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ABSTRACT

Multimodal large language models (MLLMs) are rapidly advancing, yet their
reasoning ability often lags behind that of strong text-only counterparts. Exist-
ing methods to bridge this gap rely on supervised fine-tuning over large-scale
multimodal reasoning data or reinforcement learning, both of which are resource-
intensive. A promising alternative is model merging, which interpolates parameters
between reasoning-enhanced LLMs and multimodal variants. However, our analy-
sis shows that naive merging is not always a “free lunch”: its effectiveness varies
drastically across model families, with some (e.g., LLaVA, Idefics) benefiting
while others (e.g., Qwen) suffer performance degradation. To address this, we
propose Directional Reasoning Injection for Fine-Tuning (DRIFT) MLLMs, a
lightweight method that transfers reasoning knowledge in the gradient space, with-
out destabilizing multimodal alignment. DRIFT precomputes a reasoning prior
as the parameter-space difference between reasoning and multimodal variants,
then uses it to bias gradients during multimodal fine-tuning. This approach pre-
serves the simplicity of standard supervised fine-tuning pipelines while enabling
efficient reasoning transfer. Extensive experiments on multimodal reasoning bench-
marks, including MathVista and MathVerse, demonstrate that DRIFT consistently
improves reasoning performance over naive merging and supervised fine-tuning,
while matching or surpassing training-heavy methods at a fraction of the cost.

1 INTRODUCTION

Multimodal large language models (MLLMs) (Bai et al., 2025; Team et al., 2023; Li et al., 2024b)
have recently achieved impressive progress in perception and alignment, enabling them to answer
questions about images, analyze charts, and engage in grounded dialogue. However, despite these
advances, their reasoning ability remains substantially weaker than that of text-only large language
models (LLMs). Across benchmarks in mathematical reasoning (Pan Lu et al., 2024), logical
inference (Xiao et al., 2024), and multi-hop question answering (Xiang Yue et al., 2025), a persistent
gap emerges: MLLMs can perceive correctly but struggle to chain information into coherent reasoning
steps. Bridging this gap is essential for applications that demand not only multimodal understanding
but also structured, reliable reasoning.

A mainstream approach to improving reasoning in MLLMs is multimodal supervised fine-tuning
(SFT) or reinforcement learning (RL) on reasoning-intensive datasets. Yet both are resource-heavy:
collecting multimodal CoT-style data is costly, and reinforcement learning adds instability and
computational overhead. In contrast, text-only reasoning models (DeepSeek-AI, 2025) are far easier
to obtain due to the growing availability of large-scale text-only CoT resources. This naturally raises
a research question: Can we transfer reasoning from text-only experts into MLLMs efficiently?

A promising direction is parameter-space model merging, where the weights of a reasoning model
are interpolated with those of an MLLM (Chen et al., 2025a). While exciting in its simplicity, our
experiments reveal that naive merging is fragile (as shown in Sec. 3.2). It often disrupts perception
and alignment, and in many cases even reduces reasoning performance. Learning merge coefficients
during fine-tuning partly alleviates this issue, but at the cost of huge training overhead and instability.

To address these limitations, we propose DRIFT, Directional Reasoning Injection for Fine-Tuning, a
lightweight gradient-based method that transfers reasoning knowledge without destabilizing multi-
modal training. Rather than interpolating weights in parameter space, DRIFT operates in gradient
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Model Merging SFT/RL Training (>1 day) DRIFT

(~2hrs)

Figure 1: DRIFT enables efficient reasoning transfer for MLLMs. Left: Compared to reasoning-
oriented training methods, DRIFT achieves comparable performance while requiring dramatically
less multimodal SFT data (4K vs. >59K examples). Right: Simple parameter merging performs
poorly on multimodal reasoning benchmarks. Training-based methods improve performance but rely
on costly data curation and multi-day training. In contrast, DRIFT reaches competitive results within
∼2 hours of training, making it both data- and compute-efficient.

space: it computes a reasoning vector, defined as the parameter difference between a reasoning-rich
text model and its multimodal counterpart, and uses this as a directional prior to guide updates during
multimodal SFT. By injecting this guidance selectively into transformer modules (e.g., attention
projections or MLP layers), DRIFT biases optimization toward reasoning while preserving perception.
Essentially, DRIFT introduces no additional parameters, requires only a small amount of multimodal
reasoning data (as shown in Fig. 1), and integrates seamlessly into existing fine-tuning pipelines.

Our contributions are summarized as follows:

1. We revisit the paradigm of parameter-space model merging for integrating reasoning into
MLLMs, showing that while such methods can occasionally yield gains, they are fragile and
often degrade performance when models diverge substantially in parameter space.

2. We propose Directional Reasoning Injection for Fine-Tuning (DRIFT), a simple yet effective
gradient-based method that leverages the difference between text-only reasoning experts
and multimodal models as a directional prior during supervised fine-tuning.

3. Extensive experiments on various multimodal reasoning benchmarks demonstrate that
DRIFT consistently outperforms standard SFT and parameter-merging approaches, achiev-
ing competitive results with training-heavy methods while requiring less data and compute.

2 RELATED WORKS

2.1 MULTIMODAL REASONING IN LARGE LANGUAGE MODELS

Following the success of chain-of-thought prompting in enabling large language models (LLMs)
to solve complex problems step by step, researchers have increasingly explored whether similar
reasoning capabilities exist in multimodal large language models (MLLMs). Among the many
domains for evaluation, mathematical reasoning has emerged as one of the most prominent. Lu
et al. (2023) introduced MathVista, a visual mathematics benchmark designed to assess the problem-
solving abilities of MLLMs on math tasks that require visual understanding. Similarly, Xiao et al.
(2024) proposed LogicVista, which evaluates integrated logical reasoning skills over visual concepts.
Additional benchmarks, including MathVision (Wang et al., 2024a), MathVerse (Renrui Zhang et al.,
2024), and WeMath (Qiao et al., 2024), extend this line of research by covering diverse mathematical
problem types and difficulty levels, with a strong emphasis on the vision modality.

Many methods have been proposed to enhance the reasoning ability of MLLMs. Ratzlaff et al. (2025);
Li et al. (2024d); Ranaldi & Freitas (2024) explore instruction tuning to teach MLLMs to reason over
visual concepts. Similarly, Subramaniam et al. (2025); Huang et al. (2024b); Dong et al. (2025) adopt
supervised fine-tuning (SFT) to further improve MLLM performance. More recent works (Wan et al.,
2025; Liu et al., 2025b; Chen et al., 2025b) demonstrate that reinforcement learning (RL) approaches
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can effectively enhance the reasoning capabilities of MLLMs while maintaining strong generalization
across diverse tasks. Among these methods, both SFT and RL have shown remarkable potential.
SFT is generally lightweight and efficient, but its effectiveness depends heavily on the availability of
high-quality, diverse multimodal datasets. RL methods, on the other hand, are less constrained by
dataset diversity and can yield robust improvements, though they are more computationally expensive
and require substantial resources for training.

2.2 EFFICIENT FINE-TUNING OF LLMS

Given the high memory and computational cost of full-parameter fine-tuning, numerous studies
have proposed methods to reduce these costs and improve training efficiency. These approaches can
generally be divided into parameter-efficient and data-efficient fine-tuning methods.

Parameter-Efficient Fine-Tuning. Hu et al. (2022) introduced LoRA, which reduces trainable
parameters by injecting and training a low-rank decomposition within the model’s weight matrices.
Subsequent works have refined LoRA with various enhancements, including QLoRA (Dettmers
et al., 2023), LoRA+ (Hayou et al., 2024), and LiSA (Pan et al., 2024). Another line of work
focuses on adapter-based methods, where small trainable modules are inserted into the model while
keeping the base parameters frozen. Examples include AdaptMLLM (Lankford et al., 2023), LLaMA-
Adapter (Zhang et al., 2024b; Gao et al., 2023), and Bt-Adapter (Liu et al., 2024).

Data-Efficient Fine-Tuning. Another research direction seeks to improve fine-tuning efficiency by
carefully curating or compressing the training data. For instance, Lin et al. (2024) propose pruning
and selecting representative samples to maximize data utility. He et al. (2024) leverage external
MLLMs to select high-quality multimodal data for training. Additionally, methods such as those
proposed by Shang et al. (2024) and Cai et al. (2024) reduce the number of visual tokens used for
training, thereby accelerating both fine-tuning and inference.

Model Merging. An even more efficient alternative, model merging repurposes fine-tuned models
by directly combining parameters through simple arithmetic (Ilharco et al.; Yadav et al., 2023; Yu
et al., 2024), requiring no additional training or inference cost. Although well studied in vision
models (Huang et al., 2024a; Gargiulo et al., 2025), its use in MLLMs remains limited. Recent work,
such as BR2V (Chen et al., 2025a), demonstrates the potential of merging for transferring reasoning
into multimodal models. Nonetheless, large parameter discrepancies and cross-modal transfer of
reasoning remain open challenges. Our work addresses these by injecting reasoning priors from
LLMs into MLLMs via gradient space merging.

3 METHOD

3.1 TASK FORMULATION

Starting from a text-only base LLM ϕ, one can derive multiple variants such as instruction-tuned
models or task-specific experts for domains like mathematics, programming, or chemistry. Reasoning
can be injected into this base model through two primary approaches: (i) supervised fine-tuning (SFT)
on chain-of-thought (CoT) datasets, or (ii) reinforcement learning (RL), incentivizing step-by-step
reasoning behavior without explicit CoT labels. To equip the model with visual understanding,
a standard strategy is to integrate a visual encoder that maps images into token representations
processed jointly with text, then train the encoder and LLM backbone end-to-end.

Despite sharing the same base, reasoning and vision capabilities are often developed in isolation:
multimodal large language models rarely inherit the reasoning ability of their text-only counterparts.
Building an MLLM capable of reasoning typically requires SFT over costly multimodal CoT
data. RL can further refine reasoning, but usually assumes a seed of reasoning ability or sufficient
long-context capacity. In contrast, the growing availability of text-only CoT resources makes it often
easier to first obtain a strong text-only reasoning model from ϕ. This imbalance naturally motivates
our research question (Q): can we leverage a text-only reasoning model to guide the transformation
of a non-reasoning multimodal LLM into a reasoning-capable one?

Formally, let the base model be ϕ and its variant fine-tuned on a task Ti be denoted ϕTi
. Our objective

is to efficiently learn a model ϕT ′ by leveraging M domain experts {ϕT1 , ϕT2 , . . . , ϕTM
}, where
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Table 1: Effect of model merging on multimodal reasoning benchmarks. Performance is reported
on MathVista (Pan Lu et al., 2024), MathVision (Ke Wang et al., 2024), and MathVerse (Renrui Zhang
et al., 2024) for four multimodal LLMs (LLaVA-Next-8B (Li et al., 2024a), Idefics-8B (Laurençon
et al., 2024), Qwen2-VL-7B (Wang et al., 2024b), and Qwen2.5-VL-7B (Bai et al., 2025)) before and
after merging with their corresponding text-only reasoning experts.

Benchmark LLaVA-Next-LLaMA3-8B Idefics-8B Qwen2-VL-7B Qwen2.5-VL-7B
Base +Dart-Uniform rel. Base +MetaMath rel. Base +Qwen2-Math rel. Base +DeepSeek-R1 rel.

MathVista 37.4 38.2 +0.8 51.8 53.2 +1.4 61.2 60.2 -1.0 67.9 65.8 -2.1
MathVision 13.8 15.8 +2.0 17.1 11.8 -5.3 21.1 21.7 +0.6 25.0 22.7 -2.3
MathVerse 16.0 17.4 +1.4 11.0 12.4 +1.4 26.9 26.7 -0.2 41.4 33.2 -8.2

Figure 2: Layer/Module-wise analysis of model merging pairs. We compare LLaVA-Next-8B vs.
Dart-Uniform, Idefics-8B vs. MetaMath, Qwen2-VL-7B vs. Qwen2-Math-7B, and Qwen2.5-VL-7B
vs. DeepSeek-R1-Qwen-7B. Top Left: per-layer L2 norm differences. Bottom Left: per-layer cosine
similarity. Top Right: average L2 norm differences for FFN layers and normalization layers. Bottom
Right: average L2 norm differences for attention projections (Q/K/V/O).

T ′ = {T1, T2, . . . , TM}. In this work, we focus on the case where T1 = text-only reasoning and
T2 = visual understanding, and aim to combine them in a data- and compute-efficient manner to
obtain a reasoning-capable multimodal model.

3.2 IS MODEL MERGING ALWAYS A “FREE LUNCH”?

Model merging, which combines the weights of domain experts so that the resulting model inherits
desirable properties from each, appears to offer a promising path toward our research question. In
particular, one can merge a text-only reasoning LLM with the backbone of a multimodal LLM
(MLLM) to unify their complementary strengths. Recent work, such as BR2V (Chen et al., 2025a),
has explored this direction by attempting to integrate reasoning into multimodal LLM.

To explore the potential of model merging, we apply BR2V to the LLM backbones of a text-only
reasoning model and a multimodal LLM, both derived from the same base model. We explore a
series of models. Concretely, we experiment with Mistral-7B (Jiang et al., 2023), LLaMA3-8B,
Qwen-2-7B (Yang et al., 2024), and Qwen-2.5-7B (Bai et al., 2025) as base models;
Dart-Uniform (Tong et al., 2024), Meta-Math (Yu et al., 2023), Qwen2-Math-7B (Yang et al.,
2024), and DeepSeek-R1-Distill-Qwen-7B (DeepSeek-AI, 2025) as text-only reasoning ex-
perts; and LLaVA-Next-LLaMA3-8B (Li et al., 2024a), Idefics-8B (Laurençon et al., 2024),
Qwen2-VL-7B-Instruct (Wang et al., 2024b), and Qwen-2.5-VL-7B-Instruct (Bai
et al., 2025) as multimodal variants.

We evaluate the merged models on multimodal reasoning benchmarks, including MathVista (Pan Lu
et al., 2024), MathVision (Ke Wang et al., 2024), and MathVerse (Renrui Zhang et al., 2024)
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(a) Fine-tuning (c) Reasoning Prior (b) Directional Reasoning Injection 
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Figure 3: Overview of Directional Reasoning Injection (DRIFT). (a) Standard fine-tuning of
a multimodal LLM ϕV L, where gradients g are applied directly to update trainable modules. (b)
DRIFT modifies gradients by injecting a reasoning prior: g̃ = g + α · scale(g,∆), where ∆ encodes
the reasoning direction and scale(·) adjusts how ∆ interacts with g. (c) The reasoning prior ∆
is constructed as the parameter difference between a text-only reasoning model ϕreason and the
multimodal variant ϕV L. Our method enables reasoning knowledge to be transferred without
destabilizing parameter-space merging.

Vision-Only subset (see Tab. 1). While BR2V enhances the reasoning ability of LLaVA-Next and
Idefics, yielding up to a 2% improvement when merged with reasoning-augmented variants, it
often causes performance degradation in the Qwen series across most test cases.

To further investigate these mismatched behaviors across different models, we compute layer-wise L2

norm and cosine similarity between model backbones, quantifying both magnitude and directional
shifts in parameter space. This analysis enables us to examine how reasoning and visual understanding
are distributed in parameter space, thereby characterizing the relationships between post-trained
variants derived from the same base LLM.

As shown in Fig. 2, variants of LLaMA and Mistral remain relatively close in parameter space,
while Qwen variants are substantially more dispersed. Moreover, the parameter magnitudes of multi-
modal Qwen models diverge sharply from their reasoning counterparts, which likely explains the fail-
ure of naive merging in this family. These results suggest that model merging is not universally a “free
lunch”, its success depends strongly on how post-training reshapes the underlying parameter space.

3.3 DIRECTIONAL REASONING INJECTION FOR FINE-TUNING MLLMS

We reformulate the task as mapping a reasoning expert ϕreason and a multimodal LLM ϕVL into a
reasoning-capable multimodal model:

(ϕVL, ϕreason) 7→ ϕVL⊕reason.

As demonstrated in Sec. 3.2, typical merging methods like BR2V (Chen et al., 2025a) merge
parameters (task vectors) relative to the base model:

ϕVL⊕reason = ϕbase + α(ϕVL − ϕbase) + (1− α)(ϕreason − ϕbase). (1)

However, this approach often fails in practice. Large discrepancies between ϕVL and ϕreason make
performance highly sensitive to α: even small distributional mismatches can yield large shifts in
weights. Learning an optimal α is expensive because it requires storing all candidate models in GPU
memory. Moreover, when the two models diverge heavily in magnitude, naive interpolation can cause
unstable updates or gradient explosions. These drawbacks suggest that parameter-space merging is
neither stable nor efficient for large-scale MLLMs.

From parameter merging to directional injection. Instead of interpolating parameters, we propose
to inject reasoning knowledge into the optimization trajectory. Our key insight is that the gap between
variants encodes domain-specific knowledge (e.g., reasoning). Rather than directly applying this gap
in weight space, which may distort multimodal alignment, we leverage it as a directional prior to
guide gradient updates.

We define the difference between a reasoning model and a multimodal variant:

∆ = ϕreason − ϕVL, (2)
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restricted to reasoning-relevant modules (MLP projections, attention projection layers, and normal-
ization layers). This ∆ serves as the reasoning direction. During multimodal supervised fine-tuning
(SFT) with limited multimodal CoT data, we leave model weights intact and instead bias gradients
towards the reasoning direction. For a parameter w with gradient g, we compute the guided gradient:

g̃ = g + α · scale(g,∆), (3)

where α controls prior strength and scale(·) adjusts how ∆ interacts with g. We explore three variants:

• Absolute: g̃ = g + α∆, directly pulling weights toward the reasoning prior.
• Grad-Norm: g̃ = g + α∥g∥ ∆

∥∆∥ , aligning updates with the direction of ∆ while preserving
the gradient magnitude of g.

• Grad-Norm w/ Adaptive α: g̃ = g + α′∥g∥ ∆
∥∆∥ , where α′ = α · 1+cos(g,∆)

2 , adapting
strength based on gradient-delta alignment.

Discussion. The proposed Directional Reasoning Injection (DRIFT) offers two main benefits.
First, it preserves the standard multimodal SFT pipeline: training remains on multimodal data, but
optimization is nudged toward reasoning directions, enabling gradual knowledge transfer without
destabilizing pre-merge operations or requiring large-scale multimodal CoT supervision. Second, it
is lightweight: the reasoning prior ∆ is computed once, stored on the CPU, and only transferred to
the GPU when needed for gradient updates. DRIFT introduces no additional parameters and modifies
only the backward pass, making it both memory-efficient and easily scalable to large MLLMs.

4 EXPERIMENTS

4.1 DATASET COLLECTION

To enable reasoning transfer, we require multimodal reasoning data, but only in small amounts.
Prior work, ThinkLite (Wang et al., 2025), demonstrates that high-quality and challenging questions
are more effective for training than larger volumes of easier ones. Building on this insight, we
start from the ThinkLiteVL-11K dataset, which contains 11K high-quality image–question pairs.
However, this dataset provides only answers without accompanying reasoning chains. To address
this, we employ the ThinkLite models (trained on the same data) to distill chain-of-thought (CoT)
annotations. We then filter out examples where the model either produces incorrect answers or outputs
an invalid format. The retained reasoning traces are enclosed within <think></think> tags to
clearly separate the chain-of-thought from the final answer. After filtering, we obtain a curated set
of 4K high-quality multimodal reasoning examples, which serve as the foundation for our proposed
Directional Reasoning Injection.

4.2 EXPERIMENTAL SETTING

In particular, to construct a strong multimodal reasoning model, we select
DeepSeek-R1-Qwen-Distill-7B (DeepSeek-AI, 2025) as the text-only reasoning ex-
pert and Qwen2.5-VL-7B-Instruct (Bai et al., 2025) as the multimodal backbone. The
DeepSeek-R1 family is designed to elicit explicit reasoning traces, while Qwen2.5-VL provides
strong visual grounding and perception. Investigating whether combining these complementary
capabilities yields a more powerful multimodal reasoning model is our central question.

We implement our method on top of the LLaMAFactory codebase (Zheng et al., 2024), ensuring
reproducibility and compatibility with existing fine-tuning workflows. Training follows the standard
supervised fine-tuning pipeline, with DRIFT integrated as a lightweight plug-in. The reasoning
direction ∆ is precomputed once and cached on the CPU, then transferred to the GPU only when
needed for gradient updates. During backpropagation, we register additional gradient hooks that
inject ∆ into online gradients, enabling reasoning-aware optimization with negligible overhead. We
train the model for three epochs with a learning rate of 1× 10−6.

For evaluation, we focus on multimodal reasoning benchmarks, particularly those involving math-
ematical reasoning: MathVista (Pan Lu et al., 2024) testmini subset, MathVision (Ke Wang et al.,
2024), MathVerse (Renrui Zhang et al., 2024) vision-only subset, WeMath (Runqi Qiao et al., 2024),
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Table 2: Evaluation results on multimodal reasoning benchmarks. We compare our gradient-
based merging approach with standard parameter-space merging baselines. Results are reported on
MathVista, MathVision, MathVerse, WeMath (strict/loose), and LogicVista. Best results are in bold.
Note: Improvements are reported relative to Baseline.

Model MathVista MathVision MathVerse WeMath LogicVista Avg.
strict loose

Qwen2.5-VL-7B-Instruct (Bai et al., 2025) 67.9 25.0 41.4 34.3 52.8 46.7 44.7

Parameter merging with DeepSeekR1-Qwen-Distill-7B
Task Arithmetic (Ilharco et al.) 65.8-2.1 22.7-2.3 33.2-8.2 30.1-4.2 51.2-1.6 42.0-4.7 40.8-3.9
Layer Swap (Bandarkar et al.) 63.6-4.3 22.9-2.1 37.9-3.5 32.1-2.2 50.1-2.7 35.1-11.6 40.3-4.4
TIES (Yadav et al., 2023) 63.6-4.3 23.1-1.9 39.5-1.9 33.4-0.9 51.7-1.1 42.1-4.6 42.2-2.5
DARE-TIES (Yu et al., 2024) 66.3-1.6 23.6-1.4 38.3-3.1 33.7-0.6 52.6-0.2 42.0-4.7 42.8-1.9
DARE-Linear (Yu et al., 2024) 66.0-1.9 22.3-2.7 35.5-5.9 30.8-3.5 51.2-1.6 42.5-4.2 41.4-3.3

Reasoning Injection from DeepSeekR1-Qwen-Distill-7B
DRIFT (Ours) 69.0+1.1 26.5+1.5 44.4+3.0 36.3+2.0 58.2+5.4 45.6-1.1 50.7+6.0

Q: How many items sold 
less than 5 units in at 

least one store?



Answer: 2

...




...

Now, let's count the items that sold less than 5 units in at least one store:
- very (candy and cook)
 - mill (cook)
 - cop 
(candy).
There are 3 items that sold less than 5 units in at least one store.


3. **cop**:


   - candy: 9 units


   - cook: 5 units


   Only candy sold less than 5 units.



Final answer: 3

Baseline’s Prediction

DRIFT’s Prediction
<think>
...



...

From the analysis, the items that sold less than 5 units in at least one store are:
- very
- mill.


</think>
\boxed{2}

3. **cop**:


   - candy: 9 units


   - cook: 5 units





   Cook sold exactly 5 units, not less than 5.



There are 2 items that meet 
this criteria.
 Final answer: 2
 

Figure 4: Qualitative example. DRIFT corrects a failure mode where the model’s visual perception
is accurate but the reasoning chain leads to an incorrect answer.

and LogicVista (Xiao et al., 2024). These datasets contain not only general visual question answering
tasks but also problems that explicitly require reasoning, making them suitable testbeds for our
approach. We adopt VLMEvalKit (Duan et al., 2024) for standardized evaluation and to minimize
randomness, following the official protocols of each benchmark.

4.3 COMPARISON WITH PARAMETER MERGING-BASED METHODS

As discussed in Sec. 3.2, parameter-space merging has emerged as a popular approach for injecting
reasoning into multimodal models. However, its effectiveness is far from guaranteed: naive merging
often yields no gain, particularly when the underlying models diverge significantly in parameter space.
We compare against several representative merging approaches, including Task Arithmetic (Ilharco
et al.), Layer Swap (Bandarkar et al.), TIES (Yadav et al., 2023), and DARE (Yu et al., 2024). These
methods operate by directly manipulating model weights via vector addition or interpolation, layer
replacement, or sparsity/importance masking, to combine complementary skills without full retraining.
We follow the hyperparameter selection practice of Chen et al. (2025a) for fair comparison.

As shown in Tab. 2, we merge the strong reasoning model DeepSeek-R1-Qwen-Distill-7B (DeepSeek-
AI, 2025) into Qwen2.5-VL-7B-Instruct (Bai et al., 2025). Surprisingly, none of the merging methods
improve performance; in fact, several degrade it. We hypothesize that this failure stems from the
large distributional discrepancy between the reasoning model and the multimodal variant, consistent
with our earlier analysis in Sec. 3.2. This finding underscores the fragility of parameter-level merging
and motivates the need for a more robust alternative.

Our Gradient-based Alternative. In contrast, DRIFT sidesteps the instability of direct parameter
interpolation by explicitly encoding reasoning directions during supervised fine-tuning. The multi-
modal model begins with full vision–language capability inherited from the base, and fine-tuning
data naturally couples perception and reasoning. DRIFT leverages this setting by nudging gradients
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Table 3: Evaluation results on visual reasoning benchmarks. We report performance on MathVista,
MathVision, MathVerse, WeMath (strict), and LogicVista across open-source models, and reasoning
fine-tuning methods. † indicates results reproduced by ourselves. Our DRIFT results are bold, and
improvements relative to our SFT baseline are reported.

Model MathVista MathVision MathVerse WeMath LogicVista

Open-source Models
LLaVA-OneVision-7B (Li et al., 2024c) 62.6 17.6 17.6 17.7 32.0
InternLM-XComposer2.5 (Zhang et al., 2024a) 64.0 17.8 16.2 14.1 34.7
InternVL3-8B (Zhu et al., 2025) 70.5 28.6 33.9 37.5 43.6
InternVL2.5-8B (Chen et al., 2024a) 64.5 17.0 22.8 23.5 36.0
InternVL2-8B (Chen et al., 2024b) 58.3 20.0 20.4 20.2 33.6
QvQ-72B-Preview (Team, 2024) 70.3 34.9 48.2 39.0 58.2
Kimi-VL-16B (Team et al., 2025) 66.0 21.8 34.1 32.3 42.7
Qwen2-VL-7B (Wang et al., 2024b) 61.6 19.2 25.4 22.3 33.3
Qwen2.5-VL-7B (Bai et al., 2025) 67.9† 25.0† 41.4† 34.3† 46.7†

Reasoning Fine-tuning Methods
R1-Onevision-7B (Yang et al., 2025) 64.1 29.9 40.0 – 61.8
OpenVLThinker-7B (Deng et al., 2025) 65.3 23.0 38.1 35.2 44.5
R1-VL-7B (Zhang et al., 2025) 63.5 24.7 40.0 – –
X-REASONER (Liu et al., 2025a) 69.0 29.6 – – –

Ours (SFT) 68.7 25.1 42.0 33.3 45.6
Ours (DRIFT) 69.0+0.3 26.5+1.5 44.4+2.4 36.5+3.2 45.2-0.4

slightly toward the reasoning direction, reinforcing reasoning signals without disrupting multimodal
alignment. This design yields consistent improvements across benchmarks, surpassing both the base-
line and parameter-merging methods (e.g., +3.2 points on MathVista compared to Task Arithmetic).
These results highlight that DRIFT provides an effective mechanism for transferring reasoning ability
(as shown in Fig. 4), offering robustness where parameter-level merging is brittle.

4.4 COMPARISON WITH TRAINING-BASED METHODS

A prominent line of work aims to endow multimodal LLMs with reasoning ability through additional
training, typically requiring either large-scale multimodal CoT supervision or specialized fine-tuning
strategies such as reinforcement learning. Representative examples include R1-OneVision (Yang
et al., 2025), OpenVLThinker (Deng et al., 2025), and X-Reasoner (Liu et al., 2025a), all of which
demand curated multimodal reasoning datasets and substantial training budgets. As shown in Tab. 3,
these approaches achieve competitive performance, but only at the cost of generating or collecting
large-scale CoT traces (see Fig. 1 for performance and dataset size comparison).

In contrast, our method avoids such heavy supervision. By introducing Directional Reasoning
Injection, we leverage a lightweight reasoning prior distilled from a text-only expert and inject it
into multimodal training via gradient guidance. This design preserves the simplicity of standard SFT
pipelines while enabling efficient reasoning transfer.

Empirically, DRIFT achieves consistent gains over the SFT baseline on MathVista, MathVision,
MathVerse, and WeMath, while maintaining comparable results on LogicVista. Although training-
heavy methods such as X-Reasoner or R1-OneVision sometimes achieve higher absolute scores,
DRIFT reaches competitive performance with orders of magnitude less reasoning-specific data and
training time. The efficiency benefits of DRIFT are summarized in Tab. 6, which compares the
training regimes: existing reasoning-focused methods require days of training with SFT or RL,
while DRIFT requires only SFT-style training and completes in roughly two hours.

Overall, these results, together with the efficiency analysis, validate our central claim: reasoning
transfer can be achieved not only through resource-intensive multimodal fine-tuning, but also via
lightweight gradient-space priors that exploit the gap between text-only reasoning experts and
multimodal models.

4.5 ANALYSIS OF DRIFT

Is Reasoning Prior Useful? Tab. 3 shows that simply applying supervised fine-tuning (SFT) provides
a strong baseline, yet adding our reasoning prior through DRIFT consistently improves performance.
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Table 4: Comparison of scaling strategies in DRIFT. We report performance on MathVista,
MathVerse, and LogicVista. Scores are shown with relative improvements (rel.) over the SFT baseline.
Merging candidates include attention projection layers (ATTN), Feedforward layers (MLP), input
normalization and output normalization layers (Norm), and the output language model projection
head (LM Head).

Scaling Strategy Merge Candidates MathVista MathVerse LogicVista
Score rel. Score rel. Score rel.

SFT – – 68.7 – 42.0 – 45.6 –

DRIFT

Absolute
{ATTN, MLP}

65.7 -3.0 39.5 -2.5 25.9 -19.7
Grad-Norm 69.0 +0.3 44.4 +2.4 45.1 -0.5
Grad-Norm w/ Relation 70.3 +1.6 43.6 +1.6 45.6 0.0

Grad-Norm

{ATTN} 69.0 +0.3 45.3 +3.3 46.1 +0.5
{MLP} 69.2 +0.5 42.7 +0.7 44.7 -0.9
{ATTN, MLP, Norm} 68.6 -0.1 41.6 -0.4 45.8 +0.2
{ATTN, MLP, Norm, LM Head} 69.2 +0.5 42.1 +0.1 47.8 +2.2

For instance, DRIFT achieves +2.4 points on MathVerse and +3.2 on WeMath, compared to the
SFT baseline. These gains suggest that the reasoning prior extracted from text-only experts is indeed
useful in guiding multimodal training, providing complementary reasoning signals beyond what the
multimodal instruction data alone can supply. Importantly, the improvements are achieved without
relying on costly multimodal CoT annotations.

On the Role of Merging Candidates. To understand which components benefit most from reasoning
injection, we vary the set of modules to which DRIFT is applied (see Tab. 4). We start from the
attention layers, and find that applying DRIFT only to attention layers achieves the strongest perfor-
mance on MathVerse (+3.3), with additional improvements on LogicVista. In contrast, restricting to
feed-forward layers yields modest or inconsistent gains, and including normalization layers often
leads to diminished performance. Extending to the LM head provides mixed results – limited impact
on MathVerse but noticeable gains on LogicVista. These findings suggest that attention modules are
the most sensitive to reasoning priors, while over-extending to normalization layers can inject noise
rather than useful signals.

On the Role of Merging Strategies. Different strategies for incorporating the reasoning prior lead
to distinct behaviors. The Absolute update rule degrades performance across all benchmarks, likely
because it pulls parameters too aggressively toward the reasoning model, disrupting multimodal
alignment. In contrast, gradient-based scaling strategies (Grad-Norm and Grad-Norm w/ Adaptive
α) yield stable improvements. Notably, Grad-Norm w/ Adaptive α achieves the highest MathVista
score (70.3, +1.6), showing that adapting the prior based on the gradient–delta relation provides a
balanced integration. This highlights that subtle guidance, rather than direct overwriting, is the key to
successfully transferring reasoning capabilities.

Overall, these analyses reinforce our central claim: reasoning priors are beneficial, but their utility
depends strongly on where they are applied (attention layers vs. others) and how they are integrated
(gradient guidance vs. absolute interpolation). DRIFT’s design, which biases gradients rather than
parameters, provides a stable mechanism for exploiting these priors.

5 CONCLUSION

In this work, we explore transferring reasoning from text-only LLMs to multimodal LLMs without
large-scale multimodal CoT supervision. While parameter-space merging can yield occasional gains,
it often breaks down when models diverge. To overcome this, we propose Directional Reasoning
Injection for Fine-Tuning (DRIFT), a gradient-based method that guides MLLM fine-tuning with
reasoning priors from expert models. DRIFT achieves consistent improvements over SFT and remains
competitive with costly reasoning-specific training, showing that lightweight gradient-space priors
provide an efficient and scalable path for cross-domain capability transfer.
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A APPENDIX

A.1 PARAMETER-SPACE MERGING METHOD SETUP

We experiment with several parameter-space merging strategies, where models are combined without
additional training by directly manipulating their parameters. The hyper-parameters in Tab. 5
correspond to: (i) λ coefficients that control the interpolation ratio between two models (Ilharco
et al.); (ii) α scaling factors used in data-aware reweighting (e.g., in DARE (Yu et al., 2024)); and (iii)
for layer swapping (Bandarkar et al.), the number of layers replaced.

Method Hyper-parameters
Baseline -
Task Arithmetic (λ = 0.9, 0.1)
TIES (λ = 1.6, α = 0.2)
Dare-TIES (λ = 1.6, α = 0.2)
Dare-Linear (λ = 1.6, α = 0.2)
Layer Swap (λ = 0.9, 0.1, k = 5)

Table 5: Hyper-parameter setup for different parameter-space merging methods. (λ, α, k) denote
interpolation ratios, scaling factors, and number of swapped layers, respectively.

A.2 TRAINING TIME COMPARISON

Training efficiency is a critical factor when scaling reasoning-capable MLLMs. Most existing
approaches rely on either large-scale supervised fine-tuning (SFT) with multimodal CoT data or
reinforcement learning (RL) on specialized reasoning benchmarks. Both settings typically require
multiple days of training on high-end GPU clusters, limiting their practicality for rapid iteration or
deployment.

As summarized in Tab. 6, representative methods such as OpenVLThinker, R1-OneVision, and X-
REASONER all involve either full SFT or RL and require more than one day of training. In contrast,
our method, DRIFT, requires only SFT-style training with gradient guidance and completes within
roughly two hours under comparable hardware. This dramatic reduction in cost is achieved because
DRIFT (i) avoids a huge amount of multimodal CoT data collection, (ii) adds only lightweight
gradient-time operations with a precomputed prior, and (iii) leaves the forward pass unchanged.

Method SFT RL Est. time

OpenVLThinker-7B (Deng et al., 2025) ✓ ✗ > 1 day
R1-OneVision-7B (Yang et al., 2025) ✓ ✗ > 1 day
X-REASONER (Liu et al., 2025a) ✓ ✓ > 2 days
Ours (DRIFT) ✓ ✗ ≈2 hrs

Table 6: Training schemes and estimated wall-clock cost. Existing methods require at least one
day of training, while DRIFT completes in about two hours under comparable hardware.

In practice, this efficiency means DRIFT can be integrated into existing SFT pipelines with negligible
additional overhead, making it far more scalable for both research and production settings.

A.3 DATASET COLLECTION DETAILS

We leverage the ThinkLite (Wang et al., 2025) model to distill multimodal reasoning data on the
ThinkLite-VL-Hard-11K dataset. The prompt used to elicit reasoning traces is illustrated in Figure 5.

After generating candidate responses, we apply a multi-step filtering process to ensure data quality.
First, we verify whether the final answer is enclosed in \boxed{} and matches the ground-truth
solution. Second, we check the correctness of the reasoning format enclosed by <think> and
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System Prompt: You FIRST think about the reasoning process as an 
internal monologue and then provide the final answer. The reasoning 
process MUST BE enclosed within <think> </think> tags. The final answer 
MUST BE put in \boxed{}.



User Prompt: <question>

Figure 5: Example prompt used to distill reasoning traces from the ThinkLite model.

Figure 6: Training loss curves for different gradient merging strategies compared with the SFT
baseline. Adaptive Grad-Norm achieves stable optimization while improving performance over
standard SFT.

</think>. Finally, we retain the highest-quality subset, resulting in 4K verified samples from the
original 11K examples.

A.4 TRAINING LOSS OF GRADIENT MERGING STRATEGIES

We compare training loss curves of different gradient merging strategies against the SFT baseline on
the same dataset. As shown in Fig. 6, the Absolute strategy introduces instability, leading to large
spikes in the early stages. Grad-Norm reduces this effect but still shows noticeable fluctuations.
In contrast, Grad-Norm with Adaptive α closely follows the stable SFT baseline while yielding
improved convergence.

• Absolute: g̃ = g + α∆, directly pulling weights toward the reasoning prior.

• Grad-Norm: g̃ = g + α∥g∥ ∆
∥∆∥ , aligning updates with the direction of ∆ while preserving

the gradient magnitude of g.

• Grad-Norm w/ Adaptive α: g̃ = g + α′∥g∥ ∆
∥∆∥ , where α′ = α · 1+cos(g,∆)

2 adapts the
strength based on gradient–delta alignment.
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Figure 7: Training loss curves for gradient merging candidates compared with the SFT baseline. The
{ATTN} strategy avoids training spikes, while other candidates show instability before convergence.

A.5 TRAINING LOSS OF GRADIENT MERGING CANDIDATES

We compare the training loss curves of different gradient merging candidates against the SFT baseline
on the same dataset. As shown in Fig. 7, merging on {ATTN} yields the most stable curve without
spikes, while all other variants exhibit noticeable fluctuations in the early training stage. For clarity,
we also plot the loss in log scale and zoom in around the spike region to highlight differences across
methods:

• {ATTN}
• {MLP}
• {ATTN + MLP}
• {ATTN + MLP + Norm}
• {ATTN + MLP + Norm + LM Head}

A.6 LIMITATIONS

While DRIFT demonstrates that lightweight gradient-space priors can effectively transfer reasoning
from text-only experts to multimodal models, several limitations remain. First, our method relies on
the availability of strong text-only reasoning experts, which constrains applicability in domains where
such experts are weak or unavailable. Second, although DRIFT avoids destabilizing multimodal
alignment in our experiments, its reliance on precomputed reasoning directions may introduce biases
or diminish performance when tasks require perception-heavy reasoning. Third, we primarily evaluate
on mathematical and logical reasoning benchmarks; further validation on diverse multimodal tasks
such as commonsense reasoning, scientific understanding, or open-domain visual question answering
is needed to assess generality. Finally, while DRIFT reduces training costs compared to reinforcement
learning or large-scale multimodal CoT supervision, it still adds overhead relative to standard SFT
and does not yet guarantee interpretability of the injected reasoning signals.

A.7 FUTURE WORK

Building on our findings, several directions remain open for exploration. First, extending DRIFT
beyond mathematical and logical reasoning to domains such as scientific understanding, embodied
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perception, and real-world decision-making would test its generality. Second, developing adaptive
strategies that dynamically select or combine reasoning priors, rather than relying on a fixed direction,
could improve robustness when transferring across diverse tasks. Third, integrating DRIFT with
reinforcement learning or preference optimization may further enhance reasoning without sacrificing
multimodal grounding. Finally, improving interpretability of injected reasoning signals, through visu-
alization or attribution, would provide stronger insights into how reasoning knowledge is transferred,
fostering trust and transparency in multimodal systems.

A.8 BROADER IMPACT

This work highlights a lightweight path for transferring reasoning abilities from text-only experts to
multimodal models, offering efficiency benefits and reduced reliance on costly multimodal supervi-
sion. By lowering the resource barrier, DRIFT may help democratize access to multimodal reasoning
systems in academic and industrial settings. However, transferring reasoning across domains also
raises important considerations. First, biases embedded in text-only experts may propagate into
multimodal models, amplifying inaccuracies or cultural biases in downstream tasks. Second, more
capable multimodal reasoning systems may be misused in sensitive domains such as surveillance,
misinformation generation, or automated decision-making, where reliability and transparency are
critical. Third, although DRIFT reduces compute costs, it still benefits institutions with access to
pretrained reasoning experts, potentially reinforcing existing inequities in model development.

B USE OF LLMS

In this work, large language models were employed exclusively for grammar refinement and language
polishing. All substantive contributions—including the design of the conceptual framework, develop-
ment of algorithms, model training, experimental studies, and the writing of technical content—are
entirely original and carried out by the authors.
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