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ABSTRACT

Time series (TS) anomaly detection (AD) plays an essential role in various ap-
plications, e.g., fraud detection in finance and healthcare monitoring. Due to the
inherently unpredictable and highly varied nature of anomalies and the lack of
anomaly labels in historical data, the AD problem is typically formulated as an
unsupervised learning problem. The performance of existing solutions is often not
satisfactory, especially in data-scarce scenarios. To tackle this problem, we propose
a novel self-supervised learning technique for AD in time series, namely DeepFIB.
We model the problem as a Fill In the Blank game by masking some elements in the
TS and imputing them with the rest. Considering the two common anomaly shapes
(point- or sequence-outliers) in TS data, we implement two masking strategies
with many self-generated training samples. The corresponding self-imputation
networks can extract more robust temporal relations than existing AD solutions and
effectively facilitate identifying the two types of anomalies. For continuous outliers,
we also propose an anomaly localization algorithm that dramatically reduces AD
errors. Experiments on various real-world TS datasets demonstrate that DeepFIB
outperforms state-of-the-art methods by a large margin, achieving up to 65.2%
relative improvement in F1-score.

1 INTRODUCTION

Anomaly detection (AD) in time series (TS) data has numerous applications across various domains.
Examples include fault and damage detection in industry (Hundman et al., 2018), intrusion detec-
tion in cybersecurity (Feng & Tian, 2021), and fraud detection in finance (Zheng et al., 2018) or
healthcare (Zhou et al., 2019), to name a few.

Generally speaking, an anomaly/outlier is an observation that deviates considerably from some
concept of normality (Ruff et al., 2021). The somewhat “vague” definition itself tells the challenges
of the AD problem arising from the rare and unpredictable nature of anomalies. With the lack of
anomaly labels in historical data, most AD approaches try to learn the expected values of time-series
data in an unsupervised manner (Bl’azquez-Garc’ia et al., 2021). Various techniques use different
means (e.g., distance-based methods (Angiulli & Pizzuti, 2002), predictive methods (Holt, 2004; Yu
et al., 2016; Deng & Hooi, 2021) or reconstruction-based methods (Shyu et al., 2003; Malhotra et al.,
2016; Zhang et al., 2019; Shen et al., 2021)) to obtain this expected value, and then compute how far
it is from the actual observation to decide whether or not it is an anomaly.

While existing solutions have shown superior performance on some time series AD tasks, they are
still far from satisfactory. For example, for the six ECG datasets in (Keogh et al., 2005), the average
F1-score of state-of-the-art solutions (Kieu et al., 2019; Shen et al., 2021) with model ensembles are
barely over 40%. Other than the TS data’ complexity issues, one primary reason is that the available
data is often scarce while deep learning algorithms are notoriously data-hungry.

Recently, self-supervised learning (SSL) that enlarges the training dataset without manual labels has
attracted lots of attention, and it has achieved great success in representation learning in computer
vision (Zhang et al., 2016; Pathak et al., 2016; Chen et al., 2020), natural language processing (Devlin
et al., 2019), and graph learning (Hu et al., 2020) areas. There are also a few SSL techniques for
time series analysis proposed in the literature. Most of them (Falck et al., 2020; Saeed et al., 2021;
Fan et al., 2020) craft contrastive TS examples for classification tasks. (Deldari et al., 2021) also
leverages contrastive learning for change point detection in time series.

1



Under review as a conference paper at ICLR 2022
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Figure 1: Anomalies in time series.

While interesting, the above SSL tech-
niques do not apply to the AD task
because detecting anomalies in time
series requires fine-grained models at
the element level. In this work, in-
spired by the context encoder for vi-
sual feature learning (Pathak et al.,
2016) and the BERT model for lan-
guage representation learning (Devlin
et al., 2019), we propose a novel
self-supervised learning technique for
time series anomaly detection, namely
DeepFIB. To be specific, we model the problem as a Fill In the Blank game by masking some elements
in the TS and imputing them with other elements. This is achieved by revising the TS forecasting
model SCINet (Liu et al., 2021) for the TS imputation task, in which the masked elements are
regarded as missing values for imputation. Such self-imputation strategies facilitate generating a large
amount of training samples for temporal relation extraction. As anomalies in time series manifest
themselves as either discrete points or subsequences (see Fig. 1), correspondingly, we propose two
kinds of masking strategies and use them to generate two pre-trained models. They are biased towards
recovering from point-wise anomalies (DeepFIB-p model for point outliers) and sequence-wise
anomalies (DeepFIB-s model for continuous outliers), respectively. To the best of our knowledge,
this is the first SSL work for time series anomaly detection.

Generally speaking, AD solutions have difficulty detecting sequence-wise anomalies because it is
hard to tell the real outliers from their neighboring normal elements due to their interplay. To tackle
this problem, we propose a novel anomaly localization algorithm to locate the precise start and
end positions of continuous outliers. As a post-processing step, we conduct a local search after
determining the existence of sequence-wise anomalies within a timing window with our DeepFIB-s
model. By doing so, the detection accuracy for continuous outliers is significantly improved.

We conduct experiments on several commonly-used time series benchmarks, and results show that
DeepFIB consistently outperforms state-of-the-art solutions. In particular, the average F1-score of
DeepFIB for the six ECG datasets is more than 62%, achieving nearly 50% relative improvement.

2 RELATED WORK

In this section, we mainly discuss recent deep learning-based time series AD approaches. A compre-
hensive survey on the traditional techniques can be found in (Gupta et al., 2014).
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Figure 2: Existing time series anomaly detection architectures.

Existing anomaly detection approaches can be broadly categorized into three types (see Fig. 2):
(i) Density-based methods consider the normal instances compact in the latent space and identify
anomalies with one-class classifiers or likelihood measurements (Su et al., 2019; Shen & Kwok, 2020;
Feng & Tian, 2021). (ii) Reconstruction-based methods use recurrent auto-encoders (RAE) (Malhotra
et al., 2016; Yoo et al., 2021; Kieu et al., 2019; Shen et al., 2021; Zhang et al., 2019) or deep
generative models such as recurrent VAEs (Park et al., 2018) or GANs (Li et al., 2019; Zhou et al.,
2019) for reconstruction. The reconstruction errors are used as anomaly scores. (iii) Prediction-based
methods rely on predictive models (Bontemps et al., 2016; Deng & Hooi, 2021; Chen et al., 2021)
and use the prediction errors as anomaly scores.
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While the above methods have been successfully used in many real-world applications, practical AD
tasks still have lots of room for improvement, especially in data-scarce scenarios. Unlike existing
AD approaches, the proposed mask-and-impute method in DeepFIB exploits the unique property
of TS data that missing values can be effectively imputed (Fang & Wang, 2020). By constructing
many training samples via self-imputation, DeepFIB extracts robust temporal relations of TS data and
improves AD accuracy dramatically. Moreover, for the more challenging sequence-wise anomalies,
most prior work assumes a user-defined fixed-length for anomaly subsequences (Cook et al., 2020)
or simplifies the problem by stating all the continuous outliers have been correctly detected as long
as one of the points is detected (Su et al., 2019; Shen & Kwok, 2020). In DeepFIB, we lift these
assumptions and try to locate the exact location of sequence-wise anomalies.

3 METHOD

In this section, we first introduce the overall self-imputation framework in DeepFIB and then discuss
the separate AD models for detecting point- and sequence-wise anomalies with different mask-
and-impute strategies, namely DeepFIB-p and DeepFIB-s, respectively. Next, we describe the TS
imputation method used in DeepFIB, based on an existing TS forecasting approach SCINet (Liu et al.,
2021). Finally, we present our anomaly localization algorithm for continuous outliers.

3.1 SELF-IMPUTATION FOR ANOMALY DETECTION

Given a set of multivariate time series wherein Xs = {x1, x2, ..., xTs
} εRd×Ts (Ts is the length of

the sth time series Xs), the objective of the AD task is to find all anomalous points xt ∈ Rd (d is the
number of variates) and anomalous subsequences Xt,τ = {xt−τ+1, ..., xt}.
The critical issue to solve the above problem is obtaining an expected value for each element in the
TS, which requires a large amount of training data to learn from, especially for deep learning-based
solutions. However, time-series data are often scarce, significantly restricting the effectiveness of
learning-based AD solutions.

DeepFIB is a simple yet effective SSL technique to tackle the above problem. We model this problem
as a Fill In the Blank game by randomly masking some elements in the TS and imputing them with
the rest. Such self-imputation strategies generate many training samples from every time series and
hence dramatically improve temporal learning capabilities.
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Figure 3: Self-imputation strategies of DeepFIB-p and DeepFIB-s.

In particular, we propose to train two self-imputation models (Fig. 3), biased towards point- and
sequence-wise anomalies in the TS data, respectively.

• DeepFIB-p model targets point outliers, as shown in Fig. 3(a), in which we mask discrete
elements and rely on the local temporal relations extracted from neighboring elements for
reconstruction. For each time series Xs, we generate M training samples by masking it M
times with randomly-selected yet non-overlapping d×Ts

M elements.
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• DeepFIB-s model targets continuous outliers, as shown in Fig. 3(b), in which we mask con-
tinuous elements and rely on predictive models for reconstruction. For each time series Xs,

we evenly divide it into N non-overlapping sub-sequences as
{
X
d×Ts

N
s,i , i ∈ [0, N − 1]

}
and generate N training samples by masking one of them each time.

During training, for each time series Xs, we obtain a set of non-overlapped imputed data with the
above model and integrate them together results in a reconstructed time series X̂s (i.e., X̂s-p for
DeepFIB-p model and X̂s-s for DeepFIB-s model). The training loss for both models are defined as
the reconstruction errors between the input time series and the reconstructed one:

L =
1

Ts

Ts∑
t=1

‖xt − x̂t‖ (1)

where xt is the original input value at time step t and the x̂t denotes the reconstructed value from the
corresponding model, and ‖·‖ is the L1-norm of a vector.

During testing, to detect point outliers with the DeepFIB-p model, we simply use the residual error as
the anomaly score, defined as et =

∑d
i=0

∣∣∣x̂ti − xit∣∣∣, and when et is larger than a threshold value λp,
time step t is regarded as an outlier. In contrast, for continuous outliers, we use dynamic time warping
(DTW) (Sakoe & Chiba, 1978) distance metrics as our anomaly scoring mechanism, which measures
the similarity between the input time series X and reconstructed sequence X̂ . If DTW (X, X̂) is
above a threshold value λs, a sequence-wise anomaly is detected.

3.2 TIME SERIES IMPUTATION IN DEEPFIB

While the time-series data imputation problem has been investigated for decades (Fang & Wang,
2020), there are still lots of rooms for improvement and various deep learning models are proposed
recently (Cao et al., 2018; Liu et al., 2019; Luo et al., 2019).
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Figure 4: The structure of the SCINet.

SCINet (Liu et al., 2021) is an encoder-decoder
architecture motivated by the unique character-
istics of time series data. It incorporates a se-
ries of SCI-Blocks that conduct down-sampled
convolutions and interactive learning to capture
temporal features at various resolutions and ef-
fectively blend them in a hierarchical manner.
Considering the highly-effective temporal rela-
tion extraction capability of SCINet when com-
pared to other sequence models, we propose to
revise it for the TS imputation task. More details
about SCINet can be found in (Liu et al., 2021).

To impute the missing elements from the
two masking strategies with DeepFIB-p and
DeepFIB-s models, we simply change the su-
pervisions for the decoder part accordingly. For
point imputation, we use the original input se-
quence as the supervision of our DeepFIB-p
model, making it a reconstruction structure. By
doing so, the model concentrates more on the
local temporal relations inside the timing window for imputing discrete missing data, as shown in
Fig. 5(a). As for continuous imputation, we propose to change SCINet as a bidirectional forecasting
structure in our DeepFIB-s model, with the masked sub-sequence as supervision. As shown in
Fig. 5(b), the two sub-models, namely F-SCINet and B-SCINet, are used to conduct forecasting in the
forward and backward directions, respectively. By doing so, the model can aggregate the temporal
features from both directions and learn a robust long-term temporal relations for imputing continuous
missing data.
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Figure 5: Time series imputation in DeepFIB.

3.3 ANOMALY LOCALIZATION ALGORITHM

During inference, we use a sliding window with stride µ to walk through the time series and find
anomalies in each window. For sequence-wise anomalies, without knowing their positions a priori,
we could mask some normal elements in the window and use those unmasked outliers for prediction
(see Fig. 5(b)), thereby leading to mispredictions. To tackle this problem, we propose to conduct a
local search for the precise locations of the sequence-wise anomalies.
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Figure 6: Anomaly localization algorithm.

As shown in Fig. 6, the Active window are the current input sequence to the DeepFIB-s model with
length ω (ω > µ), i.e., Xt = {xt, xt+1, ..., xt+ω−1} at time step t. When the DTW distance between
the original time series in the Active window and the imputed sequence is above the threshold λs, a
sequence-wise anomaly is detected in the current window, and the localization mechanism is triggered.
As the sliding window is moving along the data stream with stride µ, if no outliers are detected in the
previous window, the start position of the sequence-wise anomaly can only exist at the end of Xt in
the window {xt+ω−µ, ..., xt+ω−1, xt+ω−1} with length µ. Consequently, by gradually shifting the
Active window backward to include one more element in the Buffer window (see Fig. 6) at a time
and calculating the corresponding DTW distances as {e1, ..., ei, ..., eµ}, we can find the maximum
i with ei < λs, indicating the following element after the Active window starting with i is the start
of the anomaly subsequence. The Anomaly flag is then activated from this position. Similarly, to
determine the ending position of the anomaly subsequence, we keep sliding the Active windows until
we find a window with DTW distance smaller than λs, indicating that the ending position is within
{xt−µ, ..., xt−2, xt−1}. Again, we shift the Active window backwardly one-by-one to include one
element of the above window at a time and calculate the corresponding DTW distance, until we find
the ending position with its DTW distance larger than λs.
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4 EXPERIMENTS

In this section, we conduct extensive experiments to answer the following two questions: Whether
DeepFIB outperforms state-of-the-art AD methods (Q1)? How does each component of DeepFIB
affect its performance (Q2)?

Table 1: Datasets used in experiments

Datasets #Dim #Train #Test Anomaly
2d-gesture 2 8590 2420 24.63%

Power demand 1 18145 14786 11.44%

ECG

(A)chfdb chf01 275 2 2888 1772 14.61 %
(B)chfdb chf13 45590 2 2439 1287 12.35 %
(C)chfdbchf15 2 10863 3348 4.45 %
(D)ltstdb 20221 43 2 2610 1121 11.51 %
(E)ltstdb 20321 240 2 2011 1447 9.61 %
(F)mitdb 100 180 2 2943 2255 8.38 %

Credit Card 29 142403 142404 0.173 %

Experiments are conducted on a number of commonly-used benchmark TS datasets, namely 2d-
gesture, Power demand, ECG and Credit Card, ranging from human abnormal behavior detection,
power monitoring, healthcare and fraud detection in finance (see Table 1). As the anomalies in
2d-gesture, Power demand, and ECG are mainly sequence outliers, we apply the DeepFIB-s model
on these datasets. In contrast, the Credit Card dataset only contains point outliers, and hence we use
DeepFIB-p model on it.

To make a fair comparison with existing models, we use the standard evaluation metrics on the
corresponding datasets. For 2d-gesture, Power demand and Credit Card, we use precision, recall,
and F1-score following (Shen & Kwok, 2020). For ECG datasets, we use the AUROC (area under
the ROC curve), AUPRC (area under the precision-recall curve) and F1-score, following (Shen
et al., 2021). To detect anomalies, we use the maximum anomaly score in each sub-models over the
validation dataset to set the threshold.

More details on experimental settings, additional experimental results and discussions (e.g., hyperpa-
rameter analysis) are presented in the supplementary materials.

4.1 Q1: COMPARISON WITH STATE-OF-THE-ART METHODS

Table 2: Comparison of anomaly detection performance (as %), on 2d-gesture and Power demand
datasets. The best results are in bold and the second best results are underlined.

Methods 2d-gesture Power demand
precision recall F1-score precision recall F1-score

DAGMM 25.66 80.47 38.91 34.37 41.72 37.69
EncDec-AD 24.88 100.0 39.85 13.98 54.20 22.22
LSTM-VAE 36.62 67.72 47.54 8.00 56.66 14.03
MADGAN 29.41 76.4 42.47 13.20 60.57 27.67
AnoGAN 57.85 46.50 51.55 20.28 44.41 28.85
BeatGAN 55.11 45.33 49.74 8.04 76.58 14.56

OmniAnomaly 27.70 79.67 41.11 8.55 78.73 15.42
MSCRED 61.26 59.11 60.17 55.80 34.32 42.50

THOC 54.78 75.00 63.31 61.50 36.34 45.68
DeepFIB 93.90 ± 0.35 60.77 ± 0.24 73.79 ± 0.19 52.21 ± 0.31 99.99 ± 0.01 68.60 ± 0.15

- The results of other baselines in the table are extracted from (Shen & Kwok, 2020)

2d-gesture and Power demand: The results in Table 2 show that the proposed DeepFIB-s achieves
16.55% and 50.18% F1-score improvements on 2d-gesture and Power demand, respectively, compared
with the second best methods.

For 2d-gesture, the available training data is limited and the temporal relations contained in the
data are complex (body jitter), making it difficult to obtain a discriminative representation in AD
models. DAGMM (Zong et al., 2018) shows low performance since it does not consider the temporal
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information of the time-series data at all. As for the AD solutions based on generative models
(EncDecAD (Malhotra et al., 2016), LSTM-VAE (Park et al., 2018), MAD-GAN (Li et al., 2019),
AnoGAN (Schlegl et al., 2017), BeatGAN (Zhou et al., 2019), OmniAnomaly (Su et al., 2019)), they
usually require a large amount of training data, limiting their performance in data-scarce scenario.
Compared to the above methods, the encoder-decoder architecture MSCRED (Zhang et al., 2019)
is relatively easier to train and its AD performance is considerably higher. Moreover, the recent
THOC (Shen & Kwok, 2020) work further improves AD performance by fusing the multi-scale
temporal information to capture the complex temporal dynamics.

The proposed DeepFIB-s model outperforms all the above baseline methods since the proposed
self-imputation technique allows the model to learn more robust temporal relations from much
more self-generated training samples. Notably, we also observe that the precision of the DeepFIB-s
dominates the other baselines. We attribute it to the anomaly localization algorithm that can locate
the anomaly’s precise start and end positions, significantly reducing the false positive rate.
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(a) Normal data

Result
GT

Prediction Original Data Normal Anomaly

7350 7550   7750   7950    8150    8350   8550
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(b) Anomaly data
data.
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→

Figure 7: For Power demand dataset, (a) shows two cycles of normal data (0-1200 frame) wherein
each cycle contains 5 peaks. (b) shows two cycles with anomaly with missing peaks highlighted
using red arrows. The waveform of original data (light blue) is overlaid on the prediction result (light
red). Lower color bars show the ground truth (GT) label and our detection result (Result).

For Power demand, the data contains many contextual anomaly1 subsequences (see Fig. 7). It is quite
challenging for existing AD approaches to learn such context information by extracting temporal
features from the entire time series as a whole. In contrast, the proposed sequence-wise masking
strategy facilitates learning different kinds of temporal patterns, which is much more effective in
detecting such contextual anomalies. As shown in Table 2, the recall of our DeepFIB-s model almost
reaches 100%, indicating all anomalies have been detected. The precision is not the best, and we
argue that some of the false positives are in fact resulted from the poorly labeled test set (see our
supplementary material).

ECG(A-F): Compared with (A),(B),(C) datasets, (D),(E),(F) are clearly noisy, which affect the
performance of the anomaly detectors significantly. Nevertheless, Table 3 shows that DeepFIB-s
achieves an average 46.3% F1-score improvement among all datasets and an impressive 65.2%
improvement for ECG(F) dataset. There are mainly two reasons: (1) the data is scarce (See Table 1).
Existing AD methods are unable to learn robust temporal relations under such circumstances. In
contrast, the self-imputation training strategy together with the bidirectional forecasting mechanism
used in our DeepFIB-s model can well address this issue; (2) the proposed DTW anomaly score is
more effective in detecting the anomaly sequence than the previous point-wise residual scoring (see
Section 4.2.1 ). Notably, the AUPRC of DeepFIB in ECG(E) is slightly lower than RAMED (Shen
et al., 2021), and we attribute to the fact that some unlabeled sub-sequences are too similar to labeled
anomalies in the raw data.

Credit Card: Due to the nature of this application, this dataset is stochastic and the temporal relation
is not significant. Therefore, as shown in Table 4, traditional AD solutions without modeling the
underlying temporal dependency achieve fair performance, e.g., OCSVM (Ma & Perkins, 2003), ISO

1Contextual anomalies are observations or sequences that deviate from the expected patterns within the time
series however if taken in isolation they are within the range of values expected for that signal (Cook et al.,
2020).
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Table 3: Comparison of anomaly detection performance (as %), on ECG datasets.

Metrics Methods ECG AverageA B C D E F

AUROC

RAE 64.95 75.24 68.27 60.71 77.92 44.68 65.29
RRN 69.50 72.07 68.49 47.05 78.81 47.87 63.97

BeatGAN 66.51 73.14 58.69 59.33 82.98 44.19 64.14
RAE-ensemble 68.26 77.63 70.55 64.64 83.14 39.66 67.31

RAMED 73.58 78.82 78.79 69.44 83.36 55.64 73.27
DeepFIB 87.60 ±0.85 84.40 ±1.23 94.05 ±0.73 72.55 ±0.54 84.81 ±0.62 63.23 ±0.12 81.11

AUPRC

RAE 51.84 40.32 31.23 15.54 24.17 7.76 28.48
RRN 54.90 43.13 33.49 11.63 37.68 7.93 31.46

BeatGAN 52.50 44.94 19.01 14.84 34.46 7.66 28.90
RAE-ensemble 56.23 54.21 49.90 18.47 38.48 7.25 37.42

RAMED 56.23 54.23 34.63 17.78 45.78 10.59 36.54
DeepFIB 85.18±0.63 75.48 ±0.56 73.47 ±0.67 23.14 ±0.45 38.27 ± 0.72 13.16 ± 0.23 51.45

F1

RAE 52.51 49.03 32.79 25.43 33.63 15.47 34.81
RRN 56.08 43.48 38.30 20.64 44.37 15.47 36.39

BeatGAN 51.93 45.18 27.99 23.67 47.02 16.68 35.41
RAE-ensemble 56.42 52.40 58.68 27.75 44.98 15.47 42.62

RAMED 54.27 51.03 34.45 30.87 52.23 20.63 40.58
DeepFIB 80.90 ±0.63 78.06 ±0.82 78.37 ±0.13 44.71 ±0.19 58.00 ±0.26 34.08 ±0.73 62.35

- The results of other baselines in the table are referred from (Shen et al., 2021)

Forest (Liu et al., 2008). Besides, the AR (Rousseeuw & Leroy, 1987) with a small window size (e.g.,
3, 5) can also identify the local change point without considering longer temporal relations. However,
the large recall and small precision values show its high false positive rates. The prediction-based
method, LSTM-RNN (Bontemps et al., 2016) tries to learn a robust temporal relation from the data,
which is infeasible for this dataset. In contrast, the reconstruction-based method, RAE (recurrent
auto-encoder) (Malhotra et al., 2016) performs better since it can estimate the outliers based on the
local contextual information. The proposed DeepFIB-p model outperforms all baseline methods,
because it can better extract local correlations with the proposed self-imputation strategy. At the same
time, compared to our results on other datasets, the relative 26.3% improvement over the second best
solution (AR) is less impressive and the F1-score with our DeepFIB-p model is still less than 25%.
We attribute it to both the dataset complexity and the lack of temporal relations in this dataset.

Table 4: Comparison of anomaly detection performance (as %), on Credit Card dataset.

Methods Credit Card
precision recall F1-score

AR 11.30 65.20 19.20
ISO Forest 9.80 56.90 16.80
OCSVM 1.70 62.00 18.30

LSTM-RNN 0.40 11.00 0.70
RAE 16.90 21.52 18.89

DeepFIB-p 16.52 ± 0.31 46.57 ± 0.41 24.25± 0.37
RAE∗ 13.93 ± 0.12 53.36 ± 0.21 22.07± 0.36

DeepFIB-p† 16.55 ± 0.22 21.08 ± 0.12 18.50± 0.21

4.2 Q2: ABLATION STUDY

In this section, we first evaluate the impact of various components in our DeepFIB-s and DeepFIB-p
models. Next, we replace the SCINet with other sequence models to evaluate its impact.

4.2.1 COMPONENT ANALYSIS

DeepFIB-p: To demonstrate the impact of the proposed mask-and-impute mechanism in point outlier
detection. We add two baseline methods: (1) DeepFIB-p†, wherein we remove the self-imputation
strategy; (2) RAE∗, we implement the same mask-and-impute strategy and apply it to the baseline
method RAE. In Table 4, the performance improvement and degradation of the corresponding
variants compared to DeepFIB-p and RAE clearly demonstrate the effectiveness of the proposed
self-imputation strategy for point outlier detection.
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Figure 8: Ablation study of DeepFIB-s for five datasets (F1-score %). 2nd best denotes the previous
SOTA results for each dataset.

DeepFIB-s: To investigate the impact of different modules of DeepFIB-s, we compare two variants
of the DeepFIB-s on five datasets. The details of the variants are described as below: For w/o.
localization, we remove the anomaly localization algorithm from our DeepFIB-s model. The w/o.
localization & DTW further removes the DTW scoring mechanism, and the anomalies are determined
based on point-wise residual errors. As shown in Fig. 8, all these components are essential for
achieving high anomaly detection accuracy. At the same time, the proposed self-imputation training
strategy is still the main contributor to the performance of our DeepFIB-s model, as the results of
w/o. localization & DTW are still much better than those of the 2nd best solution. Besides, the
performance gain of the DTW anomaly scoring indicates that the point-wise outlier estimation is not
suitable for evaluating sequence-wise anomalies.

4.2.2 IMPACT OF SCINET

In our DeepFIB framework, we revise SCINet for time series imputation. To show its impact, we
replace it with other sequence models in DeepFIB-s. As we can see in Table 5, compared with
TCN (Bai et al., 2018) and LSTM (Hochreiter & Schmidhuber, 1997), using SCINet indeed brings
significant improvements, which clearly shows its strong temporal relation extraction capability
and the effectiveness of the revised architecture for TS imputation. At the same time, compared
to the previous SOTA methods (2nd best) for the corresponding dataset, with the same mask-and-
impute strategy, we can still achieve remarkable performance without using SCINet, indicating the
effectiveness of the proposed self-imputation concept itself.

Table 5: The comparison of different sequence models. 2nd best denotes the previous SOTA methods
in each datasets ( THOC in 2d-gesture and RAE-ensemble in ECG(A) ).

Methods ECG(A) 2d-gesture
SCINet 80.90 ± 0.63 73.79 ± 0.19

TCN 69.86 ± 0.22 69.55 ± 0.28
LSTM 64.16 ± 0.21 66.83 ± 0.55

2nd best 56.42 63.31

5 CONCLUSION

In this paper, we propose a novel self-imputation framework DeepFIB for time series anomaly
detection. Considering the two types of common anomalies in TS data, we implement two mask-
and-impute models biased towards them, which facilitate extracting more robust temporal relations
than existing AD solutions. Moreover, for sequence-wise anomalies, we propose a novel anomaly
localization algorithm that dramatically improves AD detection accuracy. Experiments on various
real-world TS datasets demonstrate that DeepFIB outperforms state-of-the-art AD approaches by a
large margin, achieving up to more than 65% relative improvement in F1-score.
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