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Abstract

As Large Language Models (LLMs) demonstrate impressive capabilities, demys-
tifying their internal mechanisms becomes increasingly vital. Neuron attribution,
which attributes LLM outputs to specific neurons to reveal the semantic properties
they learn, has emerged as a key interpretability approach. However, while neuron
attribution has made significant progress in deciphering text-only LLMs, its appli-
cation to Multimodal LLMs (MLLMs) remains less explored. To address this gap,
we propose a novel Neuron Attribution method tailored for MLLMs, termed NAM.
Specifically, NAM not only reveals the modality-specific semantic knowledge
learned by neurons within MLLMs, but also highlights several intriguing properties
of neurons, such as cross-modal invariance and semantic sensitivity. These proper-
ties collectively elucidate the inner workings mechanism of MLLMs, providing a
deeper understanding of how MLLMs process and generate multi-modal content.
Through theoretical analysis and empirical validation, we demonstrate the efficacy
of NAM and the valuable insights it offers. Furthermore, leveraging NAM, we
introduce a multi-modal knowledge editing paradigm, underscoring the practical
significance of our approach for downstream applications of MLLMs. Our code is
available at https://github.com/littlelittlenine/NAM_1.

1 Introduction

As Large Language Models (LLMs) demonstrate impressive capabilities [1, 2, 3, 4], demystifying their
internal mechanisms becomes increasingly vital, particularly in applications emphasizing fairness,
trust, and ethical decision-making [5, 6, 7]. To interpret LLMs, “neuron attribution” stands out as
a pivotal approach. This method involves attributing text outputs to individual model components
(e.g., neurons and hidden layers) to reveal the knowledge and linguistic properties they learn [5, 8,
9, 10, 11, 12]. Such insights not only facilitate tasks like model editing and pruning [13, 14, 15],
but also offer a deeper understanding of how LLMs internalize knowledge. For instance, leading
neuron-attribution studies [16, 17, 13, 14, 18, 19] suggest that this capability of internalization may
predominantly originate from their Feedforward Neural Networks (FFNs).
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Figure 1: Illustration of neuron attribution methods for interpreting LLMs. (a) The paradigm of GILL;
(b) current attribution methods tailored for text-only LLMs; (c) the challenges of extending current
attribution methods to MLLMs; (d) the paradigm of our NAM. Best viewed in color.

Recently, the rapid development of multi-modal large language models (MLLMs) [20, 21, 22, 23, 24]
is sparking the interest of interpretability [18, 19]. Here we focus on the MLLMs that can perceive,
generate texts and images simultaneously. Scrutinizing prior studies, we can summarize two common
components beyond the LLM base: image encoding and generating modules. Specifically, the image
encoding module projects the input image into the representation space of the base LLM; hereafter,
the image generating module generates image outputs conditioned on the representations given by
the base LLM. Take GILL [25] as an example. As shown in Figure 1 (a), it hires OPT [26] as the
LLM base, CLIP Vit-L [27] with a cross-modal projector as the image encoding module, and Stable
Diffusion [28] with another projector as the image generating module.

While this expanded capacity endows GILL with versatility suitable for a variety of downstream tasks,
it concurrently presents challenges for interpretation, particularly concerning neuron attributions.
Specifically, we outline these challenges through three progressive points:

• Source of Attribution: Semantic Noise. As shown in Figure 1 (b), for semantics like dog, current
methods typically attribute the output to neurons directly in text-only LLMs [16, 5, 13]. However,
in MLLMs, attributing the entire generated image to neurons directly might result in inaccuracies.
As shown in Figure 1 (c), when GILL is tasked with drawing a dog, the generated image might
contain other semantic elements like lawn, introducing noise and distorting attribution.

• Process of Attribution: Inefficiency. Leading attribution methods typically rely on gradients
[16, 19] or causal effects [13, 14], requiring extensive forward/backward propagation processes,
which are inherently time-consuming and storage-intensive. The added complexity of encoding
and generation modules in MLLMs further exacerbates this challenge.

• Results of Attribution: Intermingled Neurons. In text-only LLMs, attributing the concept dog
involves identifying neurons crucial for outputting the word “dog”, termed T-neurons. In contrast,
MLLMs also require identifying neurons crucial for image generation, called I-neurons. As
illustrated in Figure 1 (c), the distribution of T-neurons and I-neurons differs for the same concept,
leading to conflicting results that complicate further analysis and applications.

In sight of this, we introduce a new Neuron Attribution paradigm tailored for MLLMs, termed
NAM, to reveal the modality-specific semantic properties learned by neurons within the FFN layers.
Specifically, to address the above challenges, NAM undertakes the following efforts:

• Image Segmentation for Semantic Noise: As shown in Figure 1 (d), NAM employs the image
segmentation model to distinguish regions containing the target semantics from other noisy semantic
areas, and attributes these regions to the neurons, rather than the entire image, to ensure accuracy.

• Activation-based Scores for Inefficiency: Drawing inspiration from prior studies on neuron
activations [18, 5], NAM introduces a new attribution score that relies on neuron activations,
eliminating the need for additional forward/backward propagation or gradient calculations.

• Modality Decoupling for Intermingled Neurons: NAM assigns modality-specific attribution
scores to neurons to prevent cross-modal disturbances during attributions. This paradigm facilitates
the decoupling analysis of T-neurons and I-neurons, as depicted in Figure 1 (d).

Furthermore, based on the empirical results of NAM, we reveal several intriguing neuron properties
within MLLMs. These properties collectively elucidate the inner workings of MLLMs, enhancing our
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Figure 2: Illustration of neuron attribution methods for interpreting LLMs. (a) The paradigm of
current attribution methods tailored for text-only LLMs. (b) The challenges of extending current
attribution methods to MLLMs. (c) The paradigm of our NAM.

understanding of their capacity to process and generate multi-modal content. Interestingly, among
these insights, a pivotal finding exhibits that when generating multi-model content for the same
semantics (e.g., the word “dog” & an image of a dog), the crucial neurons (i.e., T-Neurons & I-
Neurons) are typically not identical. This distinction underscores the complex nature of neurons
within MLLMs, and highlights the necessity of neuron attribution across modalities. Additionally, by
applying NAM to enhance image editing tasks, we further underscore the significance and potential
applications of our NAM for MLLM community.

2 Preliminary

Transformer-Based LLMs. An autoregressive transformer language model G : X → Y operates
over the vocabulary V . It receives a token sequence x ∈ X and generates a probability distribution
y = [y1, y2, ..., y|V |] ∈ Y to predict the next token [29, 13]. Each token is represented as a series of
representations hl ∈ RH in l-th layer, where h0 is the embedding of the token in x. The model’s
final output, y = Wu

(
hL

)
, is derived from the last representation hL =

[
hL
1 , h

L
2 , ..., h

L
H

]⊤
in layer

L using the unembedding matrix Wu. Figure 2 (a) exhibits a visualization of how hl are computed
within layer l. The representation in each layer results from the combination of the global attention
al, the local MLP output ml, and the representation hl−1 from the previous layer. Formally,

hl = ml + hl−1 + al, ml = Wl
out σ

(
Wl

in γ
(
al + hl−1

))
, (1)

where Win ∈ Rd×H and Wout ∈ RH×d are the first and second linear layer in FFN with the
dimensionality of the FFN’s intermediate layer d; σ and γ are rectifying and normalizing nonlinearity.
For further background on transformers, we refer to [29]. Additionally, focusing on the the k-th
neuron ul

k in the l-th FFN layers, we simplify the definition by considering its activation alk as:

Al = [a1, a2, ..., ad]
⊤ = σ

(
Wl

out γ
(
al + hl−1

))
(2)

MLLMs. Here, we take GILL as an example to illustrate a common paradigm of MLLMs. As shown
in Figure 2 (a), GILL incorporates the following modifications on the above text-only LLMs: (1) In
addition to the textual prompt, the input token sequence x also includes the encoding of the input
image produced by the image encoding module. (2) The representation hL of the last hidden layer is
utilized as input to the image generation module, facilitating conditional image generation.

3 Method

This section delineates the implementation of NAM within MLLMs. Specifically, Section 3.1 and
3.2 introduce the attribution process for image and text outputs, respectively; In Section 3.3, we
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explore a significant application of NAM, i.e., editing images generated by MLLMs. To illustrate
these processes, we utilize GILL [25], a representative MLLM capable of image generation. For a
detailed introduction to GILL, please refer to Appendix B.

3.1 Neuron Attribution for Image Generation

We first detail how to attribute the output images to the specific neurons within FFN layers. Retro-
specting the challenges highlighted in Introduction, using the MLLM to generate images of a specific
concept (e.g., dog) often results in outputs that include extraneous, noisy elements (e.g., lawn). To
mitigate the negative effects of semantic noise on neuron attribution, we propose a two-step approach
to extract I-Neurons. Specifically, (1) the first step focuses on attributing the output of the image
generation module (i.e., images) to the input of the image generation module (i.e., last representation
hL), and (2) the second step endeavors to attribute the input of the image generation module to the
specific neurons. Next, we provide detailed descriptions of these two steps.

3.1.1 STEP1: Attribution From Images to Representation hL

The purpose of this step is to attribute the image to hL ∈ RH . That is, to identify the contribution of
each element in hL for image generation. We define these contribution scores as R ∈ RH . As shown
in Figure 2 (b), NAM acquires R by sequentially executing the following processes:

• Given an image generated by prompting MLLM with the semantics dog, NAM first employs the
leading segmentation model, EVA02 [30], to identify regions specifically related to dog. This is
crucial for minimizing interference from extraneous semantics, such as lawn in the background;

• Subsequently, NAM utilizes the advanced attribution algorithm of the diffusion model, Diffuser-
Interpreter [31], to access the relevance of each dimension in the input of the image generation
module to the dog region in the generated image.

• Ultimately, by normalizing these relevance scores to (0, 1), we obtain the importance scores
R = [r1, r2, ..., rH ]⊤ of hL = [h1, h2, ..., hH ]⊤ w.r.t the target semantics in the output image.

Due to the established applications of EVA02 and Diffuser-Interpret, we provide detailed introductions
in Appendix B. Furthermore, it is worth mentioning that NAM can be transferred to any other modality
by utilizing the (1) semantic segmentation algorithms and (2) attribution algorithms of generation
modules tailored for other modalities (e.g., audio and video). After obtaining R by these advanced
modality-specific algorithms, the subsequent attribution steps are universal across all transformer-
based MLLMs.

3.1.2 STEP2: Attribution From Representation hL to Neuron ul
k

This step involves attributing the representation hL in the last layer to the specific neuron ul
k within

the FFNs of the base LLM. To this end, NAM aims to trace each neuron’s contribution to hL, and
identify the neurons with significant contributions as I-Neurons for the semantic of interest. Hence, a
fair and efficient contribution scoring method is crucial.

Direct Contributions through Residual Stream. Current methods for scoring contributions often
rely on gradients, such as the product of gradients and activations [19] or the integration of gradients
[16]. However, these methods are computationally intensive, particularly for large-scale models with
extensive parameters. In sight of this, drawing inspiration from prior studies on neuron activation
[18, 19], we first introduce a new attribution score that relies on the neuron activation alk. Specifically,
we first try to disassemble and deduce the generation procedure of hL by expanding hL as follows:

hL = mL + hL−1 + aL =

L∑
l=1

ml + h0 +

L∑
l=1

al

=

L∑
l=1

Wl
outA

l + h0 +

L∑
l=1

al =

L∑
l=1

d∑
k=1

alk(W
l
out)k + h0 +

L∑
l=1

al,

(3)

where (Wl
out)k ∈ RH is the k-th column of the weight matrix Wl

out corresponding to the index
of neuron ul

k, as shown in Figure 2 (b). Note that the first term of Equation (3) reflects the direct
contribution of the neuron ul

k to the last representation hL, i.e., the contribution through the residual
stream [19] of the base LLM.
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Hence, we employ alk(W
l
out)k as the indicator for the neuron ul

k’s contribution to hL.

Furthermore, by integrating R in Section 3.1.1, we can establish a complete attribution pipeline (i.e.,
targeted semantic region in generated image ⇒ representation hL ⇒ neuron ul

k). Recall that R has
assigned the contribution for each dimension in hL, the neuron ul

k’s contribution slk can be defined
as alk(W

l
out)k weighted by elements in R. That is, slk = alk(W

l
out)kR⊤, as illustrated in Figure 2 (b).

Contribution Score Considering Indirect Influence. While slk quantifies the neuron ul
k’s direct con-

tribution to hL through the residual stream, it does not account for all influential factors. Specifically,
it overlooks the indirect contributions that neurons make through the attention mechanisms within
subsequent FFN layers. Supporting evidence exhibited in Appendix B verifies that this oversight
might lead to a bias. To address this issue, and in line with our objective to eschew complex computa-
tions like gradient, we implement a heuristic optimization of the current indicator slk. Specifically, we
employ the relative magnitude of neuron activation as another indicator to identify neurons that may
have a significant indirect contribution to hL – contribution which slk might overlook.

Furthermore, considering the computation of slk already incorporates alk, the contributions reflected
by these two indicators may overlap. To prevent redundancy from summing or multiplying these two
metrics, we utilize the maximum function in our final score design:

ŝlk = max{ es
l
k∑L

l=1

∑d
k=1 e

slk
,

ea
l
k∑L

l=1

∑d
k=1 e

al
k

}, (4)

where the normalization operation ensures fair competition between slk and alk. Note that our experi-
ments in Section 4 have shown that this combined scoring approach is more effective than utilizing slk
or alk alone, verifying their complementary nature. By computing contributions following Equation
(4) for various semantics across all layers, NAM identifies neurons that consistently demonstrate the
highest contributions to the generated images. These neurons, distinguished by their significant roles,
are designated as I-neurons responsible for targeted semantics in MLLMs.

3.2 Neuron Attribution for Text Generation

We then focus on how to acquire the neuron’s contribution to the text outputs. Similar to the derivation
process of contribution score for image output, here we first focus on the contribution for output y
through the residual stream. Specifically, we expand hL as follows:

y = Wu
(
mL + hL−1 + aL

)
=

L∑
l=1

WuW
l
out A

l +Wu(h
0 +

L∑
l=1

al). (5)

According to a commonly used assumption for analyzing the internal mechanisms of LLMs, represen-
tations at any layer within the language models can be transformed into a distribution over the token
vocabulary V using the output embeddings [18, 19, 32, 16, 13, 14]. Hence, WuW

l
out ∈ R|V |×H can

be considered as the new unembedding matrix at the end of the residual stream, and Al contributes to
the model output distribution y over the vocabulary through WuW

l
outA

l , as shown in Figure 2 (c).

Refined Contribution of Individual Neuron. We further disassemble Equation (5) to refine individ-
ual neuron ul

k’s contribution to the output word. Specifically, denoting p as the index of the word
“dog” in the vocabulary V , we have:

yp = (Wu)pW
l
outA

l +(Wu)p(h
0 +

L∑
l=1

al) =

d∑
k=1

alk(Wu)p(W
l
out)k +(Wu)p(h

0 +

L∑
l=1

al), (6)

where (Wu)p ∈ R1×d is the p-th row of Wu. According to Equation (6), the neuron ul
k’s contribution

clk,p to the p-th word “dog” on vocabulary can be obtained by clk,p = alk(Wu)p(W
l
out)k, as illustrated

in Figure 2 (c). Furthermore, we would like to encourage the semantic specificity of the identified
crucial neurons – that is, only preserving a single semantic concept with the maximum contribution,
while discarding other semantics. Formally, for the semantics of p-th word on vocabulary, the neuron
ul
k’s contribution slk can be defined as:

p∗ = argmax
p

clk,p, slk =

{
clk,p if p = p∗,
0 otherwise.

(7)
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By substituting slk to Equation (4), we can acquire the final attribution score of neuron ul
k for

text output. The neurons that consistently exhibit the highest contributions are then designated as
T-neurons.

3.3 Image Editing Enhanced by NAM

Knowledge editing methods based on neuron attribution have already been explored for text outputs
[13, 14, 33, 34]. Here, we focus on how to leverage attribution results to facilitate knowledge editing
of images. This objective requires replacing some semantics (e.g., dog) with another semantics
(e.g., cat). To this end, we leverage the I-Neurons identified by NAM for image editing through a
straightforward, training-free approach. Specifically, we first construct the set of I-Neurons, U , for the
semantics like dog. Then, we collect the positions (l, k) of the neurons ul

k in U , and construct the set
of these position indices, I. For (l, k) ∈ I, we add a perturbation ∆(Wl

out)k to (Wl
out)k following:

W = {∆(Wl
out)k for (l, k) ∈ I}

∆(Wl
out)k = arg min

W
||

∑
(l,k)∈I

alk∆(Wl
out)k , (ĥ

L − hL)⊤||2 + τ ||
∑

(l,k)∈I

∆(Wl
out)k · 1⊤||2, (8)

where hL and ĥL is the last representation of the base LLM when generating the image of dog and
cat, respectively; τ serves as a trade-off parameter. In Equation (8), the first term aims to facilitate a
shift in the image generation module’s input from hL to ĥL, while the second term is the ℓ2 norm
constraint for preventing drastic edits that might affect images containing other semantics. According
to this method, NAM can be utilized to enable simple and efficient images editing, underscoring the
significance and potential applications of the NAM for MLLMs2.

4 Experiment

In this section, we aim to validate the effectiveness of NAM from three aspects:

• What is the distribution of T/I-Neurons identified by NAM?
• What properties do the T/I-neurons identified by NAM have? How to verify that the T/I-neurons

identified by NAM are more critical compared to the neurons identified by baseline methods?
• Can the T/I-Neurons identified by NAM facilitate the image editing within MLLMs?

4.1 Investigation Setup

Target Models & Datasets. Our research focuses on GILL [25] and NExT-GPT [35], two representa-
tive MLLMs with the capability of image generation. All experiments are conducted on the Common
Objects in Context (COCO) [36], a large-scale object detection, segmentation, and captioning dataset
including 80 object categories and five captions per image to conduct our experiments. Due to space
limitations, we only present the experimental results on GILL in this section. The remains and the
detailed implementations, such as the setting of hyper-parameters, can be found in Appendix B.

Baselines. We collect five advanced neuron attribution methods across three categories (gradient-
, activation-, and causality-based attribution). Specifically, their abbreviations and the attribution
scores they employ are: (1) AcT: neuron activation [5]; (2) AcU: The product of activation and the
unembedding matrix, focused on the dimension corresponding to the output word [18]; (3) GraD:
The gradient of the output dimension corresponding to the output word w.r.t activation. (4) GraT: The
product of the gradients and activation [19]; (5) GraI: The integral of the gradients [16]; (6) CE: The
causal effect of activation on outputs [13, 14]. See detailed description in Appendix B.1. For NAM
and baselines stand and their role in rich literature, please refer to Appendix A (i.e., Related Work).

4.2 RQ1: Distribution of T/I-Neurons

We first focus on the distribution of T/I-neurons identified by NAM. Specifically, we randomly select
1000 images from the COCO dataset. Then, we feed each image to GILL individually and instruct
GILL to generate a similar image. The distributions of T/I-neurons are exhibited in Figures 3 (a) and

2The extension of NAM to broader scenarios will be detailed in Appendix C.
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Table 1: The semantics of T/I-neurons with the highest attribution scores identified by different
attribution methods, when the output of MLLMs containing the targeted semantics. (Ll,Uk) denotes
the k-th neuron at layer l. For each method, we report semantics with top-4 probabilities.

Output Segmentation Category Method Location Semantics
“A girl is riding a horse.”

T-Neurons
Grad L28.U4786 {‘dog’, ‘shark’, ‘cat’, ‘bird’}
AcT L30.U13868 {‘animals’, ‘animal’, ‘Animal’, ‘Animals’}
CE L27.U14262 {‘vehicles’, ‘trucks’, ‘cars’, ‘boats’}

NAM L23.U5318 {‘horses’, ‘horse’, ‘Horses’, ‘Horses’}

I-Neurons
Grad L29.U14374 {‘farming’, ‘farm’, ‘farms’, ‘ag’}
AcT L26.U12957 {‘animal’, ‘animals’, ‘veterin’, ‘veterinary’}
CE L28.U1208 {‘Kinnikuman’, ‘cffff’, ‘Nanto’, ‘Vaults’}

NAM L23.U5318 {‘horses’, ‘horse’, ‘Horses’, ‘Horses’}
“A dog is running on the lawn.”

T-Neurons
Grad L28.U12056 {‘child’, ‘Child’, ‘children’, ‘male’}
AcT L24.U12845 {‘dogs’, ‘dog’, ‘Dog’, ‘canine’}
CE L25.U3655 {‘those’, ‘Those’, ‘that’, ‘this’}

NAM L24.U10710 {‘dogs’, ‘Dog’, ‘Dogs’, ‘pets’}

I-Neurons
Grad L26.U1135 {‘adopt’, ‘pet’, ‘adopting’, ‘adoption’}
AcT L30.U13868 {‘animals’, ‘animal’, ‘Animal’, ‘Animals’}
CE L31.U1135 {‘weeds’, ‘chickens’, ‘compost’, ‘trash’}

NAM L24.U12845 {‘dogs’, ‘dog’, ‘Dog’, ‘canine’}
“A small ship on the sea.”

T-Neurons
Grad L26.U3972 {‘diving’, ‘digging’, ‘dred’, ‘drilling’}
AcT L28.U11438 {‘boat’, ‘car’, ‘phone’, ‘vehicle’}
CE L30.U3335 {‘inar’, ‘set’, ‘Set’, ‘cam’}

NAM L30.U2503 {‘ship’, ‘ships’, ‘Ship’, ‘shipping’}

I-Neurons
Grad L27.U8984 {‘bush’, ‘tree’, ‘brush’, ‘shr’}
AcT L25.U2539 {‘swim’, ‘swimming’, ‘Swim’, ‘underwater’}
CE L25.U5113 {‘bronze’, ‘sign’, ‘box’, ‘SIGN’}

NAM L28.U10626 {‘ship’, ‘ships’, ‘sea’, ‘ocean’}
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Figure 3: Distribution of (a) I-neurons, (b) T-neurons, and (c) intersection and subset of I-neurons
and T-neurons per layer identified by NAM, chosen by different number of neurons with top scores
on average. Best viewed in color.

(b), while Figure 3 (c) illustrates the distribution of intersections of T- and I-neurons. These results
demonstrate the following observations:

Observation 1: Within MLLMs, the crucial neurons for the text and image output containing
specific semantics predominantly occur in the middle and high layers of the base LLM. Note that
this observation is consistent with the previous works involving neuron attributions within LLMs
[5, 13, 18]. Additionally, the similar distribution of T and I neurons suggests that the formation time
of semantic concepts across different modalities in MLLMs may be consistent.

Observation 2: Figure 3 (c) reveals a partial overlap between T and I neurons. However, it also pro-
nounces distinctions between them. This finding substantiates the claim presented in the Introduction
of this paper: even for the same semantics, critical neurons are modality-specific within MLLMs.

4.3 RQ2: Properties of T/I-Neurons & Effectiveness of NAM

We then explore the following properties of T/I-neurons through comprehensive quantitative and
qualitative experiments: Semantic Relevance, Cross-Sample Invariance, and Concept Specificity.
Additionally, by comparing these properties with those of neurons identified by various baselines, we
validate the effectiveness of our NAM. Note that we only present the results of the best-performing
baseline for each class, and remains are shown in Appendix B.

4.3.1 Semantic Relevance

Following previous studies [19, 18], we treat the unembedding matrix and the second linear layer
matrix in the FFN as a projection from neuron activation to the probability distributions of the
vocabulary. Based on this, words with the average highest probability can be regarded as the relevant
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Table 2: Consistency between the neuron’s semantics and the images/captions. Grad., Act. and
Ca. denote gradient-, activation- and causality-based methods, respectively. ‡ and ⋆ represent the
CLIPScore w.r.t input and output images. We use background highlights the best performance.

Class T-Neurons

Method Grad. Act. Ca. ‡CLipScore ⋆CLipScore BERTScore MoveScore BLEURT

CE ✓ 0.264±0.015 0.251±0.022 0.273±0.029 0.257±0.019 0.040±0.005

GraI ✓ ✓ 0.239±0.018 0.244±0.020 0.276±0.032 0.296±0.030 0.039±0.005

GraD ✓ 0.378±0.047 0.396±0.032 0.457±0.027 0.436±0.030 0.064±0.008

GraT ✓ ✓ 0.425±0.040 0.422±0.029 0.486±0.018 0.477±0.036 0.072±0.009

AcT ✓ 0.556±0.037 0.594±0.046 0.624±0.057 0.653±0.054 0.139±0.013

AcU ✓ 0.543±0.051 0.624±0.057 0.618±0.054 0.609±0.038 0.135±0.014

NAM ✓ 0.562±0.054 0.637±0.047 0.640±0.039 0.657±0.048 0.148±0.013

Class I-Neurons

Method Grad. Act. Ca. ‡CLipScore ⋆CLipScore BERTScore MoveScore BLEURT

CE ✓ 0.228±0.017 0.219±0.026 0.245±0.033 0.250±0.021 0.044±0.003

GraI ✓ ✓ 0.230±0.021 0.235±0.021 0.259±0.027 0.278±0.037 0.035±0.004

GraD ✓ 0.370±0.042 0.377±0.026 0.432±0.040 0.409±0.041 0.058±0.006

GraT ✓ ✓ 0.432±0.038 0.394±0.032 0.453±0.042 0.437±0.038 0.068±0.008

AcT ✓ 0.547±0.043 0.580±0.051 0.597±0.056 0.623±0.061 0.128±0.013

AcU ✓ 0.501±0.061 0.601±0.054 0.559±0.039 0.548±0.052 0.137±0.013

NAM ✓ 0.558±0.053 0.613±0.052 0.611±0.048 0.630±0.056 0.144±0.014
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Figure 4: Cross-sample invariance and semantic specificity of T/I-neurons. (a) exhibits invariance by
calculating the average ratio between T/I-neurons’ subset and intersection across different text/image
output; (b) quantifies specificity by showing: 1. the number of neurons crucial for specific semantics
solely and 2. the average number of neurons whose probability of being crucial to other semantics is
lower than a certain value. Best viewed in color.

semantics of neurons, as shown in Table 1. Note that the results of AcU are not exhibited since
its attribution score is exactly this probability. Furthermore, to explore the semantic relevance of
the neurons quantitatively, we calculate the consistency between the semantics of neurons and the
input/output images employing CLIPScore [37]. BERTScore [38], MoverScore [39], and BLEURT
[40] are also employed to quantify their consistency with (1) input image’s caption provided by the
dataset and (2) output image’s caption given by GPT [1]. Table 2 exhibits the average quantified
results. According to Table 1 and 2, we have the following observation:

Observation 3: The semantics of T/I-neurons identified by NAM align more closely with the
input/output images and their captions, while the other attribution methods typically identify the
neurons that are hardly correlated with the targeted semantics. The quantitative results share a similar
tendency, confirming the high semantic relevance of T/I-neurons and the effectiveness of our NAM.

4.3.2 Cross-sample Invariance

For different text/image outputs containing the same semantics, the T/I-neurons identified by the
attribution methods shall be consistent. To quantify this consistency, we instruct GILL to describe
and generate images for the same semantics ten times, and collect the set of T/I-neurons each time.
We then calculate the proportion of neurons that appeared in all ten sets as the quantification of
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cross-sample invariance. The average invariance Figure 4 (a) presents the average invariance for
different concepts. Specifically,

Pre-editing Post-editing Method Value (↓)

“boy” “girl” CE 0.726
GraI 0.625
GraD 0.471
GraT 0.502
AcT 0.390
AcU 0.362
NAM 0.350

“dog” “cat” CE 0.601
GraI 0.540
GraD 0.458
GraT 0.321
AcT 0.259
AcU 0.288
NAM 0.255

“cantaloupe” “apple” CE 0.493
GraI 0.360
GraD 0.357
GraT 0.401
AcT 0.328
AcU 0.324
NAM 0.316

Table 3: Results of image editing. The Value rep-
resents the ℓ2 norm of the perturbation added to
the I-neurons, demonstrating that NAM necessi-
tates minimal perturbations for the editing.

Observation 4: NAM outperforms all baselines
by an average of 16.83% w.r.t cross-sample invari-
ance across all semantics. This demonstrates that
NAM extracts the critical neurons for the targeted
semantics across samples, effectively filtering out
the neurons sensitive to sample-specific noise.

4.3.3 Semantic Specificity

Neurons that are crucial for specific semantics
should not be indiscriminately crucial across oth-
ers. Therefore, we study the neuron’s specificity
in this part. We identify the Top-500 T/I-neurons
for the specific semantics. Then, we show (1) the
number of neurons that are crucial for specific se-
mantics solely and (2) the average number of neu-
rons whose probability of being crucial to other se-
mantics is lower than κ ∈ {10%, 15%, . . . , 45%}
in Figure 4 (b). The results of the three best-
performing methods are exhibited here. These re-
sults highlight that:

Observation 5: The T/I-neurons identified by our
NAM are specialized and not commonly sensitive
across different semantics, verifying their speci-
ficity across the semantics.

4.4 RQ3: Image Editing Enhanced by NAM

Lastly, we aim to edit the images generated by MLLMs through perturbing I-neurons identified by
NAM, as outlined in Section 3.3. Table 3 exhibits the pre- and post-editing semantics, the selected
images for collecting hL and ĥL, and the magnitude of the perturbations. Furthermore, for fair
comparisons, we also perturb I-neurons identified by baselines to achieve similar editing results.
According to Table 3 we can find that:

Observation 6: NAM-enhanced editing methods can not only replace the original semantics with the
target semantics precisely within the outputs of MLLMs, but also necessitate minimal perturbations.
Specifically, the perturbation it added is 40.2% less than the baselines on average, and nearly 15%
less than the best baseline, underscoring its significance and potential applications for MLLMs.

5 Limitations & Future Work

This study provides new insights into interpreting MLLMs, enhancing the understanding of their inner
working mechanize. However, while our experiments thoroughly investigated the neuron properties
within GILL and NExTGPT, they did not extend to a broader range of models. Additionally, although
the proposed attribution method can be transferred to any other modality, as demonstrated in Section
3.1.1, our experiments focused on text and image outputs solely. Looking forward, we plan to
incorporate more MLLMs and modalities into our research, and streamline our attribution method to
eliminate the reliance on external interpreters. By expanding the scope of our study and refining our
method, we aim to uncover more valuable insights that will benefit the MLLM community.

6 Conclusion

We propose NAM, a novel neuron attribution method tailored for MLLMs. Specifically, NAM is
tailored for multi-modal attribution, revealing the modality-specific semantic properties learned by
neurons within the FFN layers.To address the challenges of extending attribution methods from text-
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only LLMs to MLLMs, NAM first employs a leading image segmentation model to remove the noisy
semantics, then proposes a new attribution score to eliminate the need for additional forward/backward
propagation or gradient calculations. Based on NAM, we highlights several intriguing properties of
neurons, elucidating the inner workings mechanism of MLLMs.
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A Related Work

Multi-modal Large Language Models. In recent years, MLLMs have made significant progress,
continually pushing the boundaries of performance in various downstream tasks [41]. The launch
of models like GPT-4 (Visual) and Gemini, with their impressive multimodal (MM) understanding
and generation capabilities, has sparked intense research interest in MM-LLMs [20]. In terms of
understanding multimodal content, preliminary research often utilizes multimodal encoders like the
ViT [42] and CLIP [27] ViT to capture representations, and projectors like Q-Former [43, 44] and
P-Former [45] to align these representations with the embedding space of foundational LLMs. This
approach covers tasks such as image-text understanding, with representative models including BLIP-2
[21], MiniGPT-4 [23], LLAVA [22], and OpenFlamingo [24].

Recently, the capabilities of MM-LLMs have expanded to support specific modal outputs. These
methods align certain embeddings from the foundational LLM with the input space of a well-trained
multimodal generator through another projector. This extension includes tasks with image-text
outputs as demonstrated by models like GILL [25], Kosmos-2 [46], Emu [47], NExT-GPT [35]
and MiniGPT-5 [48], which is the focus of this paper. Recent research endeavors have focused on
mimicking human-like any-to-any modality conversion, shedding light on the path to artificial general
intelligence [20].

Interpretability of Pre-trained Transformers. Demystifying the internal mechanisms of LLMs
becomes increasingly vital, particularly in applications emphasizing fairness, trust, and ethical
decision-making [49, 50, 51, 52, 53, 54, 55]. In recent years, many works have focused on explaining
pre-trained transformers. For instance, [32] regards the FFN as unnormalized Key-Value Memories;
[56] presents a conceptual framework where all parameters are interpreted by projecting them into the
embedding space; [9] analyzes the FFN updates in the vocabulary space, showing that each update
can be decomposed to sub-updates; [17] studies how the model aggregates information about the
subject and relation to predict the correct attribute; while [11] localizes the weights and mechanisms
used by a language model to memorize and recite entire paragraphs of its training data.

Neuron Attribution. Neuron attribution aims to reveal the black box of pre-trained transformers
by answering the following questions [7, 57, 6]: (1) What concepts are learned within neurons
of the network? (2) Are there neurons that specialize in learning particular concepts? (3) How
localized/distributed and redundantly is the knowledge preserved within neurons of the network?
To achieve these goals, many recent works have focused on exploring the properties of neurons in
LLMs. Specifically, [16] present preliminary studies on how factual knowledge is stored in LLMs by
introducing the concept of knowledge neurons; [5] finds the special neurons whose activations on
soft prompts are highly predictive of the task labels of inputs, and dub them skill neurons.

For MLLMs, [18] employs the neuron contribution within the residual stream to identify multi-modal
neurons in Transformer-based multi-modal LLMs, while [19] claims that image prompts cast into
the transformer embedding space do not encode interpretable semantics, and translation between
modalities occurs inside the transformer. Additionally, despite the aforementioned methods are all
based on activation and gradients to identify target neurons, some recent works focused on knowledge
editing have discovered an alternative approach [15, 13]. This involves using causal effect methods to
identify key neurons by perturbing neurons and observing changes in the output [14].

For the detailed contribution scores these works employed and their relationship with our NAM,
please see Appendix B.1.

B More Experiments

B.1 Experimental Settings

Baseline. Here we first detail the contribution score of the baseline methods used. We will use the
formulas and symbols from the paper to provide a formal explanation. Specifically, for the p-th word
in Vocabulary V and the k-th neuron ul

k in layer l, we have:

• AcT takes the neuron activation as the contribution score following:

ŝlk = akl . (9)
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• AcU takes the product of the neuron activation and the unembedding matrix as the contribution
score following:

ŝlk = clk,p = alk(Wu)p(W
l
out)k. (10)

• GraD takes the gradient of the output dimension corresponding to the output word w.r.t activation
as the contribution score following:

ŝlk =
∂yp
∂akl

. (11)

• GraT takes the product of the gradients and activation as the contribution score following:

ŝlk = akl
∂yp
∂akl

. (12)

• GraI takes the product of the integral of the gradients and the activation as the contribution score
following:

ŝlk = akl

∫ 1

α=0

∂y′p
∂akl

dα, (13)

where y′p is the p-th dimension of the output y when we fix the activation of neuron ul
k as α · akl .

Note that perturbing and performing forward propagation for each neuron multiple times is time-
consuming. Therefore, we add the same coefficient α to multiple neurons simultaneously and
calculate their integrals to obtain their respective contribution scores.

• CE takes the causal effect of activation on outputs, quantified by the output change when activation
is perturbed, as the contribution score following:

ŝlk =
∂y′′p
∂akl

, (14)

where y′′p is the p-th dimension of the output y when we add the activation of neuron ul
k with a

Gaussian Noise. We set the mean of the Gaussian noise to 0 and the variance to the total variance
of the neuron activation values in the respective layer. Similar to GraI, for each individual neuron,
performing forward propagation for each neuron multiple times is costly. Therefore, we add
perturbations to multiple neurons simultaneously and evenly distribute the resulting output changes
among them as their respective contribution scores.

Furthermore, it is important to note that the above baselines all attribute text outputs to neurons.
Therefore, we have adapted all these baselines to image outputs for comprehensive validation. For
example, the attribution score of the baseline Grad for text output is the gradient of activation when
the output is the word “dog”. When transferred to adapt the image output, its attribution score is the
gradient of activation when the output is an image of a dog. Specifically, since the last representation
h is the input of the image generation module, we have:

ŝlk = 1 · ∂h

∂akl
. (15)

Hyperparameter Configuration. For our experiments, we sourced the training and testing data for
the COCO dataset directly from its website3. Similarly, we obtained the source code for the target
models GILL4 and NExT-GPT5, the image segmentation model EVA026, and the attribution algorithm
Diffuser Interpreter7 used for stable diffusion from the links cited in their respective publications

All hyperparameter settings, such as the division of training and testing datasets, learning rate,
and optimizer, are consistent with the original configurations of the above link unless otherwise
stated. Additionally, it is important to note that, unless explicitly mentioned, the samples used in the
experiments were 500 images randomly selected from the COCO dataset.

Furthermore, we use Quadro RTX6000 GPUs with 24GB of memory as a representative example of
consumer-level GPUs; 40GB A100s and 80GB H100s to provide datacenter-level benchmarks.

3COCO: http://images.cocodataset.org
4GILL: https://github.com/kohjingyu/gill
5NExT-GPT: https://github.com/NExT-GPT
6EVA-02: https://github.com/baaivision/EVA/
7Diffuser-Interpreter: https://github.com/JoaoLages/diffusers-interpret
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Table 4: The semantics of T/I-neurons with the highest attribution scores identified by different
attribution methods, when the output of MLLMs containing the targeted semantics. (Ll,Uk) denotes
the k-th neuron at layer l. For each method, we report semantics with top-4 probabilities.

Output Segmentation Category Method Location Semantics

T-Neurons
Grad L30.U10180 {‘card’, ‘screen’,‘Card’}
AcT L26.U8761 {‘coffee’, ‘tea’, ‘brew’}
CE L27.U8520 {‘CLSID’, ‘Nanto’, ‘Kinnikuman’}

NAM L27.U9810 {‘glass’, ‘Glass’, ‘bud’}

I-Neurons
Grad L28.U3335 {‘spirits’, ‘spirit’, ‘run’}
AcT L30.U5844 {‘bit’, ‘lot’, ‘few’}
CE L31.U3393 {‘order’, ‘Order’, ‘orders’}

NAM L27.U413 {‘drink’, ‘drinking’, ‘drinks’}

T-Neurons
Grad L30.U4516 {‘roll’, ‘rolls’, ‘Roll’}
AcT L28.U6023 {‘eat’, ‘eating’, ‘eaten’}
CE L25.U11833 {‘flexible’, ‘brittle’, ‘bend’}

NAM L30.U8704 {‘taste’, ‘tasted’, ‘tasting’}

I-Neurons
Grad L30.U14400 {‘fruit’, ‘rose’, ‘apple’}
AcT L27.U6886 {‘snap’, ‘taken’, ‘snapped’}
CE L25.U14616 {‘Kod’, ‘negative’, ‘develops’}

NAM L27.U2615 {‘cookies’, ‘pancakes’, ‘baked’}

T-Neurons
Grad L31.U404 {‘vaults’, ‘70710’, ‘20439’}
AcT L27.U8950 {‘driver’, ‘derivers’, ‘vehicle’}
CE L24.U15330 {‘few’, ‘lot’, ‘bit’}

NAM L25.U3913 {‘bike’, ‘bikes’, ‘cycle’}

I-Neurons
Grad L28.U1208 {‘20439’, ‘Kinnikuman’, ‘Nanto’}
AcT L27.U6437 {‘gun’, ‘car’, ‘bike’}
CE L25.U4343 {‘CLSID’, ‘shapeshifter’, ‘couple’}

NAM L25.U3913 {‘bike’, ‘bikes’, ‘cycle’}

Ablation Study. Our attribution score design primarily consists of two components: activation
and its mapped values on the target semantic dimension in the vocabulary. We aim to leverage
the complementary effects of both components, using them as indicators of indirect and direct
contributions, respectively. The results of baseline methods AcT and AcU can be approximated as
the attribution effects when using each component separately. Therefore, comparing our method with
AcT and AcU can also be considered as an ablation study. This comparison also reflects that using
only the mapped values (AcU) can introduce certain biases, leading to poorer performance across
various metrics.

External Model & Algorithm. Then, we introduce the semantic segmentation model EVA02 and
attribution algorithm for the stable diffusion model Diffuser Interpret. Specifically, EVA02 [30]
comprises a series of robustly optimized plain Vision Transformers (ViTs) of moderate model sizes,
featuring transferable bidirectional visual representations learned from a powerful CLIP vision
encoder via masked image modeling (MIM) pre-training. Compared to current leading vision models
with billions of parameters, the EVA-02 variants necessitate significantly fewer computational
resources, enabling a more in-depth exploration of often-overlooked aspects. Furthermore, Diffuser
Interpret [31] attributes the pixel values of the generated image to the input embedding of the stable
diffusion using gradient information. We also apply this strategy to the attribution of the projector
used by GILL.

B.2 More Experimental Results

Results on Semantic Relevance. To better illustrate the comparison between our attribution method
and the baseline attribution methods, we present additional qualitative experimental results to provide
a more intuitive comparison, as shown in Table 4. The effects demonstrated by these methods are
similar to those shown in the experimental results in the main text, indicating that the neurons
identified by our NAM method are semantically closer to the target semantics.

Results on NExTGPT. In the main body of the text, we have completed testing the effectiveness of
various neuron attribution algorithms with GILL as the target model. In this section, we expand our
experiments to include NExTGPT as the target model. Below, we present the key neurons identified
in NExTGPT and their semantic correlations with images and captions. The results can be found in
Table 5.

Consistency Between Neuron’s Semantics and Caption Given by GPT. The main text only
presents the average consistency of the T/I-neurons identified by various attribution methods with the
captions of the input/output images. To refine our comparison, we provide the specific consistency
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Table 5: Consistency between the neuron’s semantics and the images/captions. Grad., Act. and
Ca. denote gradient-, activation- and causality-based methods, respectively. ‡ and ⋆ represent the
CLIPScore w.r.t input and output images. We use background highlights the best performance.

Class T-Neurons

Method Grad. Act. Ca. ‡CLipScore ⋆CLipScore BERTScore MoveScore BLEURT

CE ✓ 0.258±0.017 0.244±0.020 0.257±0.032 0.261±0.025 0.038±0.006

GraI ✓ ✓ 0.228±0.018 0.233±0.022 0.268±0.034 0.290±0.035 0.042±0.006

GraD ✓ 0.369±0.051 0.387±0.029 0.456±0.029 0.402±0.024 0.059±0.011

GraT ✓ ✓ 0.406±0.034 0.409±0.033 0.485±0.026 0.480±0.042 0.068±0.008

AcT ✓ 0.607±0.036 0.587±0.044 0.608±0.065 0.632±0.055 0.120±0.014

AcU ✓ 0.593±0.048 0.615±0.053 0.592±0.046 0.611±0.048 0.141±0.020

NAM ✓ 0.614±0.055 0.620±0.055 0.616±0.042 0.633±0.036 0.145±0.021

Class I-Neurons

Method Grad. Act. Ca. ‡CLipScore ⋆CLipScore BERTScore MoveScore BLEURT

CE ✓ 0.217±0.024 0.210±0.019 0.238±0.036 0.254±0.039 0.041±0.005

GraI ✓ ✓ 0.226±0.035 0.242±0.018 0.246±0.031 0.265±0.035 0.033±0.005

GraD ✓ 0.362±0.037 0.369±0.031 0.418±0.044 0.388±0.042 0.055±0.007

GraT ✓ ✓ 0.417±0.043 0.386±0.030 0.466±0.039 0.421±0.045 0.069±0.009

AcT ✓ 0.533±0.042 0.564±0.048 0.568±0.062 0.608±0.073 0.119±0.015

AcU ✓ 0.592±0.055 0.583±0.051 0.582±0.042 0.535±0.057 0.130±0.017

NAM ✓ 0.608±0.047 0.585±0.049 0.592±0.041 0.635±0.067 0.142±0.018

scores w.r.t the captions generated by GPT for the output images. The detailed results are shown in
Table 6 and 7. These results also demonstrate the highest consistency scores of our attribution method
compared to the baselines.

C Broader Impact

In this paper, we present a novel neuron attribution method NAM to interpret the MLLMs. Based on
NAM, we reveal several intriguing neuron properties within MLLMs. These properties collectively
elucidate the inner workings of neurons within MLLMs, enhancing our understanding of their
capacity to process and generate multi-modal content. This approach can contribute to a wide range
of applications of MLLMs, boosting the MLLMs across various downstream tasks such as knowledge
editing [15, 13, 14]. We believe that the neuron properties drawn from NAM can shed light for future
research on MLLM community, and inspire further exploration into understanding neurons within
other pre-trained transformers.
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Table 6: Consistency between the neuron’s semantics within GILL and the captions given by GPT.
Grad., Act. and Ca. denote gradient-, activation- and causality-based methods, respectively. ‡ and
⋆ represent the CLIPScore w.r.t input and output images. We use background highlights the best
performance.

Class T-Neurons (GILL)

Method Grad. Act. Ca. BERTScore MoveScore BLEURT

CE ✓ 0.254±0.035 0.263±0.029 0.036±0.013

GraI ✓ ✓ 0.262±0.038 0.278±0.028 0.040±0.008

GraD ✓ 0.452±0.027 0.392±0.019 0.062±0.013

GraT ✓ ✓ 0.476±0.029 0.475±0.038 0.066±0.011

AcT ✓ 0.599±0.057 0.623±0.046 0.113±0.010

AcU ✓ 0.584±0.043 0.615±0.055 0.134±0.020

NAM ✓ 0.601±0.037 0.618±0.028 0.142±0.019

Class I-Neurons (GILL)

Method Grad. Act. Ca. BERTScore MoveScore BLEURT

CE ✓ 0.241±0.037 0.248±0.042 0.038±0.009

GraI ✓ ✓ 0.237±0.033 0.267±0.032 0.027±0.004

GraD ✓ 0.409±0.036 0.382±0.036 0.053±0.008

GraT ✓ ✓ 0.470±0.035 0.408±0.041 0.070±0.011

AcT ✓ 0.554±0.050 0.602±0.062 0.117±0.019

AcU ✓ 0.571±0.037 0.528±0.062 0.124±0.014

NAM ✓ 0.584±0.039 0.622±0.052 0.137±0.021

Table 7: Consistency between the neuron’s semantics within NExTGPT and captions given by GPT.
Grad., Act. and Ca. denote gradient-, activation- and causality-based methods, respectively. ‡ and
⋆ represent the CLIPScore w.r.t input and output images. We use background highlights the best
performance.

Class T-Neurons (NExTGPT)

Method Grad. Act. Ca. BERTScore MoveScore BLEURT

CE ✓ 0.263±0.028 0.259±0.024 0.036±0.007

GraI ✓ ✓ 0.264±0.037 0.288±0.035 0.040±0.008

GraD ✓ 0.455±0.025 0.393±0.028 0.060±0.014

GraT ✓ ✓ 0.482±0.024 0.472±0.039 0.070±0.010

AcT ✓ 0.602±0.057 0.624±0.043 0.114±0.007

AcU ✓ 0.585±0.037 0.623±0.042 0.135±0.016

NAM ✓ 0.613±0.034 0.624±0.028 0.140±0.017

Class I-Neurons (NExTGPT)

Method Grad. Act. Ca. BERTScore MoveScore BLEURT

CE ✓ 0.234±0.029 0.243±0.028 0.037±0.007

GraI ✓ ✓ 0.239±0.028 0.271±0.025 0.036±0.007

GraD ✓ 0.417±0.040 0.382±0.037 0.054±0.008

GraT ✓ ✓ 0.458±0.034 0.406±0.041 0.070±0.014

AcT ✓ 0.570±0.055 0.597±0.059 0.114±0.008

AcU ✓ 0.579±0.039 0.528±0.054 0.126±0.018

NAM ✓ 0.588±0.033 0.627±0.057 0.138±0.020
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In this paper, we introduce the neuron attribution method for MLLMs aimed at
enhancing the transparency and reliability of MLLMs (See Abstraction and Introduction
Section).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In this work, we systematically discuss the limitations of our research and
outline directions for future work (See Introduction Section).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: This paper does not include experimental results related to theoretical aspects.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the code necessary for replicating the studies described in this
paper via an anonymous link, and we detail the experimental setup for the replication in the
article itself (See Abstraction Section).
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: For the datasets disclosed in the article, we have provided information regarding
their sources and origins (See Experimental Section).
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: we have specified all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: In this paper, we have reported error bars suitably and correctly defined or
other appropriate information about the statistical significance of the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
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8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [Yes]
Justification: In this paper, we provide detailed information about the experimental resources,
including GPU configurations used in our studies.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The study presented in this paper conforms to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have provided the societal impacts of the work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]
Justification: This paper does not address issues related to this aspect.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All creators and original owners of the assets used in our paper, such as code,
data, and models, have been properly credited. We have explicitly mentioned the licenses
and terms of use for each asset and have ensured full compliance with these terms throughout
our research.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The research presented in this paper is not concerned with new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve experiments or research related to human subjects.
Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not address potential risks incurred by study participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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