
Under review as a conference paper at ICLR 2024

PRIVACY-PRESERVING LLM FINE-TUNING OVER API

Anonymous authors
Paper under double-blind review

ABSTRACT

As deep learning models become larger and more expensive, many practitioners
turn to fine-tuning APIs. These web services allow fine-tuning a model between
two parties: the client that provides the data, and the server that hosts the model.
While convenient, the fine-tuning APIs raise a new concern: the data of the client
is at risk of privacy breach during the training procedure. This challenge presents
an important practical case of vertical federated learning, where the two parties
perform parameter-efficient fine-tuning (PEFT) of a large pre-trained model. In
this study, we systematically search for a way to fine-tune models over an API
while keeping the labels private. We analyze the privacy of popular algorithms
for parameter-efficient fine-tuning when training over an API. Using this analy-
sis, we propose P3EFT, a multi-party split learning algorithm that takes advantage
of existing PEFT properties to maintain privacy at a lower performance overhead.
To validate our algorithm, we fine-tune DeBERTa-v2-XXLarge and Flan-T5 using
LoRA adapters on a range of common NLP tasks. We find that P3EFT is competi-
tive with existing privacy-preserving methods in multi-party and two-party setups
while having higher accuracy.

1 INTRODUCTION

One of the main reasons behind deep learning success is its ability to transfer knowledge between
tasks (Tan et al., 2018). When training a model for any particular problem, it is common to reuse
previously trained models from other, related problems. In the past, this was typically done by
downloading pre-trained model weights from public hubs, then fine-tuning the said models on the
downstream task. However, as models grow larger and more compute-intensive, fine-tuning them
locally becomes an increasingly difficult task. Furthermore, many recent models are not released,
but instead made available as proprietary services.

When a model cannot be fine-tuned locally, many practitioners opt instead for the so-called fine-
tuning APIs. These APIs are web services backed by remote servers that host one or several pre-
trained models and allow clients to perform limited fine-tuning. More specifically, APIs usually
allow their clients to run parameter-efficient fine-tuning (PEFT), such as LoRA (Hu et al., 2022)
or Prefix-tuning (Li & Liang, 2021). This is particularly necessary for large language models and
image generative models, both of which are notoriously expensive to train.

Most fine-tuning APIs have a single endpoint backed by a pool of servers of a particular organization,
such as OpenAI API (OpenAI, 2023) or Hugging Face AutoTrain (Hugging Face, 2023) for fine-
tuning language models and Dreambooth API (2023) or OctoAI API (OctoAI, 2023) for fine-tuning
diffusion models. Recently, there have also appeared several decentralized fine-tuning systems, such
as Petals (Borzunov et al., 2022).

Although the fine-tuning APIs can be convenient, they also introduce new challenges and risks that
were absent in local fine-tuning. If a client uses such API to fine-tune the model on sensitive data,
they need to ensure that their data will stay private. This is particularly important when dealing with
patient’s medical records, personal user data or trade secrets. The two main threats to data privacy
are that the API provider obtains the private data and that a third party intercepts data in transit.
Therefore, data privacy is not guaranteed even if the API provider is trusted. This forces many
privacy-sensitive parties to avoid fine-tuning APIs and train their models locally, which is often less
efficient and prevents them from using the state-of-the-art models.

1

Under review as a conference paper at ICLR 2024

In this work, we seek to alleviate this problem by designing a two-party fine-tuning protocol that
performs standard parameter-efficient fine-tuning with privacy guarantees. We formulate our proto-
col as a special case of split learning (or vertical federated learning), where one side (server) holds
the pre-trained model and the other (client) has private training data. More specifically, we focus on
the privacy of client’s training labels. While input privacy is also important, we found that inputs
can often be anonymized or obfuscated by other means (see Section 2.1).

Instead of developing a specific privacy-preserving architecture or training objective, we seek algo-
rithms that can work with popular existing models and PEFT algorithms. Furthermore, our approach
relies on some of the properties of parameter-efficient fine-tuning. Notably, since the adapters are
compact, both parties can maintain multiple sets of adapters and swap between them with relative
ease. This allows us to design a PEFT-specific algorithm that can solve its task more effectively than
general split learning strategies.

We summarize the main contributions of our work as follows:

• We analyze common parameter-efficient fine-tuning algorithms from the perspective of
label privacy. We observe that, despite fine-tuning less than 0.1% of model parameters,
modern PEFT algorithms leak client’s training labels against simple attacks that work for
modern pretrained transformers.

• Based on our analysis, we formulate a framework for privacy-preserving parameter-
efficient fine-tuning (P3EFT). This framework leverages the properties of PEFT to provably
obfuscate the gradients communicated during fine-tuning with no impact on the fine-tuned
model quality.

• To verify the practical viability of P3EFT, we conduct experiments on popular real-world
PEFT workloads1. Notably, we fine-tune DeBERTa-v2-XXL (He et al., 2021) and Flan-
T5 (Chung et al., 2022) on a set of standard language understanding problems. We find that,
compared to prior split learning algorithms, P3EFT can maintain label privacy throughout
training with significantly smaller accuracy drop.

2 BACKGROUND

2.1 FEDERATED LEARNING AND SPLIT LEARNING

Privacy preservation in machine learning has been a subject of active study within several frame-
works. An important branch of privacy-preserving learning methods is federated learning, or
FL (McMahan et al., 2017), which can be broadly described as an approach allowing several parties
to train a model jointly without sharing their private data. In particular, vertical federated learn-
ing (Hardy et al., 2017; Yang et al., 2019) targets the scenario where different features (including
the label) of each training instance are kept by different parties.

One of the most popular approaches to vertical FL for neural networks is split learning (Gupta &
Raskar, 2018; Vepakomma et al., 2018), where each party stores its part of the overall model. To
train the model in such an approach, it is only necessary to transfer the intermediate activations and
the gradients between layers, while the data itself is stored at the premises of the participant hosting
each layer. In this work, we focus on the two-party formulation of split learning, where one side
stores the features for each example and another one stores the labels.

Recent works have investigated the setting of two-party split learning from the label leakage per-
spective (Vepakomma et al., 2019; Pasquini et al., 2021): because the label party needs to pass the
gradients of the loss function to the non-label party, it is possible for the latter party to deduce the la-
bels by inspecting the gradients or activations or by hijacking the training proecdure. Li et al. (2022)
provide a set of attack methods that allow recovering private labels and propose a defense mech-
anism that injects noise into the gradients; however, they test the approach on pretraining smaller
models, and we study finetuning large models on private downstream data.

1The code is available at github.com/iclr2023-anonymous/P3EFT

2

https://github.com/iclr2023-anonymous/P3EFT

Under review as a conference paper at ICLR 2024

2.2 PARAMETER-EFFICIENT FINETUNING

The majority of large neural networks today are not trained with a specific task in mind: instead,
they are pretrained on a general objective and then adapted for the downstream problem. Impor-
tantly, the growth in the size of foundation models has led to the increased popularity of parameter-
efficient finetuning (PEFT) methods that adapt the model to a given task by training a small number
of task-specific parameters. There are several prominent approaches to parameter-efficient finetun-
ing, ranging from trainable prompts (Li & Liang, 2021; Hambardzumyan et al., 2021), to resid-
ual adapters (Houlsby et al., 2019; Pfeiffer et al., 2021). We focus on Low-Rank Adaptation (or
LoRA, Hu et al., 2022), one of the most popular PEFT methods that adds extra parameters to each
weight matrix in the form of a low-rank factorization (see Appendix B for a more detailed descrip-
tion). Such formulation allows LoRA adapters to be merged into the original weights after finetun-
ing; this ability, combined with the simplicity of the method, has made LoRA a broadly popular
approach in multiple domains. Still, the approach we propose can be applied to any PEFT method.

Importantly, the connections between data-private learning and parameter-efficient finetuning have
been explored in several past works. One of the earlier works at the intersection of these areas is
Yu et al. (2022); however, its primary focus is differential privacy, i.e., hiding the identity of each
training example rather than hiding the training task itself. As also argued by Li et al. (2022), in
the setting of split learning, the non-label party knows the participation of each example in the
training procedure; therefore, differential privacy is not applicable in the conditions we study. Zhao
et al. (2023) explore the viability of prompt tuning for federated learning and Zhang et al. (2023)
study four PEFT algorithms in the setting of horizontal federated learning, comparing their task
performance, communication costs, and privacy preservation capabilities. The primary distinction
between our work and these studies is that we investigate parameter-efficient adaptation in the setting
of split learning: instead of training over data split across workers, we aim to finetune a model
without disclosing the labels of examples to the model provider.

3 PRIVACY-PRESERVING PARAMETER-EFFICIENT FINE-TUNING

In this section, we analyze the privacy of parameter-efficient fine-tuning and propose a protocol for
two-party parameter-efficient fine-tuning with the desired privacy guarantees. We begin by ana-
lyzing the privacy of API fine-tuning with popular PEFT algorithms in Section 3.1. Then, in Sec-
tion 3.2, we formulate a protocol for privately computing gradients over fine-tuning APIs. Finally,
we formulate the full P3EFT protocol in Section 3.3.

3.1 TWO-PARTY SPLIT FINE-TUNING

To analyze the privacy of API fine-tuning, we first need to formulate a common framework for
this type of APIs and develop private learning protocols. This step is important, because existing
fine-tuning APIs greatly vary in what they offer to the client.

Notably, as of writing of this paper, most API providers ask users to submit their training data,
perform fine-tuning with some undisclosed parameters, and returns a handle that can later be used
to query the model. This approach offers no avenue for ensuring that client’s data is private from
the provider. Furthermore, this type of API offers clients no flexibility in how they want to perform
their fine-tuning.

Another, more flexible type of fine-tuning API allows clients to run individual forward and backward
passes over a remote model (Borzunov et al., 2022; Rao et al., 2021; Li et al., 2023). A client can use
these APIs to obtain the training gradients for their PEFT adapters, then update adapters with any
optimization method. In our work, we adopt this archetype of fine-tuning API as it offers sufficient
flexibility to develop privacy-preserving algorithms.

We formulate fine-tuning over an API for two or more parties: a client, and one or several servers.
The client owns a training dataset with inputs X and labels Y . In turn, each server has the same pre-
trained model h(xi, θ)∈Rd. Note that the parameters θ denote not the pre-trained model weights,
but the trainable adapter weights for a certain PEFT algorithm. A model can encode an input xi ∈ X
and produce a d-dimensional vector of hidden activations (learned input representations) that depend
on the learned adapter weights θ.

3

Under review as a conference paper at ICLR 2024

To allow fine-tuning, each server offers two API methods: forward(x, θ) that returns h(x, θ), and
backprop(x, θ, gh) = gθ that receives gradients gh = ∂L(h(x,θ))

∂h(x,θ) of an arbitrary loss function w.r.t.
model activations and returns the gradients of the same loss function with respect to the specified
PEFT parameters, gθ = ∂L(h(x,θ))

∂θ .

We further assume that both forward(·) and backward(·) APIs are stateless and deterministic, i.e.
calling the same API method multiple times (or on multiple servers) with the same inputs produces
identical results. Thus, if the model uses dropout or any other form of non-determinism, we assume
that clients provide the random seed as a part of x.

Real-world fine-tuning APIs are not exactly nondeterministic due to hardware and software lim-
itations. In principle, they can be made exactly deterministic at the cost of slower computation.
However, this is not necessary, as our work does not rely on strict determinism up to numeric preci-
sion. Finally, fine-tuning APIs can provide several models and offer more than one PEFT algorithm,
which we leave out of the scope of our analysis.

To fine-tune a model with this API, a client can initialize adapters locally, alongside with a small
task-specific “head”, then train both adapters and head on training minibatches. For each minibatch
(x, y) ∈ D, a client calls forward(x, θ) to compute feature representations, then predicts with local
“head” and computes task-specific loss function L. After that, a client performs backward pass:
first, it computes gradients w.r.t. local head inputs gh = ∂L

∂h , then passes those gradients to a remote
server via backward(x, θ, gh) API call to compute gradients w.r.t. ∂L

∂θ . Finally, a client updates both
θ and local “head” parameters using the optimizer of choice.

Before building more advanced algorithms, let us analyze the privacy of client’s labels under stan-
dard fine-tuning. We consider an “honest, but curious” attacker model. This means that the server
will faithfully run the forward and backprop computations as requested by the client without chang-
ing the results. Furthermore, we assume that servers are independent and do not communicate
client’s data between each other. However, a server can recover client’s labels by performing arbi-
trary computations on top of any information it receives from the client.

When training in this way, a client does not directly communicate training labels to the server.
However, they do communicate inputs, adapter parameters, and gradients. Furthermore, the server
communicates input representations that can be intercepted by a third party.

In Figure 1, we train a DeBERTa-v2-XXL model on the SST-2 sentiment classification dataset. The
top row depicts the gradients gh communicated by the client when calling backprop(·) at different
training stages. In the bottom row, we similarly track activations h(x, θ) that server may compute
based on the specified x, θ. We defer further additional figures and details to Section 4.1.

As we can see, both gradients and activations are arranged in such a way that simple k-means
clustering would reveal which objects have the same label. The training activations (bottom row) do
not reveal labels right away (at least not against this attack). However, they gradually “leak” private

Step: 0 Step: 1000 Step: 4000 Step: 16000

Step: 0 Step: 1000 Step: 4000 Step: 16000

Figure 1: A visualization of top-2 principal components of gradients (top) and activations (bottom)
from different fine-tuning steps (left to right). Color indicates the training labels (binary).

4

Under review as a conference paper at ICLR 2024

label information during training. From an information-theoretic perspective, knowing just one
vector of gradients or trained activations allows the attacker to learn all but one bit2 of information
about client’s private labels.

To summarize, leaving any one data source unprotected (gradients, activations or parameters) would
already compromise label privacy. However, we found that gradients and activations require differ-
ent means of protection.

3.2 PRIVACY-PRESERVING BACKPROPAGATION

In this section, we formulate an algorithm for “anonymizing” the gradients communicated over a
single training step with arbitrary PEFT type. Several prior works approach this by modifying the
training objective or model architecture. However, when dealing with a real-world PEFT workload
with optimized hyperparameters, changing the model or loss function often results in reduced model
accuracy3. Thus, we seek an algorithm that preserves both model and training objective.

We design our algorithm based on an observation that backpropagation is conditionally lin-
ear in output gradients, even when the model itself is nonlinear. Formally, if we take a model
h(·, ·), a fixed set of trainable parameters θ and input samples x, the backprop “function” computes
backprop(x, θ, ∂L

∂h(x,θ)) = ∂L
∂θ . For convenience, we shorten it to backprop(x, θ, gh) = gθ, where

gh = ∂L
∂h(x,θ) represents the gradients of some objective function with respect to model activations

(outputs), and gθ = ∂L
∂θ are gradients of the same objective function w.r.t. trainable parameters. In

this notation, backprop is linear in terms of gh for any fixed x, θ.

This becomes self-evident if we view backprop as multiplying g⃗h by the Jacobian of model outputs
w.r.t. trainable parameters, ∂h(x,θ)

∂θ . If x, θ are constant, the Jacobian is also constant, and backprop
is a linear operator:

backprop(x, θ,
∂L

∂h(x, θ)
) =

∂L

∂θ
=

∂L

∂h(x, θ)
× ∂h(x, θ)

∂θ
(1)

This observation allows us to design a private backpropagation protocol. To illustrate this protocol,
let us first consider a distributed API with two identical independent servers that offer backprop API.
Then, for arbitrary vector z⃗, we can rewrite:

backprop(x, θ, g⃗h) = backprop(x, θ, gh + z⃗) + backprop(x, θ, gh − z⃗) (2)

During API fine-tuning, we obtain backprop(x, θ, gh + z⃗) using an API call to server 1, whereas
the second term backprop(x, θ, gh + z⃗) translates to an API call to server 2. Note that neither of
two servers has access to the true gradient g⃗h: they only receive the sum [z⃗ + gh]. If we sample a
large noise vector z⃗ (Var(z⃗) ≫ ∥(gh)∥22), this sum becomes indistinguishable from noise. However,
when both API calls finish, a client can add the result to recover the true gθ = ∂L

∂θ .

If both requests are processed by the same server, it can obviously recover gh by adding up gradients
from both calls, which leads us to the final step. Instead of generating a single noise vector, a client
needs to generate (privately) a set of m > 1 random vectors ĝ1, . . . , ĝm and scalars α1, . . . , αm

such that gh =
∑m

i=1 αi · ĝi. Then, for each ĝi, client computes backprop(x, θ, ĝi) as m parallel
API calls. Once this is done, client recovers gθ =

∑m
i=1 αi · backprop(x, θ, ĝi). Note that the client

does not reveal scalars α1, . . . , αm to anyone.

This procedure can allow client to safely compute gradients once, but, in practice, client usually
needs to run many consecutive steps. This creates an additional vector of attack: if the same server
receives two sets of parameters θt, θt+1 , they could potentially recover gθ by inverting the optimizer.

In the simplest case, if the server somehow knows that the client computes θt+1 = θt − η · gθ, then
they can compute gθ = θt−θt+1

η . While gθ does not necessarily leak private labels, a server could,
in some cases, use gθ to recover gh, either fully (e.g. if Jacobian is invertible), or partially.

2The missing bit corresponds to attacker not knowing which cluster corresponds to label “1”.
3We validate that experimentally in 4.2

5

Under review as a conference paper at ICLR 2024

SERVER CLIENT

n model instances with unique LoRA weights 𝜃 activations weights weighted activations model head

local layers

h1 W1

h2 W2

hn Wn

𝜃1 → → → ⊙ =

𝜃2 → → → ⊙ =

𝜃n → → → ⊙

𝚺=
h’

𝓛

… … … … … …

forward

last layer

activations

from n models

backward

weighted

gradients

to n models

…

Figure 2: An intuitive illustration of the proposed fine-tuning protocol.

The client has two ways to prevent this attack. The first one is to ensure that no single server runs
backprop on two consecutive steps. This is easy to do in decentralized systems where there are
many potential servers. However, even when there is a single server, they could be required to set up
multiple trusted execution environments (Nvidia, 2023). A more risky alternative is to ensure that
the gradients cannot be reversed from consecutive parameters: randomize initial optimizer statistics
or add noise to parameters. This solution is easier, but it can adversely affect convergence in some
cases. The resulting procedure is formulated in Algorithm 1.

Algorithm 1 private backprop - Privacy-Preserving backpropagation (from client’s perspective)

Input: x inputs, θ adapter weights, gh gradients w.r.t. activations, m > 1 - number of passes
1: ĝ1h, . . . , ĝ

m
h , α1, . . . , αm = obfuscate(gh,m) ▷ s.t.

∑m
j=1 αj · ĝjh = gh

2: for j = 1, . . . ,m do
3: ĝjθ = backprop(x, θ, ĝjh) ▷ server computes ĝjh × ∂h/∂θ
4: end for
5: gθ =

∑m
j=1 αj · ĝjθ

Return: gθ

To summarize, we formulated a procedure that allows a client to compute gradients privately for
any given model and PEFT type. Furthermore, since eq. 2 recovers true gradients, this obfuscation
method does not affect the training dynamics. However, as we have shown in Section 3.1, gradients
are not the only source of privacy leakage.

3.3 FULL FINE-TUNING

The other major attack vector are training activations. As the model fits to training data, it’s interme-
diate activations h(x, θ) allow attackers to recover labels. To combat this issue, we take advantage
of the fact that PEFT has few trainable parameters. Instead of learning just one set of trainable
parameters, a client creates n independent adapter sets θ1, ..., θn. Note that this does not require n
unique servers: a single server can run multiple sets of adapters. Furthermore, a client can alternate
between using different servers for the same adapters. During forward pass, the outputs of different
adapters are mixed together using randomized mixing weights W ∈ Rn,d:

h′(x, θ1, . . . , θn) =

n∑
i=1

Wi ⊙ h(x, θi) (3)

Overall, we design this model in such a way the combined model h′ can predict the labels, but the
adapters h(x, θi) do not allow predicting these labels without knowing the mixing weights W. The
mixing weights are generated such that initial activations h′(x, . . .) are equal to mean h(x, ·) for all
x. To achieve this, we generate W as follows: first, we generate n · (n−1)/2 d-dimensional random
vectors ξ⃗i,j ∈ Rd∀i ∈ [1, n], j ∈ [i+ 1, n]. Then, we add them up in the following way:

W =


1
n e⃗+ ξ⃗1,2 + ξ⃗1,3 + · · ·+ ξ⃗1,n

−ξ⃗1,2 + 1
n e⃗+ ξ⃗2,3 + · · ·+ ξ⃗2,n

. . .

−ξ⃗1,n − ξ⃗2,n − ξ⃗3,n − · · ·+ 1
n e⃗

 (4)

6

Under review as a conference paper at ICLR 2024

Here, e⃗ stands for a vector of all ones. The purpose of these mixing weights is to ensure that the
gradients w.r.t. individual h(x, θi) are obfuscated, but the averaged model behaves the same as
regular PEFT adapter. To illustrate this, consider n=2 identical LoRA adapters θ1, θ2. During the
first training step h(x, θ1) = h(x, θ2). Therefore,

h′(x, θ1, . . . , θn) = (1/2e⃗+ ξ⃗1,2)⊙ h(x, θ1) + (1/2e⃗− ξ⃗1,2)⊙ h(x, θ2) = h(x, θ1) (5)
However, the two adapters will learn different functions as they receive different gradients. From
the first update on, h′ will be equal to an average of adapter predictions.

Finally, to ensure that individual adapters h(x, θ) do not accidentally “learn to leak” labels, we
maintain this over the course of training with a privacy regularizer inspired by Ganin & Lempitsky
(2015). This ensures that it is impossible to predict labels from individual adapters h(x, θi).

Intuitively, on each training step, client fits n linear “heads” that learn to predict labels y from
h(x, θi), then performs an adversarial update of θi to prevent the “head” from predicting y.

Formally, each of n “heads” minimize the same objective function as the full model. For instance,
if the full model solves multi-class classification, each head is trained to minimize cross-entropy:
η∗i = argmin

ηi

∑
x,y∈D −y · log e⟨ηij,h(x,θi)⟩∑

k e⟨ηik,h(x,θi)⟩
, where y is one-hot encoding of the correct class.

The whole adversarial update takes place locally on client’s side, using the same h(x, θ) it uses for
the main training objective. The resulting procedure appears complicated but it typically takes negli-
gible time compared to running the large pre-trainied model h(x, θ). Furthermore, since adversarial
“heads” are linear, minimizing the objective above is done with standard logistic regression solver.

To summarize, our approach combines the two proposed ideas: we use the private backpropaga-
tion algorithm from Section 3.2 to protect the gradients, then trains a mixture of adapters in such a
way that obfuscates learned activatons leaking labels. The resulting procedure is described in Algo-
rithm 2. In the next section, we will evaluate the efficacy of P3EFT on popular NLP benchmarks.

4 EXPERIMENTS

The main goal of this study is to find a practical method of private fine-tuning that would scale to
modern pre-trained transformers. To verify if P3EFT meets these criteria, we chose to evaluate it
not on typical datasets used in split-learning (e.g. CIFAR10, Krizhevsky (2009)), but on fine-tuning
recent pre-trained transformers on NLP bechmarks representative of real-world tasks.

To that end, we chose two pre-trained models: DeBERTa-XXLarge (He et al., 2021) and Flan-
T5-Large (Chung et al., 2022). We train these models to perform sentiment classification on SST-
2 (Socher et al., 2013) and paraphrase identification on MRPC (Dolan & Brockett, 2005), both of
which are parts of the GLUE benchmark (Wang et al., 2018). For each model, we train LoRA
adapters with rank 8. To improve reproducibility, we reuse the recommended hyperparameters
from Hu et al. (2022) for the two corresponding tasks.

Step: 0 Step: 1000 Step: 4000 Step: 16000

Step: 0 Step: 1000 Step: 4000 Step: 16000

Figure 3: Gradients of cross-entropy w.r.t. LoRA parameters for DeBERTa-v2-XXLarge. The top
row corresponds to normal backpropagation and the bottom row uses privacy-preserving backprop.

7

Under review as a conference paper at ICLR 2024

4.1 PRIVACY OF GRADIENTS AND ACTIVATIONS

For this experiment, we train DeBERTa-XXLarge on SST-2 dataset using a regular LoRA adapters.
First, we train the model locally and track model activations h and gradients w.r.t. those activations.
We apply principal component analysis to them into 2-dimensions and visualize them in Figure 1.
Similarly, we visualize gradients of individual per-sample loss functions w.r.t. LoRA parameters θ in
Figure 3 (top row). As we mention earlier, a hypothetical attacker could easily recover private labels
by performing K-Means clustering over any data source: activations, gradients w.r.t. activations,
and as well as individual gradients w.r.t. parameters.

Next, we run the same experiment using privacy-preserving backpropagation as defined in Sec-
tion 3.2. We use n = 2 with noise variance set to 1000. As expected, we observed the same learning
curve as with normal training. However, instead of sending gradients w.r.t. activations to the server,
client uses a specially crafted random noise vectors that are not informative. In Figure 3(bottom)
we plot the same kind individual gradients as in the top row, except that we visualize the gradients
computed by the first of the two servers. Finally, we train XGBoost (Chen & Guestrin, 2016) with
default hyperparameters to predict labels given the noisy gradients (pre-PCA): the resulting classifier
is able to fit the training data perfectly, but has at most 50.4% accuracy on a balanced test set.

DeBERTa, SST2 Flan T5, SST2 DeBERTa, MRPC

A
cc

ur
ac

y/
F1

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Train epoch

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

P3EFT
DC, =1.0
No regularization
w/o LoRAs

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Train epoch

0.80

0.85

0.90

0.95

A
cc

ur
ac

y

P3EFT
DC, =3.1
No regularization
w/o LoRAs

0 10 20 30 40
Train epoch

0.70

0.75

0.80

0.85

0.90

0.95

F1
 sc

or
e

P3EFT
DC, =0.031
No regularization

Sp
ec

tr
al

at
ta

ck

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Train epoch

0.5

0.6

0.7

0.8

0.9

1.0

Sp
ec

tra
l a

tta
ck

 A
U

C

P3EFT
Averaged max P3EFT
DC, =1.0
Averaged max DC, =1.0
No regularization
w/o LoRAs

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Train epoch

0.5

0.6

0.7

0.8

0.9

1.0

Sp
ec

tra
l a

tta
ck

 A
U

C

P3EFT

Averaged max P3EFT
DC, =3.1
Averaged max DC, =3.1
No regularization
w/o LoRAs

0 10 20 30 40
Train epoch

0.5

0.6

0.7

0.8

0.9

Sp
ec

tra
l a

tta
ck

 A
U

C

P3EFT
Averaged max P3EFT
DC, =0.031
Averaged max DC, =0.031
No regularization
w/o LoRAs

N
or

m
-b

as
ed

at
ta

ck

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Train epoch

0.5

0.6

0.7

0.8

0.9

N
or

m
-b

as
ed

 a
tta

ck
 A

U
C

P3EFT
DC, =1.0
No regularization

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Train epoch

0.5

0.6

0.7

0.8

0.9

N
or

m
-b

as
ed

 a
tta

ck
 A

U
C

P3EFT
DC, =3.1
No regularization
w/o LoRAs

0 10 20 30 40
Train epoch

0.5

0.6

0.7

0.8

0.9

N
or

m
-b

as
ed

 a
tta

ck
 A

U
C

P3EFT
Averaged max P3EFT
DC, =0.031
Averaged max DC, =0.031
No regularization
w/o LoRAs

L
og

R
eg

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Train epoch

0.70

0.75

0.80

0.85

0.90

0.95

Lo
gR

eg
 c

ro
ss

-v
al

 sc
or

e P3EFT
DC, =1.0
No regularization
w/o LoRAs

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Train epoch

0.90

0.92

0.94

0.96

Lo
gR

eg
 c

ro
ss

 v
al

 sc
or

e

P3EFT
DC, =3.1
No regularization
w/o LoRAs

0 10 20 30 40
Train epoch

0.70

0.75

0.80

0.85

0.90

Lo
gR

eg
 c

ro
ss

-v
al

 sc
or

e

P3EFT
Averaged max P3EFT
DC, =0.031
Averaged max DC, =0.031
baseline no regularization
w/o LoRAs

Figure 4: Combined PEFT accuracy and privacy evaluations. See detailed description in Section 4.2.

8

Under review as a conference paper at ICLR 2024

0.825 0.850 0.875 0.900 0.925
F1 score

0.6

0.7

0.8

0.9

Sp
ec

tra
l a

tta
ck

 A
U

C

P3EFT
DC
No regularization

0.825 0.850 0.875 0.900 0.925
F1 score

0.70

0.75

0.80

0.85

0.90

Lo
gR

eg
 C

V
 sc

or
e

P3EFT
DC
No regularization

Figure 5: Combined sensitivity charts for DeBERTa-xxlarge with MRPC.

4.2 MAIN FINE-TUNING EXPERIMENTS

Next, we evaluate the full P3EFT algorithm in the same setting. To control for task and model type,
we consider three fine-tuning setups: DeBERTa-v2-XXLarge on SST-2, DeBERTa-v2-XXLarge on
MRPC, and Flat-T5-Large on SST2. For each setup, we compare against three baselines:

• Distance Correlation (DC). Our re-implementation of the distance correlation defense formu-
lated in (Sun et al., 2022). For this baseline, we tune α separately for each task. We tune α to
maximize accuracy with a constraint that DC has same or comparable privacy as our algorithm.

• Training w/o LoRA adapters. In this baseline, the client gathers h activations once at the begin-
ning, with no adapters, then proceeds to train local “head” layers on top of said activations. As a
result, the algorithm cannot leak information about training labels except for what is stored in X.

• Training LoRA with no regularization refers to training a single LoRA adapter normally. This
baseline represents an upper bound on model accuracy, but lacks privacy.

For each algorithm, we report task-specific metric (Accuracy or F1) as well as 3 privacy measures:

• Spectral attack - vulnerability to attack proposed in Sun et al. (2022), measured as classifier ROC
AUC, lower is better privacy.

• Norm attack - vulnerability to a variant of attack proposed in Li et al. (2022), measured as clas-
sifier ROC AUC, lower is better.

• LogReg - the cross-validation accuracy of logistic regression that was trained to predict class
labels. Pessimistic estimate of privacy. Lower is better privacy.

We report main fine-tuning results in Figure 4. Overall, P3FT algorithm achieves nearly the same
accuracy and outperforms Distance Correlation-based algorithm in terms of accuracy given the same
privacy level. However, both P3FT and DC can achieve different accuracy-to-privacy trade-offs
depending on the value of the regularizer coefficient. To explore this, we also conduct sensitivity
experiments where we vary the regularizer coefficients of both algorithms and report our findings in
Figure 5. While both algorithms offer a wide range of configurations, P3EFT offers slightly better
trade-offs. We evaluate additional hyperparameter configurations in Appendix D

5 CONCLUSION

In this work, we analyze privacy-preserving fine-tuning of large neural networks in the context of
parameter-efficient fine-tuning and the two-party split learning setting. We show that while standard
fine-tuning suffers from label leakage even in the parameter-efficient case, it is possible to leverage
the efficiency of PEFT to alter the procedure without any significant performance drawbacks. We
test the resulting method, named P3EFT, on a range of pretrained language models and multiple
datasets, showing that it is competitive with a strong baseline in terms of label privacy while having
higher task performance. In future work, it might be possible to explore alternative ways of using
parameter-efficient fine-tuning to preserve privacy.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Alexander Borzunov, Dmitry Baranchuk, Tim Dettmers, Max Ryabinin, Younes Belkada, Artem
Chumachenko, Pavel Samygin, and Colin Raffel. Petals: Collaborative inference and fine-tuning
of large models. arXiv preprint arXiv:2209.01188, 2022. URL https://arxiv.org/abs/
2209.01188.

Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
’16, pp. 785–794, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4232-2. doi: 10.1145/
2939672.2939785. URL http://doi.acm.org/10.1145/2939672.2939785.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai,
Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams
Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean,
Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei. Scaling instruction-
finetuned language models, 2022. URL https://arxiv.org/abs/2210.11416.

William B. Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop on Paraphrasing (IWP2005), 2005. URL
https://aclanthology.org/I05-5002.

Dreambooth API. Dreambooth API – Easily finetune Stable Diffusion and generate customised
AI images — dreamboothapi.ai. https://dreamboothapi.ai/, 2023. [Accessed 28-09-
2023].

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In
Francis Bach and David Blei (eds.), Proceedings of the 32nd International Conference on Ma-
chine Learning, volume 37 of Proceedings of Machine Learning Research, pp. 1180–1189,
Lille, France, 07–09 Jul 2015. PMLR. URL https://proceedings.mlr.press/v37/
ganin15.html.

Otkrist Gupta and Ramesh Raskar. Distributed learning of deep neural network over multiple agents.
Journal of Network and Computer Applications, 116:1–8, 2018. ISSN 1084-8045. doi: https://doi.
org/10.1016/j.jnca.2018.05.003. URL https://www.sciencedirect.com/science/
article/pii/S1084804518301590.

Karen Hambardzumyan, Hrant Khachatrian, and Jonathan May. WARP: Word-level Adversarial
ReProgramming. In Proceedings of the 59th Annual Meeting of the Association for Computa-
tional Linguistics and the 11th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pp. 4921–4933, Online, August 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.acl-long.381. URL https://aclanthology.org/
2021.acl-long.381.

Stephen Hardy, Wilko Henecka, Hamish Ivey-Law, Richard Nock, Giorgio Patrini, Guillaume
Smith, and Brian Thorne. Private federated learning on vertically partitioned data via entity
resolution and additively homomorphic encryption, 2017.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert
with disentangled attention. In International Conference on Learning Representations, 2021.
URL https://openreview.net/forum?id=XPZIaotutsD.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
NLP. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th In-
ternational Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 2790–2799. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.
press/v97/houlsby19a.html.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

10

https://arxiv.org/abs/2209.01188
https://arxiv.org/abs/2209.01188
http://doi.acm.org/10.1145/2939672.2939785
https://arxiv.org/abs/2210.11416
https://aclanthology.org/I05-5002
https://dreamboothapi.ai/
https://proceedings.mlr.press/v37/ganin15.html
https://proceedings.mlr.press/v37/ganin15.html
https://www.sciencedirect.com/science/article/pii/S1084804518301590
https://www.sciencedirect.com/science/article/pii/S1084804518301590
https://aclanthology.org/2021.acl-long.381
https://aclanthology.org/2021.acl-long.381
https://openreview.net/forum?id=XPZIaotutsD
https://proceedings.mlr.press/v97/houlsby19a.html
https://proceedings.mlr.press/v97/houlsby19a.html
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9

Under review as a conference paper at ICLR 2024

Hugging Face. AutoTrain — huggingface.co. https://huggingface.co/autotrain,
2023. [Accessed 28-09-2023].

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky. Learning multiple layers of features from tiny images. pp. 32–33, 2009. URL
https://www.cs.toronto.edu/˜kriz/learning-features-2009-TR.pdf.

Oscar Li, Jiankai Sun, Xin Yang, Weihao Gao, Hongyi Zhang, Junyuan Xie, Virginia Smith, and
Chong Wang. Label leakage and protection in two-party split learning. In International Confer-
ence on Learning Representations, 2022. URL https://openreview.net/forum?id=
cOtBRgsf2fO.

Shen Li, Pritam Damania, Luca Wehrstedt, and Rohan Varma. PyTorch RPC: Distributed Deep
Learning Built on Tensor-Optimized Remote Procedure Calls. In Proceedings of Machine Learn-
ing and Systems 5 (MLSys), 2023.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pp. 4582–4597, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/
v1/2021.acl-long.353. URL https://aclanthology.org/2021.acl-long.353.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Ar-
cas. Communication-Efficient Learning of Deep Networks from Decentralized Data. In
Aarti Singh and Jerry Zhu (eds.), Proceedings of the 20th International Conference on Artifi-
cial Intelligence and Statistics, volume 54 of Proceedings of Machine Learning Research, pp.
1273–1282. PMLR, 20–22 Apr 2017. URL https://proceedings.mlr.press/v54/
mcmahan17a.html.

Nvidia. Nvidia confidential computing. https://www.nvidia.com/en-us/
data-center/solutions/confidential-computing, 2023. [Accessed 28-09-
2023].

OctoAI. Fine-tuning Stable Diffusion — docs.octoai.cloud. https://docs.octoai.cloud/
docs/fine-tuning-stable-diffusion, 2023. [Accessed 28-09-2023].

OpenAI. OpenAI Platform — platform.openai.com. https://platform.openai.com/
docs/guides/fine-tuning, 2023. [Accessed 28-09-2023].

Dario Pasquini, Giuseppe Ateniese, and Massimo Bernaschi. Unleashing the tiger: Inference at-
tacks on split learning. In Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’21, pp. 2113–2129, New York, NY, USA, 2021. Associ-
ation for Computing Machinery. ISBN 9781450384544. doi: 10.1145/3460120.3485259. URL
https://doi.org/10.1145/3460120.3485259.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych. Adapter-
fusion: Non-destructive task composition for transfer learning, 2021.

Yuma Rao, Jacob Steeves, Ala Shaabana, Daniel Attevelt, and Matthew McAteer. Bittensor: A
peer-to-peer intelligence market, 2021.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, pp. 1631–1642, Seattle, Washington, USA, October 2013. Association for Computa-
tional Linguistics. URL https://www.aclweb.org/anthology/D13-1170.

Jiankai Sun, Xin Yang, Yuanshun Yao, and Chong Wang. Label leakage and protection from forward
embedding in vertical federated learning. arXiv preprint arXiv:2203.01451, 2022.

11

https://huggingface.co/autotrain
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://openreview.net/forum?id=cOtBRgsf2fO
https://openreview.net/forum?id=cOtBRgsf2fO
https://aclanthology.org/2021.acl-long.353
https://proceedings.mlr.press/v54/mcmahan17a.html
https://proceedings.mlr.press/v54/mcmahan17a.html
https://www.nvidia.com/en-us/data-center/solutions/confidential-computing
https://www.nvidia.com/en-us/data-center/solutions/confidential-computing
https://docs.octoai.cloud/docs/fine-tuning-stable-diffusion
https://docs.octoai.cloud/docs/fine-tuning-stable-diffusion
https://platform.openai.com/docs/guides/fine-tuning
https://platform.openai.com/docs/guides/fine-tuning
https://doi.org/10.1145/3460120.3485259
https://www.aclweb.org/anthology/D13-1170

Under review as a conference paper at ICLR 2024

Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and Chunfang Liu. A survey
on deep transfer learning. In Věra Kůrková, Yannis Manolopoulos, Barbara Hammer, Lazaros
Iliadis, and Ilias Maglogiannis (eds.), Artificial Neural Networks and Machine Learning – ICANN
2018, pp. 270–279, Cham, 2018. Springer International Publishing. ISBN 978-3-030-01424-7.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and Ramesh Raskar. Split learning for health:
Distributed deep learning without sharing raw patient data, 2018.

Praneeth Vepakomma, Otkrist Gupta, Abhimanyu Dubey, and Ramesh Raskar. Reducing leakage in
distributed deep learning for sensitive health data. 05 2019.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

Guangxuan Xiao, Ji Lin, and Song Han. Offsite-tuning: Transfer learning without full model. arXiv
preprint arXiv:2302.04870, 2023.

Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learning: Concept
and applications. ACM Trans. Intell. Syst. Technol., 10(2), jan 2019. ISSN 2157-6904. doi:
10.1145/3298981. URL https://doi.org/10.1145/3298981.

Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi, Huseyin A Inan, Gautam Kamath, Janardhan
Kulkarni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz, Sergey Yekhanin, and Huishuai Zhang.
Differentially private fine-tuning of language models. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=Q42f0dfjECO.

Zhuo Zhang, Yuanhang Yang, Yong Dai, Qifan Wang, Yue Yu, Lizhen Qu, and Zenglin Xu.
FedPETuning: When federated learning meets the parameter-efficient tuning methods of pre-
trained language models. In Findings of the Association for Computational Linguistics: ACL
2023, pp. 9963–9977, Toronto, Canada, July 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.findings-acl.632. URL https://aclanthology.org/2023.
findings-acl.632.

Haodong Zhao, Wei Du, Fangqi Li, Peixuan Li, and Gongshen Liu. Fedprompt: Communication-
efficient and privacy preserving prompt tuning in federated learning, 2023.

A FORMAL ALGORITHM DEFINITION

Below, we define the full P3EFT algorithm. In Algorithm 2, main loss is the task-specific objective
e.g. cross-entropy; reg loss is the adversarial regularizer described in Section 3.3. We denote client-
side model ”head” as f(h, ψt), where ψ represent trainable head parameters. Finally, opt step func-
tion performs a single gradient descent step with a task-specific optimizer, typically Adam (Kingma
& Ba, 2014).

B INFORMAL DESCRIPTION OF LORA FINE-TUNING

For convenience, we provide a brief summary of fine-tuning with LoRA (Hu et al., 2022). This PEFT
method was originally designed for fine-tuning large pre-trained language models on downstream
NLP tasks. These language models are typically based on the Transformer architecture (Vaswani
et al., 2017), where most trainable parameters are allocated to linear layers in multi-head self-
attention and feedforward blocks.

12

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1145/3298981
https://openreview.net/forum?id=Q42f0dfjECO
https://aclanthology.org/2023.findings-acl.632
https://aclanthology.org/2023.findings-acl.632

Under review as a conference paper at ICLR 2024

Algorithm 2 P3EFT - full training algorithm

Input: dataset D = {X,Y }, n > 1 number of adapters, α ≥ 0 - regularizing weight, m > 1
number of obfuscated gradients

1: Initialize head ψ0, mixing weights Wi and adapters θ0i , i = 1, n
2: for t = 0, 1, . . . , T − 1 do
3: Sample batch {xt, yt}
4: for i = 1, . . . , n do
5: hti = h(xt, θti) ▷ by server
6: li = reg loss(hti, y

t) ▷ by client
7: end for
8: h′ =

∑n
i=1Wi ⊙ hti

9: l = main loss(f(h′, ψt), yt)
10: L = l + α ·

∑n
i=1 li

11: for i = 1, . . . , n do
12: gh = ∂L/∂hti ▷ Client performs partial backprop locally
13: gti = private backprop(x, θti , gh,m)
14: θt+1

i = opt step(θti , g
t
i , t)

15: end for
16: ψt+1 = opt step(ψt, ∂l/∂ψt, t)
17: end for

Return: ψT , θT1 , . . . , θ
T
M

In the first stage of LoRA fine-tuning, user augments the model with adapters. To do so, a user goes
over linear layers in transformer blocks and adds two trainable matrices, A and B that affect this
layer’s forward pass. Let Wi × x+ bi be the original layer with n inputs and m hidden units. Here,
Wi ∈ Rm×n is a pre-trained weight matrix, bi ∈ Rm is a pre-trained intercept vector and x ∈ Rn

represents a vector of inputs to this particular layer. During the forward pass, a layer with LoRA
adapter computes Wi × x+ bi + Bi × Ai × x, or equivalently, (Wi + B × A)× x+ bi. Here, Ai

and Bi are two newly added matrices that constitute a LoRA adapter.

The adapter matrices A ∈ Rr×n and B ∈ Rm×r have a very small intermediate dimension r. For
instance, when training GPT-3 with LoRA adapters, authors use 1 ≤ r ≤ 64, whereas the main
weight dimensions are m = n = 12288. The first matrix A is initialized with small random normal
values, and the second matrix B is initialized at zeros. That way, initial A and B do not affect the
model predictions.

Once all adapters are initilized, the user trains all Ai and Bi matrices of the model, while keeping
the rest of the weights frozen. This way, only a small faction (less than 1%) of model weights are
updated. Once the training is over, the learned adapters Ai and Bi can be merged into the main
weights (Wi :=Wi +Ai ×Bi) or used separately.

LoRA adapters are designed with two objectives in mind: i) to allow fine-tuning models in limited
GPU memory and ii) to allow inferencing many fine-tuned models using one inference server. When
fine-tuning, LoRA achieves small memory footprint due to the fact that user does not need to com-
pute gradients (or optimizer statistics) for billions of main model parameters. During inference, a
server can keep a library of several adapters for different tasks and swap between them on demand.

C OFFSITE-TUNING

One alternative to private LLM fine-tuning is Offsite-Tuning, described in Xiao et al. (2023). This
approach involves conducting all computations on the client side, making it much less vulnerable
to potential attacks. To achieve this, the server constructs a smaller version of the main model and
transfers it to client.

This smaller model typically contains a subset of original model layers (e.g. see Uniform Layer-
Drop algorithm in Xiao et al. (2023)) and is fine-tuned using knowledge distillation. The resulting
small model consists of three parts: i) several first layers of the main model ii) several last layers
and iii) a distilled emulator all remaining layers.

13

Under review as a conference paper at ICLR 2024

Once the client receives the resulting model, it runs local fine-tuning on the private dataset. During
this fine-tuning stage, a client only updates the first and last layers of the model, keeping the emulator
frozen. Once the training is done, the client transfers the updated layers back to the server, where
they can be inferenced with the rest of the main model.

The main limitation of this approach is that the distilled model still needs to be fairly large. Xiao
et al. (2023) needs the smaller model to be at least one-third of the main model size to achieve
competitive fine-tuning accuracy. As a result, the client needs to expend compute on the same order
of magnitude as when fine-tuning the original model. In contrast, API fine-tuning only requires
the client to perform forward and backward passes through the model “head”, which typically is
typically a small MLP. Therefore, a client will be able to perform API fine-tuning using cheap
general purpose hardware, e.g. a laptop.

D ADDITIONAL EVALUATIONS

In this section, we report additional fine-tuning results similar to Figure 4, but with more hyperpa-
rameter configurations for some baselines. The results are presented in Figure 6.

E REPRODUCIBILITY STATEMENT

E.1 OBJECTIVE AND SCOPE

This paper introduces P3EFT as a way to fine-tune models over an API while keeping the labels
private. We believe that our results are reproducible by other researchers and practitioners to validate
them and use in subsequent research and applications.

E.2 METHODOLOGY AND ALGORITHM

We have described the P3EFT method in Section 3.3. This should help anyone interested in under-
standing and trying out the proposed technique.

E.3 EXPERIMENTAL SETUP

Model Architectures: We used DeBERTa and FlanT5 models, which anyone can access for research.

Datasets for Calibration: We used the commonly available for research and testing datasets from
GLUE Wang et al. (2018): SST-2 and MRPC.

Evaluation Metrics: We measured training quality using common for these tasks metrics and mea-
sured privacy preservation using leak AUC approach established in this research area as presented
in Li et al. (2022). We calculated the value of this metric for 2 types of attacks: spectral attack
Sun et al. (2022) and norm based attack Li et al. (2022). In addition, we took the accuracy value of
attacks via KMeans as the baseline.

Comparison Baselines: We compared our method to method based on distance correlation from Sun
et al. (2022). Software: We used popular open-source packages like PyTorch and Transformers (see
the full list in the repository requirements.txt file).

Hardware: We used Nvidia GPUs including A100.

E.4 SENSITIVITY AND ABLATION STUDIES

We have listed all the settings we used for P3EFT experiments and conducted thorough studies to
check how different parts of our method affect the results. This should help in understanding and
verifying how our method works. We tried different random seeds to make sure our method is robust,
giving more confidence that you’ll get similar results when trying it out.

14

Under review as a conference paper at ICLR 2024

E.5 CODE AND IMPLEMENTATION

You can find all our code for P3EFT at github.com/iclr2023-anonymous/P3EFT, open
for anyone to use. We have included instructions on how to run experiments and checked the results,
making it easier for anyone interested to follow along.

DeBERTa, SST2 Flan T5, SST2 DeBERTa, MRPC

A
cc

ur
ac

y/
F1

0 2 4 6 8 10 12
Train epoch

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

P3EFT
DC, =1.0
DC, =3.1
DC, =0.31

0 2 4 6 8 10
Train epoch

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

P3EFT
DC, =1.0
DC, =3.1
DC, =10.0

0 20 40 60 80
Train epoch

0.70

0.75

0.80

0.85

0.90

0.95

1.00

F1
 sc

or
e

P3EFT
DC, =0.1
DC, =0.031
DC, =0.01

Sp
ec

tr
al

at
ta

ck

0 2 4 6 8 10 12
Train epoch

0.5

0.6

0.7

0.8

0.9

Sp
ec

tra
l a

tta
ck

 A
U

C

P3EFT
DC, =1.0
DC, =3.1
DC, =0.31

0 2 4 6 8 10
Train epoch

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Sp
ec

tra
l a

tta
ck

 A
U

C

P3EFT
DC, =1.0
DC, =3.1
DC, =10.0

0 20 40 60 80
Train epoch

0.5

0.6

0.7

0.8

0.9

Sp
ec

tra
l a

tta
ck

 A
U

C

P3EFT
DC, =0.1
DC, =0.031
DC, =0.01

N
or

m
-b

as
ed

at
ta

ck

0 2 4 6 8 10 12
Train epoch

0.50

0.55

0.60

0.65

0.70

0.75

0.80

N
or

m
 a

tta
ck

 A
U

C

P3EFT
DC, =1.0
DC, =3.1
DC, =0.31

0 2 4 6 8 10
Train epoch

0.50

0.55

0.60

0.65

0.70

0.75

0.80

N
or

m
 a

tta
ck

 A
U

C

P3EFT
DC, =1.0
DC, =3.1
DC, =10.0

0 20 40 60 80
Train epoch

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

N
or

m
 a

tta
ck

 A
U

C

P3EFT
DC, =0.1
DC, =0.031
DC, =0.01

L
og

R
eg

0 2 4 6 8 10 12
Train epoch

0.6

0.7

0.8

0.9

1.0

Lo
gr

eg
 c

ro
ss

-v
al

 sc
or

e

P3EFT
DC, =1.0
DC, =3.1
DC, =0.31

0 2 4 6 8 10
Train epoch

0.80

0.85

0.90

0.95

1.00

Lo
gr

eg
 c

ro
ss

-v
al

 sc
or

e

P3EFT
DC, =1.0
DC, =3.1
DC, =10.0

0 20 40 60 80
Train epoch

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Lo
gr

eg
 c

ro
ss

-v
al

 sc
or

e

P3EFT
DC, =0.1
DC, =0.031
DC, =0.01

K
m

ea
ns

ac
cu

ra
cy

0 2 4 6 8 10 12
Train epoch

0.5

0.6

0.7

0.8

0.9

1.0

K
m

ea
ns

 a
cc

ur
ac

y

P3EFT
DC, =1.0
DC, =3.1
DC, =0.31
No regularization

0 2 4 6 8 10
Train epoch

0.5

0.6

0.7

0.8

0.9

1.0

K
m

ea
ns

 a
cc

ur
ac

y

P3EFT
DC, =1.0
DC, =3.1
DC, =10
No regularization

0 20 40 60 80
Train epoch

0.5

0.6

0.7

0.8

0.9

K
m

ea
ns

 a
cc

ur
ac

y

P3EFT
DC, =0.1
DC, =0.031
DC, =0.01
baseline no regularization

Figure 6: Combined PEFT accuracy and privacy evaluations with additional hyperparameter config-
uration. See detailed description in Section 4.2 for metric descriptions.

15

https://github.com/iclr2023-anonymous/P3EFT

Under review as a conference paper at ICLR 2024

E.6 ACCESSIBILITY AND LIMITATIONS

The public availability of training code, configurations and datasets should help in verifying our
main findings about P3EFT label privacy preservation performance. However, there might be minor
inconsistencies due to parallel execution in CUDA, but we believe the details provided are clear
enough to reproduce the main findings of our paper.

E.7 CONCLUSION

The detailed explanation and resources provided in this paper should make it easy for anyone to
verify and build upon our work. We hope this contributes to the ongoing research in privacy preser-
vation in large language models.

16

	Introduction
	Background
	Federated learning and split learning
	Parameter-efficient finetuning

	Privacy-preserving parameter-efficient fine-tuning
	Two-party Split Fine-tuning
	Privacy-preserving backpropagation
	Full fine-tuning

	Experiments
	Privacy of gradients and activations
	Main fine-tuning experiments

	Conclusion
	Formal algorithm definition
	Informal description of LoRA fine-tuning
	Offsite-Tuning
	Additional evaluations
	Reproducibility statement
	Objective and Scope
	Methodology and Algorithm
	Experimental Setup
	Sensitivity and Ablation Studies
	Code and Implementation
	Accessibility and Limitations
	Conclusion

