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Abstract

Functions of the ratio of the densities p/q are widely used in machine learning to quantify
the discrepancy between the two distributions p and q. For high-dimensional distributions,
binary classification-based density ratio estimators have shown great promise. However,
when densities are well separated, estimating the density ratio with a binary classifier is
challenging. In this work, we show that the state-of-the-art density ratio estimators per-
form poorly on well separated cases and demonstrate that this is due to distribution shifts
between training and evaluation time. We present an alternative method that leverages
multi-class classification for density ratio estimation and does not suffer from distribution
shift issues. The method uses a set of auxiliary densities {mk}K

k=1 and trains a multi-class
logistic regression to classify the samples from p, q and {mk}K

k=1 into K + 2 classes. We
show that if these auxiliary densities are constructed such that they overlap with p and q,
then a multi-class logistic regression allows for estimating log p/q on the domain of any of
the K + 2 distributions and resolves the distribution shift problems of the current state-of-
the-art methods. We compare our method to state-of-the-art density ratio estimators on
both synthetic and real datasets and demonstrate its superior performance on the tasks of
density ratio estimation, mutual information estimation, and representation learning. Code:
https://www.blackswhan.com/mdre/

1 Introduction

Quantification of the discrepancy between two distributions underpins a large number of machine learning
techniques. For instance, distribution discrepancy measures known as f -divergences (Csiszár, 1964), which
are defined as expectations of convex functions of the ratio of two densities, are ubiquitous in many domains
of supervised and unsupervised machine learning. Hence, density ratio estimation is often a central task
in generative modeling, mutual information and divergence estimation, as well as representation learning
(Sugiyama et al., 2012; Gutmann & Hyvärinen, 2010; Goodfellow et al., 2014; Nowozin et al., 2016; Srivastava
et al., 2017; Belghazi et al., 2018; Oord et al., 2018; Srivastava et al., 2020). However, in most problems
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of interest, estimating the density ratio by modeling each of the densities separately is significantly more
challenging than directly estimating their ratio for high dimensional densities (Sugiyama et al., 2012). Hence,
direct density ratio estimators are often employed in practice.

One of the most commonly used density ratio estimators (DRE) utilizes binary classification via logistic
regression (BDRE). Once trained to discriminate between the samples from the two densities, BDREs have
been shown to estimate the ground truth density ratio between the two densities (e.g. Gutmann & Hyväri-
nen, 2010; Gutmann & Hirayama, 2011; Sugiyama et al., 2012; Menon & Ong, 2016). BDREs have been
tremendously successful in problems involving the minimization of the density-ratio based estimators of dis-
crepancy between the data and the model distributions even in high-dimensional settings (Nowozin et al.,
2016; Radford et al., 2015). However, they do not fare as well when applied to the task of estimating the dis-
crepancy between two distributions that are far apart or easily separable from each other. This issue has been
characterized recently as the density-chasm problem by Rhodes et al. (2020). We demonstrate this in Figure
1 where we employ a BDRE to estimate the density ratio between two 1-D distributions, p = N (−1, 0.1)
and q = N (1, 0.2) shown in panel (a). Since p and q are considerably far apart from each other, solving the
classification problem is relatively simple as illustrated by the visualization of the decision boundary of the
BDRE. However, as shown in panel (b), even in this simple setup, BDRE completely fails to estimate the
ratio. Kato & Teshima (2021) have also confirmed that most DREs, especially those implemented with deep
neural networks, tend to overfit to the training data in some way when faced with the density-chasm prob-
lem. Since BDRE-based plug-in estimators are often used in many high-dimensional tasks such as mutual
information estimation, representation learning, energy-based modeling, co-variate-shift resolution, and im-
portance sampling (Rhodes et al., 2020; Choi et al., 2021b;a; Sugiyama et al., 2012), resolving density-chasm
is an important problem of high practical relevance.

A recently introduced solution to the density-chasm problem, telescopic density-ratio estimation (TRE;
Rhodes et al., 2020), tackles it by replacing the easier-to-classify, original logistic regression problem, by a set
of harder-to-classify logistic regression problems. In short, TRE constructs a set of K auxiliary distributions
({mk}K

k=1) to bridge the two target distributions (p =: m0 and q =: mK+1) of interest and then trains a
set of K + 1 BDREs on every pair of consecutive distributions (mk−1 and mk for k = 1, . . . , K), which are
assumed to be close enough (i.e. not easily separable) for BDREs to work well. After that, an overall density
ratio estimate is obtained by taking the cumulative (telescopic) product of all individual estimates.

In this work, we argue that the aforementioned solution to the density chasm problem has an inherent issue
of distribution shift that can lead to significant inaccuracies in the final density ratio estimation. Notice that
the i-th BDRE in the chain of BDREs that TRE constructs is only trained on the samples from distributions
mi and mi+1. However, post-training, it is typically evaluated on regions where the distributions from the
original density ratio estimation problem (i.e. p and q) have non-negligible mass. If the high-probability
regions of p, q and the auxiliary distributions mi do not overlap, the training and evaluation distributions
for the i-th BDRE are different. Because of this distribution shift between training and evaluation, the overall
density ratio estimation can end up being inaccurate (see Figure 2 and Section 2.1 for further details). We
here provide another solution to the density-chasm problem that avoids this distribution shift.

We present Multinomial Logistic Regression based Density Ratio Estimator (MDRE), a novel
method for density ratio estimation that solves the density-chasm problem without suffering from distribution
shift. This is done by using auxiliary distributions and multi-class classification. MDRE replaces the easy
binary classification problem with a single harder multi-class classification problem. MDRE first constructs
a set of K auxiliary distributions {mk}K

k=1 that overlap with p and q and then uses multi-class logistic
regression on the K + 2 distributions to obtain a density ratio estimator of log p/q. We will show that the
multi-class classification formulation avoids the distribution shift issue of TRE.

The key contributions of this work are as follows:

1. We study the state-of-the-art solution to the density-chasm problem (TRE; Rhodes et al., 2020)
and identify its limitations arising from distribution shift. We illustrate that this inherent issue can
significantly degrade its density ratio estimation performance.
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1.0(a) BDRE class probability
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(b) BDRE log density-ratio
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(c) MDRE class probability
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(d) MDRE log density-ratio

Figure 1: BDRE vs proposed MDRE on estimation of log density ratio where p = N (−1, 0.1) and q =
N (1, 0.2). For MDRE, the auxillary distribution m is Cauchy C(0, 1). Plots (a) and (c) show the class
probabilities P (Y |x) learned for BDRE and MDRE respectively overlayed on the plots of p, q and m.
Plots (b) and (d) show the estimated log density-ratio by BDRE and MDRE respectively. Using auxiliary
distribution m allows MDRE to better estimate the log density-ratio.

2. We formally establish the link between multinomial logistic regression and density ratio estimation
and propose a novel method (MDRE) that uses auxiliary distributions to train a multi-class clas-
sifier for density ratio estimation. MDRE resolves the aforementioned distribution shift issue by
construction and effectively tackles the density chasm problem.

3. We construct a comprehensive evaluation protocol that significantly extends on benchmarks used in
prior works. We conduct a systematic empirical evaluation of the proposed approach and demon-
strate the superior performance of our method on a number of synthetic and real datasets. Our
results show that MDRE is often markedly better than the current state-of-the-art of density ratio
estimation on tasks such as f -divergence estimation, mutual information estimation, and represen-
tation learning in high-dimensional settings.

2 Related Work

Telescopic density-ratio estimation (TRE, Rhodes et al., 2020) uses a two step, divide-and-conquer strategy
to tackle the density-chasm problem. In the first step, they construct K waymark distributions {mk}K

k=1
by gradually transporting samples from p towards samples from q. Then, they train K BDREs, one for
each consecutive pair of distributions. This allows for estimating the ratio rp/q as the product of K + 1
BDREs, rp/q := p

q = p
m1

× · · · × mK

q . Rhodes et al. (2020) introduced two schemes for creating waymark
distributions that ensure that consecutive pairs of distributions are packed closely enough so that none of
the K + 1 BDREs suffer from the density-chasm issue. Hence, TRE addresses the density-chasm issue by
replacing the ratio between p and q with a product of K + 1 intermediate density ratios that, by design of
the waymark distribution, should not suffer from the density-chasm problem. In a new work, Choi et al.
(2021b) introduced DRE-∞, a method that takes the number of waymark distributions in TRE to infinity
and derives a limiting objective that leads to a more scalable version of TRE.

F-DRE is other interesting related work that comes from Choi et al. (2021a). F-DRE uses a FLOW-
based model (Rezende & Mohamed, 2015) which is trained to project samples from a mixture of the two
distributions onto a standard Gaussian. They then train a BDRE. It is easy to show that any bijective
map will preserve the original density ratio rp/q in the feature space as the Jacobian correction term simply
cancels out. However, due to the bijectivity of the FLOW map, such a method cannot bring the projected
distributions any closer than the discrepancy between the original distributions. At best, the method can
shift the discrepancy between the original distributions along different moments after projection. Due to
this issue, we found that F-DRE did not work well for the problems we considered (see experimental results
in Section 4). Recently, Liu et al. (2021) introduced an optimization-based solution to the density-chasm
problem in exponential family distributions by using (a) normalized gradient descent and (b) replacing the
logistic loss with an exponential loss. Finally, while BDRE remains the dominant method of density ratio
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estimation in recent literature, prior works, such as Bickel et al. (2008) and Nock et al. (2016), have studied
multi-class classifier-based density ratio estimation for estimating ratios between a set of densities against a
common reference distribution and its applications in multi-task learning.

2.1 TRE’s performance can degrade due to training-evaluation distribution shifts

In supervised learning, distribution shift (Quiñonero-Candela et al., 2009) occurs when the training data
(x, y) ∼ ptrain and the test data (x, y) ∼ ptest come from two different distributions, i.e. ptrain ̸= ptest.
Common training methods, such as those used in BDRE, only guarantee that the model performs well on
unseen data that comes from the same distribution as ptrain. Thus, in the case of distribution shift at test
time, the model’s performance degrades proportionately to the shift. We now show that a similar distribution
shift can occur in TRE when distributions p and q are sufficiently different. Recall that in TRE, we use
BDREs to estimate K + 1 density ratios p/m1, m2/m1, . . . , mK/q that are combined in a telescopic product
to form the overall ratio p/q. Let us denote the estimates of the K + 1 ratios by η̂1, . . . , η̂K+1.

Given the theoretical properties of BDRE, for any i ∈ {1, . . . , K +1}, η̂i estimates rmi−1/mi
over the support

of mi (Sugiyama et al., 2012; Gutmann & Hyvärinen, 2010; Menon & Ong, 2016). However, in TRE, when we
evaluate the target ratio p/q on the supports of p and q, we evaluate the individual η̂i on domains for which
we lack guarantees that they perform well. Since the overall estimator for p/q ≈ η̂1 ∗ · · · ∗ η̂K+1 combines
multiple ratio estimators, it suffers from the distribution shift issue if any of the individual estimators’
performance deteriorates. Thus, if the supports of {mi}K

i=1, p, and q are different, or when the samples from
{mi}K

i=1, p, and q do not overlap well enough, the training and evaluation domains of the η̂i are different
and we expect the ratio estimate η̂i and, in turn, the overall estimator for p/q to be poor. We now illustrate
this with a toy example.

We consider estimating the density ratio between p = N (−1, 0.1) and q = N (1, 0.2). Since, p and q are well
separated, we introduce three auxiliary distributions m1, m2, m3 to bridge them, providing the waymarks
that TRE needs. The auxiliary distributions m1, m2, m3 are constructed with the linear-mixing strategy
that will be described in Section 3.2. This setup is shown in the top-left panel of Figure 2. We train 4
BDREs η̂1, η̂2, η̂3, η̂4 to estimate ratios p/m1, m1/m2, m2/m3 and m3/q respectively. We begin by showing
that each of the trained BDREs estimates their corresponding density ratio accurately on their corresponding
training distributions. To show this, in panels 2-5 in the first row of Figure 2, we evaluate η̂1, η̂2, η̂3, η̂4 on
samples from their respective denominator densities m1, m2, m3, q and plot them via a scatter plot where
the x-axis is labeled with the distribution that we draw the samples from and the y-axis is the log-density
ratio (red). We plot the true density ratio in blue for comparison. As evident, red and blue scatter plots
overlap significantly, indicating the individual ratio estimators are accurate on their respective denominator
(training) distributions.

Next, we evaluate the BDREs η̂1, η̂2, η̂3, η̂4, on samples from p and q instead of their corresponding training
distributions as before. Distributions p and q are shown in panel 1 of the second row in Figure 2. In the rest
of the panels (2-5) in the second row, estimators η̂1, η̂2, η̂3, η̂4 are compared to the ground-truth log-density
ratios (blue) p/m1, m1/m2, m2/m3 and m3/q that are also evaluated on samples from p and q. Unlike in
row 1, the estimated log-density ratios do not match the ground-truth. This reflects the training-evaluation
distribution-shift issues pointed out above. We show now that this deterioration in accuracy on the level
of the individual BDREs results in an deterioration of the overall performance of TRE. To this end, we
first recover the TRE estimator by chaining the individually trained BDREs via a telescoping product, i.e.
η̂1 ∗ η̂2 ∗ η̂3 ∗ η̂4 and then evaluate it on samples from all the 5 distributions p, m1, m2, m3, q. The results are
shown in panels 1-5 of the third row. The estimated log-density ratios (red) do not match the corresponding
ground-truth log-density ratios (blue), which demonstrates that the distribution-shift in the training and
evaluation distributions of the individual BDREs significantly degrades the overall estimation accuracy of
TRE. Additional issues occur when both p and q do not have full support, as discussed in Appendix G.
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Figure 2: TRE for p = N (−1, 0.1) and q = N (1, 0.2) from Figure 1. In all scatter plots, x-axis denotes
the sampling distribution and y-axis denotes the log-density-ratio. The density plot in the first row shows
p, q and the 3 waymarks; the density plot in the second row shows p and q only. The scatter plots in the
first row show individual density ratio estimators evaluated on samples from their corresponding training
data (denominator density), demonstrating accurate estimation on the training set. The scatter plots in the
second show individual density ratio estimators evaluated on samples from p and q. The estimation accuracy
has degraded notably due to the train-eval distribution shift. The last row shows the performance of the
overall density ratio estimator on samples from p, m1, m2, m3, q. We see that the overall ratio estimate is
significantly affected by the deterioration of the individual ratio estimates, illustrating the sensitivity of TRE
to distribution shift problems in case of well-separated distributions.

3 Density Ratio Estimation using Multinominal Logistic Regression

We propose Multinomial Logistic Regression based Density Ratio Estimator (MDRE) to tackle
the density-chasm problem while avoiding the distribution shift issues of TRE. As in TRE, we introduce a
set of K ≥ 1 auxiliary distributions {mk}K

k=1. But, in constrast to TRE, we then formulate the problem
of estimating log p/q as a multi-class classification problem rather than a sequence of binary classification
problems. We show that this change leads to an estimator that is accurate on the domain of all K + 2
distributions and, therefore, does not suffer from distribution shift.

3.1 Loss function

We here establish a formal link between density ratio estimation and multinomial logistic regression. Consider
a set of C distributions {pc}C

c=1 and let px(x) =
∑C

c=1 πcpc(x) be their mixture distribution, with prior
class probabilities πc.1 The multi-class classification problem then consists of predicting the correct class
Y ∈ {1, . . . , C} from a sample from the mixture px. For this purpose, we consider the model

P (Y = c|x; θ) = πc exp(hc
θ(x))∑C

k=1 πk exp(hk
θ(x))

, (1)

1In our simulations, we will use a uniform prior over the classes.
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where the hc
θ(x), c = 1, . . . , C are unnormalized log probabilities parametrized by θ. We estimate θ by

minimizing the negative multinomial log-likelihood (i.e. the softmax cross-entropy loss) L(θ)

L(θ) = −
C∑

c=1
πcEx∼pc

[log P (Y = c|x; θ)] =
C∑

c=1
πcEx∼pc

[
− log πc − hc

θ + log
C∑

k=1
πk exp(hk

θ(x))
]
, (2)

where, in practice, the expectations are replaced with a sample average. We denote the optimal parameters by
θ∗ = arg minθ L(θ). To ease the theoretical derivation, we consider the case where the hc

θ(x) are parametrized
in such a flexible way that we can consider the above loss function to be a functional of C functions h1, . . . , hC ,

L(h1, . . . , hC) =
C∑

c=1
πcEx∼pc

[
− log πc − hc + log

C∑
k=1

πk exp(hk(x))
]
. (3)

The following propositions shows that minimizing L(h1, . . . , hC) allows us to estimate the log ratios between
any pair of the C distributions pc.
Proposition 3.1. Let ĥ1, . . . , ĥC be the minimizers of L(h1, . . . , hC) in equation 3. Then the density ratio
between pi(x) and pj(x) for any i, j ≤ C is given by

log pi(x)
pj(x) = ĥi(x) − ĥj(x) (4)

for all x where px(x) =
∑

c πcpc(x) > 0.

Proof. We first note that the sum of expectations
∑C

c=1 πcEx∼pc
in equation 3 is equivalent to the expectation

with respect to the mixture distribution px. Writing the expectation as an integral we obtain

L(h1, . . . , hC) =
C∑

c=1
πcEx∼pc

[− log πc − hc(x)] +
∫

px(x)[log
C∑

k=1
πk exp(hk(x))]dx. (5)

The functional derivative of L(h1, . . . , hC) with respect to hi, i=1. . . , C, equals

δL
δhi

= −πipi(x) + px(x) πi exp(hi(x))∑C
k=1 πk exp(hk(x))

(6)

for all x where px(x) > 0. Setting the derivative to zero gives the necessary condition for an optimum

πipi(x)
px(x) = πi exp(hi(x))∑C

k=1 πk exp(hk(x))
, i = 1, . . . , C, and for all x where px(x) > 0. (7)

The left-hand side of equation 7 equals the true conditional probability P ∗(Y = i|x) = πipi(x)
px(x) . Hence, at

the critical point, ĥ1, . . . , ĥC are such that P ∗(Y |X) is correctly estimated. From equation 7, it follows that
for two arbitrary i and j, we have (πipi)/(πjpj) = (πi exp(ĥi))/(πj exp(ĥj)) i.e.

log pi(x)
pj(x) = ĥi(x) − ĥj(x) (8)

for all x where px(x) > 0, which concludes the proof.

Remark 3.2 (Identifiability). While we have C unknowns h1, . . . , hC and C equations in equation 7, there is
a redundancy in the equations because

C∑
i=1

πipi(x)
px(x) =

C∑
i=1

πi exp(hi(x))∑C
k=1 πk exp(hk(x))

=
∑C

i=1 πi exp(hi(x))∑C
k=1 πk exp(hk(x))

= 1

This means that we cannot uniquely identify all hi by minimising equation 3. However, the difference hi −hj ,
for i ̸= j, can be identified and is equal to the desired log ratio between pi and pj per equation 8.
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Remark 3.3 (Effect of parametrisation and finite sample size). In practice, we only have a finite amount of
training data and the parametrisation introduces constraints on the flexibility of the model. With additional
assumptions, e.g. that the true density ratio log pi(x) − log pj(x) can be modeled by the difference of hi

θ(x)
and hj

θ(x), we show in Appendix A that our ratio estimator is consistent. We here do not dive further
into the asymptotic properties of the estimator but focus on the practical applications of the key result in
equation 8.

Importantly, equation 8 allows us to estimate rp/q by formulating our ratio estimation problem as a multi-
nomial nonlinear regression problem as summarized in the following corollary.
Corollary 3.4. Let the distributions of the first two classes be p and q, respectively, i.e. p1 ≡ p, p2 ≡ q,
and the remaining K distributions be equal to the auxiliary distributions mi, i.e. p3 ≡ m1, . . . , pK+2 ≡ mK .
Then

log r̂p/q(x) = ĥ1(x) − ĥ2(x). (9)

Remark 3.5 (Free from distribution shift issues). Since equation 8 holds for all x where the mixture px(x) > 0,
the estimator r̂p/q(x) in equation 9 is valid for all x in the union of the domain of p, q, m1, . . . , mK . This
means that MDRE does not suffer from the distribution shift problems that occur when solving a sequence
of binomial logistic regression problems as in TRE. We exemplify this in Section 3.3 after introducing three
schemes to construct the auxiliary distributions m1, . . . , mK .

3.2 Constructing the auxiliary distributions

In MDRE, auxiliary distributions need to be constructed such that they have overlapping support with the
empirical densities of p and q. This allows the multi-class classification probabilities to be better calibrated
and leads to an accurate density ratio estimation. We demonstrate this in panel (c) of Figure 1, where
p = N (−1, 0.1) and q = N (1, 0.2) and the single auxiliary distribution m is set to be Cauchy C(0, 1) that
clearly overlaps with the other two distributions. The classification probabilities are shown as the scatter
plot that is overlayed on the empirical densities of these distributions. Compared to the BDRE case in panel
(a), which has high confidence in regions without any data, the multi-class classifier assigns, for p and q,
high class probabilities only over the support of the data and not where there are barely any data points
from these two distributions. Moreover, the auxiliary distribution well covers the space where p and q have
low density, which provides the necessary training data to inform the values of ĥ1(x) and ĥ2(x) in that area,
which leads to an accurate estimate of the log-density ratio shown in panel (d). This is contrast to BDRE
in panel (a) where the classifier, while constrained enough to get the classification right, is not learned well
enough to also get the density ratio right (panel b). This subtle, yet important distinction between the
usage of auxiliary distributions in MDRE compared to BDRE and TRE enables MDRE to generalize on
out-of-domain samples, as we will demonstrate in Section 4.1.

Next, we briefly describe three schemes to construct auxiliary distributions for MDRE and leave the details
to Appendix B: (1) Overlapping Distribution Unlike TRE, the formulation of MDRE does not require
“gradually bridging” the two distributions p and q, hence, we introduce a novel approach to constructing
auxiliary distributions. We define mk as any distribution whose samples overlap with both p and q, and
p << mk, q << mk. This includes heavy-tailed distributions (e.g. Cauchy, Student-t), normal distributions,
uniform distributions, or their mixtures. We use this scheme in all low-dimensional simulations. (2) Linear
Mixing In this scheme, mk is defined as the distribution of the samples generated by linearly combining
samples Xp = {xi

p}N
i=1 and Xq = {xi

q}N
i=1 from distributions p and q, respectively. The generative process

for a single sample xi
mk

from mk is given by xi
mk

= (1 − αk)xi
p + αkxi

q, with xp ∈ Xp, xi
q ∈ Xq. This

construction is similar to the linear combination scheme for auxiliary distributions introduced by Rhodes
et al. (2020) with a few key differences that we expand upon in Appendix B. One difference is that αk is
not limited t o 0 < αk < 1, which allows for non-convex mixtures that completely surround both p and q.
We use this construction scheme in higher-dimensional simulations. (3) Dimension-wise Mixing This
construction scheme was introduced in (Rhodes et al., 2020). Samples from the single auxiliary distribution
m are obtained by combining different subsets of dimensions from samples from p and q. We use this scheme
for experiments involving high-dimensional image data.
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Figure 3: MDRE with m = Cauchy(0, 1). The first density plots shows the target densities as well as the
auxiliary distribution (in green, hard to see due to heavy tail and the range of axes). The three scatter plots
show the estimated (red) and true (blue) density ratio p/q evaluated on samples from p, m, and q. MDRE
accurately estimates the ratio across the input domain. Contrast with Figure 2.

Figure 4: MDRE using TRE’s auxiliary distributions. Each scatter plot shows the overall log-density ratio
estimates on samples from the distribution on the x-axis (MDRE in red and true ratio in blue). MDRE is
capable of accurately estimating ratios on all samples. Contrast with the bottom row of Figure 2.

3.3 Free from distribution-shift problems

We continue with the example task of estimating the density ratio between p = N (-1, 0.1) and q = N (1, 0.2)
and here illustrate Remark 3.5 that MDRE does not suffer from the distribution shift problem identified in
Section 2.1. We test MDRE with two types auxiliary distributions. First using a heavy-tailed distribution
(m = Cauchy(0, 1)), under the overlapping distributions scheme, and second, with waymark distributions
m1, m2, m3 as used by TRE in Figure 2 using their linear-mixing construction scheme.

Figure 3 shows the result for the heavy tailed Cauchy(0, 1) auxiliary distribution (green, shown in the left
most figure). We can see that the log-ratio learned by MDRE is accurate even beyond the empirical support
of p and q. This is because MDRE is trained on samples from the mixture of p, q and m and hence, per
Remark 3.5, does not encounter distribution-shift, over the support of the mixture distribution. Figure 4
shows the result when using the auxiliary distributions of TRE that we used in Figure 2. We see that the
learned log-ratio well matches the true log-ratio on samples from p and q, as well as the auxiliary distributions.
This can be directly compared to third row of Figure 2 where TRE suffers from distribution shift problems
and does not yield a well-estimated log-ratio. Note that we do not present results that correspond to the
second row of 2 since the estimation of the log-ratio in MDRE does not depend on any intermediate density
ratios.
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p q True KL BDRE TRE F-DRE MDRE (ours)
N (−1, 0.08) N (2, 0.15) 200.27 21.74 ± 4.10 136.05 ± 5.91 14.87 ± 1.72 203.32 ± 2.01
N (−2, 0.08) N (2, 0.15) 355.82 20.22 ± 3.64 208.11 ± 18.31 14.22 ± 5.30 360.35 ± 1.37

Table 1: 1D density ratio estimation task for p and q with large first-order and higher-order differences. In all cases,
MDRE outperforms all the baselines.

(a) p = N (−1, 0.08), q = N (2, 0.15) (b) p = N (−2, 0.08), q = N (2, 0.15)

Figure 5: Log density-ratio estimates corresponding to the numbers reported in Table 1. Note that the ground truth
and MDRE curves are overlapping, while all the other estimators are significantly worse.

4 Experiments

We here provide an empirical analysis of MDRE on both synthetic and real data, showing that it performs
better than previous methods—BDRE, TRE, and F-DRE—on three different density ratio estimation tasks.
We consider cases where numerator and denominator densities differ because their mean is different, i.e. p
and q exhibit first-order discrepancies (FOD), and cases where the difference stems from different higher-
order moments (higher-order discrepancies, HOD). Ratio estimation is closely related to KL divergence and
mutual information estimation since the KL divergence is the expectation of the log-ratios under p, and
mutual information can be expressed as a KL divergence between joint and product of marginals. Being
quantities of core interest in machine learning, we will use them to evaluate the ratio estimation methods.

4.1 1D Gaussian experiments with large KL divergence

In the following 1D experiments, we consider two scenarios, one where p = N (−1, 0.08) and q = N (2, 0.15),
and one where the mean of p is shifted to −2 in order to increase the degree of separation between the two
distributions. In both cases, MDRE’s auxiliary distribution m is Cauchy(0,1), so that we have a three-class
classification problem (p, q, m) and three functions hi

θ that parameterize the classifier of MDRE. The three
functions are quadratic polynomials of the form w1x2 +w2x+b. For all the methods we set the total number
of samples to 100K.2 We provide the exact hyperparameter settings for MDRE and other baselines in Table
5 in Appendix C.

Table 1 shows the results. We can see that MDRE yields more accurate estimates of the KL divergences
than the baselines, which are off by a significant margin.

We note that KL estimation only requires evaluating the log-ratios on samples from the numerator dis-
tribution p. In Figure 5, we thus show results for all methods where we evaluate the estimated log-
ratios on a wide interval (-12, 12). The figure shows that none of the baseline methods can accurately
estimate the ratio well on the whole interval while MDRE performs well overall. This is important be-

2We found that MDRE’s results are unchanged even when using smaller sample sizes of 1K or 10K, see Table 4 in Appendix C.
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Dim µ1, µ2 True MI BDRE TRE F-DRE MDRE (ours)

40 0, 0 20 10.90 ± 0.04 14.52 ± 2.07 14.87 ± 0.33 18.81 ± 0.15
-1, 1 100 29.03 ± 0.09 33.95 ± 0.14 13.86 ± 0.26 119.96 ± 0.94

160 0, 0 40 21.47 ± 2.62 34.09 ± 0.21 12.89 ± 0.87 38.71 ± 0.73
-0.5, 0.6 136 24.88 ± 8.93 69.27 ± 0.24 13.74 ± 0.13 133.64 ± 3.70

320 0, 0 80 23.47 ± 9.64 72.85 ± 3.93 9.17 ± 0.60 87.76 ± 0.77
-0.5, 0.5 240 24.86 ± 4.07 100.18 ± 0.29 10.53 ± 0.03 217.14 ± 6.02

Table 2: High-dimensional mutual information estimation task. MDRE is able to accurately estimate the MI often
by a very large margins.

cause it means that the ratio is well estimated in regions where p and q have little probability mass.
These results demonstrate the effectiveness of MDRE with a single auxiliary distribution whose samples
overlaps with those from both p and q, in lieu of using a chain of BDREs with up to K = 28 closely-
packed auxiliary distributions as used by TRE. Please see Appendix C for additional results and details.

8 6 4 2 0 2 4
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Figure 6: Bayesian analysis of MDRE for p =
N (−1.0, 0.1), q = N (1.0, 0.2).

To provide further clarity into MDRE’s density ratio es-
timation behavior, we analyze the uncertainty of its log
ratio estimates using Bayesian analysis. We use a stan-
dard normal prior on the classifier parameters and obtain
posterior samples with Hamiltonian Monte-Carlo. These
posterior samples then yield samples of the density ra-
tio estimates. Figure 6 shows that the high accuracy of
MDRE’s KL divergence estimates can be attributed to
MDRE being confidently accurate around the union of
the high density regions of both p and q. A more detailed
analysis is provided in Appendix D.

4.2 High dimensional experiments with large MI

Following Rhodes et al. (2020), we use the MI estimation benchmark from Belghazi et al. (2018); Poole et al.
(2019) to evaluate MDRE on a more challenging, higher-dimensional problem. In this task, the goal is to
estimate the mutual information between a standard normal distribution and a Gaussian random variable
x ∈ R2d with a block-diagonal covariance matrix where each block is 2 × 2 with ones on the diagonal and
ρ on the off-diagonal. The correlation coefficient ρ is computed from the number of dimensions and the
target mutual information I = −d/2 log(1 − ρ2). Since this problem construction only induces higher-order
discrepancies (HOD), we added an additional challenge by moving the means of the two distributions, thus
additionally inducing first-order discrepancies (FOD).

For MDRE, we model the hi
θ with quadratic functions of the form xT W1x + W2x + b. We use linear-mixing

to construct each mk, where K = 3 or K = 5. In Appendix E, we provide the exact configurations for
MDRE in Table 6 and explain how to choose m and K in practice.

Table 2 shows the results for each MI task averaged across 3 runs with different random seeds. MDRE
outperforms all baselines in the original MI task where the means of the distribution are the same. The
difference between the performance of MDRE and the baselines is particularly stark when the means are
allowed to be nonzero. Only MDRE estimates the MI reasonably well while all baselines dramatically
underestimate it. We further note that MDRE only uses up to 5 auxiliary distributions, lowering its
compute requirements compared to TRE, which is the next best performing method and uses up to 15
auxiliary distributions for its telescoping chain.

We found that the resolution proposed by Kato & Teshima (2021) to overcome the over-fitting issue in
Bregman Divergence minimization-based DREs, does not work well in practice. On the high-dimensional
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setup of row 2 in Table 2, while the ground truth MI is 100, and MDRE estimates it as 119 ± 0, 94, the best
model from Kato & Teshima (2021) yields 1.60, significantly underestimating the true value and being a
factor of ten smaller than the classifier-based DRE baselines. For further results, such as plots of estimated
log ratio vs. ground-truth log ratio, training curves, and more, please see Appendix E.

Above, following prior work, we evaluated the methods on problems where p and q are normal distributions.
To enhance this analysis, we further evaluate MDRE on the three new experimental setups below. The
results are summarized in Table 3.

Breaking Symmetry In our high-dimensional experiments reported in Table 2, the means of the Gaussian
distributions p and q were symmetric around zero in the majority of cases. In order to ensure that
this symmetry did not provide an advantage to MDRE, we also evaluate it on Gaussians p and q with
randomized means. The results are shown in rows 2 and 6 of Table 3. We see that MDRE continues to
estimate the ground truth KL divergence accurately, demonstrating that it did not benefit unfairly from
the symmetry of distributions around zero.

Model Mismatch In rows 4, 5, 7, and 8 of Table 3, we evaluate MDRE by replacing one or both distri-
butions p and q with a Student-t distribution of the same scale with randomized means. For the Student-t
distributions, we set the degrees of freedom as 5, 10 or 20. These experiments test how well MDRE performs
when there is model mismatch, i.e. how MDRE performs using the same quadratic model that was used
when p and q were set to be Gaussian with lighter tails. We find that MDRE is still able to accurately
estimate the ground truth KL in these cases. We found the same to be true for other test distributions such
as a Mixture of Gaussians (shown in row 3 of Table 3).

Finite Support p and q Finally, we test MDRE on another problem where p and q are finite support
distributions that have both FOD and HOD. This is done by setting p and q to be truncated normal
distributions, as shown in row 1 of Table 3. We also set m to be a truncated normal distribution with its
scale set to 2 to allow it to have overlap with both p and q. This setting is similar to the 1D Gaussian example
illustrated in Section 3.3 and MDRE manages to estimate the ground-truth KL divergence accurately.

Dim p q m True KL Est. KL

1
Truncated Normal
loc=-1, scale=0.1
support=(-1.1,-0.9)

Truncated Normal
loc=1, scale=0.2
support=(-1.1,1.2)

Truncated Normal
loc=-1, scale=2
support=(-1.1,1.2)

50.65 52.35

160 Normal
loc=R(-.5,.5), cov=2 × 2 BD

Normal
loc=R(-.5,.5), cov=I

Linear Mixing 54.29 54.10

160 Normal
loc=-1, cov=2 × 2 BD

MoG: 0.5*Normal(0.9, I)
+ 0.5*Normal(1.1,I) Linear Mixing 105.60 98.27

160 Student T loc=R(-.5,.5),
scale=2 × 2 BD, df=5

Student T
loc=R(-.5,.5), scale=I, df=5 Linear Mixing 51.26 49.01

320 Student T loc=R(-.5,.5),
scale=2 × 2 BD, df=10

Student T
loc=R(-.5,.5), scale=I, df=10 Linear Mixing 53.82 51.03

320 Normal
loc=R(-1,1), cov=2 × 2 BD

Normal
loc=R(-1,1), cov=I

Linear Mixing 110.05 102.63

320 Student T loc=R(-1,1),
scale=2 × 2 BD, df=10

Student T
loc=R(-1,1), scale=I, df=10 Linear Mixing 103.12 113.53

320 Normal
loc=0, cov=2 × 2 BD

Student T
loc=0, scale=I, df=20 Linear Mixing 82.02 83.63

Table 3: Robustness evaluation for MDRE. Here R(a,b) stands for randomized mean vector where each dimension
is sampled uniformly from the interval (a, b). MDRE is able to consistently estimate the ground-truth KL with high
accuracy in all of the cases.
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Figure 7: SpatialMultiOmniglot representation learning results. Plot (a) shows the MI estimated by the
three methods, MDRE is able to estimate the ground truth MI very accurately. Plot (b) shows the resulting
classification accuracy and plot (c) the impact of varying the number of auxiliary distributions on MI
estimation with MDRE.

4.3 Representation learning for SpatialMultiOmniglot

In order to benchmark MDRE on large-scale real-world data, following the setup from Rhodes et al. (2020),
we apply MDRE to the task of mutual information estimation and representation learning for the Spatial-
MultiOmniglot problem (Ozair et al., 2019). The goal is to estimate the mutual information between u
and v where u is a n × n grid of Omniglot characters from different Omniglot alphabets and v is a n × n
grid containing (stochastic) realizations of the next characters of the corresponding characters in u. After
learning, we evaluate the representations from the encoder with a standard linear evaluation protocol (Oord
et al., 2018). For MDRE, similarly to TRE, we utilize a separable architecture commonly used in the MI-
based representation learning literature and model the unnormalized log-scores hi

θ with functions of the form
g(u)T Wf(v) where g and f are 14-layer convolutional ResNets (He et al., 2015). While this model amounts
to sharing of parameters across the hi

θ, we would like to emphasize that in all preceding examples, we did
not share parameters among the hi

θ. We construct the auxiliary distributions via dimension-wise mixing.

We here only compare MDRE to the single ratio baseline and TRE because Rhodes et al. (2020, Figure 4)
already demonstrated that TRE significantly outperforms both Contrastive Predictive Coding (CPC) (Oord
et al., 2018) and Wasserstein Predictive Coding (WPC) (Ozair et al., 2019) on exactly the same task. Please
refer to Appendix F for the detailed experimental setup.

As can be seen in Figure 7a, MDRE performs better than TRE and the single ratio baseline, exactly
matching the ground truth MI. This improvement in MI estimation is reflected in the representations.
Figure 7b illustrates that MDRE’s encoder learns representations that achieve ∼100% Omniglot character
classification for both d = n2 = 4, 9. On the other hand, the performances of the single ratio estimator
and TRE (using the same exact dimension-wise mixing to construct auxiliary distributions) both degrade
as the complexity of the task increases, with TRE only reaching up to 91% and 85% for d = 4 and d = 9,
respectively. All models were trained with the same encoder architecture to ensure fair comparison.

We further studied the effect of changing K in the d = 4 setup. For K = 1, we aggregate all the dimension-
wise mixed samples into 1 class, whereas for K = 3, we separate them into their respective classes (corre-
sponding to the number of dimensions mixed). We illustrate this effect in Figure 7c. In line with the finding
of Ma & Collins (2018), increasing the number of K not only helps MDRE to reach the ground truth MI,
but also the quality of representations improves from 86.7% to 100% test classification accuracy.

5 Discussion

In this work, we presented the multinomial logistic regression based density ratio estimator (MDRE), a
new method for density ratio estimation that had better finite sample (non-asymptotic) performance in our
simulations than current state-of-the-art methods. We showed that it addresses the sensitivity to possible
distribution-shift issues of the recent method by Rhodes et al. (2020). MDRE works by introducing auxiliary
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distributions that have overlapping support with the numerator and denominator distributions of the ratio.
It then trains a multinomial logistic regression model to estimate the density-ratio. We demonstrated that
MDRE is both theoretically grounded and empirically strong, and that it sets a new state of the art for
high-dimensional density ratio estimation problems.

However, there are some limitations. First, while the ratio was well estimated in our empirical studies, we do
not provide any bounds on the estimation, meaning that estimated KL divergences or mutual information
values may be over- or underestimated. Second, the choice of the auxiliary distribution, m, is an impor-
tant factor of consideration that significantly impacts the performance of MDRE. While in this work we
demonstrate the efficacy of three schemes for constructing the auxiliary distribution, empirically, it is, by no
means, an exhaustive study. We hope to address these issues in future work, including the development of
learning-based approaches to auxiliary distribution construction.
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A Consistency

In Section 3.1, we focused on properties of the loss function L(h1, . . . , hC) in equation 3. The arguments of
the loss functions were the functions hi, and the loss function was defined in terms of expectations over pc.
This simplified the analysis and provided important insights but does not correspond to practical settings.
Here, we relax the assumptions: We first consider the loss L(θ) in equation 2 where the functions hc are
parameterized by some parameters θ. Then we consider the case where the expectations are replaced by a
sample average based on n samples. The corresponding loss function will be denote by Ln(θ). The main
point of this section is to derive conditions under which minimizing Ln(θ) leads to the results in Section 3.1,
obtained by minimizing L(h1, . . . , hC).
Lemma A.1. Denoting the true conditional distribution by P ∗(Y |x) we have

θ̂ = arg min
θ

L(θ) = arg min
θ

Epx(x)KL (P ∗(Y |x) || P (Y |x; θ)) (10)

where P (Y |x; θ) is defined in equation 1.
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Proof. We start with the definition of L(θ) in equation 2:

L(θ) = −
C∑

c=1
πcEx∼pc

[log P (Y = c|x; θ)] (11)

The sum of weighted expectations
∑C

c=1 πcEx∼pc
corresponds to a joint expectation over p(Y, x). Decom-

posing the joint as p(x)P ∗(Y |x), we thus obtain

L(θ) = −Ep(x)EP ∗(Y |x)[log P (Y |x; θ)] (12)

and

L(θ) + Ep(x)EP ∗(Y |x) log P ∗(Y |x) = Ep(x)EP ∗(Y |x) log P ∗(Y |x)
P (Y |x; θ) (13)

= Epx(x)KL (P ∗(Y |x) || P (Y |x; θ)) (14)

The claim follows since the added term does not depend on θ.

If the true conditional P ∗(Y |x) is part of the parametric family {P (Y |x; θ)}θ, θ̂ is thus such that P (Y |x; θ̂) =
P ∗(Y |x) for all x where px(x) > 0. Hence the same arguments after equation 7 in the main text lead the
parametric equivalent to equation 3.1, which we summarize in the following corollary.
Corollary A.2. If the true conditional P ∗(Y |x) is part of the parametric family {P (Y |x; θ)}θ, then

hi
θ̂
(x) − hj

θ̂
(x) = log pi(x)

pj(x) (15)

for all x where px(x) =
∑

c πcpc(x) > 0.

We next derive conditions under which θ̂ is the unique minimum, which is needed to prove consistency. For
that purpose, we perform a second-order Taylor expansion of L(θ) around θ̂.
Lemma A.3.

L(θ̂ + ϵϕ) = L(θ) + ϵ2

2 ϕ⊤Iϕ (16)

where ϵ > 0 and I = −Epx(x)EP ∗(Y |x)[H(Y, x)]. The matrix H(Y, x) contains the second derivatives of the
log-model, i.e. its (i, j)-th element is

[H(Y, x)]ij = ∂2

∂θi∂θj
log P (Y |x; θ)

∣∣∣∣
θ=θ̂

(17)

where θi and θj are the i-th and j-th element of θ, respectively.

Proof. A second-order Taylor expansion around L(θ̂) gives

L(θ̂ + ϵϕ) = − Epx(x)
∑

c

P ∗(Y = c|x) log P (Y = c|x, θ̂ + ϵϕ) (18)

=L(θ̂) − ∇θL(θ)
∣∣∣∣
θ=θ̂

− Epx(x)
∑

c

P ∗(Y = c|x)ϵ2

2 ϕ⊤H(Y = c, x)ϕ + O(ϵ2) (19)

=L(θ̂) − ϵ2

2 ϕ⊤

[
Epx(x)

∑
c

P ∗(Y = c|x)H(Y = c, x)
]

ϕ + O(ϵ2) (20)

where we have used that the gradient of L(θ) is zero at a minimizer θ̂. Since
∑

c P ∗(Y = c|x)H(Y = c, x) =
EP ∗(Y |x)H(Y, x), the result follows.
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Note that I(x) = −EP ∗(Y |x)[H(Y, x)] is the conditional Fisher information matrix, and I = Epx(x)I(x) is its
expected value taken with respect to px(x).
Corollary A.4. If I is positive definite, then θ̂ is the unique minimizer of L(θ).

Proof. If I is positive definite, then ϕ⊤Iϕ > 0 for all non-zero ϕ and by Lemma A.3, L(θ̂ + ϵϕ) > L(θ̂)
whenever ϕ ̸= 0.

We now consider the objective function Ln(θ) where the expectations in L(θ) are replaced by a sample
average over n samples. Let θ̂n = arg minθ Ln(θ).

Proposition A.5. If (i) I is positive definite and (ii) supθ |Ln(θ) − L(θ)| p−→ 0, then θ̂n
p−→ θ̂.

Proof. By Corollary A.4, condition (i) ensures that θ̂ = arg minθ L(θ) is a unique minimizer, and hence that
changing θ̂ by a small amount will increase the cost function L(θ). Together with the technical condition
(ii) on the uniform convergence of Ln(θ) to L(θ), this allows one to prove that θ̂n converges in probability
to θ̂ as the sample size n increases, following exactly the same reasoning as e.g. in proofs for consistency of
maximum likelihood estimation (Wasserman, 2004, Section 9.13) or noise-contrastive estimation (Gutmann
& Hyvärinen, 2012, Appendix A.3.2).

Corollary A.6. If (i) I is positive definite, (ii) supθ |Ln(θ)−L(θ)| p−→ 0, and (iii) there is a parameter value
θ∗ such that P ∗(Y |x) = p(Y |x; θ∗), then θ̂n

p−→ θ∗

Proof. With Proposition A.5, condition (i) and (ii) ensure that θ̂n converges to θ̂ = arg minθ L(θ). With
Lemma A.1, θ̂ is also minimizing Epx(x)KL (P ∗(Y |x) || P (Y |x; θ)). Hence, if condition (iii) holds, θ̂ = θ∗,
and the result follows.

Proposition A.7 (Consistency of the ratio estimator). If (i) I is positive definite, (ii) supθ |Ln(θ)−L(θ)| p−→
0, (iii) P ∗(Y |x) = p(Y |x; θ∗) for some parameter value θ∗, and (iv) the mapping from θ to hc

θ is continuous,
then

hi
θ̂n

(x) − hj

θ̂n
(x) p−→ log pi(x)

pj(x) (21)

for all x where px(x) =
∑

c πcpc(x) > 0.

Proof. By Proposition A.5, condition (i) and (ii) ensure that θ̂n converges to θ̂ = arg minθ L(θ). By Corollary
A.2, condition (iii) ensures that hi

θ̂
(x) − hj

θ̂
(x) = log pi(x)

pj(x) for all x where px(x) =
∑

c πcpc(x) > 0. Since
continuous functions are closed under addition, the mapping from θ to hi

θ̂
(x)−hj

θ̂
(x) is continuous if condition

(iv) holds. We can then apply the continuous mapping theorem to conclude that hi
θ̂n

(x) − hj

θ̂n
(x) p−→

hi
θ̂
(x) − hj

θ̂
(x) = log pi(x)

pj(x) , which establishes the result.

B Constructing M

We here elaborate on the three types of auxiliary distributions that we used in this work.

Overlapping Distribution: The MDRE estimator, log p
q = log p

m − log m
q is defined when p << m and

q << m. Therefore, m needs to be such that its support contains the supports of p and q. Any distribution
with full support such as the normal distribution trivially satisfies this requirement. However, satisfying this
requirement does not guarantee empirical overlap of the distributions p, q with m in finite sample setting.
In order to ensure overlap of samples between the two pairs of distributions we recommend the following:
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• Heavy-tailed Distributions: Distributions such as, Cauchy and Student-t are better choice for M
compared to the normal distribution. This is because their heavier tails allow for easily connecting
p and q with higher sample overlap when they are far apart (especially in the case of FOD).

• Mixtures: Another way to connect p and q using m such that they have their samples overlap, is to
use the mixture distribution. Here, we first convolve p and q with a standard normal and then take
equal mixtures of the two.

• Truncated Normal: If p and q have finite support, one can also use a truncated normal distribution
or a uniform distribution that at least spans over the entire support of q. This is assuming that
p << q.

Linear Mixing: In this construction scheme, distribution M is defined as the empirical distribution of
the samples constructed by linearly combining samples Xp = {xi

p}N
i=1 and Xq = {xi

q}N
i=1 from distributions p

and q respectively. That is, m is the empirical distribution over the set Xm = {xi
m|xi

m = αxi
p+(1−α)xi

q, xp ∈
Xp, xi

q ∈ Xq}N
i=1, where α is not constrained to create a convex mixture. This construction is related to the

linear combination auxiliary of Rhodes et al. (2020). In TRE, the auxiliary distribution is defined as the
empirical distribution of the set Xm = {xi

m|xi
m =

√
1 − α2xi

p + αxi
q, xp ∈ Xp, xi

q ∈ Xq}N
i=1, where 0 ≤ α ≤ 1.

This weighting scheme skews the samples from the auxiliary distribution towards p. Therefore, care needs to
be taken when p and q are finite support distributions so that the samples from the auxiliary distributions
do not fall out of the support of q.

Using either of the weighting schemes, one can construct K different auxiliary distributions. MDRE can
either use these K auxiliary distributions separately using a K+2-way classifier or define a single mixture
distribution using them as component distributions and train a 3-way classifier. We refer to this construction
as Mixture of Linear Mixing.

Dimension-wise Mixing: In this construction scheme, that is borrowed from TRE as it is, M is defined
as the empirical distribution of the samples generated by combining different subsets of dimensions from
samples from p and q. We describe the exact construction scheme from TRE below for completeness:

Given a d-length vector x and that d is divisible by l, we can write down x = (x[1], ...x[l]), where each x[i]
has length d/l. Then, a sample from the kth auxiliary distribution is given by: xi

k = (xi
q[1], ...xi

q[j], xi
p[j +

1], ..., xi
p[l]), for j = 1, ..., l), where xi

p ∼ p and xi
q ∼ q are randomly paired.

C 1D density ratio estimation task

In Section 4.1, we studied three cases in which the two distributions p and q are separated by both FOD
and HOD. In all of these 1D experiments, all models were trained with 100,000 samples, and all results are
reported across 3 runs with different random seeds. Additionally, we found that MDRE worked equally well
for 1K and 10K samples. The experimental configurations, including the auxiliary distributions for MDRE,
are detailed in Table 5.

p q True KL MDRE @ 1K MDRE @ 10K MDRE @ 100K
N (-1, 0.08) N (2, 0.15) 200.27 195.05 196.50 203.32
N (-2, 0.08) N (2, 0.15) 355.82 346.92 348.97 360.35

Table 4: MDRE on 1D density ratio estimation for three settings of sample sizes. MDRE estimates the density
ratio well for all the three settings.
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p q TRE pk MDRE m

N (−1, 0.08) N (2, 0.15)

Linear Mixing with
α = [0.053, 0.11,
0.16, 0.21, 0.26, 0.31,
0.37, 0.42, 0.47, 0.53,
0.58, 0.63, 0.68, 0.74,
0.79, 0.84, 0.89, 0.95]

C(0, 1)

N (−2, 0.08) N (2, 0.15)

Linear Mixing with
α = [0.03, 0.07,
0.1, 0.14, 0.17, 0.21,
0.24, 0.28, 0.31, 0.34,
0.38, 0.41, 0.45, 0.48,
0.52, 0.55, 0.59, 0.62,
0.66, 0.69, 0.72, 0.76,
0.79, 0.83, 0.86, 0.9,
0.93, 0.97]

C(0, 1)

N (−10, 1) N (10, 1)

Linear Mixing with
α = [0.11, 0.22,
0.33, 0.44, 0.55, 0.66,
0.77, 0.88]

C(0, 2)

Table 5: Experiment configurations for Table 1 of main text and Table 4 of Appendix C

(a) In-domain: p = N (−10, 1) and q = N (10, 1)
(b) Expanded domain: p = N (−10, 1) and q =
N (10, 1)

Figure 8: 1D density ratio estimation analysis. Figure 8a evaluates the log density ratios on uniform samples
inside the domain of the respective training distribution. Figure 8b evaluates the log density ratios on
uniform samples from an expanded domain of the training distribution. The shading represents 1 standard
deviation of the estimates.

D Uncertainty Quantification of MDRE Log-ratio Estimates with Hamiltonian
Monte Carlo

In the 1D experiments, MDRE consistently led to highly accurate KL divergence estimates even in chal-
lenging settings where state-of-the-art methods fail. To understand why MDRE gives such accurate KL
estimates, we conduct an analysis on the reliability of its log-ratio estimates by analyzing the distribution
of the estimates in a Bayesian setup, and study how it impacts the KL divergence estimation. For this
analysis, we use a classifier with the standard normal distribution as the prior on its parameters. The distri-
bution of the log-ratio estimates is simply the distribution of the estimates from the classifiers with different
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Figure 9: Uncertainty quantification for MDRE estimator. We plot the 3x standard deviation around the mean in
light blue. In plots (c) and (d) the bars show the means of p and q.

posterior parameters, which are sampled. We consider two setups where first we set p = N (−1.0, 0.1) and
q = N (1.0, 0.2) and then swap their scales, i.e. p = N (−1.0, 0.1) and q = N (1.0, 0.2). In both the cases,
we draw samples from the posterior using an Hamiltonian Monte Carlo (HMC) sampler initialized by the
maximum likelihood estimate of the classifier parameter. We then compute a set of samples of the log-ratio
estimates from MDRE and estimate the mean and standard deviation using these samples. Figure 9 (a) and
(b) shows these results. We find that MDRE is accurate and manifests lowest uncertainty around the region
between the means of p (−1.0) and q (+1.0). The uncertainty increases as we move away from the modes
of distributions p and q. This is shown in plots (c) and (d), where we plot the variance of the estimates as
a function of the location of the sample.

Since KL divergence is the expectation of the log-ratio on samples from p and the high density region of p
exactly matches the high confidence region of MDRE, it is able to consistently estimate the KL divergence
accurately even when p and q are far apart.

E High Dimensional Experiment

In Section 4.2, we showed that MDRE performs better than all baseline models when p and q are high
dimensional Gaussian distributions. Prior work of Rhodes et al. (2020) has considered high dimensional cases
with HOD only, whereas we additionally consider cases with FOD and HOD to provide a more complete
picture. Our results show that MDRE outperforms all other methods on the task of MI estimation as
the function of the estimated density ratio. It is worth noting that MDRE uses only upto 5 auxiliary
distributions that are constructed using the linear mixing scheme and beats TRE substantially on cases
with both FOD and HOD, although TRE uses upto 15 auxiliary distributions also constructed using linear
mixing approach. This demonstrates that our proposal of using the multi-class logistic regression does, in
fact, prevent distribution shifts issues of TRE when both FOD and HOD are present and help estimate the
density ratio more accurately.

We now describe the MDRE configuration and other setup related details.
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Figure 10: Diagnostic plot for a high dimensional experiment.

Figure 11: Diagnostic plot for a high dimensional experiment with randomized means.
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Dim MI m using LM

40 20 [0.25,0.5,.75]
100 [0.35,0.5,.85]

160 40 [0.25,0.5,.75]
136 [0.15,0.35,0.5,.75,.95]

320 80 [0.25,0.5,.75]
240 [0.15,0.35,0.5,.75,.95]

Table 6: Configuration of MDRE for the high dimensional experiments. LM stands for Linear Mixing

Auxiliary Distributions: For all the high dimensional experiments throughout this work, we construct
m using the linear mixing scheme as described in Appendix B. Table 6 provides the number K of auxiliary
distributions along with the exact mixing weights for each of the 6 settings.

As a general principle, we chose these three sets of mixing weights so that their cumulative samples overlap
with the samples of p and q similar to how the heavy tailed distribution worked in the 1D case. Please note
that while heavy tailed distributions can effectively bridge p and q when they have high FOD. However,
they do not work as well if the discrepancy is primarily HOD. For example consider p = N (0, 1e − 6) and
q = N (0, 1). In this case, setting m to a heavier tailed distribution centered as zero will not be of help. We
need m that is concentrated at zero but also maintains a decent overlap with q. Linear mixing p and q on
the other hand, mixes first and higher order statistics (second or higher) and therefore, populates samples
that overlap with both p and q. In some cases, we found that a mixture of linear mixing with K = 1 can
also be used to estimate the density ratio. However, this requires using a neural network-based classifier and
requires much more tuning of the hyperparameters.

For choosing K, we use a grid search based approach. We monitor the classification accuracy across all the
K + 2 distribution. If this accuracy is very high (> 95% for all classes), this implies that the classification
task is easy and therefore the DRE may suffer from the density chasm issue. On the other hand, if the
classification accuracy is too low (< 50% for all classes), then again, the DRE does not estimate well. We
found that targeting an accuracy curve as shown in Figure 10 (last panel) empirically leads to accurate
density ratio estimation. This curve plots the test accuracy across all the classes and, empirically when it
stays between the low and the high bounds of (50%,95%), the DRE estimates the ratios fairly well. The
first panel shows that MDRE estimates the ground truth ratio accurately across samples from all the K + 2
distributions, the second panel shows that KL estimates of MDRE is close to the ground truth KL and the
third panel shows that both test and training losses have converged. Figure 11 shows another example for
the case of randomized means. While MDRE also manages to get the ground truth KL correctly and most
of the ratio estimates are also accurate, it does, however, slightly overestimate the log ratio for some of the
samples from p.

F SpatialMultiOmniglot Experiment

SpatialMultiOmniglot is a dataset of paired images u and v, where u is a n × n grid of Omniglot characters
from different Omniglot alphabets and v is a n × n grid containing the next characters of the corresponding
characters in u. In this setup, we treat each grid of n × n as a collection of n2 categorical random variables,
not the individual pixels. The mutual information I(u, v) can be computed as: I(u, v) =

∑n2

i=1 log li, where
li is the alphabet size for the ith character in u. This problem allows us to easily control the complexity of
the task since increasing n increases the mutual information.

For the model, as in TRE, we use a separable architecture commonly used in MI-based representation
learning literature and model the unnormalized log-scores with functions of the form g(u)T Wf(u), where
g and f are 14-layer convolutional ResNets (He et al., 2015). We construct the auxiliary distributions via
dimension-wise mixing—exactly the way that TRE does.
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(a) Mutual information estimation (b) Representation learning accuracy

Figure 12: SpatialMultiOmniglot representation learning results with same encoder for f and g.

To evaluate the representations after learning, we adopt a standard linear evaluation protocol to train a
linear classifier on the output of the frozen encoder g(u) to predict the alphabetic index of each character in
the grid u.

Additional Experiments

In addition to the experiments in the main text, we run an additional experiment with SpatialMultiOmniglot
to test the effect of using the same encoder for g and f (i.e, modeling the unnormalized log-scores with the
form g(u)T Wg(v)) instead of log p(u, v) = g(u)T Wf(v)).

Single Encoder Design: We test the contribution of using two different encoders f and g instead of
one. As seen in Figure 12, in both cases of d = 4, 9, the two models reach slightly different but similar MI
estimates, but, interestingly, do not differ at all in the test classification accuracy. Empirically, we also found
that using one encoder helps the model converge to much faster. Overall, this experiment demonstrates that
using two different encoders does not necessarily work to our advantage.

G TRE on Finite Support Distributions for K = 1

For K = 1, TRE proposes the following telescoping: log p/q = log p/m + log m/q. As such, for TRE to be
well defined, dM

dQ i.e. the Radon-Nikodym Derivatives (RND) needs to exist. The consequence of this is that
TRE is only defined when p << m << q. However this condition easily breaks if, for example, p and q are
mixtures of finite support distributions except for the trivial case when support of m is exactly equal to the
support of q.

We now demonstrate this with a specific example in Figure 13. Here we set p = 0.5 × T N (−1, 0.1, low =
−1.1, high = −0.9) + 0.5 × T N (1, 0.1, low = 0.9, high = 1.1) and q = 0.5 × T N (−1, 0.2, low = −1.2, high =
0.8)+0.5×T N (1, 0.2, low = 0.8, high = 1), as shown in Figure 13a where T N stands for Truncated Normal
distribution. We set the auxiliary distribution m in TRE to m = T N (0, 1, low = −1.2, high = 1.2) using
the proposed overlapping distribution construction. As such, p << q << m and therefore, TRE is undefined
for the second term as m

q is not defined for samples from m that are outside the support of q. It can be
clearly seen in Figure 13b that m

q blows up to very high values on samples from m where q does not have
any support. Similar examples can be constructed for all the auxiliary distribution construction schemes
proposed in Rhodes et al. (2020).

Please note, despite dM/dQ being undefined, when used with the proposed m, TRE estimates log rp/q

accurately on samples from p. We conjecture that this is because, the numerical estimation of the dM/dQ
is finite over the support of p.

22



Published in Transactions on Machine Learning Research (03/2023)

(a) Setup (b) dM/dQ

Figure 13: dM/dQ on mixtures of distributions with finite support
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