates of different evaluated methods and FedGPS are shown in Fig. 4(b).

5.4 Ablation Study on Two Perspectives

To evaluate the individual contributions of the static goal-oriented objective function and the dynamic
path-oriented gradient rectification in FedGPS to FL performance, we conduct ablation studies by
equipping FedAvg with each module in isolation. As shown in Fig. 4(a), the results report relative per-
formance improvements over the target accuracy of vanilla FedAvg. Specifically, FedGPS without the
static objective modification relies exclusively on dynamic path rectification, whereas FedGPS with-
out dynamic path rectification employs only the static objective function. These experiments confirm
the distinct effectiveness of each module. Notably, the synergistic integration of both modules yields
superior performance across diverse heterogeneous scenarios. Additional ablation studies, exploring
varying numbers of clients, datasets, and local epochs, are detailed in the Appendix D. Furthermore,
to assess the robustness of FedGPS under different training seeds, we initialize the model with three
different random seeds under identical settings and data distribution. Its comprehensive results are
provided in the experimental section of the Appendix D.8.

6 Conclusion and Further Discussion

In this work, we explore an important and overlooked question: how well do existing notable
algorithms perform in multiple heterogeneous scenarios? Extensive experiments show that most of
the existing algorithms are limited in robustness, which inspired the FedGPS framework. It combines
two orthogonal views to achieve label-distribution-agnostic robustness by considering the statistical
information of the client from the distribution level and the gradient view, respectively. More analysis
about the communication and privacy of FedGPS are listed in the Appendix B. It also catalyzes
future research into distribution-agnostic algorithms, paving the way for resilient federated learning
in complex, real-world settings.

Limitations: Limited computational resources may constrain the performance of FedGPS, as
FedGPS relies on additional surrogate data for its distribution alignment process. Future work
could investigate more efficient alignment techniques that minimize the need for surrogate data or
explore alternative approaches to enhance scalability. Furthermore, FedGPS does not yet address
challenges posed by heterogeneous data features, necessitating further research into the robustness of
its distribution and gradient collaboration framework across a broader range of heterogeneous FL
scenarios, with the goal of achieving distribution-agnostic robustness.

Broader impacts

Federated learning (FL), defined by its distributed data collection and keeping data locally, inherently
navigates complex real-world applications driven by diverse tasks and participants. This complexity
has spurred extensive exploration of varied federated settings. Our work tackles a critical challenge
in FL: the pervasive data heterogeneity that undermines the robustness of existing methods
across diverse data distributions. Through over 1100+ groups of experiments, we investigate
mitigation strategies from multiple perspectives, introducing novel insights that significantly enhance
robustness. We also provide key observations to guide future research and inform the selection of
federated methods for heterogeneous scenarios. Rather than advocating for a single algorithm
tailored to a specific scenario, we emphasize the need for broader, actionable insights to support
practical FL deployments, enabling customized solutions for diverse applications. This paper
marks a pivotal step toward distribution-agnostic federated learning, establishing a foundation for
robust, scalable, and adaptable FL systems. By bridging experimentation with practical applicability,
our contributions aim to catalyze transformative advancements in this rapidly evolving field and
future real applications with sensitive data protection.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We list our contributions in the introduction part.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitation of this work in the conclusion part.
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Due to the limited page, we include this section in Appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We list all the experimental hyperparameters in the main and supplemental
material at each settings, and the hyperparameters of baselines are also listed.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The data are open access, and we will open-source our code when this paper
gets accepted. All the hyperparameters in our experiments are listed in main paper and
supplemental material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We list these information in the experimental part and supplemental material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We use some statistical significance method to evaluate both baselines and
other method.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: This information is listed in the section 5.2 of experimental details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer:[Yes]
Justification: We conduct this paper under the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We include this discussion in the appendix due to the limited pages.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Not Applicable in this work.
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly cite the relevant papers in our work.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Not Applicable in this work.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Not Applicable in this work.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not Applicable in this work.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Not Applicable in this work.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proof Results

Assumption A.1 (Lipschitz Continuity). For a local feature extractor f : X → Z parameterized by
ψ is L-Lipschitz continuous, that is,

∥fψk
(x)− fψ′

k
(x)∥Z ≤ L∥ψk −ψ′

k∥ψ,where k ∈ S,

for all xk ∈ X , where ψ,ψ′ ∈ R|ψ|. Moreover, ∥ · ∥Z and ∥ · ∥ψ are norms on the feature and
parameter spaces, respectively.

Remark 2. This assumption ensures that small changes in the parameters of the local feature extractor
lead to proportionally small changes in the extracted features. Specifically, for any client k, if the
parameters ψ are slightly modified to ψ′, the resulting feature representations remain close in the
feature space Z , with the difference bounded by the Lipschitz constant L.

Lemma A.2. For random vectors v1,v2, · · ·vn, we have

∥
T∑

t=1

vt∥2 ≤
T∑

t=1

∥vt∥2.

A.1 Proof of Necessary Lemma A.3

Lemma A.3 (Bounded difference between global and local feature extractor ψ, ψk). In FL with
K clients, where each round t samples a subset of clients St ⊆ S, and the global feature extractor
parameters are updated as ψt+1 = 1

|St|
∑

k∈St
ψk

t+1, with local parameters ψk updated via
bounded optimization, there exists ∆d > 0 such that:

∥ψk −ψ∥2 ≤ ∆d,

for all k ∈ S, where ∥ · ∥2 is the Euclidean norm on the parameter space.

Proof. Local parameters ψk are updated using optimization (e.g., SGD) with regularization or
gradient clipping, ensuring bounded norms. At round t, the global parameters are:

ψt+1 =
1

|St|
∑
k∈St

ψk
t+1.

Consider the parameter difference for any client k ∈ S, not necessarily in St:

∥ψk
t+1 −ψt+1∥2 =

∥∥∥∥∥∥ψk
t+1 − 1

|St|
∑
j∈St

ψj
t+1

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥ 1

|St|
∑
j∈St

(ψk
t+1 −ψj

t+1)

∥∥∥∥∥∥
2

(a)

≤
∑
j∈St

∥ 1

|St|
ψk

t+1 −ψj
t+1∥2

(b)
=

1

|St|
∑
j∈St

∥ψk
t+1 −ψj

t+1∥2,

where (a) is from Lemma A.2 and (b) is because ∥av∥2 = a∥v∥2.

Assume optimization bounds the parameter norm: ∥ψk
t+1∥2 ≤ B, for someB > 0, across all rounds

and clients (achieved via regularization). Then:

∥ψk
t+1 −ψj

t+1∥2 ≤ ∥ψk
t+1∥2 + ∥ψj

t+1∥2 ≤ 2B.

Thus:
∥ψk

t+1 −ψt+1∥2 ≤
1

|St|
∑
j∈St

2B = 2B.

This bound holds for all k ∈ S, as the maximum difference is independent of whether k ∈ St. Set
∆d = 2B, so:

∥ψk −ψ∥2 ≤ ∆d,

which completes the proof of Lemma. A.3.
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A.2 Proof of Necessary Lemma A.4

Lemma A.4. In a FL with K clients, let the global feature extractor ψ have parameters ψt+1 =
1

|St|
∑

k∈St
ψk

t+1, where ψk are parameters of local feature extractors. Let Pk,D and Pg,D denote
the feature distributions induced by ψk and ψ on a certain data distribution D. Given Assumption
A.1 and Lemma A.3, there exists κ = L∆d, such that:

W1(Pk,D,Pg,D) ≤ κ,

where W1 is the Wasserstein-1 distance in the feature space Z .

Proof. The Wasserstein-1 distance is:

W1(Pk,D,Pg,D) = inf
γ∈Π(Pk,D,Pg,D)

∫
∥z − z′∥Z dγ(z, z′).

For x ∼ D, by Assumption A.1, with f : X → Z parameterized by local feature extractor ψk and
global feature extractor ψ, respectively:

∥ψk(x)−ψ(x)∥Z = ∥ψ(x;ψk
t+1)−ψ(x;ψt+1)∥Z ≤ L∥ψk

t+1 −ψt+1∥2.

By Lemma A.3, ∥ψk
t+1 −ψt+1∥2 ≤ ∆d. Thus:

∥ψk(x)−ψ(x)∥Z ≤ L∆d.

Define a coupling γ where zk = ψk(x), z = ψ(x), with probability D(x) and marginals:

• First:
∫
z
γ(zk, z) = D(x : ψk(x) = zk) = Pk,D.

• Second:
∫
z
γ(z, z) = D(x : ψ(x) = z) = Pg,D.

The cost is: ∫
∥zk − z∥Z dγ(zk, z) ≤ L∆d.

Thus:
W1(Pk,D,Pg,D) ≤ κ, κ = L∆d,

which completes the proof of Lemma A.4.

A.3 Proof of Theorem 4.1

Theorem 4.1. Given the global feature distribution Pg , the local feature distribution Pk, the surrogate
distributions Ps (global) and Ps

k (local for the k-th client) over their corresponding data space.
Suppose there exists κ ≥ 0 such that W1(Pk,D,Pg,D) ≤ κ under distribution D. If the following
conditions hold:

W1(Ps
k ,Pk) ≤ ϵ1, W1(Ps

k ,Ps) ≤ ϵ2,
where W1 is the Wasserstein-1 distance as defined in Definition 3.1. then the Wasserstein-1 distance
between Pg and Ps is bounded as:

W1(Pg,Ps) ≤ ϵ1 + ϵ2 + κ.

Proof. We prove W1(Pg,Ps) ≤ ϵ1 + ϵ2 + κ in each round t, where a subset of clients St ⊆ S is
sampled.

The Wasserstein-1 distance is:

W1(P,Q) = inf
γ∈Π(P,Q)

∫
∥z − z′∥Z dγ(z, z′).

First, we prove the bounded local private feature distribution to the global surrogate distribution
distance. For each client k ∈ S (not necessarily in the sampled subset St), we aim to bound the
Wasserstein-1 distance between the local feature distribution Pk and the global surrogate feature
distribution Ps. To do so, we introduce the local surrogate feature distribution Ps

k as an intermediate
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distribution and apply the triangle inequality for the Wasserstein-1 distance. The triangle inequality
states that for any three probability distributions, we have:

W1(Pk,Ps) ≤W1(Pk,Ps
k) +W1(Ps

k ,Ps).

This inequality decomposes the distance between Pk and Ps into two segments: the distance from the
local true feature distribution Pk to the local surrogate Ps

k , and the distance from the local surrogate
Ps
k to the global surrogate Ps. Now, we have (1) The condition W1(Ps

k ,Pk) ≤ ϵ1 implies, by the
symmetry of the Wasserstein-1 distance (W1(P,Q) =W1(Q,P)), that:

W1(Pk,Ps
k) =W1(Ps

k ,Pk) ≤ ϵ1.

This bound measures the alignment quality between the true local features and the surrogate features
for client k, reflecting how well the surrogate data approximates the true data in the feature space. (2)
The condition W1(Ps

k ,Ps) ≤ ϵ2 directly provides:

W1(Ps
k ,Ps) ≤ ϵ2.

This bound measures the consistency between the local surrogate features and the global surrogate
features, reflecting the uniformity of surrogate representations across clients. Substitute these bounds
into the triangle inequality:

W1(Pk,Ps) ≤W1(Pk,Ps
k) +W1(Ps

k ,Ps) ≤ ϵ1 + ϵ2.

Thus, we have:
W1(Pk,Ps) ≤ ϵ1 + ϵ2. (9)

This bound holds for all k ∈ S , as the given conditions apply to each client, and the global surrogate
distribution Ps = 1

K

∑K
k=1 Ps

k is defined over all clients.

Additionally, we denote the Pg,k as the feature distribution on the local data distribution Dk by the
global feature extractor ψ. Then, we build a connection between Pg,k and Ps. By Lemma A.4 and
Eq.(9), we have:

W1(Pg,k,Ps) ≤W1(Pg,k,Pk) +W1(Pk,Ps) ≤ κ+ ϵ1 + ϵ2. (10)

Lastly, since Pg is the feature distribution of ψ over the global data distribution, equivalent to the
average of Pg,k, construct γ = 1

K

∑K
k=1 γk, where γk ∈ Π(Pg,k,Ps). Marginals:

• First:
∫
z′ γ(z, z

′) = 1
K

∑K
k=1 Pg,k = Pg .

• Second:
∫
z
γ(z, z′) = 1

K

∑K
k=1 Ps = Ps.

The cost is: ∫
∥z − z′∥Z dγ(z, z′) ≤

1

K

K∑
k=1

W1(Pg,k,Ps) ≤ κ+ ϵ1 + ϵ2.

Thus:
W1(Pg,Ps) ≤ ϵ1 + ϵ2 + κ,

which completes the proof of Theorem 4.1.

B More Facts about FedGPS

In this section, we outline some facts of FedGPS , including the communication overheads (Sec. B.1)
and privacy issue of FedGPS(Sec.B.2). Furthermore, we also give a brief introduction about the
meaning of Nemenyi post-hoc test (Sec. B.3). We also provide a theoretical justification of dynamic
path-oriented rectification (Sec. B.4).
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Table 5: Detailed description of the two consecutive upload and download rounds, along with the
associated local computational requirements.

Process FedAvg FedGPS

Global aggregation at round t− 1 Update global model θt =
∑
θt−1
k,E

1. Update global model θt = θt−1 + ηg
∑

k∈St−1
∆t−1

k .
2. Update global surrogate prototypes Ec =

∑
Eck.

Explanation Apart from the direct aggregation parameters, e.g., FedAvg-like. The ∆ of client parameters has also been widely
used in many studies.

Server Select subset St to participate Round t

Round t selected St download from server Global model θt (# Comm M )
1. Global model θt; 2. Global model update information ∆θt = θt −
θt−1 = ηg

∑
k∈St−1

∆t−1
k (# Comm 2M + C ∗ 512)

Explanation
∆θt contains the gradient aggregation information updated by the selected client in the previous round t − 1.
The global surrogate distribution is represented by a prototype for each class. The prototype for each class is a
512-dimensional vector.

Local operation Update local model θtk,0 = θt (0 means the
model without local epochs training)

1. Update local model θtk,0 = θt; 2. Compute Non-Self Gradient based
on ∆θt.

Local extra operation explanation
A: δtθ = ∆θt −∆t−1

k If this client is selected last round which means we should distract its local update ∆t−1
k of

last round (this is kept locally).
B: δtθ = ∆θt If this client is not selected last round which means ∆θt contains all other client’s gradient information.

Local training Traditional SGD uses the corresponding
loss function and local data

SGD use Eq. (6) in FedGPS with local data

Explanation
Incorporating gradient information from other clients only occurs by adding the parameters together before each
gradient descent. This additional computation overhead is almost negligible and can be disregarded. There are a
total of iteration times of parameter summation operations. (Negligible additional computation expenses)

Round t selected St upload to server New local model parameters θtk,E (# Comm
M )

1. Local updated parameters ∆t
k = θtk,E − θtk,0

2. Compute local surrogate prototypes Eck = 1
∥Dc

s∥
∑
ψk(ξ

c
s) (# Comm

M + C ∗ 512)

Global aggregation at round t θt+1 =
∑
θtk,E θt+1 = θt + ηg

∑
k∈St

∆t
k

We denote the whole model size as M and the total classes of the dataset as C, e.g.,C = 10 for CIFAR-10.

Table 6: The performance comparison between FedGPS-CF and FedGPS under Heterogeneous
scenario 1 with CIFAR-10.

K = 10, λs = 50%, R = 500, E = 1 K = 10, λs = 50%, R = 200, E = 5 K = 100, λs = 10%, R = 500, E = 1

FedGPS-CF 90.01 88.13 78.07

FedGPS 90.31 88.47 78.32

B.1 Communication Analysis of FedGPS

In this subsection, we give a detailed communication overhead analysis regarding FedGPS. In
summary, there is one additional model (containing the aggregated gradient) of the same size as the
global model during the download stage, while no extra communication overhead during upload from
the client to the server side. Thus, FedGPS brings about 1.5 times the communication overhead than
vanilla methods, e.g., FedAvg. Specifically, we have detailed the computational costs of the server
and client, as well as the communication costs of download and upload between two adjacent rounds,
and explained the reasons for these additional costs of FedGPS in Tab. 5. The extra C ∗ 512 (where
C ∗512≪M , e.g., 0.05% in CIFAR-10) is the local uploaded local surrogate distribution prototypes
and download global surrogate distribution prototype.

We also tried a communication-friendly version of FedGPS, which was denoted as FedGPS-CF.
Specifically, when uploading the model, FedGPS-CF, like FedGPS, only has a communication cost
of M + C ∗ 512. When downloading from the server, it still only downloads the global model and
global surrogate prototypes, meaning the communication cost remains M + C ∗ 512. Here, we use
the difference between the global model downloaded in two rounds from the server to represent the
gradient aggregation information of other clients. Similarly, if a client is selected in both adjacent
rounds, its own update information should be removed. Finally, FedGPS-CF achieves comparable
performance to FedGPS; the results are listed in Tab. 6. Moreover, it reduces the download overhead
of M , making FedGPS-CF only have an additional communication cost of C ∗ 512 compared to
FedAvg, which is negligible.
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B.2 Privacy Analysis of FedGPS

The two technologies of FedGPS do not transmit any additional client’s information to any other
client compared to traditional methods. On the contrary, FedGPS replaces raw data prototypes with
surrogate prototypes instead, thereby further protecting privacy compared to previous works [31, 61].
We list the privacy clarification among surrogate distribution and gradient information in the following:

• Regarding the surrogate distribution privacy issue: Because the surrogate is sampled
from different Gaussian distributions, it does not contain any information related to the
local data. Further, we transmit the aggregated class-wise prototypes of surrogate data.
After aggregating all the high-dimensional embeddings of each class, the surrogate data
information is further protected. Many papers [31, 61] also transmit using the original data
prototypes, which is a weaker level of information protection than FedGPS.

• Regarding the gradient information privacy issue: FedGPS doesn’t transmit the gradient
information of a certain client to any other client. Every client only upload its own infor-
mation to server and download the aggregated information from the server. This process is
the same as most of other federated methods in uploading and downloading the aggregated
information (Detailed information can be referred at the Tab. 5).

B.3 Brief introduction of Nemenyi post-hoc test method

The Nemenyi post-hoc test in Fig. 1 is a non-parametric statistical method used for pairwise compar-
isons of multiple groups [62] (e.g., algorithms or models) after a significant result from a Friedman
test (a non-parametric analog to repeated-measures ANOVA). It ranks the performance of each
method across multiple independent runs or datasets and computes a "critical distance" (CD) thresh-
old. If the average rank difference between two methods exceeds the CD, their performances are
considered statistically significantly different at a given significance level (typically α=0.05). The test
is conservative and accounts for multiple comparisons to control the family-wise error rate, making it
robust for scenarios like ours, where we evaluate algorithm robustness across diverse heterogeneity
partitions (e.g., different random seeds for Dirichlet distributions). In Fig. 1, the Nemenyi post-hoc
test assesses the robustness of baseline methods across different heterogeneity scenarios. The results
show overlapping CD intervals for most baselines, indicating no statistically significant performance
differences among them. This finding highlights the need for our proposed approach, as existing
methods exhibit limited adaptability to varied data distributions. Furthermore, the Nemenyi test has
been widely adopted in holistic evaluations [63, 64, 65] and federated learning scenarios [66, 67].

B.4 Theoretical Justification of Dynamic Path-oriented Rectification

The insight behind incorporating information from other clients in FedGPS stems from works like
SCAFFOLD [12] and other related research [18], which also use other client information as a control
variate to adjust update direction. Beyond this intuition, we provide a theoretical justification using
a Taylor expansion to demonstrate that integrating other clients’ information can indeed further
decrease the deviation between local and global update directions.

We denote local loss function as fk(·) : Rd → R and global loss function F (·). First of all:
The original local update use the vanilla gradient descent on the local model θk is denoted as
gold = ∇fk(θk). For FedGPS, we incorporate non-self gradient δθk to local model , we denote δθk

||δθk ||
as g′k:

θ′k = θ + λgg
′
k.

Then we get a new update direction computed based on the new model parameters θ′k:

gnew = ∇fk(θ′k).
For a continuously twice-differentiable function fk(θ), the gradient function∇fk(θ) expands around
point θ along direction g′k:

∇fk(θk + λgg
′
k) ≈ ∇fk(θk) +∇2fk(θk)(λgg

′
k) +R3,

where R3 represents higher-order terms that can be neglected and ∇2fk is the Hessian at θk. Thus
we can get:

∇fk(θ′k) ≈ ∇fk(θk) + λg∇2fk(θk)g
′
k.
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Here, we assume that the loss function is convex. So the Hessian H̄ = ∇2fk is positive semi-definite.
Ideally, we assume non-self gradients contain all the gradients from other clients; we can denote
δθk = ∇F (θ)−∇fk(θk). Substitute into the expansion:

∇fk(θ′k) ≈ ∇fk(θk) + λgH̄(∇F (θ)−∇fi(θ)) = (I − λgH̄)∇fk(θk) + λgH̄∇F (θ),

where I is the identity matrix. As a result: - The original bias between local and global gradient:
d0 = ||gold −∇F (θ)|| - Refined update direction bias between new model parameters θ′k and global
gradient: d′ = ∥gnew −∇F (θ)∥ ≈ ∥(I − λgH̄)(∇fk(θ) −∇F (θ))∥ ≤ ∥I − λgH̄∥ · d0. If λg is
tuned to make ||I − λgH̄ < 1||, then d′ < d0, which reduces the shift.

In practice, direct access to all client gradient information is often limited due to privacy and
communication overhead. Nevertheless, through careful hyperparameter tuning, FedGPS consistently
achieves state-of-the-art (SOTA) performance across various heterogeneous scenarios.

C More Experimental Details

In this section, we present a comprehensive overview of our experimental implementation and process.
First, we visualize various data distributions across diverse heterogeneous scenarios (Sec. C.1). Next,
we provide the hyperparameters for both the baselines and FedGPS (Sec. C.2). Additionally, this
section includes the process and pseudocode for FedGPS (Sec. C.3).

C.1 More Data Distribution

We present a detailed visualization of different data distribution across various datasets and client
numbers with the same heterogeneity degree α = 0.1. A heatmap visualizes the distribution, with
darker colors indicating higher quantities for the corresponding label.

（a）Heterogeneous scenario 1 （b）Heterogeneous scenario 2 （c）Heterogeneous scenario 3 （d）Heterogeneous scenario 4 （e）Heterogeneous scenario 5

Figure 5: The visualization of the CIFAR-10 dataset distribution across K = 10 clients under five
different heterogeneous scenarios.

（a）Heterogeneous scenario 1 （b）Heterogeneous scenario 2 （c）Heterogeneous scenario 3 （d）Heterogeneous scenario 4 （e）Heterogeneous scenario 5

Figure 6: The visualization of the SVHN dataset distribution across K = 10 clients under five
different heterogeneous scenarios.

The Figs 5, 6, 7, 8, 9 and 10 demonstrate that, despite using the same dataset and degree of
heterogeneity, the data distributions across different scenarios vary significantly. This variation can
lead to differing performances of the same algorithm. Therefore, the algorithm’s robustness across
various heterogeneous scenarios is crucial.
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（a）Heterogeneous scenario 1 （b）Heterogeneous scenario 2 （c）Heterogeneous scenario 3 （d）Heterogeneous scenario 4 （e）Heterogeneous scenario 5

Figure 7: The visualization of the CIFAR-100 dataset distribution across K = 10 clients under five
different heterogeneous scenarios.

（a）Heterogeneous scenario 1 （b）Heterogeneous scenario 2 （c）Heterogeneous scenario 3 （d）Heterogeneous scenario 4 （e）Heterogeneous scenario 5

Figure 8: The visualization of the CIFAR-10 dataset distribution across K = 100 clients under five
different heterogeneous scenarios.

（a）Heterogeneous scenario 1 （b）Heterogeneous scenario 2 （c）Heterogeneous scenario 3 （d）Heterogeneous scenario 4 （e）Heterogeneous scenario 5

Figure 9: The visualization of the SVHN dataset distribution across K = 10 clients under five
different heterogeneous scenarios.

（a）Heterogeneous scenario 1 （b）Heterogeneous scenario 2 （c）Heterogeneous scenario 3 （d）Heterogeneous scenario 4 （e）Heterogeneous scenario 5

Figure 10: The visualization of the CIFAR-100 dataset distribution across K = 100 clients under
five different heterogeneous scenarios.
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Table 7: All the hyperparameters of the compared baselines, including learning rate, momentum,
weight decay, Nesterov, and the remaining hyperparameters of the method itself.

Method Learning rate Momentum Weight decay Nesterov Other hyperparameters

FedAvg 0.01 0.9 0.00001 False None

FedAvgM 0.01 0.9 0.00001 True Momentum coefficient: 0.9

FedProx 0.01 0.9 0.00001 False Proximal coefficient: 0.125

SCAFFOLD 0.01 0.9 0.00001 False Global step size: 1.0

CCVR 0.001 0.9 0.00001 False None

VHL 0.01 0.9 0.00001 False VHL alpha:1.0

FedASAM 0.01 0.9 0.00001 False Rho: 0.1, eta: 0

FedExp 0.01 0.9 0.00001 False Eps: 1e-3, eta_g: 1.0, lr_weight_decay: 0.998

FedDecorr 0.01 0.9 0.00001 False Feddecorr term coefficient: 0.1

FedDisco 0.01 0.9 0.00001 False Metri: ’KL divergence’ feddisco a: 0.5, feddisco b: 0.1

FedInit 0.1 None 0.001 False Beta: 0.1

FedLESAM 0.1 None 0.001 False Rho:0.5, beta:0.1, max_norm:10.0, global step size:1.0

NUCFL 0.001 0.9 0.0001 False Calibration method: DCA, Non-uniform penalty: CKA

FedGPS (Ours) 0.01 0.9 0.00001 False λ1 : 0.1, λ2 : 0.2, λg : 0.5, ηg : 1.0

Algorithm 1 Pseudo-code of FedGPS
Server input: communication round T , server initialize the model θ0
Client k’s input: local epochs E, k-th local dataset Dk

Initialization: all clients initialize the model θ0k and surrogate data Ds.
Server Executes:
for each round t = 1, 2, · · · , T do

server random samples a subset of clients St ⊆ K,
server communicates θt to selected clients
for each client k ∈ Sr in parallel do

∆t+1
k ← Local_Training (k,θt)

end for
θt+1 = θt + ηg

1
|St|

∑
k∈St

∆t+1
k

end for

Local_Training(k,θt):
Update local model by global model θtk ← θt

Compute δtθk using Definition 4.2
for each iterations e = 1, 2, · · · , E do

Compute the ĝt+1,e+1
k new gradient using Eq. 6 and Eq. 7

Update local model at e iteration: θt+1,e+1
k = θt+1,e

k − ηlĝt+1,e+1
k

end for
Compute the update information at this round for client k: ∆t+1

k = θt+1
k − θtk

Storage ∆t+1
k for Non-self gradient computation

Return ∆t+1
k to server

C.2 Detailed Hyperparameters

We list all the hyperparameters of the baselines and our framework FedGPS in the Tab. 7.

C.3 Process and Pseudocode of Algorithm

In the Algorithm section, we elaborate on the pseudocode workflow of FedGPS in Algorithm 1.
Consistent with other federated learning (FL) frameworks, we predefine the number of communication
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Table 8: Top-1 accuracy of baselines and our method FedGPS with 5 different heterogeneous scenarios
on SVHN, heterogeneity degree α = 0.1, local epochs E = 1 and total client number K = 100.

Dataset: SVHN Heterogeneity Level:α = 0.1 Client Number:K = 100, Client Sampling Rate: 10% Total Communication Round:T = 500 Local Epochs:E = 1

Diff Scenario Heterogeneous scenario 1 Heterogeneous scenario 2 Heterogeneous scenario 3 Heterogeneous scenario 4 Heterogeneous scenario 5

Centralized Training Acc=97%

ACC↑ ROUND ↓ SpeedUp↑ ACC↑ ROUND ↓ SpeedUp↑ ACC↑ ROUND ↓ SpeedUp↑ ACC↑ ROUND ↓ SpeedUp↑ ACC↑ ROUND ↓ SpeedUp↑

Methods Target Acc=91% Target Acc=91% Target Acc=91% Target Acc=91% Target Acc=91% Mean Acc± Std

FedAvg 91.15 473 1.0× 91.06 480 1.0× 91.94 393 1.0× 91.67 437 1.0× 91.17 399 1.0× 91.40± 0.39

FedAvgM 92.06 368 1.3× 92.55 348 1.4× 93.20 319 1.2× 92.35 497 0.9× 91.38 457 0.9× 92.31± 0.67

FedProx 90.92 None None 91.73 476 1.0× 91.97 496 0.8× 90.97 None None 91.21 471 0.8× 91.36± 0.47

SCAFFOLD 93.25 300 1.6× 91.86 353 1.4× 92.07 415 0.9× 92.06 434 1.0× 93.00 309 1.3× 92.45± 0.63

CCVR 91.74 107 4.7× 92.62 102 4.0× 91.71 104 4.5× 91.61 93 4.6× 90.70 155 2.8× 91.68± 0.68

VHL 93.47 314 1.5× 93.75 255 1.9× 94.43 293 1.3× 94.23 265 1.6× 94.05 298 1.3× 93.99± 0.38

FedASAM 90.84 None None 91.11 476 1.0× 92.55 392 1.0× 91.90 434 1.0× 92.11 479 0.8× 91.70± 0.71

FedExp 90.91 None None 90.73 None None 92.11 496 0.8× 91.43 None None 91.40 398 1.0× 91.32± 0.54

FedDecorr 91.01 None None 91.15 479 1.0× 91.83 None None 90.89 None None 90.47 None None 91.07± 0.49

FedDisco - - - - - - - - - - - - - - - -

FedInit 94.13 259 1.8× 93.46 291 1.6× 94.25 293 1.3× 94.28 293 1.5× 94.09 320 1.2× 94.04± 0.33

FedLESAM 94.62 211 2.2× 94.83 160 3.0× 94.65 204 1.9× 94.67 191 2.3× 94.78 187 2.1× 94.71± 0.09

NUCFL 90.61 None None 91.08 458 1.0× 91.26 None None 91.29 None None 91.41 479 0.8× 91.13± 0.31

FedGPS(Ours) 95.03 213 2.2× 95.17 181 2.7× 95.14 239 1.6× 95.01 223 2.0× 95.05 198 2.0× 95.08± 0.07

Table 9: Top-1 accuracy of baselines and our method FedGPS with 5 different heterogeneous scenarios
on CIFAR-100, heterogeneity degree α = 0.1, local epochs E = 1 and total client number K = 100.

Dataset: CIFAR-100 Heterogeneity Level:α = 0.1 Client Number:K = 100, Client Sampling Rate: 10% Total Communication Round:T = 500 Local Epochs:E = 1

Diff Scenario Heterogeneous scenario 1 Heterogeneous scenario 2 Heterogeneous scenario 3 Heterogeneous scenario 4 Heterogeneous scenario 5

Centralized Training Acc=78%

ACC↑ ROUND ↓ SpeedUp↑ ACC↑ ROUND ↓ SpeedUp↑ ACC↑ ROUND ↓ SpeedUp↑ ACC↑ ROUND ↓ SpeedUp↑ ACC↑ ROUND ↓ SpeedUp↑

Methods Target Acc=44% Target Acc=43% Target Acc=41% Target Acc=42% Target Acc=33% Mean Acc± Std

FedAvg 44.72 484 1.0× 43.40 500 1.0× 41.55 483 1.0× 42.43 489 1.0× 33.17 492 1.0× 41.05± 4.56

FedAvgM 47.22 457 1.1× 49.55 393 1.3× 49.11 372 1.3× 50.69 340 1.4× 47.66 237 2.1× 48.85± 1.42

FedProx 41.65 None None 37.13 None None 38.13 None None 40.73 None None 28.26 None None 37.18± 5.32

SCAFFOLD 43.04 None None 43.34 496 1.0× 41.72 483 1.0× 41.36 None None 40.14 352 1.4× 41.92± 1.30

CCVR - - - - - - - - - - - - - - - -

VHL 54.51 334 1.4× 52.45 337 1.5× 53.12 304 1.6× 53.83 320 1.5× 51.72 255 1.9× 53.13± 1.10

FedASAM 43.63 None None 45.69 449 1.1× 44.66 430 1.1× 46.28 432 1.1× 39.93 420 1.2× 44.04± 2.51

FedExp - - - - - - - - - - - - - - - -

FedDecorr 47.76 427 1.1× 44.06 475 1.1× 46.04 424 1.1× 47.85 391 1.3× 45.03 319 1.5× 46.15± 1.67

FedDisco - - - - - - - - - - - - - - - -

FedInit 56.69 354 1.4× 57.06 338 1.5× 54.59 339 1.4× 56.60 334 1.5× 55.80 257 1.9× 56.15± 0.98

FedLESAM 57.78 279 1.7× 57.17 269 1.9× 55.07 264 1.8× 56.65 277 1.8× 56.14 211 2.3× 56.56± 1.03

NUCFL - - - - - - - - - - - - - - - -

FedGPS(Ours) 58.77 264 1.8× 57.84 282 1.8× 55.89 249 1.9× 57.52 260 1.9× 57.93 207 2.4× 57.59± 1.06

rounds and initialize both global and local model parameters. In each round, a subset of |St| clients is
sampled for local training and model weight communication. Distinctively, FedGPS first computes
the non-self gradient locally. This non-self gradient is then used to derive new weights, corresponding
to the dynamic path-oriented rectification process. Subsequently, using these new weights, a new
gradient direction is obtained via Eq. 6, which aligns with the static goal-oriented learning objective.
The original parameters are then updated based on this new gradient direction. We highlight the key
differences from the vanilla FedAvg algorithm to underscore the unique contributions of FedGPS .
All related hyperparametrs can be referred to Tab. 7.

D Further Experimental Results

In this section, we perform additional ablation studies to demonstrate the effectiveness of FedGPS. We
first compare with more baselines (Sec. D.1). Then we explore various settings, including different
numbers of clients (Sec. D.2), varying local training epochs (Sec. D.3), various client sampling rate
(Sec. D.4), different degrees of heterogeneity (Sec. D.5), another heterogeneity partition method
(Sec. D.6), and multiple training seeds to ensure robustness against variations in training initialization
and procedures arising from random client sampling (Sec. D.8). Lastly, we give some visualization
of the whole training process to verify the performance and convergence (Sec. D.7).
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Table 10: The results comparison between FedGPSand more baselines under Heterogeneous scenario
1 with different datasets.

K = 10, λs = 50%, R = 500, E = 1 K = 10, λs = 50%, R = 200, E = 5 K = 100, λs = 10%, R = 500, E = 1

CIFAR-10

FedAdam [68] 85.34 85.05 67.43

∆-SGD [69] 86.96 86.66 69.49

FedMR [41] 84.28 86.83 –

FedGPS 90.31 88.47 78.32

SVHN

FedAdam [68] 89.80 91.01 93.27

∆-SGD [69] 89.78 90.21 94.08

FedMR [41] 91.32 86.64 –

FedGPS 94.20 93.61 95.03

CIFAR-100

FedAdam [68] 69.89 65.33 55.43

∆-SGD [69] 70.07 67.78 57.48

FedMR [41] 69.45 67.45 –

FedGPS 71.14 68.90 58.77

D.1 More Baselines

Besides, we also compare with other strategies to mitigate the heterogeneity problem in FL. Firstly,
we compare with adaptive methods. We select two representative adaptive methods [70], e.g., ∆-
SGD [69] and FedAdam [68]. Furthermore, we also include the FedMR [41], which is a new method
to modify the aggregation strategy [71]. The results are shown in Tab. 10, FedGPS still outperforms
these methods.

D.2 Ablation Study on Client Number K

In this section, the results are listed on Tabs. 8 and 9. We extend our evaluation of FedGPS beyond
the CIFAR-10 dataset to include the SVHN and CIFAR-100 datasets, focusing on scenarios with a
large number of clients (simulating cross-device settings). Specifically, we set 100 clients, with 10%
randomly sampled each round for local training with E = 1 local epoch, followed by aggregation.
Experimental results reveal that, compared to the 10-client scenario, the 100-client setup with a
lower sampling rate leads to reduced model performance within the same number of communication
rounds. The SVHN dataset, owing to its relative simplicity, exhibits minimal performance degradation.
In contrast, the CIFAR-100 dataset experiences a more pronounced impact. Furthermore, several
baseline methods struggle to converge when training larger models, such as ResNet-50, on CIFAR-
100 with a low sampling rate, often requiring extensive hyperparameter tuning to address these
challenges. Further experiments are needed to investigate these issues thoroughly. We further conduct
additional client experiments, e.g., 500 clients across the entire FL system, as shown in Table 11. The
results still show the superior performance of FedGPS. Beyond the ResNet-based model, FedGPS also
consistently shows improvement on ViT-based models, as Tab. 12 shows.

Table 11: Experimental results of a larger
number under Heterogeneous scenario 1 with
CIFAR-10 dataset.

K = 500, λs = 10%,R=500, E=1

FedAvg 73.19 FedExp 74.48
FedAvgM 75.43 FedDecorr 74.24
FedProx 76.72 FedDisco -
SCAFFOLD 64.18 FedInit 73.05
CCVR 64.43 FedLESAM 80.67
VHL 80.58 NUCFL 73.98
FedASAM 75.06 FedGPS(Ours) 82.18

Table 12: Experimental results of ViT-based
model for 100 clients under Heterogeneous sce-
nario 1 with CIFAR-10 dataset.

K = 100, λs = 10%,R=500, E=1

FedAvg 30.45 FedExp 28.35
FedAvgM 33.56 FedDecorr 39.63
FedProx 48.46 FedDisco -
SCAFFOLD 35.38 FedInit 32.34
CCVR - FedLESAM 45.83
VHL 47.36 NUCFL 38.89
FedASAM 35.43 FedGPS(Ours) 56.71
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Table 13: Top-1 accuracy of baselines and our method FedGPS with 5 different heterogeneous
scenarios on CIFAR-10, heterogeneity degree α = 0.1, local epochs E = 5 and total client number
K = 10.

Dataset: CIFAR-10 Heterogeneity Level:α = 0.1 Client Number:K = 10, Client Sampling Rate: 50% Total Communication Round:T = 200 Local Epochs:E = 5

Diff Scenario Heterogeneous scenario 1 Heterogeneous scenario 2 Heterogeneous scenario 3 Heterogeneous scenario 4 Heterogeneous scenario 5

Centralized Training Acc=95%

ACC↑ ROUND ↓ SpeedUp↑ ACC↑ ROUND ↓ SpeedUp↑ ACC↑ ROUND ↓ SpeedUp↑ ACC↑ ROUND ↓ SpeedUp↑ ACC↑ ROUND ↓ SpeedUp↑

Methods Target Acc=85% Target Acc=85% Target Acc=84% Target Acc=72% Target Acc=65% Mean Acc± Std

FedAvg 85.89 192 1.0× 85.36 136 1.0× 84.21 147 1.0× 72.71 91 1.0× 65.51 151 1.0× 78.76± 8.17

FedAvgM 85.60 118 1.6× 86.84 113 1.2× 84.06 140 1.1× 75.56 67 1.4× 70.35 75 2.0× 80.48± 7.18

FedProx 85.52 158 1.2× 84.31 None None 82.87 None None 76.16 87 1.0× 74.60 62 2.4× 80.69± 4.97

SCAFFOLD 83.75 None None 80.10 None None 82.14 None None 73.32 90 1.0× 74.14 47 3.2× 78.69± 4.72

CCVR 83.95 None None 83.87 None None 83.32 None None 78.54 21 4.3× 75.36 15 10.1× 81.01± 3.88

VHL 88.10 92 2.1× 86.40 148 0.9× 84.50 146 1.0× 80.91 47 1.9× 76.88 67 2.3× 83.36± 4.50

FedASAM 85.79 118 1.6× 86.12 135 1.0× 81.38 None None 74.91 67 1.4× 68.01 75 2.0× 79.24± 7.74

FedExp 85.05 118 1.6× 85.64 135 1.0× 82.49 None None 74.15 67 1.4× 73.36 67 2.3× 80.14± 5.95

FedDecorr 84.53 None None 84.90 None None 83.36 None None 74.75 67 1.4× 71.74 75 2.0× 79.86± 6.15

FedDisco 85.60 191 1.0× 85.59 135 1.0× 84.66 146 1.0× 70.14 None None 66.79 99 1.5× 78.56± 9.30

FedInit 79.23 None None 74.43 None None 75.76 None None 61.05 None None 62.82 None None 70.66± 8.18

FedLESAM 86.36 164 1.2× 80.94 None None 81.33 None None 65.53 None None 64.99 None None 75.83± 9.88

NUCFL 82.80 None None 78.48 None None 76.51 None None 66.80 None None 64.57 None None 73.83± 7.82

FedGPS(Ours) 88.47 68 2.8× 87.96 68 2.0× 85.79 146 1.0× 84.69 47 1.9× 77.70 44 3.4× 84.92± 4.32

Table 14: Top-1 accuracy of baselines and our method FedGPS with 5 different heterogeneous
scenarios on SVHN, heterogeneity degree α = 0.1, local epochs E = 5 and total client number
K = 10.

Dataset: SVHN Heterogeneity Level:α = 0.1 Client Number:K = 10, Client Sampling Rate: 50% Total Communication Round:T = 200 Local Epochs:E = 5

Diff Scenario Heterogeneous scenario 1 Heterogeneous scenario 2 Heterogeneous scenario 3 Heterogeneous scenario 4 Heterogeneous scenario 5

Centralized Training Acc=97%

ACC↑ ROUND ↓ SpeedUp↑ ACC↑ ROUND ↓ SpeedUp↑ ACC↑ ROUND ↓ SpeedUp↑ ACC↑ ROUND ↓ SpeedUp↑ ACC↑ ROUND ↓ SpeedUp↑

Methods Target Acc=89% Target Acc=91% Target Acc=92% Target Acc=92% Target Acc=92% Mean Acc± Std

FedAvg 89.21 167 1.0× 91.99 101 1.0× 92.51 100 1.0× 92.55 133 1.0× 92.57 65 1.0× 91.77± 1.45

FedAvgM 86.64 None None 93.06 51 2.0× 92.09 102 1.0× 91.38 None None 92.71 64 1.0× 91.18± 2.62

FedProx 88.81 None None 91.69 86 1.2× 93.32 82 1.2× 91.78 None None 93.22 52 1.2× 91.76± 1.82

SCAFFOLD 83.42 None None 90.93 None None 91.53 None None 92.15 103 1.3× 91.61 None None 89.93± 3.66

CCVR 85.06 None None 90.24 None None 91.26 None None 90.48 None None 91.41 None None 89.69± 2.64

VHL 93.10 80 2.1× 93.56 67 1.5× 94.31 64 1.6× 93.62 71 1.9× 94.03 57 1.1× 93.72± 0.46

FedASAM 86.96 None None 92.94 71 1.4× 93.50 71 1.4× 92.19 144 0.9× 93.30 64 1.0× 91.78± 2.74

FedExp 88.31 None None 92.46 100 1.0× 92.59 71 1.4× 92.08 148 0.9× 92.92 64 1.0× 91.67± 1.90

FedDecorr 86.97 None None 91.79 101 1.0× 93.49 47 2.1× 92.44 130 1.0× 93.60 64 1.0× 91.66± 2.73

FedDisco 88.43 None None 91.72 100 1.0× 92.53 99 1.0× 92.27 97 1.4× 92.86 64 1.0× 91.56± 1.80

FedInit 65.26 None None 77.42 None None 90.57 None None 85.57 None None 88.56 None None 81.48± 10.36

FedLESAM 72.39 None None 88.16 None None 91.31 None None 87.07 None None 91.19 None None 86.02± 7.84

NUCFL 86.68 None None 90.20 None None 90.75 None None 91.26 None None 91.58 None None 90.09± 1.98

FedGPS(Ours) 93.61 80 2.1× 94.20 57 1.0× 95.08 49 2.0 94.30 68 2.0 94.76 50 1.3 94.39± 0.56

D.3 Ablation Study on Local Epoch E

The number of local training epochs significantly impacts the performance of federated learning
(FL). Excessive local fitting can exacerbate performance degradation. To investigate the effect of
local epochs on various existing methods and FedGPS , we adopt a consistent experimental setup
with K = 10 clients, a heterogeneity degree α = 0.1, and 50% of clients randomly sampled per
round, varying only the number of local training epochs E = 5. Experiments are conducted across
the CIFAR-10, CIFAR-100, and SVHN datasets, with results reported in Tabs. 13, 15 and 14. The
findings indicate that performance generally declines as local epochs increase for most methods,
including FedGPS , VHL, and FedLESAM. For the methods with increasing performance, especially
for some local learning objective modification methods, the additional penalty term increases the
learning difficulty, and a small local epochs cannot fully train the local model, so a larger local epochs
is more suitable for such methods. However, the larger local epochs make the performance of these
methods after over-training still needs to be further verified.

Observation 4: SAM-based method needs to be adapted to different local epochs. SAM-based
methods require distinct gradient perturbation strategies depending on the number of local epochs.
Notably, FedLESAM, a SAM-based method, exhibits significant performance degradation with
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Table 15: Top-1 accuracy of baselines and our method FedGPS with 5 different heterogeneous
scenarios on CIFAR-100, heterogeneity degree α = 0.1, local epochs E = 5 and total client number
K = 10.

Dataset: CIFAR-100 Heterogeneity Level:α = 0.1 Client Number:K = 10, Client Sampling Rate: 50% Total Communication Round:T = 200 Local Epochs:E = 5

Diff Scenario Heterogeneous scenario 1 Heterogeneous scenario 2 Heterogeneous scenario 3 Heterogeneous scenario 4 Heterogeneous scenario 5

Centralized Training Acc=78%

ACC↑ ROUND ↓ SpeedUp↑ ACC↑ ROUND ↓ SpeedUp↑ ACC↑ ROUND ↓ SpeedUp↑ ACC↑ ROUND ↓ SpeedUp↑ ACC↑ ROUND ↓ SpeedUp↑

Methods Target Acc=67% Target Acc=67% Target Acc=67% Target Acc=69% Target Acc=64% Mean Acc± Std

FedAvg 67.98 138 1.0× 67.72 178 1.0× 67.50 147 1.0× 69.09 181 1.0× 64.32 170 1.0× 67.32± 1.79

FedAvgM 68.85 108 1.3× 68.38 159 1.1× 68.08 144 1.0× 68.46 180 1.0× 63.55 None None 67.46± 2.21

FedProx 66.95 None None 66.38 None None 66.56 None None 67.74 None None 60.39 None None 65.60± 2.96

SCAFFOLD 64.54 None None 63.15 None None 62.84 None None 64.14 None None 61.91 None None 63.32± 1.05

CCVR - - - - - - - - - - - - - - - -

VHL 68.53 123 1.1× 67.44 185 1.0× 68.19 173 0.8× 68.45 None None 66.13 132 1.3× 67.75± 1.00

FedASAM 68.73 110 1.3× 68.30 153 1.2× 68.09 146 1.0× 69.13 176 1.0× 62.35 None None 67.32± 2.81

FedExp 68.70 123 1.1× 67.50 170 1.0× 68.07 162 0.9× 68.34 199 0.9× 57.95 None None 66.11± 4.58

FedDecorr 67.41 184 0.8× 66.80 None None 67.15 146 1.0× 67.77 None None 61.00 None None 66.03± 2.83

FedDisco 67.59 137 1.0× 68.29 159 1.1× 68.21 163 0.9× 68.23 180 1.0× 63.75 None None 67.21± 1.96

FedInit 61.70 None None 61.38 None None 60.25 None None 63.15 None None 57.57 None None 60.81± 2.09

FedLESAM 61.61 None None 60.25 None None 60.14 None None 61.88 None None 58.21 None None 60.42± 1.46

NUCFL 61.75 None None 59.06 None None 59.18 None None 60.77 None None 59.23 None None 60.00± 1.20

FedGPS(Ours) 68.90 139 1.0× 68.45 147 1.2× 68.56 180 0.8× 68.76 None None 66.71 114 1.5× 68.28± 0.89

Table 16: Top-1 accuracy of baselines and our method FedGPS with 5 different heterogeneous
scenarios on CIFAR-10, heterogeneity degree α = 0.05, local epochs E = 1 and total client number
K = 10.

Dataset: CIFAR-10 Heterogeneity Level:α = 0.05 Client Number:K = 10, Client Sampling Rate: 50%

Total Communication Round:T = 500 Local Epochs:E = 1

Diff Scenario Heterogeneous scenario 1 Heterogeneous scenario 2

Centralized Training Acc=95%

ACC↑ ROUND ↓ SpeedUp↑ ACC↑ ROUND ↓ SpeedUp↑

Methods Target Acc=75% Target Acc=49% Mean Acc± Std

FedAvg 75.28 298 1.0× 45.59 233 1.0× 60.44± 20.99

FedAvgM 75.81 105 2.8× 49.26 275 0.8× 62.53± 18.77

FedProx 79.77 176 1.7× 52.17 237 1.0× 65.97± 19.52

SCAFFOLD 46.67 None None 51.14 180 1.3× 48.91± 3.16

CCVR 78.20 94 3.2× 60.53 40 5.8× 69.37± 12.49

VHL 85.22 143 2.1× 69.09 84 2.8× 77.16± 11.41

FedASAM 75.84 198 1.5× 50.62 275 0.8× 63.23± 17.83

FedExp 75.70 198 1.5× 46.86 None None 61.28± 20.39

FedDecorr 81.03 105 2.8× 51.69 96 2.4× 66.36± 20.75

FedDisco 82.37 176 1.7 51.01 110 2.1× 66.69± 22.17

FedInit 77.55 474 0.6× 47.99 None None 62.77± 20.90

FedLESAM 79.92 198 1.5× 51.90 103 2.3× 65.91± 19.81

NUCFL 72.96 None None 46.92 None None 59.94± 18.41

FedGPS(Ours) 86.97 198 1.5× 70.48 94 2.5× 78.72± 11.66

increasing local epochs across all three datasets (SVHN, CIFAR-10, and CIFAR-100). In contrast,
FedASAM, another SAM-based method, shows minimal degradation and, in some cases, slight
improvement. This suggests that SAM-based methods necessitate tailored gradient perturbation
mechanisms when local epochs are extended.

D.4 Ablation Study on Client Sampling Rate λs

To investigate the impact of client participation on the performance of FL systems, we conduct an
ablation study on the client sampling rate. In FL frameworks like FedAvg [7], the sampling rate
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Table 17: Top-1 accuracy of baselines and our method FedGPS with 5 different heterogeneous
scenarios on CIFAR-10, heterogeneity degree α = 0.05, local epochs E = 1 and total client number
K = 100.

Dataset: CIFAR-10 Heterogeneity Level:α = 0.05 Client Number:K = 100, Client Sampling Rate: 10%

Total Communication Round:T = 500 Local Epochs:E = 1

Diff Scenario Heterogeneous scenario 1 Heterogeneous scenario 2

Centralized Training Acc=95%

ACC↑ ROUND ↓ SpeedUp↑ ACC↑ ROUND ↓ SpeedUp↑

Methods Target Acc=32% Target Acc=34% Mean Acc± Std

FedAvg 32.97 464 1.0× 34.36 473 1.0× 33.67± 0.98

FedAvgM 41.86 256 1.8× 33.15 None None 37.50± 6.16

FedProx 36.63 241 1.9× 34.99 486 1.0× 35.81± 1.16

SCAFFOLD 48.80 27 17.2× 50.16 31 15.3× 49.48± 0.96

CCVR 55.28 28 16.6× 59.36 24 19.7× 57.32± 2.88

VHL 59.79 115 4.0× 59.85 163 2.9× 59.82± 0.04

FedASAM 33.35 477 1.0× 30.14 None None 31.75± 2.27

FedExp 35.90 409 1.1× 29.68 None None 32.79± 4.40

FedDecorr - - - 47.85 212 2.2× -

FedDisco - - - - - - -

FedInit 52.98 57 8.1× 58.51 65 7.3× 55.74± 3.91

FedLESAM 60.90 55 8.4× 64.63 69 6.9× 62.77± 2.64

NUCFL 40.70 264 1.8× 37.91 430 1.1× 39.30± 1.97

FedGPS(Ours) 65.86 70 6.6× 70.14 72 6.6× 68.00± 3.03

Table 18: The ablation study of client sampling rate under α = 0.1, K = 100, R = 500, E = 1 with
CIFAR-10 dataset.

Sampling rate λs 5% 10% 20% 50% Sampling rate λs 5% 10% 20% 50%

FedAvg 34.59 48.22 67.38 72.45 FedExp 34.38 38.26 58.35 64.52

FedAvgM 35.32 58.80 68.34 73.89 FedDecorr – 63.69 77.31 80.03

FedProx 32.89 52.84 65.25 74.24 FedDisco – – – –

SCAFFOLD 36.73 60.17 67.59 69.34 FedInit 30.56 71.01 76.89 77.59

CCVR 57.93 64.06 74.25 78.78 FedLESAM 68.86 72.64 76.35 76.90

VHL 57.14 72.70 76.58 80.78 NUCFL 38.85 53.72 68.31 71.91

FedASAM 34.78 46.35 61.84 66.48 FedGPS(Ours) 70.89 78.32 79.72 81.97

determines the fraction of clients randomly selected per training round, balancing computational load,
communication overhead, and model convergence. Lower sampling rates reduce bandwidth usage
and enable scalability in resource-constrained environments, but may slow convergence due to noisier
updates from fewer participants. Conversely, higher rates accelerate learning at the cost of increased
synchronization demands. By varying the sampling rate (e.g., from 10% to 50%) while keeping
other hyperparameters fixed, this experiment isolates its effects on metrics such as test accuracy. The
results are shown in Tab. 18. Under different client sampling rates, FedGPS still performs better than
other baselines.
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D.5 Ablation Study on Heterogeneity Degree α

To assess the impact of varying degrees of heterogeneity, we conduct experiments under constrained
computational resources. Specifically, we evaluated two distinct heterogeneity scenarios on the
CIFAR-10 dataset, with setups of 10 and 100 clients, respectively. The results are presented in
Tabs. 16 and 17. The results demonstrate that as heterogeneity increases, overall performance
declines, and the performance gap across different heterogeneous scenarios widens. Specifically, as
shown in Table 16, FedAvg’s accuracy drops significantly from 75.28 to 45.59, a decrease of 29.69.
Notably, FedGPS exhibits greater performance improvements in more challenging scenarios. For
instance, in the α = 0.1 scenario, FedGPS outperforms the best baseline method by an average of
1.04 in accuracy, while in the more heterogeneous α = 0.05 scenario, this improvement rises to 1.56.
The advantage of FedGPS becomes even more pronounced with a larger number of clients and lower
sampling rates, achieving an improvement of 2.06 in the α = 0.1 scenario and 5.23 in the α = 0.05
scenario as shown in Tab. 17. These findings further validate the effectiveness and robustness of
FedGPS under diverse and challenging FL conditions.

D.6 Different Heterogeneity Partition Strategy

Table 19: Experimental results under C = N heterogeneity partition method with CIFAR-10 dataset.
Here we mainly select C = 2 and C = 3 these two scenarios.

C = 2 C = 3 C = 2 C = 3

FedAvg 51.75 69.97 FedExp 47.53 67.29

FedAvgM 50.61 73.21 FedDecorr 69.36 79.60

FedProx 49.64 68.96 FedDisco – –

SCAFFOLD 55.08 74.34 FedInit 54.80 71.12

CCVR 55.83 73.69 FedLESAM 66.62 79.42

VHL 73.53 84.16 NUCFL 50.03 72.89

FedASAM 55.33 69.37 FedGPS(Ours) 78.17 85.71

Besides the Dirichlet distribution-based partitioning, another common approach is label distribution
skew with limited classes per client, often denoted as C = N [72]. In this method, each client is
restricted to samples from only N distinct classes out of the total available classes in the dataset,
creating extreme heterogeneity. This partitioning simulates scenarios where clients have specialized
or siloed data, such as different devices capturing only certain categories (e.g., one client with images
of cats and dogs only, while another has birds and fish). It emphasizes qualitative skew (absence
of entire classes) rather than quantitative skew (imbalanced sample counts per class). To verify
that FedGPS is still robust under other heterogeneous partition methods, the experimental results in
C = 2 and C = 3 scenarios are shown in Tab 19, indicating that FedGPS is still robust to different
heterogeneous partition methods.

D.7 More Visualization of Results

In this section, we visualize additional experimental results, which illustrate the dynamic training
process while highlighting performance and convergence speed. Due to the large number of baselines,
we visualize only the top-5 methods in this setting alongside FedGPS for comparison. The results are
shown in Figs. 11, 12, 13, 14 and 15. The results reveal that in the early training rounds, FedGPS does
not exhibit a significant speed advantage over other methods and, in some cases, converges more
slowly. However, as training progresses, FedGPS demonstrates sustained performance improvements
in later rounds, while other methods plateau, with their performance stabilizing. This observation
motivates future research into developing more efficient variants of FedGPS .
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Figure 11: The training process visualization of top-5 baselines and our method FedGPS on CIFAR-
100, heterogeneity degree α = 0.1, local epochs E = 1 and total client number K = 10 under
heterogeneous scenario 1.
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Figure 12: The training process visualization of top-5 baselines and our method FedGPS on
SVHN, heterogeneity degree α = 0.1, local epochs E = 1 and total client number K = 10 under
heterogeneous scenario 1.

D.8 Different Random Training Seeds

The choice of random training seeds impacts model initialization and the random client sampling
process. To further validate the effectiveness of FedGPSin this context, we conduct experiments
across the same heterogeneous scenarios using three distinct random seeds to control for this ran-
domness. The results, presented in Tabs. 20 and 21, reveal that such randomness noticeably affects
algorithm performance, with variations in some scenarios reaching up to ±2 or more. Despite this,
FedGPSconsistently mitigates the impact of randomness on performance, as evidenced by lower
standard deviations. These findings underscore the robustness of FedGPS, not only in addressing
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Figure 13: The training process visualization of top-5 baselines and our method FedGPS on SVHN,
heterogeneity degree α = 0.1, local epochs E = 1 and total client number K = 100 under
heterogeneous scenario 1.
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Figure 14: The training process visualization of top-5 baselines and our method FedGPS on
SVHN, heterogeneity degree α = 0.1, local epochs E = 5 and total client number K = 10 under
heterogeneous scenario 1.

heterogeneous data distributions but also in handling variability from model initialization and random
client selection process.
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Figure 15: The training process visualization of top-5 baselines and our method FedGPS on CIFAR-
10, heterogeneity degree α = 0.1, local epochs E = 5 and total client number K = 10 under
heterogeneous scenario 1.
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