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Abstract

What does a neural network learn when training from a task-specific dataset? Synthesizing this
knowledge is the central idea behind Dataset Distillation, which recent work has shown can be used
to compress a large dataset into a small set of input-label pairs (prototypes) that capture essential
aspects of the original dataset. In this paper, we make the key observation that existing methods
that distill into explicit prototypes are often suboptimal, incurring in unexpected storage costs from
distilled labels. In response, we propose Distributional Dataset Distillation (D3), which encodes
the data using minimal sufficient per-class statistics paired with a decoder, allowing for distillation
into a compact distributional representation that is more memory-efficient than prototype-based
methods. To scale up the process of learning these representations, we propose Federated distillation,
which decomposes the dataset into subsets, distills them in parallel using sub-task experts, and then
re-aggregates them. We thoroughly evaluate our algorithm using a multi-faceted metric, showing
that our method achieves state-of-the-art results on TinyImageNet and ImageNet-1K. Specifically,
we outperform the prior art by 6.9% on ImageNet-1K under the equivalence of 2 images per class
budget.

Keywords: Dataset Distillation, Data Condensation, Synthetic Dataset Generation

1 Introduction

Large datasets such as ImageNet (Deng et al., 2009) can be used for a variety of purposes, ranging
from image classification, single-object localization to generative tasks. If one only needs to accomplish
one of those tasks, say image classification, can we synthesize only relevant information in the data
and thus achieve compression? The goal of data distillation, first introduced by Wang et al. (2018), is
to answer this question: how to ‘condense’ a dataset into a smaller (synthetic) counterpart, such that
training on this distilled dataset achieves performance comparable to training on the the original
dataset. Since its inception, this problem has garnered significant attention due to its obvious
implications for data storage efficiency, faster model training, and democratization of large-scale
model training. It also holds the promise of speeding up downstream applications such as neural
architecture search, approximate nearest neighbor retrieval, and knowledge distillation, all of which
often require data-hungry methods (Sachdeva and McAuley, 2023). Moreover, data distillation has
emerged as a promising approach for continual learning (Rosasco et al., 2021) and differential privacy
(Dong et al., 2022), often outperforming bespoke differentially-private data generators both in terms
of performance and privacy, and allowing for private medical data sharing (Li et al., 2022).

. Correspondence to: Tian Qin ⟨tqin@g.harvard.edu⟩.
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Figure 1: Three-dimensional evaluation on methods that scale to ImageNet-1K. Left: Recovery
accuracy vs. storage trade-off comparison for our (D3) and other methods on resized (64× 64× 3)
ImageNet-1K. Our method achieves SOTA performance at small memory cost regime. Right:
Accuracy vs. downstream task training cost on resized ImagNet-1K.

Most current state-of-the-art data distillation methods produce synthetic protoypes: a small subset
of learnt (input, label) pairs that capture the most ‘salient’ (in terms of their impact on classifier
performance) aspects of the original dataset. These prototypes are often defined in the original
input (e.g., image) space (Wang et al. (2018, 2022)). Recently, some work (Deng and Russakovsky,
2022; Zhao and Bilen, 2022; Lee et al., 2022) propose to distill images into a latent space, and use a
decoder to map latent codes back to the input (image) space. Overall, dataset distillation methods
have achieved remarkable success in producing much smaller datasets —typically measured in terms
of Images (or Prototypes) Per Class (IPC)— with limited loss of downstream model performance.
While early methods suffered from limited scalability, recent ones have managed to scale to large
datasets like ImageNet-1K or even ImageNet-21K (Yin and Shen, 2023; Yin et al., 2023; Liu et al.,
2023). For example, SRe2L (Liu et al., 2022) achieved a ∼100× IPC reduction on ImageNet-1K and
recovered ∼77% of the classification accuracy1.

Although encouraging, we will show that these results tell an incomplete story. When considering the
total storage (e.g., disk space used to store all necessary distillation outputs) and the runtime needed
to train new models on the distilled data, the efficacy of these methods is much more subdued. Beyond
the prototypes, some of these methods output other artifacts that are necessary for downstream
use but whose memory footprint is rarely reported. These include soft labels (often multiple per
prototype) and augmentation parameters used (Zhou et al., 2022b; Yin and Shen, 2023; Yin et al.,
2023). The use of distilled labels are crucial (Figure 7) but incur a storage cost that is not captured
by IPC (Table 7, Appendix B.1). Once we take into account the storage cost of these artifacts, the
true compression rate of such methods is much lower than implied by the IPC metric (Figure 1, left).
On the other hand, decoding/generation/augmentation procedures often translate into additional
post-distillation training time (Figure 1, right). In light of these observations, we argue that IPC as
a metric of distillation is incomplete, and that the methods that have been developed to optimize it
should be revisited with a more comprehensive set of evaluation metrics.

In response to the above observation, we propose a new dataset distillation method with efficient com-
pression properties, not in terms of dataset cardinality (i.e., IPC), but directly in terms of storage size
and downstream model training time. Distilling into the latent space not only allows a more compact
representation of the data by sharing inter-class mutual information in decoder parameters, but also
offers finer-grained control on compression than working directly with prototypes (e.g., by varying num-

1. SRe2L used ResNet18 as the teacher model, which achieved 69.8% classification accuracy from full ImageNet-1K
training. SRe2L’s distilled data with 10 IPC achieved 46.2% classification accuracy
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ber of latent codes per class, latent dimensions and the decoder size). We challenge the conventional
approach of distilling into a finite set of (latent) prototypes and propose to cast the problem into a dis-
tributional one: finding a synthetic probability distribution which can be sampled to produce training
data for downstream tasks. This Distributional Dataset Distillation (D3) approach yields an efficient
representation of distilled data without incurring much additional computation costs on downstream
tasks.

Figure 2: Illustration of Federated Distilla-
tion and Distributional Represen-
tation We decompose large datasets
into subtasks and distill each subset
into distributions using locally trained
experts. Distributions distilled on sub-
tasks generalize well to the full task.

To scale our method efficiently to large datasets such
as ImageNet-1K, we propose a simple-yet-effective
federated distillation scheme that parallelizes the dis-
tillation process (Figure 2). Instead of directly distill-
ing the entire dataset, we divide the full classification
tasks into subtasks, where each task only classifies a
subset of all classes. Data distillation is performed on
subtasks, using local experts trained on subtasks. We
then aggregate the locally distilled datasets to form
the distilled data for the full task. We show that data
distilled on subtasks generalize well to the full task,
which ensures the good performance of our federated
distillation process. Using the distributional represen-
tation and federated distillation, we achieve SOTA
performance on ImageNet-1K as measured by storage
cost.

Our contributions can be summarized as follows:

• We show that state-of-the-art prototype-based data distillation methods yield unexpectedly
high storage costs and post-distillation training times, an under-reported phenomenon that is
not captured by commonly-used compression metrics (e.g., IPC, the number of distilled items
per class). The large storage cost and training time could hinder the usability of these methods
in practice.

• We propose a novel distillation framework with smaller memory footprint that distills datasets
into distributions, extending recent methods that distill into a latent space to now operate on
(latent) distributions. We show this method matches or outperforms state-of-the-art distillation
methods in terms of prediction accuracy on various datasets (e.g., TinyImageNet, ImageNet-1K),
with smaller storage costs.

• We propose a simple-yet-effective federated distillation strategy that allows distillation training
process to be parallelized, and which has general applicability beyond our specific method.

• In response to our observations above, we propose new evaluation protocols and metrics for
dataset distillation methods that more accurately characterize the extent of ‘distillation’, and
compare existing work and our work along these axes. 2

2 Methodology

2.1 Three-Dimensional Evaluation

The most important aspect of evaluating data distillation methods is the trade off between the
memory footprint (i.e., how large is the distilled dataset) and the recovery accuracy (i.e., can models

2. Code for all experiments is available here: https://github.com/sunnytqin/D3
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trained the compressed data achieve comparable performance compared to the original dataset).
When it was first proposed by Wang et al. (2018), the distillation task was restricted to finding a set
of images {si}ni=1. Same number of prototypes were used for each class along with hard labels. Since
storing the corresponding label incurred a trivial cost, IPC was sufficient to capture the distilled
dataset size in early works. However, two recent trends brought innovations to different ways to
store information in the distilled dataset. As a result, the IPC metric no longer reflects the trade-off
between storage and recovery accuracy.

Storage Cost Instead of distilling into pixels, many recent works (Deng and Russakovsky, 2022;
Lee et al., 2022; Liu et al., 2022) distill data into a latent space Z and represent each prototype
as a latent code z ∈ Z. One or multiple decoders are used to map the latent code into original
space during downstream training, by trading memory with compute. On the other hand, images
are not the only way one can store information in the distilled dataset. Many methods that scale
to ImageNet-1K leverage distilled labels as an additional way to store information. TESLA (Yin
et al., 2023), and FRePo (Zhou et al., 2022b) distill prototypes into pixel space and assign one unique
soft label to each prototype. Compared to hard labels, storing softmax values incurs a small but
non-trivial storage cost. On the other hand, SRe2L and its follow-up work (Yin et al., 2023; Liu et al.,
2023; Yin and Shen, 2023) take a slightly different approach by assigning multiple distilled labels to
each prototype. For each prototype, different distilled labels correspond to variants of the prototype
by applying augmentations. As a result, these work (Yin et al., 2023; Liu et al., 2023; Yin and Shen,
2023) require the augmentation parameters stored along with the corresponding to distilled labels.

Downstream Training Cost When training models on the distilled data, using soft labels instead
of hard labels, decoding latent codes on-the-fly, and applying augmentations to prototypes all bring
additional computation cost during downstream training. Therefore, in addition to storage cost,
we also propose to look at the the wall clock time to train models on the distilled data, which we
abbreviate as downstream training cost. This training cost can help us gain insights into the memory
versus compute trade-off between different distillation methods. However, the primary objective of
dataset distillation is to achieve information compression by saving only relevant features needed for
a certain task, storage cost should be the primary metric for evaluation and downstream training
cost should be a secondary metric. Despite being a secondary metric, downstream task training cost
is still relevant because if training models on the distilled data takes too long, the distilled dataset
may have limited usability on applications such as continual learning or neural architecture search.

We propose a more comprehensive evaluation process based on the following three metrics:

(i) Total storage cost: being distilled images, prototypes, latent codes, soft labels, augmentations,
and/or decoders

(ii) Downstream training cost: wall clock time it takes to train models on the distilled data

(iii) Recovery accuracy: accuracy achieved by model trained on the distilled data

We perform the comprehensive evaluation on TESLA (Cui et al., 2022), SRe2L (Yin et al., 2023)
and D3 (ours) on ImageNet-1K (resized). TESLA (Cui et al., 2022) represents SOTA results among
existing methods that distill directly into image spaces along with soft labels. SRe2L (Yin et al.,
2023) represents results among existing methods that distill into images, augmentations and soft
labels. Finally, our work (D3) represents results that distill into latent (distributions). Using the
new metric, we observe a different landscape that is not captured by IPC, as shown in Figure 1.
Bi-level optimization-based methods (TESLA and ours) excel at small-scale, extremely efficient
dataset distillation while decoupled methods (SRe2L) achieves superior performance at the cost of
a larger storage footprint and longer downstream training time. In Appendix B.1, we list further
details on the exact storage cost breakdown and a discussion on the storage cost is measured.
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Table 1: Tiny ImageNet distilled and evaluated on ConvNet Storage cost is measured in MB and in
parenthesis, we annotate the equivalence if storing only images (measured using IPC). In our most
compact setting, the storage cost to store the distilled distribution averages to storing less than 1
IPC. N/A: indicates the distillation size is smaller than the minimum size the method can distill.

Storage Cost (MB) Random DM MTT LinBa KFS FrePo D3(ours)

4 (∼0.5IPC) N/A N/A N/A N/A N/A N/A 24.6 (0.2)

10 (∼1IPC) 1.6 (0.1) 3.9 (0.2) 8.8 (0.3) 16.0 (0.7) 22.7 (0.2) 15.4 (0.3) 26.0 (0.4)

100 (∼10IPC) 6.2 (0.2) 12.9 (0.4) 23.2 (0.2) 27.8 (0.2) 25.4 (0.2) 30.5 (0.3)

Table 2: Tiny ImageNet distilled and evaluated on different architectures We use the distribution
distilled under the 100MB (∼ 10 IPC) storage cost budget. Our method generalizes well to different
architectures.

ConvNet (self) AlexNet ResNet18 VGG11 ViT

30.5 (0.3) 22.6 (0.5) 25.7 (0.5) 27.0 (0.2) 15.1 (0.7)

2.2 Distilling into distributions

The motivation behind distilling into the latent space is to achieve further compression in data
storage (Deng and Russakovsky, 2022; Lee et al., 2022; Liu et al., 2022). Instead of images, the final
distilled dataset consists of one or multiple latent codes for each class, along with one or multiple
decoder(s). Decoders map those latent codes back into the pixel space. Formally, we denote the
i-th latent code for image class c as zi

c, and denote decoder(s) as gθ, where θ are parameters for the
decoder. The distilled dataset S can be expressed as:

S = {(xi
c, y

i
c) : (gθ(zi

c), c)}
i∈[1,IPC]
c∈[1,C] .

The above formulation indicates a one-to-one correspondence between latent code and output image
- namely, a deterministic data generation process. In this work, we propose to achieve an even more
efficient way to represent dataset by generalizing the idea of latent codes into latent distributions.
Instead of a deterministic data generation process, we now have a probabilistic one where one can
repeatedly sample from the latent distribution and pass into the decoder to generate images.

To represent the latent distribution, we borrow ideas from Deep Latent Variable models (Kingma
and Welling, 2019, 2013) and assume the latent distribution to be Gaussian: p(z|c) ∼ N (µc,Σc).
During the data distillation process, we learn the parameters µc and Σc for those Gaussian priors, as
well as decoder parameters θ. During downstream training, sample data is generated in an “online”
fashion by sampling from the latent distribution N (µc,Σc) at each epoch. See Appendix B.2 for a
detailed description on distributional representation.

2.3 Federated Distillation

The challenge to scale data distillation methods to ImageNet-1K comes from the significant memory
and computation costs (Zhou et al., 2022b; Yin et al., 2023; Cui et al., 2022). Our method D3 also
suffers from the same challenge. To resolve the scaling issue, we propose to use a federated distillation
strategy. First, we divide the datasets into k subsets in the class space. Each subset only contains
C/k classes, where C denotes the total number of classes in the full set. Then, we perform data
distillation independently on each subset. Note that in this step, we train local experts for each
sub-task and optimize the distill data on those subtasks, which is simpler than the full classification
task. Finally, the distill subsets are aggregated to form the distilled dataset for the full task. For an
illustration of our federated distillation strategy, see Figure 2.
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Since each subset has only been trained by local experts for each subtask (i.e, classify only C/k classes
as opposed to all C classes), one certainly would expect the federated strategy to yield sub-optimal
results compared to directly distilling on the full dataset. In section 3.3 we confirm such intuition.
However, we observe that dataset distilled on those simpler subtasks transfers relatively well to the
full task. This nice generalization property allows us to distill ImageNet-1K in a highly parallelized
fashion while achieving SOTA results.

3 Experiments

In pursuit of impartial comparisons with existing data distillation methodologies, we align all our
design choices with existing work. We use ConvNet for data distillation on all datasets. We
evaluate the recovery accuracy on five randomly initialized neural networks and report mean and
standard deviation. We provide a detailed description of datasets, experiment setup and hyper-
parameters in Appendix D. We compare our methods on competitive baselines that distill into
pixel space, including MTT (Cazenavette et al., 2022), TESLA (Cui et al., 2022) , concurrent
work DataDAM (Sajedi et al., 2023), FRePo (Zhou et al., 2022b), FTD (Du et al., 2022), and
DM (Zhao and Bilen, 2023). We also compare our method on competitive baselines that distill
into latent space, including LinBa (Deng and Russakovsky, 2022) and KFS (Lee et al., 2022).

Figure 3: Visualization of distilled
mean (col 1) and variations
(col 2 onwards) for four
classes from ImageNet-1K

3.1 Quantitative Results

We apply the federated distillation strategy on ImageNet-
1K by breaking down the dataset into 2 and 5 sub-tasks.
To scale up the distilled distributions, we use 1, 2 and 10 la-
tent priors per class and scale up decoder sizes accordingly.
We report results on both ConvNetD4 and ResNet18 (cross-
architecture generalization) with our three-dimensional
evaluation metric in Figure 1 and a tabular version can be
found in Appendix B.1. Our method outperforms TESLA
(Cui et al., 2022), DataDAM (Sajedi et al., 2023) and
FRePo (Zhou et al., 2022b) on ConvNet under 100MB and
500MB storage budget. Furthermore, our method can also
distill a distribution under 25MB (0.5IPC) storage bud-
get, which outperforms existing work under 50MB (1PC)
storage budget.

Our method distills a more compact dataset through distri-
butional representation, however, when we evaluate on the downstream task training cost, we can see
that that our compact representation comes at a (small) compute cost. On average, models trained
on our distilled distribution takes more training iterations to converge compared to fixed-output
methods and generating images on-the-fly costs additional small but non-negligible compute time.
We report TinyImageNet results in Table 1, and corresponding cross-architecture results in Table
2. We use 2, 5, and 10 latent priors for three storage costs and a larger decoder for the last one.
Similar to ImageNet-1K, our method can distill distribution that achieves SOTA performance with
small storage costs and generalize well to different architectures. Additionally, we report CIFAR-100,
CIFAR-10 and the two ImageNet subsets in Appendix F. In Appendix D, we include a full list of
decoder hyper-parameters and exact storage cost for all the experiments listed above.

3.2 Latent Space Analysis
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Figure 4: Visualization of the latent
Gaussian space by interpo-
lating priors for four classes
from ImageNet-1K

We impose a Gaussian structure to the latent distribution
space, and the motivation behind distillation is to save
only relevant information from a dataset for a specific task
(image classification, in our case). Through the distilled
distribution, we can visualize the Gaussian space to reach
some qualitative understanding on the ‘salient’ features
that are essential for image classification task. In Fig-
ure 3, we visualize the prototype distribution of distilled
ImageNet-1K under 500MB (∼ 10 IPC) storage budget.
Specifically, we visualize the average (first column) of four
randomly chosen classes and their corresponding varia-
tions (second column onwards). Qualitatively, we observe
that the typical (i.e., mean) sample is more interpretable
and higher quality compared to its variations. We also
visualize four randomly chosen classes (four corners) and
the inter-class “distributions” by linearly interpolate the
Gaussian space between (the rest), shown in Figure 4.

3.3 Federated Distillation

Ability to task-generalize When we perform federated
distillation, we are essentially distilling datasets on simpler subtasks (i.e., classification on fewer
classes). To understand the extent to which breaking down distillation tasks can impact the overall
performance on the distillation process, we conduct the following experiments on TinyImageNet.
First, we perform federated data distillation by dividing the dataset into two subsets, first one
containing the first hundred classes and the second one containing the rest (second hundred classes).
The full distilled dataset distribution is obtained from aggregating the two distributions. To form a
comparison, we perform dataset distillation directly on the full dataset using the same-sized decoder,
and the same settings for the latent prior distributions (i.e., same dimension for the latent Gaussian
distribution, and same number of latent priors per class).

Table 3: Federated distillation compared to full task
distillation on TinyImageNet row indicates
the dataset being distilled on and column indicates
the dataset being evaluated on.

(Subset 1, Subset 2) Full

(Subset 1, Subset 2) (27.6 (0.6), 27.2 (0.5)) 21.9 (0.6)

Full (32.2 (0.3), 33.4 (0.4)) 24.6 (0.3)

Experiment results are reported in Table 4.
Rows indicates the dataset that distillations
are performed on, and the column indicates
the dataset that distilled distributions are
evaluates on. First row summarizes the
federated distillation outcome: each sub-
task achieves ∼ 27% recovery accuracy. We
then evaluate the aggregated distributions
on the full task, which achieves 21.9% recovery accuracy (row 1, col 2). In comparison, the second
row summarizes results for the non-federated counterpart: directly distilling on the full set achieved
higher accuracy 24.6% than the federated outcome. In this experiment, we observe that the federated
distillation only slightly underperforms the non-federated version. In addition, we notice that the
data distribution distilled on the full dataset outperforms the federated counterpart (row 2, col 1)
when evaluated on the subtask.

Impact factors To understand whether the ability of distilled data to task generalize is sensitive to
the distillation training objective and/or the use of distributional outcome, we further experiment
on TinyImageNet using the same set-up as above. In this set of experiments, we perform data
distillation using different training objectives, using distributional or fixed outputs to distill each of
the TinyImageNet subsets, shown in Table 4.
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Table 4: Federated distillation on TinyImageNet using
different training objectives, and using distri-
butional or fixed representation Subset 1, Subet
2 is recovery accuracy on the subtask and full is re-
covery accuracy by aggregating the two distill datasets
and evaluating on the full set. Chg% computed by
full/avg(subset 1, subset 2).

Loss Term Distributional Subset 1(%) Subset 2(%) Full(%) Chg%

MTT Yes 12.7 (0.2) 18.4 (0.4) 13.4 (0.4) 86%
MMD Yes 25.4 (0.4) 26.1 (0.5) 20.4 (0.1) 80%
Both Yes 27.6 (0.3) 27.2 (0.5) 21.9 (0.6) 80%
Both No (5 IPC) 10.28 (0.5) 12.38 (0.2) 7.5 (0.5) 66%
Both No (10 IPC) 19.58 (0.4) 17.68 (0.5) 13.9 (0.2) 74%
Both No (20 IPC) 27.5 (0.3) 25.32 (0.4) 20.5 (0.6) 78%

In Section E.2, we perform a more
detailed ablation study on the im-
pact of training objectives and distri-
butional representation on distillation
outcomes. Here, we are only interested
in examining whether those factors im-
pact the ability for the distilled data
to task generalize. For fixed outputs,
we repurpose latent distributional pri-
ors as latent codes and simply distill-
ing only the mean. Table 4 shows
that the relative transfer performance
is not sensitive to different training
objectives. However, when we restrict
ourselves to fixed outputs (i.e., without distributional representation), the relative task transfer
ability suffered by a non-trivial amount. The performance drop is most evident when we allow
fewer fixed latent codes per class. However, as we increased the number of fixed images, the task
transfer ability converge to the distributional version. This observation indicates that our federated
distillation scheme could potentially be generalized to other data distillation methods.

Table 5: Performance of federated dis-
tillation with different sub-
task sizes on ImageNet-1K.

Subset size # Tasks Decoder Size Accuracy

100 10 S 9.7 (0.2)

100 10 M 9.6 (0.3)

200 5 S 10.6 (0.3)

200 5 M 13.8 (0.5)

500 2 L 14.7 (0.5)

Number of Subtasks To understand to what extent
the number of subtasks negatively impacts the federated
distillation strategy, we experiment three division sizes on
ImageNet-1K: 10 sub-tasks (100 classes for each task), 5
sub-tasks (200 classes for each task) and 2 sub-tasks (500
classes for each task). Table 5 shows that the distillation
quality increase monotonically as we decrease the number
of subtasks. This observation provides a straightforward
guideline for subtask selection in practice: one should
divide into as few tasks as memory and computation allows to achieve the best distillation outcome.
For fair comparisons, we use two different decoder sizes for the first two and a large one for the
later.3 For the same decoder size, we keep the hyper-parameters same for the latent distribution
(same latent dimension, and same number of priors per class).

4 Conclusion

In this paper, we first made a key observation that existing work distilling into explicit prototypes
and distilled labels incurred unexpected storage cost and post-distillation training time, both of
which could not be captured the conventional metric used dataset distillation. We proposed to
evaluate distillation methods on a three-dimensional metric that captures the total storage cost and
the test-time runtime efficiency.

We also proposed Distributional Dataset Distillation, which encodes the data using minimal sufficient
per-class statistics and a decoder, resulting in a distileld data distribution that is a more memory-
efficient representation of the training data. To scale up the process of data distillation, we proposed a
federated distillation strategy, which can have broader applications on other data distillation methods.
For future work, we aim to scale our results to larger datasets and to higher distillation quality.

3. smaller and medium sized decoder failed to converge on 500-class subtask
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Reproducibility Statement

The source code, along with our distilled data distributions are made publicly available. We also
share detailed instructions for reproducing our experiments in the public repo.

Broader Impact Statement

Dataset Distillation aims to reduce the size of training datasets, which can have positive implications
for democratization of AI. However, achieving these goals requires transparency in how the reduction
is measured. One of the main messages of the paper is to encourage the community reconsider what
compression means and how to evaluate it in a more comprehensive manner.
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Appendix A. Related Work

We focus our discussion of prior work on the lines that are most closely related to ours, but note
that methods with similar goals have been developed in the context of statistical sample compression
(Winter, 2002; Dwivedi and Mackey, 2021) and core-set selection (Mirzasoleiman et al., 2020; Zhou
et al., 2022a).

Optimization Methods Wang et al. (2018) originally approached the distillation problem as a
bi-level optimization task, which is computationally intensive. To tackle the computation challenge,
many work has proposed proxy training objectives to simplify the distillation process. Nguyen et al.
(2020) leveraged NTK-based algorithms to solve the inner optimization in closed form. Zhao et al.
(2020) proposed gradient matching to avoid the unrolling of the inner-loop and make the distillation
process more efficient. Further improvements on single-iteration gradient matching also include
(Lee et al., 2022; Zhao and Bilen, 2021). Matching training trajectories (MTT) was proposed by
(Cazenavette et al., 2023), claiming that matching long-range training dynamics provides further
improvements on single-iteration gradient matching. Cui et al. (2022) proposed TESLA as a scalable
alternative to the original MTT method. Du et al. (2022) proposed a variant that uses “flat” trajectory
matching to further improve trajectory-matching based methods. Distribution Matching (DM),
proposed by (Zhao and Bilen, 2023), seek to minimize the Maximum Mean Discrepancy (MMD)
between original and distilled dataset samples. Further refinement on the method includes Wang
et al. (2022); Zhou et al. (2022b). Specifically, Neural Feature Regression with Pooling (FRePo)
(Zhou et al., 2022b) addressed the memory-concern with a pooling strategy for distribution matching
based method.

Recently, SRe2L (Yin et al., 2023) proposed to decouple the expensive bi-level optimization and
used a three step procedure - first, produce feature mapping; second, generate distilled images; and
third generate soft labels. Follow-ups such as Liu et al. (2023) and Yin and Shen (2023) brought
further improvements on the method. This line of work has achieved impressive performance on
large datasets such ImageNet-1K and even ImageNet-21K.

Representing Distilled Dataset In contrast to all methods listed so far, a new line of work
proposed to distill data into the latent space (Deng and Russakovsky, 2022; Liu et al., 2022; Lee
et al., 2022; Cazenavette et al., 2023; Zhao and Bilen, 2022). This line of work proposes to learn the
latent code and use decoder(s) to map the latent code back into training images. Zhao and Bilen
(2022); Cazenavette et al. (2023) leveraged pre-trained GANs as the decoder such that only latent
code needed to be learned during distillation. (Deng and Russakovsky, 2022; Lee et al., 2022; Liu
et al., 2022) trained both latent codes and decoders during the distillation process. Our work is
mostly similar to IT-GAN (Zhao and Bilen, 2022) in using a generative model to represent distilled
data. However, we model the prototypes themselves as distributions, allowing for e.g., unlimited
sampling from them, and leading to more diverse generation. IT-GAN (Zhao and Bilen, 2022) only
showed the feasibility on CIFAR-10 while we scale the idea to TinyImageNet, and ImageNet-1K.
Furthermore, we show that by using a distributional framework and a generator trained from scratch,
one can achieve a more compact representation of data.

Appendix B. Methodology (Extended)

B.1 Further details on Figure 1

In this section, we provide details for Figure 1 in Tables 6 and 7. First, in Table 6 we compare our
method with SOTA distillation methods at various storage costs. All methods perform distillation
on a ConvNet architecture. Additionally, we evaluate our method and TESLA on ResNet18 to
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examine cross-architecture generalization. We also annotate storage cost with the equivalence of
storing images as distilled dataset. Table 7 lists all the methods we used to generate Figure 1. We
report IPC whenever applicable.

Table 6: ImageNet-1K Performance comparison for SOTA methods aligned on storage
budget Storage cost is rounded (See Table 7 for exact storage breakdown). N/A: indicates
the smallest size the method can distill into is larger than the corresponding size.

ConvNetD4 ResNet18

Storage Cost (MB) Random FrePo DataDAM TESLA Ours Random TESLA Ours

25 (∼0.5IPC) N/A N/A N/A N/A 11.5 (0.5) N/A N/A 9.7 (0.8)

50 (∼1IPC) 0.6 (0.1) 7.5 (0.3) 2.0 (0.1) 7.7 (0.2) 0.5 (0.1) 6.2 (0.5)

100 (∼2IPC) 0.8 (0.1) 9.7 (0.2) 2.2 (0.1) 10.5 (0.2) 17.4 (0.7) 0.6 (0.1) 9.1 (1.5) 16.0 (0.7)

500 (∼10IPC) 3.6 (0.5) 6.3 (0.1) 17.8 (1.3) 20.3 (0.9) 3.6 (0.1) 15.3 (1.3) 18.2 (0.6)

3000 (∼50IPC) 12.5 (1.5) 15.5 (0.2) 27.9 (1.2) 15.3 (2.3) 23.2 (0.9)

Table 7: Details on storage cost breakdown, downstream task training cost and recovery
accuracy distilled on ImageNet-1K and evaluated on ResNet18 Input Storage
Cost refers to distilled synthetic images for prototype-based methods, and refers to latent
prior and decoder for D3 (ours). DTC stands for Downstream task training cost defined in
Section 2.1

Method Distill Arch IPC Input Storage (MB) Label Storage (MB) Accuracy (%) DTC (min)

TESLA ConvNet 1 58 4 6.2 (0.5) 8
TESLA ConvNet 2 116 8 9.1 (1.5) 17
TESLA ConvNet 10 579 38 15.3 (0.8) 60
TESLA ConvNet 50 2897 238 23.2 (0.9) -

SRe2L (orig) ResNet18 1 583 1229 2.9 (0.2) 50
SRe2L (orig) ResNet18 10 5848 6145 21.3 (0.6) 250
SRe2L (orig) ResNet18 50 29764 30725 46.8 (0.2) 600

SRe2L (resize) ResNet18 2 116 1229 1.2 (0.1) 25
SRe2L (resize) ResNet18 10 579 6145 10.7 (0.5) 40
SRe2L (resize) ResNet18 50 2897 30725 29.0 (0.5) 175

D3(Ours) ConvNet N/A 17 4 9.7 (0.8) 20
D3(Ours) ConvNet N/A 76 8 16.0 (0.7) 40
D3(Ours) ConvNet N/A 440 38 18.2 (0.6) 60

TESLA Cui et al. (2022): We replicated results for 1/2/10 IPC settings to produce the results above.
For the 10 IPC setting, Cui et al. (2022) reported much lower performance on ResNet18 (7.7%), and
we used our reproduced results with higher accuracy(15.3%). We failed to repliate results for 50
IPC and obtained results directly from authors and therefore do not have downstream training cost
estimate.

SRe2L Yin et al. (2023): SRe2L was originally implemented on higher resolution ImageNet-1K
(224×224). We replicated SRe2L using hyperparameters provided by authors, which set of results are
denoted as “original” above. We also re-implemented the pipeline on resized ImageNet-1K (64 × 64),
which set of results are denoted as “resized” above. In the original implementation, the image was
saved in .jpeg format and the soft label and the augmentation parameter was saved in fp16 format.
We recomputed the storage cost assuming both images, augmentation parameters and soft labels
were saved as floating point tensor format. In the default hyperparameter setting, SRe2L generated
300 distilled labels for each prototype by applying augmentations to each prototype. As a result,
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both the labels and augmentation parameters needed to be saved, causing a rather large storage cost
on label storage4.

Computing storage cost To facilitate a direct and meaningful comparison between methods that
use different distillation approaches, we quantify the total storage cost of each method, including
all generated artifacts that are needed to reproduce the distilled dataset (decoder weights, images
prototypes, soft labels, augmentations parameters etc). For prototypes and images, we measure their
memory footprint when saved in single-precision floating-point tensor format (fp32). For our method,
which distills into latent priors and decoder(s), we save all decoder and latent prior parameters
again in fp32 format (saving the entire state dict for the decoder). Likewise, we measure memory
footprint for distilled soft labels and augmentation parameters in the same fp32 format. We report
all computed storage cost in Megabytes (MB) rounded to closest integer value. While one could
potentially achieve better image compression rates saving images into alternative formats (.jpeg
for example), this would prevent an apples-to-apples comparison. Moreover, similar improvements
could be achieved for distilled model parameters via quantization or compressed (e.g., .zip) storage.
However, all these additional steps (if used) bring further complications to the discussion without
bringing useful insight into using storage cost as a metric for dataset distillation. As a result, we
decide the most natural and fair comparison is to assume floating point tensor format as the unified
way of storing distilled data.

Downstream training cost All test-time runtime experiments are run using two NVIDIA A100-
SXM4-40GB GPUs with data parallelism to ensure fair comparison. We use default parameters
or hyperparameters provided whenever available. For TESLA, we used learned learning rate for
Convnet, default learning rate for ResNet18, default learning rate scheduler, default training epochs
(1000 epoch) and default batch size (i.e., batch size = IPC). For SRe2L we used default learning
rate, default training epochs (300 epoch) and default batch size. For D3 (our method), we used
learned learning rate for Convnet, default learning rate for ResNet18, default batch size (i.e., batch
size = latent prior per class) and default training epochs (2000 training epochs). We allowed early
termination if all above methods converged earlier than the default epoch setting. However, for all
methods, using default parameters only provides a rough estimate for the downstream training cost,
and it may be possible to further optimize for downstream training cost with hyperparameter tuning.
While it should only be used as a secondary metric to evaluate data distillation methods, we hope
future work could provide more details on this metric when reporting results.

B.2 Further details on distributional representation

Formulation Formally, for a class of models f(·, w) : X → Y parameterized by their weights w ∈ RD,
and a loss function L, the objective of distillation can be phrased as finding S such that

Ex∼Peval

[
L
(
f(x;wS), y

)]
≃ Ex∼Peval

[
L
(
f(x;wD), y

)]
(1)

where w are the weights obtained by training (e.g., by empirical risk minimization) on either on the
full training dataset D or on the distilled dataset S:

wD = argmin
w

∑
(xi,yi)∈D

L(f(xi;w), yi), wS = argmin
w

∑
(xi,yi)∈S

L(f(xi;w), yi) (2)

and Peval is the target data distribution that models are evaluated on (typically validation or test
set). In the distributional representation, we consider the population counterparts of (2), i.e.,

wD = argmin
w

E
(xi,yi)∼P

L(f(xi;w), yi), wS = argmin
w

E
(xi,yi)∼Q

L(f(xi;w), yi). (3)

4. 50 IPC distilled dataset Yin et al. (2023): https://huggingface.co/datasets/zeyuanyin/SRe2L

14

https://huggingface.co/datasets/zeyuanyin/SRe2L/tree/main


Distributional Dataset Distillation with Subtask Decomposition

Instead of finding the optimal distilled data set S, we need to find a synthetic distribution Q which,
as before, leads to comparable predictive performance for f on the target distribution Peval. To
make the problem tractable, we use a family of distributions Qξ with parameter set ξ. The use of
parameterizable distributions in turn allows us to formulate the problem as an optimization over the
finite-dimensional parameter space rather than the infinite-dimensional space of distributions.

Concretely, we assume a Gaussian prior distribution in latent space Z, and a posterior distribution
Qξ(x|z) that can be parameterized by a decoder. In this formulation, parameters ξ include Gaussian
priors (µ’s, and Σ’s) and decoder parameters θ. The distilled distribution can be represented in a
variational form:

Qξ(x) =

∫
Qξ(x|z)p(z) dz, where p(z) ∼ N (µ,Σ) , Qξ(x|z) = gθ(z).

In Section 2.1, we propose to use total storage cost instead of IPC as an evaluation metric for data
distillation. Storage cost as a metric can be applied to our distributional representation as well.
Specifically, we argue that when we distill into distributions, “distillation” is satisfied if the storage
footprint as discussed is sufficiently small. Furthermore, we also argue that to achieve information
compression, the effective number of samples from Q on which a model needs to be trained is
comparable, or lower, than that of training on the original dataset D.

In particular, we seek to avoid the two trivial corner-cases Qξ = 1
N

∑N
i=1 δxi , i.e., the uniform

empirical measure associated with training set D, and Qθ ≈ PD, i.e., learning the full distribution of
the original data — a much harder problem to solve. Using a Gaussian prior has the advantage of
encoding information into a latent (typically lower-dimensional) space and provide a framework to
ensure only relevant information is preserved in the distributional representation.

Scaling Up There are multiple ways to scale up the amount of information encoded in the distilled
distribution with a larger storage budget and more compute:

(i) We can use multiple Gaussian priors for each class. We refer to the number of Gaussian priors
as latent priors per class. By using multiple distributional priors, we are essentially assuming
that each class follows a multi-modal distribution. For simplicity, we assume that of these prior
distributions N

(
µi
c,Σ

i
c

)
is equally likely (i.e., uniform distribution among all Gaussian priors).

(ii) We can increase the dimension of the latent Gaussian distribution to allow more information to
be encoded for each prior.

(iii) We can increase the size of the decoder gθ to allow more shared information to be stored for
the entire dataset.

Empirically, we find that the most effective way to scale up the size of distilled dataset and achieve
higher recovery accuracy is to first increase the number of latent priors per class. Once we exceed a
certain number of priors per class, we also need to use a larger decoder and higher latent dimension
to achieve higher distillation quality.

B.3 Training Objective

Building on the foundations of existing data distillation techniques, we introduce a learning objective
compromised of two distinct terms. The first term is derived from Matching Training Trajectories
(MTT) proposed by Cazenavette et al. (2022). The second term in our objective aims to minimize the
Maximum Mean Discrepancy (MMD) between the true dataset and our learned dataset distribution.
Different from the formulation used in DM (Zhao and Bilen, 2023), we use a set of Reproducing
Hilbert Kernels (RHKS) for the MMD computation to fully leverage the power of MMD. We first
map the pixel space to latent feature space using trained experts. For model simplicity and training
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efficiency purposes, we recycle the experts used in MTT to generate feature mappings. We then use
a mixture of Radial Basis Function (RBF) kernels k(x, x′) =

∑K
q=1 kσq (x, x′), where kσq represents

a Gaussian kernel with bandwidth σq. We choose a mixture of K = 5 kernels with bandwidths
{1, 2, 4, 8, 16}. The hyperparameter choice is inspired by MMD GANs (Bińkowski et al., 2018; Li
et al., 2017). See below for a full description of the training objective.

MTT Loss Expert trajectories are training trajectories generated from training neural networks
on the full training set. At each distillation step, we initialize a student network that has the same
architecture as the experts. The student network’s initialization weight wQ is sampled from the
experts training trajectory by randomly selecting an expert and a random iteration t, such that
wQ

t = wD
t . We perform N gradient updates on the student network using data drawn from the

distilled distribution:

forn = 0....N − 1 : wQ
t+n+1 = wQ

t+n − α∇L(Q;wQ
t+n), Q ∼ Qθ

S

We then collect expert parameters from M training updates after iteration t, which denote as
wD

t+M . The distance between the updated student parameters and the updated expert parameters is
quantified using normalized squared error:

DMTT =
∥wQ

t+N −wD
t+M∥22

∥wD
t −wD

t+M∥22

MMD Loss We use a set of Reproducing Hilbert Kernels (RHKS) for the MMD computation
to fully leverage the power of MMD. Since we only have access to the distilled distribution Qθ

S
but not the training data distribution P , we use the empirical MMD measure: In general, given
random variable X = {x1, ..., xn} ∼ P and Y = {y1, ..., ym} ∼ Q, the unbiased estimator of the MMD
measure is Li et al. (2017):

M̂MD
2
(X,Y ) =

1(
n
2

) n∑
i ̸=j

k(xi, xj) −
1

mn

n∑
i=1

m∑
j=1

(xi, yj) +
1(
m
2

) m∑
i ̸=j

k(yi, yj) (4)

We also map the pixel space to latent feature space. For model simplicity and training efficiency
purposes, we recycle the experts used in MTT to generate feature mappings, and denote them as
ψ(·). Inspired by MMD GANs (see Li et al. (2017); Bińkowski et al. (2018)), we use a mixture of

Radial Basis Function (RBF) kernels k(x, x′) =
∑K

q=1 kσq
(x, x′), where kσq

represents a Gaussian
kernel with bandwidth σq. We choose a mixture of K = 5 kernels with bandwidths {1, 2, 4, 8, 16}.

To encourage distribution matching with the original dataset, we penalize large MMD:

LMMD =

C∑
c=1

M̂MD
2
(ψ(Dc),ψ(Sc)), (5)

where the M̂MD
2

computation is defined in Eqn. 4. Dc and Sc simply refers to the subset of the
training data or distilled data with class label c.

Appendix C. Decoder Architecture

Our decoder is adopted from the decoder part of the VAE designed by Kingma and Welling (2019),
with small modifications. First, we project the latent z in to a k dimension feature vector, which
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is then fed into a sequence of 2D ConvTranspose blocks. Each of the decoder block contains a
ConvTranspose layer followed by a BatchNorm layer and a LeakyReLU activation. For larger decoder,
we increase the latent dimension, and consequently the size of ConvTranspose blocks. After the
those blocks, there is a 2D convolutional layer followed by a tanh activation. The exact dimension of
the convolution layer differs by image output size. The original VAE was designed only for images
with size 32 × 32, and used only 3 blocks. We also increase the number of deconv blocks for larger
datasets.

Table 8: Architecture and hyperparameter details for the decoders we used Total parameters
are counted in millions. #Blocks indicates the number of convolutional blocks.

Size # Blocks Latent Dimension Total Params Output Image Size

S 5 64 0.75M 32 × 32 × 3
S 6 64 0.75M 64 × 64 × 3
M 5 1028 5.7M 64 × 64 × 3
L 5 2048 6.3M 64 × 64 × 3

Appendix D. Details on experiment setup

In this section, we provide a detailed description on experiment setups for all experiment resuls
presented in the paper.

Dataset CIFAR-10 contains 50,000 training images from 10 classes, each with dimensions of
32 × 32 × 3. CIFAR-100 contains same number of images but more classes: 100 classes with 500
images each in the training data with dimension 32 × 32 × 3. TinyImageNet consists of 100,000
images distributed across 200 classes. The images within TinyImageNet are characterized by larger
dimensions, measuring 64 × 64 × 3. ImageNet-1K contains 1000 classes with around 1300 classes
each, totalling 1.2 million images. We resized the images to 64 × 64 × 3, aligning with prior works
(Cui et al., 2022; Sachdeva and McAuley, 2023; Zhou et al., 2022b). Finally, we also include two
known ImageNet subsets: ImageNette and ImageWoof. In line with established practices from
prior work, we resize the images within both subsets of ImageNet to dimensions of 128 × 128 × 3.
Each subset comprises 10 classes in their respective training sets, at total size of around 10k images.

Dataset preprocessing For all three datasets, only a simple channel-based mean-variance scaling
is performed as the preprocessing step. For CIFAR-10 we perform ZCA whitening as done in all data
distillation work (Nguyen et al., 2020) using Kornia implementation with default parameters ((Riba
et al., 2020). To generate experts used in MTT, we also perform random simple augmentations to
the images, including rotations, flip, crop, and color changes. The preprocessing step is chosen to
mirror the baselines we make direct comparisons to.

Student network architecture The student network is a neural network consists of multiple
ConvNet blocks, and we call them ConvNet. The ConvNet configuration consists of multiple
convolutional blocks, each housing a convolutional layer, a normalization layer, ReLU activation, and
an average pooling layer. For larger datasets, we increase the number of convolutional blocks used in
the ConvNet. For CIFAR10 we use ConvNet with 3 convolutional blocks, and for TinyImageNet and
ImageNet-1K we use 4 convolution blocks. For ImageNet subsets, we use 5 convolutional blocks. In
our MMD objective, we use the features generated by those convolutional blocks to compute MMD.
Finally, a linear layer with Softmax activation is used to map the features generated by convolutional
blocks into class prediction.

17



Distributional Dataset Distillation with Subtask Decomposition

Training The distillation time is not the primary concern for data distillation tasks since it only
needs to be done once for all downstream tasks. However, methods that are overly expensive to train
might become infeasible when distilling large datasets. Because we compute and back propagate
on both MTT and MMD losses, our compute time is comparable to both method combined. For
CIFAR-10, CIFAR-100, ImageNette and ImageWoof, our method converges in fewer than 10,000
steps, usually taking less than 10 GPU hours on NVIDIA A100-SXM4-40GB. For TinyImageNet,
our method converges around 10,000 steps, totalling around 20 GPU hours. Finally, for federated
distilation on ImageNet, since we decompose into distillation sizes comparable to TinyImageNet, the
training time is similar.

For evaluation, we use SGD optimizer with momentum 0.9 and weight decay 5 × 10−4. We only
allow hyper-parameter tuning on the learning rate, number of epochs and we train student networks
until convergence.

Decoder Hyperparameters In table 9, we list the hyper-parameters we used for each setting
and the exact storage costs to store the latent priors and decoders.

Table 9: Details on decoder hyper-parameters for all experiments Decoder : refer to Table
8, # Decoders: more than one decoders for federated distillation when we aggregate from
subtasks. LPC : Latent Priors per Class refers to the number of Gaussian distributions we
used to represent each class.

Dataset Decoder # Decoders LPC Total Storage (MB)

CIFAR10 S 1 10 3.4
CIFAR10 S 1 50 7.8
CIFAR100 S 1 2 4.2
CIFAR100 M 1 5 9.7
ImageNette S 1 5 3.9
ImageWoof S 1 5 3.9

TinyImageNet S 1 2 3.4
TinyImageNet M 1 2 10
TinyImageNet L 1 10 56
ImageNet-1K S 5 1 17
ImageNet-1K M 2 2 76
ImageNet-1K L 5 10 440

Appendix E. Ablation Study

E.1 Distributional Outcome

On training accuracy Using the same training objective and using the same decoder setting, we
experiment disabling the distributional outcome. By allowing a distributional representation, a more
diverse set of samples are generated on-the-fly. As a result, the distilled distribution reaches a higher
distillation quality compared to its non-distributional counterpart. We experiment on CIFAR-10 and
TinyImageNet, shown in Figure 6. On prototype quality We also visualize samples from distilled
TinyImageNet outcomes above (with and without distributional representation) in Figure 5. We
observe that the distributional objective makes the distilled data more interpretable.

E.2 Loss Term Contribution

To study the effect of combing two objectives, we perform distillation on CIFAR-10 and TinyImageNet
with either loss terms while keeping the decoder hyper-parameters constant, results shown in Figure 6.
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Figure 5: Visualization of distilled samples from five classes using different training
objectives and fixed or distributional representation on TinyImageNet for
distributional outcomes we visualize the mean.
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Figure 6: Ablation study on dual training objective and distributional representation Both
distributional representation and dual training objective are essential for the performance
of our method.

The dual training objective yields superior performance than using either one stand alone. However,
using the MMD or MTT objective alone could already achieve good results, depending on the dataset.
While performing distillation, we observe that the dual objective consistently outperform using one
alone. From visualizations in Figure 5, the combined objective yields more interpretable results than
using either alone. While it might be possible that one can further simplify the training objective by
only using one of them, we keep the dual objective based on the above observations.

E.3 Distilled Labels

Similar to prior works, we also find that the use of distilled labels brings additional benefit to the
dataset distillation. We use softmax values generated by pretrained experts as distilled labels, an
intuitive strategy already used by Cui et al. (2022); Zhou et al. (2022b). However, since we distill
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into distributions, we use the mean of every latent prior to generate soft labels. In practice, we find
that the distilled labels for each mean work well even for randomly generated samples. Different
from existing work, our distilled distribution is more robust against having only hard labels - our
method significantly outperforms TESLA Cui et al. (2022) and FRePo Zhou et al. (2022b) when
only hard labels are used, shown in Figure 7.
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Figure 7: ImageNet-1K recovery accuracy using distilled labels or hard labels Our method
still performs well even without using distilled labels.

Appendix F. Additional Results

Here we show additional results on CIFAR-100, CIFAR-10, ImageNette and ImageWoof, and compare
our methods to methods that distill into image space: MTT (Cazenavette et al., 2022) and FTD (Du
et al., 2022) as well as methods that distill into latent space HaBa (Liu et al., 2022), LinBa (Deng and
Russakovsky, 2022) and GLaD (Cazenavette et al., 2023). We report CIFAR-100 results in Table 10,
CIFAR-10 results in Table 11, and ImageNette and ImageWoof results in Table 12. Additionally, we
also report cross-architecture results for CIFAR-10 (see Table 13) and for ImageNette and ImageWoof
(See Table 14, 15).

Table 10: CIFAR-100 distilled and evaluated on ConvNet
Storage Cost (MB) MTT FTD LinBa D3(Ours)

5 (∼ 1IPC) 24.3 (0.3) 25.2 (0.2) 34.0 (0.4) 37.3 (0.7)

10 (∼ 10IPC) 40.1 (0.4) 43.4 (0.3) 46.8 (0.4)

50 (∼ 50IPC) 47.7 (0.3) 50.7 (0.2)

Table 11: CIFAR-10 distilled and evaluated on ConvNet
Storage Cost (MB) MTT HaBa LinBa Ours

0.5 (∼1IPC) 46.3 (0.8) 48.3 (0.8) 66.4 (0.4)

5 (∼10IPC) 65.3 (0.7) 69.9 (0.4) 72.2 (0.4) 71.8 (0.2)

25 (∼50IPC) 71.6 (0.2) 74.0 (0.2) 73.6 (0.5) 74.4 (0.3)
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Table 12: ImageNette and ImageWoof distilled and evaluated on ConvNet N/A: indicates
the distillation size is smaller than the minimum size the method can distill.

Dataset Storage (MB) Method

MTT HaBa FTD Ours

ImageNette 5(∼0.5IPC) N/A N/A 71.04 (0.71)

10(∼1IPC) 47.7 (0.9) 51.92 (1.65) 52.2 (1.0)

100(∼10IPC) 63.0 (1.3) 64.72 (1.60) 67.7 (0.7)

ImageWoof 5(0.5IPC) N/A N/A 41.60 (1.15)

10(∼1IPC) 28.6 (0.8) 32.40 (0.67) 35.8 (1.8)

100(∼10IPC) 35.8 (1.8) 38.60 (1.26) 38.8 (1.4)

Table 13: CIFAR-10 cross-architecture generalization results we scaled down our distilled
dataset by reducing number of latent priors per class such that our performance on ConvNet
aligns with baseline (MTT)

Evaluation Model

Method Storage Cost (MB) ConvNet ResNet18 VGG11 AlexNet

MTT 5 (∼10IPC) 65.3 (0.7) 46.4 (0.6) 50.3 (0.8) 34.2 (2.6)

D3(ours) 3 (∼10IPC) 66.64 (0.26) 61.57 (0.48) 59.70 (0.48) 54.56 (0.74)

Table 14: ImageNette and ImageWoof cross-architecture generalization results Unseen
architecture results from averaging ResNet18, VGG11, AlexNet, Vision Transformer.

ImageNette ImageWoof

Method Storage Cost (MB) ConvNet Unseen ConvNet Unseen

MTT 10(∼1IPC) 47.9 (0.9) 24.1 (1.8) 28.6 (0.8) 16.0 (1.2)

GLaD MTT 10(∼1IPC) 38.7 (1.6) 30.4 (1.5) 23.4 (1.1) 17.1 (1.1)

GLaD DC 10(∼1IPC) 35.4 (1.2) 31.0 (1.6) 22.3 (1.1) 17.8 (1.1)

GLaD DM 10 (∼1IPC) 32.3 (1.7) 21.9 (1.1) 21.1 (1.5) 15.2 (0.9)

D3(ours) 5 (∼0.5IPC) 71.04 (0.7) 48.95 (1.3) 41.60 (1.2) 28.82 (0.93)

Table 15: ImageNet Subset cross-architecture performances breakdown Per-architecture
breakdown for the unseen average listed in Table 14

Evaluation Model

Dataset Storage Cost (MB) ConvNet ResNet VGG11 AlexNet ViT

ImageNette 5(∼0.5IPC) 71.04 (0.71) 47.28 (0.94) 64.80 (1.2) 49.20 (1.45) 34.5 (1.5)

ImageWoof 5(∼0.5IPC) 41.60 (1.15) 28.04 (0.51) 35.48 (1.07) 29.28 (1.4) 22.48 (0.73)
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Appendix G. Samples from distilled distribution

Figure 8: Samples from Distilled Distribution on TinyImageNet under 100MB storage cost. 1 latent
priors per class visualized
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Figure 9: Samples from Distilled Distribution on ImageNet-1K under 100MB storage cost. 2 latent
priors per class visualized
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Figure 10: Samples from Distilled Distribution on ImageNet-1K under 100MB storage cost (contin-
ued). 2 latent priors per class visualized
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