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Abstract

We investigate the cold posterior effect through the lens of PAC-Bayes general-
ization bounds. We argue that in the non-asymptotic setting, when the number of
training samples is (relatively) small, discussions of the cold posterior effect should
take into account that approximate Bayesian inference does not readily provide
guarantees of performance on out-of-sample data. Instead, out-of-sample error is
better described through a generalization bound. In this context, we explore the
connections of the ELBO objective from variational inference and the PAC-Bayes
objectives. We note that, while the ELBO and PAC-Bayes objectives are similar, the
latter objectives naturally contain a temperature parameter A which is not restricted
to be A = 1. For realistic classification tasks, in the case of Laplace approximations
to the posterior, we show how this PAC-Bayesian interpretation of the temperature
parameter captures important aspects of the cold posterior effect.

1 Introduction
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Figure 1: PAC-Bayes bounds correlate with the test 0-1 Loss for different values of the temperature
A (quantities on both axes are normalized). (a) Classification tasks on CIFAR-10, CIFAR-100, and
SVHN datasets (02 = 0.1, ResNet22) and FMNIST dataset (02 = 0.1, ConvNet). (b) Graphical
representation of the Laplace approximation for different temperatures: for hot temperatures \ < 1,
the posterior variance becomes equal to the prior variance; for A = 1 the posterior variance is
regularized according to the curvature h; for cold temperatures A\ >> 1, the posterior becomes a Dirac
delta on the MAP estimate.

We investigate PAC-Bayes generalization bounds [McAllester, 1999, Catoni, 2007, Alquier et al.,
2016, Dziugaite and Roy, 2017] as the model that governs performance on out-of-sample data.
PAC-Bayes bounds describe the performance on out-of-sample data, through an application of the

ML Safety Workshop, 36th Conference on Neural Information Processing Systems (NeurIPS 2022).



convex duality relation between measurable functions and probability measures. The convex duality
relationship naturally gives rise to the log-Laplace transform of a special random variable [Catoni,
2007]. Importantly the log-Laplace transform has a temperature parameter A which is not constrained
to be A = 1. We investigate the relationship of this temperature parameter to cold posteriors.

In summary, our contributions are the following:

* We show that PAC-Bayes bounds correlate with out-of-sample performance for different
values of the temperature parameter \.

* We find that the coldest temperature (such that the posterior is a Dirac delta centered on a
MAP estimate of the weights) is empirically always optimal in terms of test accuracy.

* We derive a PAC-Bayes bound for the case of the widely used generalized Gauss—Newton
Laplace approximations to the posterior. This bound might explain why it is difficult to
pinpoint an exact cause for the cold-posterior effect.

We also include a detailed FAQ section in the Appendix.

2 Cold posterior effect: misspecified and non-asymptotic setting

We denote the learning sample (X,Y) = {(@;, y:)}7; € (X x V)", that contains n input-output
pairs. Observations (X, Y") are assumed to be sampled randomly from a distribution D. Thus, we
denote (X,Y) ~ D" the i.i.d observation of n elements. We consider loss functions £ : F x X' x) —
R, where F is a set of predictors f : X — Y. We also denote the risk L5 (f) = E(z )~ pl(f, %, y)
and the empirical risk £ y (f) = (1/n) 32, €(f,xi,y;). We consider two probability measures,
the prior 7 € M (F) and the posterior p € M(F). Here, M(F) denotes the set of all probability
measures on F. We encounter cases where we make predictions using the posterior predictive
distribution E ¢ 5[p(y|z, f)]. We will use two loss functions, the non-differentiable zero-one loss
Co1(f,x,y) = I(argmax; f(x); # y), and the negative log-likelihood, which is a commonly used
differentiable surrogate o (f, x,y) = — log(p(y|x, f)), where we assume that the outputs of f are
normalized to form a probability distribution. Given the above, the Evidence Lower Bound (ELBO)
has the following form
A 1
Bl ()~ 5

where A = 1. Note that our temperature parameter X is the inverse of the one typically used in
cold posterior papers. In this form A has a clearer interpretation as the temperature of a log-Laplace
transform. Overall our setup is one of the cases discussed in Wenzel et al. [2020], p3 Section 2.3.
The cold posterior is the following observation:

KL(p|), (M

Even though the ELBO has the form (1) with A = 1, practitioners have found that
much larger values A\ > 1 typically result in better test time performance, for
example a lower test misclassification rate and lower test negative log-likelihood.

2.1 PAC-Bayes

For classification tasks, we are typically mainly interested in achieving low expected zero-one risk
E;. ﬁE%’l (f)- The ELBO objective is not directly related to this risk, however in the PAC-Bayesian
literature there exist bounds specifically adapted to it. In the following we will use one of the tightest
and most commonly used bounds, the “Catoni" bound, denoted Bcatoni-

Theorem 1 (Bcatoni, Catoni, 2007). Given a distribution D over X X Y, a hypothesis set F, the 0-1
loss function £y, : F x X x Y — [0, 1], a prior distribution 7 over F, a real number ¢ € (0, 1], and
a real number A\ > 0, with probability at least 1 — § over the choice of (X,Y) ~ D", we have
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where &} (z) = 11:@;);.




The empirical risk term is the empirical mean of the loss of the classifier over all training samples.
The KL term is the complexity of the model, which in this case is measured as the KL-divergence
between the posterior and prior distributions. The Moment term has been absorbed in this case in the
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3 Experiments on classification tasks

The ELBO (1) is minimized at the probability density p*(f) given by: p*(f) =
w(f )e_’\"ﬁﬁ?,l“f )/E from {e"\”ﬁi?:“Y(f )} [Catoni, 2007]. We will use the Laplace approximation
to the posterior in our experiments. This is equivalent to approximating )\nﬁﬁg“y (f) using a second
order Taylor expansion around a minimum w4, such that /\nﬁ'ﬁ(”Y (fw) = )\nﬁﬁg“y( Jw,) +An(w —

Wﬁ)T%VVﬁf;;‘jg,(fw)\w:wﬁ(w — wj). Assuming a Gaussian prior 7 = N(0, 02I), the Laplace
approximation to the posterior p is again a Gaussian

) 1\
P = N <Wﬁ, ()\H + O’,,QTI> >

where H is the network Hessian H = nVVﬁﬁy,“Y( Jw)lw=w,- This Hessian is generally infeasible
to compute in practice for modern deep neural networks, such that many approaches employ the
generalized Gauss—Newton (GGN) approximation HEN = S 7 (2:)T A(y;; fi) T (24),
where Jw () is the network per-sample Jacobian [Jw ()], = Vw/fe(x;wW;), and A(y; f) =
—V? ¢ log p(y; f) is the per-input noise matrix [Kunstner et al., 2019]. We will use two simplified
versions of the GGN

. . . . . . 2 1 _ Ah 1 o
* An isotropic approximation with variance o ﬁ()\) such that 2 =@ + oz where h =

> ik 906 k) (Ve fir(@i;w);)? is the trace of the Gauss—Newton approximation to the
Hessian, with g(i, k) = [A(y;; f)]kk-

* The Kronecker-Factorized Approximate Curvature (KFAC) [Martens and Grosse, 2015]
approximation, which retains only a block diagonal part of the GGN.

When making predictions, we use the posterior predictive distribution Ey,5[p(y|x, fw)] of the full
neural network model, meaning that samples from p are inputted to the full neural network. Since
the 0-1 loss is not differentiable, the posterior estimated with the cross entropy loss will be used for
classification problems.

We have tested extensively in classification tasks, scaling from simplified settings to realistic mod-
els and datasets. For the classification task we used the CIFAR-10, CIFAR-100 [Krizhevsky
and Hinton, 2009], SVHN [Netzer et al., 2011] and FashionMnist [Xiao et al., 2017] datasets.
In all experiments, we split the dataset into two sets. These three are the typical prediction
tasks sets: training set Zi ,in, testing set Ziesy, and validation set Zyajidation- We use Monte
Carlo sampling to estimate the Empirical Risk term (f ~ p). For the isotropic Laplace ap-
proximation, and a Gaussian isotropic prior, the KL divergence has a simple analytical expres-
2

sion KL(p||7) = 3 (d"g‘j) + L[ wp— w2 —d = dlno?(A) +dln ag) . PAC-Bayes bounds
require correct control of the prior mean as the /5 distance between prior and posterior means in the
KL term is often the dominant term in the bound. To control this distance, we follow a variation of
the approach in Dziugaite et al. [2021] to constructing our classifiers. We first use Zi,,i, to find a
prior mean w,. We then set the posterior mean equal to the prior mean w; = w, but evaluate the
r.h.s of the bounds on Zyajidation- Note that in this way |w; — Wx |2 = 0, while the bound is still
valid since the prior is independent from the evaluation set X, Y = Zi.jidation- FOr the CIFAR-10,
CIFAR-100, and SVHN datasets, we use a WideResNet22 [Zagoruyko and Komodakis, 2016], with
Fixup initialization [Zhang et al., 2019]. For the FashionMnist dataset, we use a convolutional
architecture with three convolutional layers, followed by two fully connected non-linear layers. More
details on the experimental setup can be found in the Appendix.
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Figure 2: Test 0-1 Loss mean, as well as 10 MAP trials , along with the generalization
certificate == == = (we denote A = 1 by ): Bcatoni PAC-Bayes bound (top), standard Isotropic

Laplace posterior (middle) and standard KFAC (bottom). The Bgatoni PAC-Bayes bound closely
tracks the test 0-1 Loss. For the standard Isotropic and KFAC posteriors the test and validation 0-1
Loss behave similar to the Catoni case, with a rapid improvement as A 1 followed by a plateau.
Coldest posteriors A > 1 are always best.

3.1 Classification experiments

We find ten MAP estimates for the neural network weights of the CIFAR-10, CIFAR-100, SVHN and
FMNIST datasets by training on Zi,,;, using SGD. We then fit an Isotropic Laplace approximation to
each MAP estimate using X, Y = Zyalidation. For different values of A we then estimate the Catoni
bound (Theorem 1) using Zyalidation- We also estimate the fest 0-1 Loss, negative log-likelihood
(NLL) and the Expected Calibration Error (ECE) [Naeini et al., 2015] of the posterior predictive on
Ziest- We use the prior variance 0'72r = 0.1, as optimizing the marginal likelihood leads to 0727 ~0
which is not relevant for BNNs. We also test two standard setups of increasing difficulty. First, the
standard “Isotropic” case where we fit the Laplace on Zi;,i,. Second, the KFAC case where we fit the
Laplace on Zi,,;n and also choose the prior through the marginal likelihood. In both of these last two
cases, we estimate the evaluation metrics on the validation set Z.,jidation @S from the literature we
know that any PAC-Bayes bound will be vacuous (larger than 1) as we do not control [|[w; — w||3.
We plot the results for all datasets in Figure 2. The Catoni bound correlates tightly with test 0-1
Loss for all datasets and we plot this correlation in Figure 1(b). Again, in terms of test 0-1 Loss, the
MAP estimate (obtained where A >> 1 and the posterior is “coldest") is optimal. This bevaviour is
replicated both in the “Isotropic” and “KFAC” cases. In the Laplace approximation literature for
deep neural networks, there are various similar results hidden in plain sight and to the best of our
knowledge never directly addressed [Antoran et al., 2022, Daxberger et al., 2021a, Ritter et al., 2018].

The crucial point here is the choice of the evaluation metric. We plot in the Appendix the Isotropic
and KFAC cases for the NLL. We find that all three cases of temperatures (cold posterior, warm
posterior, as well as posterior with A = 1) can be optimal, for varying datasets. This shows that the
choice of the evaluation metric is important when discussing the cold posterior effect. We discuss the
ECE results in the Appendix.



4 Discussion

A number of interesting questions are raised by our results. How can we link our results to the
MCMC setting? Which metrics are relevant for the cold-posterior effect? For which metrics and
for which approximations to the curvature is the Laplace approximation relevant for modern deep
learning? We intend to answer these in future work.
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A Proofs main results

A.1 Effect of temperature parameter A\ on PAC-Bayes bound

In light of our empirical results, it would be interesting to derive an analytical form that elucidates
the important variables that affect the bound. However, PAC-Bayes objectives are difficult to analyze
theoretically for the non-convex case. Thus in the following we make a number of simplifying
assumptions. The Laplace approximation with the Generalized Gauss-Newton approximation to the
Hessian corresponds to a linearization of the neural network around the MAP estimate w,; € RY
[Immer et al., 2021]

fiin(m;w) = f(z;wp) + V fla;w,) T (W — wp). A3)

When analyzing minima of the loss landscape linearization is reasonable even without assuming
infinite width Zancato et al. [2020], Maddox et al. [2021]. For appropriate modelling choices, we aim
at deriving a bound for this linearized model.

We adopt the linear form (3) together with the Gaussian likelihood with ¢ = 1, yielding
Ca(w,z,y) = $In(27) + 2(y — f(z;w;) — Ve f(z;w;) T (w — wp))? We also make the
following modeling choices

* Prior over weights: w ~ N (w, 021).

* Gradients as Gaussian mixture: Vy, f(x; wj) ~ Zl 1 qbz (p;, 02 O I); note that this as-
sumption should be plausible for trained neural networks, in that previous works have shown
that per sample gradients with respect to the weights, at w, are clusterable [Zancato et al.,
2020]. We consider that a Gaussian Mixture model for these clusters is reasonable.

« Labeling function: y = f(z;Wj) + Vw f(x;W;) T (We — W;) + €, where € ~ N(0, 02).

Thus y|lz ~ N (f(z;wj) + Vwf(z;w;) T (W, — Wj),02). The assumption that w, is close to w
is quite strong, and we furthermore argued in the previous sections that no single w is truly “correct”.
However we note that for fine-tuning tasks linearized neural networks work remarkably well [Maddox
et al., 2021, Deshpande et al., 2021]. It is therefore at least somewhat reasonable to assume the above
oracle labelling function, in that for deep learning architectures good w that fit many datasets can
be found close to w in practical settings. We also assume that we have a deterministic estimate of
the posterior weights w; which we keep fixed, and we model the posterior as p = N (w, ag(A)I),
similarly to our experimental section. Therefore estimating the posterior corresponds to estimating
the variance o3 (\).

Proposition 1 (B,pproximate). With the above modeling choices, and given a distribution D over

X x Y, real numbers § € (0,1] and X € (0,2) with ¢ = 2no202, with probability at least 1 — §
over the choice (X,Y) ~ D", we have

Ew~pL3" (W)

ly — f(X;w,)13 Moo 1N PRt
< —+ =) o~ +:-In@2
a 2n N d o2 2n - 2 n(2m) + +
Empirical Risk
1 [1(ada 1 1 1
o lol 22 . 1 T 2lWp = Wn d—dln ——— +dl |
An l2<3r*d+12 oz llws = walls - SR I M>+na

KL

where h = 3, Zj(wa(aci;w,;)j)Q is the curvature parameter, and o2 = Z§:1 pjoz; is the
posterior gradient variance.

We now make a number of observations regarding Proposition 1. Here, h is the trace of the Hessian
under the Gauss—Newton approximation (without a scaling factor n). Under the PAC-Bayesian
modeling of the risk, cold posteriors are the result of a complex interaction between various parameters
resulting from 1) our model such as the prior variance o2 and prior mean w, 2) our data o2 and
w, (the curvature of the minimum % and the MAP estimate w, depend on the deep neural network



architecture, the optimization procedure and the data). A number of works have tried to identify the
causes of the cold posterior effect [Noci et al., 2021, Fortuin et al., 2021], with often contradictory
results, typically identifying sufficient but necessary conditions. Given the complex interactions in
Proposition 1, our result might shed light on why pinpointing the exact cause is difficult in practice.

A.2 Proof of Proposition 1

Recall that we model our predictor as fii,(z;w) = f(x;w;) — Vw f(x;w;) T (W — w;). Then
for the choice of a Gaussian likelihood, given a training signal x, a training label y and weights

w, the negative log-likelihood loss takes the form £y (w, z,y) = 1 In(27) + 3 (y — f(@;wj) —

Voo (3 w,) T (W = w))*. We also define £% () = (1/n) Y, £(f,a:,y:). Our derivations
closely follow the approach of Germain et al. [2016] p.11, section A.4.

Given the above definitions and modelling choices we develop the empirical risk term

2nEWNﬁEA§§fIY( ) — nln(27) WNPZ flxiwy) — wf(:l?i;Wﬁ)T(W—Wﬁ))Q

Ewplly — [(X;w;) — wf(X;Wﬁ) (w—ws)l3

= Ewllly — FXiwp)ll5 = 2(y — F(X5w,5)) TV f(Xswp) T (w — wp)
+ (W= wp) T Ve f (X wp) Ve f (s w5) | (W — wp)]
= Buwnpllly — O wWo)lI3 — 20y — FGw,) T Ve F(XKswp) T (w — w))
+ (W —=w;) [, Ve f (@i W) Ve f (@ w5) | (w — wp)]
= Bunslly — FXwo)ll3] — 2y — £(Xs W) T Ve f(Xs W) B b=,
+ By [(W=wp) " [, VS (@i W) Ve f(iswy) T] (w —w;)]
= lly = FXwp) I3 + 0% |32, 52, (T f (@i wp),)?]
= ly — F(X;w,) 3 + o2h.

In the penultimate line, we have used the fact that a real number is the trace of itself as well as
the cyclic property of the trace. The second summation (3 ; over the parameters of the model)
results from the fact that p = N (w, agl) is isotropic with a common scaling factor a?,. The term
in blue is exactly the Gauss—Newton approximation to the Hessian of the full neural network, for
the squared loss function [Kunstner et al., 2019, Immer et al., 2021], and in the last line we set

h = [ZZ > (Vw f(@i Wp)j)2]. Since h is a sum of positive numbers, taking into account that

the blue term is the Gauss—Newton approximation to the Hessian and if we assume that the Gauss—
Newton approximation is diagonal, then / is a measure of the curvature at minimum w; of the loss
landscape. We finally get

B T 2n
ly = FKswa)ll3 | ooh 1y oy

Al —
Bunp L3y (W) = om om 2

We continue with the KL term which is known to have the following analytical expression for
Gaussian prior and posterior distributions

2 2 o 1 2 o
KL (wp, 03| N (Wr, 071)) = d—5 + =< [lwp —wx || —d—dln =% | .
o2 o2 o2



We finally develop the moment term. Using an intermediate variable \,, = ’\7" to simplify the
calculations, we get

Wi (A1) = N EprExrynmpn exp [Xn (L5 () = £3y.(f) ]
=InE;:Ex/ y/)~prexp [)\n (E(w,y) [111(271') + (y — fin(a; W)Q]
— In(2m) — (1/n) 325 (yi — fuin (i3 w)?)]
=IE; E(x/ ypnexp [An (B [(y — fﬁn(w;w)z} = (1/n) X (yi — fiin(zi;w)?)]
<InEy~rexp [)\nE(w,y) (y - flin(wQ W))Q]
=InEyx eXp[)‘nE(m,y)(f(w; Wﬁ) + vwf(m; Wﬁ)T(W* - Wﬁ) +e
— (f(&;wp) + Vi fz:wp) (W —wp)))?]
=InEwor expME g, (Vwf(@;ws) | (we —w) +¢)?]
=InEwmr expMEz[(Vwf(@;w)y) T (We — w))?] + N\o?].
Inequality in line 4 is because the exponential function is less than 1 on the negative half line. In
the fifth line we use our modelling choice y = f(x;w;) + Vw f(z;w;) " (We — wj) + €, where
€ ~ N(0,02). To obtain the final line we note that the gradient of the neural network output with

respect to w, that is V, f(a; W), does not depend on the label y. We get the last line by applying
the square and taking the expectation, given that the noise € is centered.

We now take into account the Gaussian mixture modelling for the gradients per data sample,
V(@ ws) ~ S5y N (1, 02,T). We get
Eo[(Vw f(2;wp) T (Wi = W) = Eg[(32; VS (@ wp)i (W — w)i)?]

= Eq (3, Vard (@ Wp)2(we = W)2 +2 32, Vau (@i W), Vi (@3 wp), (w2 = w)(w. = w),)]

. 2 2 _ k 2 2 _ 2 2

=2 Ba[Vw (@ wp)il(we —w)i = 32305 1(005;) (W — w)i = og|[ws — wif3.
The red term cancels out because we assumed that each weight is independent from the others. Next
we use the Gaussian mixture modelling to get Eo, [V, f(z; w;)7] = > i (¢j02,), and we finally
set 02 = Z?Zl (o2 j), as each component of the mixture is isotropic, thus the second moment of

all weights is the same. By completing the square above, one obtains the Gaussian expectation of this
squared norm and forms the moment term as follows

Uy rp(An) =nEy.orexp [)\naiﬂw* —wl%+ /\naf]

1 Aog|lw.e — wx3 2

=In <(1 — 2/\n03072r)% exp = 220202 + Aoy

d An02||w. — wrl|3
= —-In(1-2\0002) + 22 4 \07

5 n020n) T N oZer T

)\ 2 2d )\ 2 . — 2
< na-:co-7r2 5 nU:cHW QW;T”Q +/\n062

1 —-2\0202 1—-2\,0202

_ )\nai(oﬁd—i- [ W _WWH%) A 02
1 -2\ 0202 nUe

which assumes 1 —2),,0202 > 0. The second line above is obtained by using the moment generating
function of noncentral x? variables, while the inequality comes from In(u) < u — 1 for u > 1.
Setting back ’\7” in place of A,,, we get

1 og(ond+ Wi —wq3)  o?
~ W, p(An) < 225 %,
o Ve (Am) 2220202 | 2

We are now ready to minimize the following objective, where the moment term is absent since it does

not depend on ag
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The derivative of the objective function w.r.t. 0123 simply writes

0 (ny — w3, oph

1
+ = In(27)
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1 {1/1 1 1
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Now setting the above to zero we get the typical prior-to-posterior update for a Gaussian precision

term
_h 1

d +0727'

Q
|

The proposition is proven by replacing the terms in the bound from Theorem 1 with the results
derived above.

B Experiments

B.1 Experimental setup

We run our experiments on GPUs of the type NVIDIA GeForce RTX2080ti, on our local cluster.
The total computation time was approximately 125 GPU hours. In the following list we include the
libraries and datasets that we used together with their corresponding licences
» Laplace-Redux Package [Daxberger et al., 2021a]: MIT License
* Netcal package [Kiippers et al., 2021]: Apache Software License
» Pytorch package [Paszke et al., 2019]: Modified BSD Licence
CIFAR-10 dataset [Krizhevsky and Hinton, 2009]: MIT Licence
CIFAR-100 dataset [Krizhevsky and Hinton, 2009]: MIT Licence
¢ SVHN dataset [Netzer et al., 2011]: -
e FashionMnist dataset [Xiao et al., 2017]: MIT Licence

B.2 Dataset splits

For the classification datasets CIFAR-10, CIFAR-100, SVHN, FMNIST we used the standard test
and train splits. We use 10% of the data for the validation set.

B.3 Models

For the classification datasets CIFAR-10, CIFAR-100 and SVHN we use the WideResNet22
[Zagoruyko and Komodakis, 2016] architecture. Because the Laplace approximation does not
interact well Antoran et al. [2022] with BatchNorm [loffe and Szegedy, 2015] we instead use Fixup
Initialization Zhang et al. [2019]. We train our networks using the softmax activation and the
cross-entropy loss. We use the SGD optimizer with learning rate 7 = 0.1, weight decay Se-4, and
momentum 0.9 and 300 epochs. We furthermore divide the initial learning rate by 10, at the point
of 50%, 75% and 87% of the epochs. We also use dropout with 0.4 after all the Resnet blocks. We
evaluate the NLL using the cross-entropy loss.

For the classification dataset FMNIST we use a Convolutional Network with 3 nonlinear convolutional
layers followed by 2 non-linear fully connected layers. We use the SGD optimizer with learning rate
1 = 0.001, weight decay 5e-4, and momentum 0.9 and 10 epochs. We evaluate the NLL using the
cross-entropy loss.

We do not use data augmentation in any experiment. This partially explains the problems with
the CIFAR-100 dataset. In particular, in preliminary experiments (which we include further in the
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Appendix) both the CIFAR-10 and the CIFAR-100 dataset improve significantly in accuracy with data
augmentation (random flips and random crops) and the matrix inversion in the CIFAR-100 KFAC
case is better posed and results in significantly improved accuracy 70% over the non augmented
counterpart.

Average MAP Test Error
CIFAR-10 10.4%
CIFAR-100 40.6%
SVHN 4.2%
FMNIST 8.8%

Table 1: In this table we plot the average test 0-1 Loss of the MAP estimates of the different networks
and datasets.

B.3.1 Additional notes on bound evaluation

We try to make our bounds as tight as possible. To do this we try to control the term [|w; — w |3
which typically dominates the bound. We follow for all tasks a variation of the approach of Dziugaite
et al. [2021]. Specifically we use Ziain to learn a prior mean w, then we set, w; = W, such that
[ws — wx||3 = 0. Note that we can still evaluate a valid bound so long as we set (X, Y’) in Theorem
1 to be independent of the prior mean. This is the reason why we separated a part of the training set
in the form of Z,jidation- We thus set (X,Y) = Zajidation in Theorem 1.

In our experiments we test multiple values of A and o2. Typically one would need to take a union
bound over a grid on these parameters so as for the generalization bound to be valid [Dziugaite and
Roy, 2017]. However this typically costs only logarithmically to the actual bound. We ignore these
calculations as our bounds are in general quite loose anyway, and these calculations would result in
additional terms would make the final bound even more complex.

For the bounds to be valid, one would typically want to show concentration inequalities such that
the Monte Carlo estimates of the Empirical Risk and the Moment terms concentrate close to the true
expected value with high probability. We do not provide such guarantees. Note however that, at
least for the Empirical Risk term, our sample size of m = 100 from the posterior distribution over
weights is a sample size that is typically used in practice and provides good estimates. We have tried
to balance sampling sufficiently to approximate the expectation on the one hand, and also not too
much such that the computations become prohibitive.

B.4 Additional classification results
B.4.1 NLL results

We plot in Figure 3 the standard Isotropic and standard KFAC cases for the NLL. We find that all three
cases of temperatures (cold posterior, warm posterior, as well as posterior with A = 1) can be optimal,
for varying datasets. Furthermore the test behaviour is dominated again by a sharp improvement as
we decrease the posterior variance (A 1) followed by a plateau. An optimal A strictly less than 4-c0
(when it exists) results in only a relatively modest variation of the overall trend. Thus, we believe that
our bounds would be informative even in a hypothetical scenario where they would not be able to
capture these optimal A < +o0.

B.4.2 ECE results

We plot in Figure 4 the standard Isotropic and standard KFAC cases for the ECE. Even without data
augmentation and even when we optimize the prior variance using the marginal likelihood, we find
that all three cases of temperatures (cold posterior, warm posterior, as well as posterior with A = 1)
can be optimal, for varying datasets. Unfortunately we are not aware of approaches to directly bound
the ECE. In Figure 4 the ECE is notable for having a significantly different behaviour from the NLL
and the 0-1 Loss.
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Figure 3: Test NLL mean, as well as 10 MAP trials , along with the validation NLL
= = = (we denote A = 1 by ) for the Standard Isotropic Laplace posterior (top) and standard

KFAC (bottom). The test and validation NLL show warm posteriors (FMNIST and SVHN KFAC),
cold posteriors (CIFAR-10) and posteriors with A = 1 (SVHN Isotropic). The general trend remains
a rapid improvement as A 1 followed by a plateau, however the coldest posteriors A > 1 are not
always optimal contrary to the 0-1 Loss case.

Better calibration in terms of ECE than a simple MAP estimate is one of the purported main benefits
of the Bayesian paradigm. In Figure 5 we plot the Pareto front of the fest 0-1 Loss with respect to the
test ECE. The top row is the standard Isotropic case and the bottom row is the standard KFAC case.
We see that in most cases there is a clear tradeoff between the test 0-1 Loss and the test ECE. These
results might be relevant for the applicability of the Laplace approximation for improving the ECE,
in that it seems that we cannot achieve a clear improvement in ECE without hurting test accuracy.

B.4.3 Augmentation results

In Figure 6 we see that data augmentation (random flips and crops) results in better test accuracy
and makes the matrix inversion in the Laplace approximation better posed such that the accuracy on
CIFAR-100 is within a normal range.
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Figure 4: Test ECE mean, as well as 10 MAP trials , along with the validation ECE

= = = (we denote A = 1 by ) for the Standard Isotropic Laplace posterior (top) and standard
KFAC (bottom). The test and validation ECE show warm posteriors (FMNIST and SVHN KFAC),
cold posteriors (CIFAR-10) and posteriors with A = 1 (SVHN Isotropic). The general trend remains
a rapid improvement as A T followed by a plateau, however the coldest posteriors A > 1 are not

always optimal contrary to the 0-1 Loss case.
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Figure 5: We plot the Pareto front of the test 0-1 Loss with respect to the fest ECE. The top row is the
standard Isotropic case and the bottom row is the standard KFAC case. We see that in most cases
there seems to be a tradeoff between the test 0-1 Loss and the test ECE.
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Figure 6: Test 0-1 Loss mean, as well as 10 MAP trials , along with the validation
0-1 Loss = == = (we denote A = 1 by ) for the Standard Isotropic Laplace posterior (top) and

standard KFAC (bottom) for CIFAR-10 and CIFAR-100 with data augmentation (random flips and
crops). The performance on both improves significantly and the Laplace approximation becomes

better posed.
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C FAQ

» What is the purpose of Zye set? In the Alquier bound we need to compute the Moment
U rp(An) = mEs Ex/ y/pnexp {)\n (LZD(f) - ﬁ‘}(,’y, (f))} To estimate the

Moment we do Monte Carlo sampling f ~ 7 and X', Y’ ~ D". We use the Z,, set to
sample X', Y’ ~ D™,

* How is the case where you learn the prior and posterior mean using the Zi,.in and
then the posterior variance using Zalidation related to the standard Laplace approxi-
mation/Variational Inference? Our case can be seen as a greatly simplified case of Online
Variational Inference Chérief-Abdellatif et al. [2019] for the set Z,alidation U Zirain. In fact
in a truly Bayesian approach we would typically optimize with Z,ajidation U Ztrain as the
posterior is assumed to reflect our best guess after seeing the data, making a validation set
redundant. We include the Standard Isotropic and standard KFAC case (where Zaidation 1S
not used for training but simply to provide a generalization certificate) so as to demonstrate
that the behaviour of our approach is relevant for standard practice.

o Isn’t the fact that A > 1 well known in the PAC-Bayes literature? We are aware of results

such as the one in Catoni [2007] p13 where for fixed prior and posterior distributions the

2a (KL (p||m)—log(e))

nErpLh v (N)(1-Efpli v ()
(note the change in the scaling of A to match our own text). Taking this in to account,
for small KL the value of A will be through this analysis most likely less than 1. More
importantly, the relevant setting for the cold-posterior effect is the one where we optimize
the posterior for different values of A, and not for fixed posteriors which is the setting of
Catoni [2007]. In particular it is not obvious that the result of Catoni [2007] is the same
when changing p based on \.

optimal A is shown to be approximately A = fora >1

* Can you explain the Gradients as Gaussian mixture: NV, f(x; wj) ~ Zle &N (p;,02,1)
assumption? The gradients per sample V, f(x; W) act as a non-linear feature vector for
each . When the linearization of a neural network is plausible (and therefore the neural
network is a linear classifier for high-dimensional feature vectors) it is also plausible that
the generative model of the feature vectors of the data samples is a Gaussian mixture (see
for example Bishop [2006] Section 4.2 for a discussion of Probabilistic Generative Models).
Note that for trained neural networks, previous works have also shown that per sample
gradients with respect to the weights, at w, are clusterable [Zancato et al., 2020] further
supporting that the gradients of all the samples can be seen as a Gaussian mixture. When
analyzing minima of the loss landscape (as we do here) linearization is reasonable even
without assuming infinite width Zancato et al. [2020], Maddox et al. [2021].

* Wouldn't the results be different if you optimized the ELBO to find MAP estimates? The
ELBO would force the MAP minima to be flat and the “noise” from the posterior would
affect less the test accuracy. We use weight decay in our SGD implementation which should
regularize somewhat our learned network. Furthermore when explicitly penalizing for the
minima curvature Foret et al. [2020] researchers observe a consistent but overall small
improvement compared to standard SGD. This leads us to believe that optimizing the ELBO
and then computing the Laplace approximation would not significantly alter our results.

* Hasn't the Laplace approximation been benchmarked before? What is the relationship with
your experiments? We are aware of at least the following works that benchmark the Laplace
approximation [Daxberger et al., 2021a, Ritter et al., 2018, Antordn et al., 2022, Daxberger
et al., 2021b, Immer et al., 2021]. In Daxberger et al. [2021a] p23 Figure 8 (part of the
Appendix) it is evident that when trying to fit the Laplace approximation over all the weights
in the neural network there is some deterioration of the test accuracy with a corresponding
improvement in AUROC. Even if for some MAP estimates fitting the Laplace improves both
the accuracy and the AUROC, on average the Laplace accuracy is as good as the average
MAP accuracy. In Ritter et al. [2018] p15 Tables 1 and 2 (part of the Appendix) we see
that the accuracy is in both MNIST and CIFAR-100 cases slightly worse than the MAP
accuracy. In Immer et al. [2021] p28 Table B4 (part of the Appendix) the difference between
the best Laplace and the MAP estimate in terms of test accuracy is on the order of 0.1%
or even 0.01% and the gains in terms of ECE and OD-AUC are not consistent. In Antordn
et al. [2022] p26 Figure 13 (part of the Appendix) the smallest prior variance is the best
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in terms of test NLL. Finally in Daxberger et al. [2021b] p15 Tables 2 and 15 (part of the
Appendix) for the cases without corruptions, both in the MNIST and CIFAR-10 case the
proposed Laplace approximation (over a subsample of the weights) results in lower test
accuracy, though in the case of CIFAR-10 with gains in the ECE.
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