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Abstract

In this paper, we revisit math word prob-001
lems (MWPs) from the cross-lingual and mul-002
tilingual perspective. We construct our MWP003
solvers over pretrained multilingual language004
models using the sequence-to-sequence model005
with copy mechanism. We compare how the006
MWP solvers perform in cross-lingual and mul-007
tilingual scenarios. To facilitate the comparison008
of cross-lingual performance, we first adapt the009
large-scale English dataset MathQA as a coun-010
terpart of the Chinese dataset Math23K. Then011
we extend several English datasets to bilingual012
datasets through machine translation plus hu-013
man annotation. Our experiments show that the014
MWP solvers may not be transferred to a dif-015
ferent language even if the target expressions016
share the same numerical constants and opera-017
tor set. However, it can be better generalized018
if problem types exist on both source language019
and target language.020

1 Introduction021

How to use machine learning and NLP techniques022

to solve Math Word Problems (MWPs) has at-023

tracted much attention in recent years (Hosseini024

et al., 2014; Kushman et al., 2014; Roy et al., 2015;025

Ling et al., 2017; Wang et al., 2017, 2018; Amini026

et al., 2019). Given a math problem expressed in027

human language, a MWP solver typically first con-028

verts the input sequence of words to an expression029

tree consisting of math operators and numerical030

values, and then invokes an executor (such as the031

eval function in Python) to execute the expression032

tree to obtain the final numerical answer. Figure 1033

shows an example math word problem, the correct034

expression tree, and the final answer.035

Despite the relatively simple syntax of these036

expression trees, building MWP solvers is not a037

trivial task, and researchers have proposed vari-038

ous methods to tackle the different challenges of039

this problem such as statistical methods (Kushman040

Problem: A chef needs to cook 9 potatoes. He has 
already cooked 7. If each potato takes 3 minutes to 
cook,  how long will it take him to cook the rest?

Mult

Sub 3

9 7

Expression: (9 - 7) * 3

Expression Tree: 

Answer: 6

Figure 1: Example of an MWP and its expression tree.

et al., 2014; Roy et al., 2015), parsing-based meth- 041

ods (Shi et al., 2015) and generation-based meth- 042

ods (Wang et al., 2018; Xie and Sun, 2019). How- 043

ever, an aspect that has been largely overlooked is 044

cross-lingual and multilingual MWP solving, i.e., 045

whether a MWP solver trained on one human lan- 046

guage can still work on another human language, 047

or whether a MWP solver trained on multiple hu- 048

man languages together is more effective than a 049

solver trained on only one language. We believe 050

this is an interesting aspect to study for the fol- 051

lowing reasons. First, in cognitive science, people 052

have long studied the relationship between humans’ 053

numerical processing abilities and language abili- 054

ties, and found that on the one hand, the two are 055

largely independent (Xu and Spelke, 2000), but on 056

the other hand, “acquiring and mastering symbolic 057

representations of exact quantities critically de- 058

pends on language and instruction" (Van Rinsveld 059

et al., 2015). It is therefore also intriguing to study 060

whether machines separately acquire arithmetic 061

and language abilities. Second, with pre-trained 062

large-scale multilingual language models such as 063

mBERT (Devlin et al., 2019) and XLM-R (Con- 064

neau et al., 2020), which presumably project differ- 065

ent human languages into a common embedding 066

space, we have seen some success in cross-lingual 067

NLP tasks such as XNLI (Conneau et al., 2018) and 068
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MLQA (Lewis et al., 2020) in both zero-shot and069

few-shot settings (Wu and Dredze, 2019; Conneau070

et al., 2020). It is therefore reasonable to expect071

that for MWP solving, there is the possibility of072

transferring machine’s capability of MWP solving073

from one language to another by leveraging these074

pre-trained multilingual language models.075

In this paper, we conduct an empirical study to076

understand to what extent MWP solvers can work077

in cross-lingual and multilingual settings. Specif-078

ically, we ask the following questions: (1) Cross-079

lingual setting: Given a model trained with mono-080

lingual dataset, can the model solve MWPs over081

another language? (2) Multilingual setting: Can082

combining datasets of different languages further083

boost the performance for each language? (3) Can084

we identify some critical factors that may affect the085

results in (1) and (2)?086

In order to empirically answer the questions087

above, we need multilingual MWP datasets, which088

are limited currently. We first use large scale089

datasets like Math23K (Wang et al., 2017) and090

MathQA (Amini et al., 2019) as monolingual091

MWPs resource and further adapt MathQA to have092

the same operator set and expression style with093

Math23K. To better evaluate the models with paral-094

lel corpus, we extend some existing MWP datasets095

by translating them from English into Chinese. We096

then conduct three sets of experiments on the con-097

structed datasets. We find that: (1) a cross-lingual098

MWP solver finetuned on one language cannot099

work on a second language, even if they are sharing100

the same decoding vocabulary, (2) a multilingual101

MWP solver may not boost performance for all the102

training languages but can improve those problems103

of similar types if one training language is close104

to the evaluation language, (3) combining (1) (2),105

we think for multilingual MWP solvers, despite106

language similarity, the performance relies heavily107

on domain similarity (problem types).108

Our work makes the following contributions: (1)109

To the best of our knowledge, we are the first to110

study cross-lingual and multilingual MWP solv-111

ing, and we empirically demonstrate that cross-112

lingual MWP solving is still difficult, but multi-113

lingual MWP solving is to some extent effective.114

(2) We discover that multilingual MWP solving is115

mostly effective for questions with similar prob-116

lem types. (3) Our constructed datasets can help117

other researchers to further study cross-lingual and118

multilingual MWP solving.119

2 Cross-lingual and Multilingual MWP 120

Solvers 121

In this work, as we are focusing on the cross-lingual 122

and multilingual properties of MWPs, we need to 123

train separate MWP solvers using different datasets. 124

Our cross-lingual MWP solver will be trained us- 125

ing one language but evaluated using another. Our 126

multilingual MWP solver can be trained on all 127

languages available and evaluated separately. To 128

suffice these goals, it would be better if the prob- 129

lems in different languages have comparable prop- 130

erties. Since we are using pretrained multilingual 131

language models as the sequence embedder of the 132

encoder, all the languages can be projected into 133

a shared representation. However, the candidate 134

datasets also need to share a common operator set 135

and numerical constants to make the decoding pro- 136

cess consistent. But some of the categories from 137

MathQA do not exist on Math23K or one of the 138

operators is not in our permitted set. Therefore, we 139

need to adapt MathQA as a counterpart of Math23K 140

sharing the same decoding vocabulary, including 141

operators and constants. 142

2.1 Adaptation of MathQA 143

We adapt MathQA by doing the following: 144

1) We notice that the annotated formulas in 145

MathQA are function calls of predefined func- 146

tions which can be converted into a tree using an 147

abstract syntax tree (AST) parser. 148

2) To be consistent with Math23K, which cov- 149

ers only basic arithmetic operators like addi- 150

tion (Add), subtraction (Sub), division (Div), 151

multiplication (Mult) and exponentiation (Pow), 152

we keep only functions in MathQA that can 153

be expressed in such operators. For example, 154

volume_sphere(r) from MathQA equalizes to 155
4
3πr

3 and is adapted using the method shown 156

in Figure 2. Formulas containing operators not 157

used in Math23K, like sine and permutation, are 158

not considered in this work. A full list of adapted 159

operators can be found in Table 5 of Section B. 160

3) Upon constructing the trees using permitted op- 161

erators, we evaluate each sample to verify its cor- 162

rectness against its ground-truth answer. Those 163

cases that fail to get the correct answer are not 164

considered in this work. 165

After the adaptation, we get the adapted MathQA 166

dataset of solvable problems with comparable sizes 167

and question types to Math23K. For Math23K, we 168

further sample a development set of size 1000 from 169
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divide

volume_sphere

subtract

add

volume_sphere

const_2

4 0.5

4

Div

Mult

Sub

Add

2

4 0.5

Pow Mult

3 Div const_pi

4 3

Mult

4

Pow Mult

3 Div const_pi

4 3

AST parsing

Adaptation

 MathQA: divide(subtract(volume_sphere(add(4, 
0.5)), volume_sphere(4)), const_2)

 Tree: (Div (Sub (Mult (Pow (Add 4 0.5) 3) (Mult 
(Div 4 3) const_pi)) (Mult (Pow 4 3) (Mult (Div 4 3) 
const_pi))) 2)

Figure 2: Adaptation of MathQA to Math23K. The part
highlighted with dashed lines shows the adaptation of
the function volume_sphere.

Math23K MathQA

w/o Pow w/ Pow w/o Pow w/ Pow

Train 21,107 21,161 15,302 16,645
Dev 995 1,000 2,263 2,479
Test 999 1,000 1,532 1,653

Table 1: Statistics of different splits for Math23K and
the adapted MathQA.

its training set. Considering the operator Pow has170

only several training and evaluating instances on171

Math23K, we separate them with others to make a172

fairer adaptation of MathQA to Math23K. We show173

the statistics of both Math23K and the adapted174

MathQA in Table 1. In this work, all the exper-175

iments will be conducted on the dataset marked176

with w/o Pow.177

2.2 Zero-shot Cross-lingual Evaluation178

Datasets179

To test cross-lingual transferability of MWP180

solvers, we use the problem-type-specific datasets181

AddSub (Hosseini et al., 2014), SingleOp (Roy182

et al., 2015) and MultiArith (Roy and Roth, 2015) 183

discussed in Section A.3 as evaluation datasets. To 184

extend these datasets for cross-lingual evaluation, 185

we make use of online machine translation APIs 186

to translate them into Chinese and further manu- 187

ally refine the translations to be more native. For 188

each dataset, we list an example in Table 2, in both 189

English (En) and Chinese (Zh). 190

3 Experiments 191

3.1 Experiment Setup 192

Evaluation metrics: The model is expected to 193

be a math problem solver, so the generated expres- 194

sions should be executable by a specific compiler 195

and executor. During evaluation, each problem is 196

counted as solved if the absolute error rate for the 197

executed value and the target value is lower than 198

a predefined threshold. In our experiments, we 199

choose 1e−4 as the threshold. The final evaluation 200

metric is the accuracy of solved problem against 201

all the problems. 202

Methods to be compared: We empirically com- 203

pare the following cross-lingual: (1) mBERT-zh 204

is using original multilingual BERT (Devlin et al., 205

2019) but trained over Math23K only; (2) mBERT- 206

en is using original multilingual BERT (Devlin 207

et al., 2019) but trained over the adapted MathQA 208

only, and multilingual methods: (1) mBERT-xl is 209

using original multilingual BERT (Devlin et al., 210

2019) but trained by mixing Math23K and the 211

adapted MathQA; (2) XLM-R-xl is using XLM- 212

R (Conneau et al., 2020) but trained by mixing 213

Math23K and the adapted MathQA. 214

Other experiment settings: We choose to use 215

multi-lingual BERT (mBERT) (Devlin et al., 2019) 216

for cross-lingual training. We train our models 217

using one Nvidia 2080ti and a batch size of 160. 218

The learning rate is set to 3e−5 with a scheduler 219

supporting polynomial decay. The training lasts for 220

at most 150 epochs and will stop after 30 epochs if 221

no improvement is observed.1 222

3.2 Results 223

We list experiment results of all the methods in 224

Table 3. 225

Cross-lingual MWP Solver The first research 226

question we want to answer is to what extent 227

1We will release our configuration files for all the experi-
ments in a public code repository.
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Dataset AddSub SingleOp MultiArith

Problem Types addition, subtraction single operation multi-step

En Keith has 20 books . Ja-
son has 21 books . How
many books do they have
together ?

Lisa flew 256 miles at 32
miles per hour. How long
did Lisa fly?

A chef needs to cook 9 potatoes. He has
already cooked 7. If each potato takes
3 minutes to cook, how long will it take
him to cook the rest?

Zh 基思有20本书。杰森
有21本书。他们总共有
多少本书？

丽莎以每小时32英里的
速度飞行了256英里。
丽莎飞了多长时间？

厨师需要煮9个土豆。他已经煮
了7个了。如果每个土豆煮3分钟，
剩下的他要煮多久？

Size 395 562 600

Table 2: Examples from each dataset used for zero-shot cross-lingual evaluation.

Model
Test Zero-shot

Math23K MathQA AddSub SingleOp MultiArith

zh en zh en zh en zh en

mBERT-zh 76.5 3.3 30.9 10.4 66.0 32.7 51.2 15.7
mBERT-en 0.5 77.9 2.8 6.1 5.0 10.5 5.0 3.2
mBERT-xl 76.3 79.0 35.2 24.1 69.8 41.6 45.0 16.0
XLM-R-xl 75.5 79.0 39.0 21.3 67.4 40.4 44.7 18.3

Table 3: Comparisons of different cross-lingual models over Test set and zero-shot datasets.

a MWP solver trained on one language can228

work on another language, with the help of pre-229

trained multilingual language models. Table 3230

shows that the MWP solvers trained using either231

Math23K ( mBERT-zh) or MathQA (mBERT-en)232

have achieved impressive performance when tested233

in the same language. However, the performance234

over a different language drops drastically and is235

almost negligible. In a word, the MWP solver is236

almost non-transferable when it is trained on one237

language but evaluated over a second with the same238

operator set.239

Multilingual MWP Solver The second research240

question we want to answer is whether training a241

MWP solver on multiple languages helps improve242

its effectiveness compared with training on a single243

language. We can see that mixing two languages to244

train can give us a more language-agnostic model245

as the performance on Test split of both languages246

are competitive with monolingual cases. What’s247

more, on the newly extended bilingual datasets,248

there are consistent improvements for most of the249

datasets, especially for the English language.250

Considering the difficulty of problems, these251

bilingual evaluation datasets are closer to252

Math23K (primary school) than to MathQA (GRE253

or GMAT). Adding that mBERT-zh is also doing254

better than mBERT-en on English language, we 255

suspect domain similarity is more important than 256

language for MWP solvers. 257

4 Conclusion 258

In this paper, we revisit the math word problems 259

using a generation-based method constructed over 260

pretrained multilingual models. To assist analy- 261

sis of cross-lingual properties of math solvers, we 262

adopt two large-scale monolingual datasets and 263

further adapts MathQA into the same annotation 264

framework with Math23K. We also reuse earlier 265

smaller datasets and upgrade them into bilingual 266

datasets by machine translation and manual check- 267

ing. Our experiments show that the MWP solvers 268

may not be transferred to a different language even 269

if the target expressions have the same operator 270

set and constants. But for both cross-lingual and 271

multilingual cases, it can be better generalized if 272

problem types exist on both source language and 273

target language. Problems considered to be easy by 274

humans may still be hard for a math solver trained 275

over the same language but from a different domain. 276

This tells us that for math word problem solvers, 277

it might be beneficial to consider balancing differ- 278

ent question types and permitted operators during 279

training. 280
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A Preliminaries 461

A.1 The MWP Solver Task 462

We first formally define the task of building MWP 463

solvers. Given a math word problem with n words 464

W = (w1, w2, . . . , wn), and k numerical values 465

N = (n0, n1, . . . , nk), the model needs to gener- 466

ate a flattened tree representation using operators 467

from permitted operator set O and numerical val- 468

ues from constants C and N . The generated tree 469

should be able to be evaluated via some compiler 470

and executor to return a numerical value. 471

A.2 Solution Framework 472

A MWP solver needs to generate executable code 473

for a target programming language to be evaluated 474

by an executor compiled for the programming lan- 475

guage. 476

Our MWP solver is built upon a sequence-to- 477

sequence model with copy mechanism (Gu et al., 478

2016). Specifically, we use a pretrained multilin- 479

gual model as the encoder to get contextualized 480

representations of math word problems. Due to the 481

word piece tokenizer, the encoded context is not 482

well-aligned to original input words. We choose to 483

map these word pieces back to input words through 484

mean pooling. Then we pass the mean pooled word 485

representations to a bidirectional LSTM. Finally, 486

we use a LSTM decoder with copy mechanism, 487

which takes in the last decoded word vector and in- 488

termediate reading states, to predict the next token 489

one by one. When the decoding finishes, we are 490

expecting to get a linear tree representation. We 491

attach the full model details in Section B. 492

Given the decoded tree representation, we first 493

convert the generated linear tree representation into 494

a piece of python expression with basic operators 495

(+,-,*,/,**), then use the built-in function eval in 496

Python to execute the generated code. 497

A.3 Existing Datasets 498

We use two large-scale datasets for this cross- 499

lingual research. One is Math23K (Wang et al., 500
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Dataset Problem Types Size

AddSub (Hosseini et al., 2014) Add 395
Sub

SingleOp (Roy et al., 2015) Add 562
Sub
Mult
Div

MultiArith (Roy and Roth, 2015) (Add, Sub) 600
(Sub, Add)
(Add, Mult)
(Add, Div)
(Sub, Mult)
(Sub, Div)

Table 4: Datasets which are focusing on specific prob-
lem types.

2017) in Chinese and the other is MathQA (Amini501

et al., 2019) in English. Although the two datasets502

are similar in size and question types, there are still503

differences in terms with permitted operators and504

annotations.505

Math23K The dataset Math23K (Wang et al.,506

2017) contains math word problems for elementary507

school students in Chinese (zh) and is crawled from508

multiple online education websites. The dataset fo-509

cuses on arithmetic problems with a single-variable510

and contains 23,161 problems labeled with struc-511

tured equations and answers.512

MathQA The dataset is a new large-scale, di-513

verse dataset of 37k multiple-choice math word514

problems in English (en). Each question is an-515

notated with an executable formula using a new516

operation-based representation language (Amini517

et al., 2019). It covers multiple math domain cate-518

gories.519

Other datasets focusing on specific problem520

types These datasets are smaller in size but more521

focused on specific problem types. We follow the522

dataset naming conventions from MAWPS (Koncel-523

Kedziorski et al., 2016).524

Specifically, AddSub (Hosseini et al., 2014) cov-525

ers arithmetic word problems on addition and sub-526

traction for third, fourth, and fifth graders. Its prob-527

lem types include combinations of additions, sub-528

tractions, one unknown equation, and U.S. money529

word problems. SingleOp (Roy et al., 2015) is a530

dataset with elementary math word problems of531

single operation. MultiArith (Roy and Roth, 2015)532

includes problems with multiple steps which we533

listed all the seven types in Table 4. These datasets534

are all in English (en). We will illustrate how we 535

extend them into bilingual datasets in Section 2.2. 536

B Method 537

In this section, we construct a generation-based 538

MWP solver using a sequence-to-sequence model 539

with copy mechanism. 540

Our whole model can be visualized in modules 541

through Figure 3. The detailed illustration for each 542

module is given as following: 543

Encoder Our encoder is built upon a pretrained 544

multilingual transformer, either BERT or XLM- 545

R. Suppose our input word wi is tokenized into 546

word pieces (xi1, xi2, . . .) and let hij ∈ Rdh de- 547

notes the hidden vector produced by the pretrained 548

model representing xij . We use average pooling 549

to get the representation for the word wi, denoted 550

as hi. Then we feed this contextualized represen- 551

tation of the math word problem into a two-layer 552

bidirectional LSTM. The output of this biLSTM is 553

the encoder hidden states for decoding, denoted as 554

M = (m0,m1, . . . ,mn). 555

Decoder We use a LSTM cell as the decoding 556

cell to predict the next token. For each decoding 557

step t, the cell will accept the embedding for pre- 558

vious word as input and output a decoder state 559

st ∈ Rds . Most of the numerical values in MWPs 560

do not exist in the target vocabulary. Therefore, we 561

need copy mechanism (Gu et al., 2016) to facilitate 562

generation of numerical values during decoding. 563

The copy scores are calculated as follows, 564

uti = σ(m⊺
iWc)s

t (1) 565

where Wc ∈ Rdh×ds . However, the embedding 566

of a copied token will be identical to an out-of- 567

vocabulary token. To better capture the information 568

from last decoding step, we use the copy score 569

to further derive a state of selecting from source 570

tokens, which is called Selective Read. 571

qt = softmax(ut) (2) 572

bt =
∑
i

qtimi (3) 573

We use a bilinear attention to attentively read 574

information from M, getting the context vector ct, 575

which is called Attentive Read. 576

vti = σ(m⊺
iWas

t + b) (4) 577

dt = softmax(vt) (5) 578

ct =
∑
i

dtimi (6) 579
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Figure 3: Sequence-to-sequence model with copy mechanism.

where Wa ∈ Rdh×ds .580

From the problem definition, the target vocabu-581

lary is V = O ∪ C. The generation score for the582

next token is given by:583

pt = W⊺
ds

t + b (7)584

where Wd ∈ Rds×|V|.585

The state updating process for the decoding cell586

takes in a fused information of last word embed-587

ding et ∈ Rde , selective read state bt and attentive588

read state ct.589

st+1 = f(Ws[e
t,bt, ct], st) (8)590

where Ws ∈ Rds×(de+dh+dh).591

C Related work592

Solving Math Word Problems (MWPs) has been593

attracting researchers since the emergence of arti-594

ficial intelligence. STUDENT(Bobrow, 1964) is a595

rule-based math word problem solver which con-596

tains a pipeline that consists of heuristics for pattern597

transformation. Many researchers start with the598

fundamental problem types like addition and sub-599

traction (Hosseini et al., 2014) or those that have600

only one single operator (Roy et al., 2015). Roy and601

Roth (2015) look at problems that require multi-602

steps using two or more operators. The question603

types of MWPs are also expanding. Rather than604

focusing on problems that need only one variable,605

Kushman et al. (2014) propose a dataset ALG514606

which includes problems with a system of equa- 607

tions. With the development of deep learning, 608

there has been a demand for large-scale datasets 609

with more variations. Dolphin18K (Huang et al., 610

2016) is a large-scale dataset that is more than 9 611

times of the size of previous ones, and contains 612

many more problem types. Math23K (Wang et al., 613

2017) contains math word problems for elemen- 614

tary school students in Chinese language and is 615

crawled from multiple online education websites. 616

MathQA (Amini et al., 2019) is a new large-scale, 617

diverse dataset of 37k multiple-choice math word 618

problems in English and each problem is annotated 619

with an executable formula using a new operation- 620

based representation language. HMWP (Qin et al., 621

2020) contains three types of MWPs: arithmetic 622

word problems, equations set problems, and non- 623

linear equation problems. 624

Various approaches have been proposed to solve 625

MWPs. Template-based approaches (Kushman 626

et al., 2014; Zhou et al., 2015; Upadhyay et al., 627

2016; Huang et al., 2017) are widely adopted as 628

numbers appeared in the expressions are usually 629

sparse in the representation space and the expres- 630

sions may fall into the same category. More re- 631

cently, the community is also paying more atten- 632

tion to train a math solver by fine-tuning pretrained 633

language models. For example, EPT (Kim et al., 634

2020) adopts ALBERT (Lan et al., 2020) as the 635

encoder for its sequence-to-sequence module. 636

The monolingual performance gains achieved re- 637
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Adapted Operators Filtered Operators

add,subtract,multiply,
rectangle_area,divide,
speed,power,negate,inverse,
square_area,sqrt,
square_edge_by_area,
cube_edge_by_volume,
volume_cube,surface_cube,
square_perimeter,
rectangle_perimeter,
stream_speed,triangle_area,
triangle_perimeter,surface_sphere,
volume_sphere,rhombus_area,
quadrilateral_area,volume_cylinder,
circle_area,volume_cone,circumface,
diagonal,volume_rectangular_prism,
original_price_before_loss,
original_price_before_gain,
p_after_gain,
square_edge_by_perimeter,negate_prob

floor,choose,min,tangent,sine,
reminder,lcm,factorial,gcd,max,
permutation,
triangle_area_three_edges,
surface_cylinder,rhombus_perimeter,
surface_rectangular_prism,
speed_in_still_water,log

Table 5: Operators that are adapted in MathQA.

cently have not been evaluated from cross-lingual638

and cross-domain perspectives. Therefore, we de-639

cide to revisit MWPs using current SOTA pre-640

trained multilingual language models to construct641

a competitive math solver and conduct experiments642

over various bilingual evaluations.643
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