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Abstract
The ability to adapt to new environments with
noisy dynamics and unseen objectives is crucial
for AI agents. In-context reinforcement learn-
ing (ICRL) has emerged as a paradigm to build
adaptive policies, employing a context trajectory
of the test-time interactions to infer the true task
and the corresponding optimal policy efficiently
without gradient updates. However, ICRL poli-
cies heavily rely on context trajectories, making
them vulnerable to distribution shifts from train-
ing to testing and degrading performance, par-
ticularly in offline settings where the training
data is static. In this paper, we highlight that
most existing offline ICRL methods are trained
for approximate Bayesian inference based on the
training distribution, rendering them vulnerable
to distribution shifts at test time and resulting in
poor generalization. To address this, we intro-
duce Behavior-agnostic Task Inference (BATI)
for ICRL, a model-based maximum-likelihood so-
lution to infer the task representation robustly. In
contrast to previous methods that rely on a learned
encoder as the approximate posterior, BATI fo-
cuses purely on dynamics, thus insulating itself
against the behavior of the context collection
policy. Experiments on MuJoCo environments
demonstrate that BATI effectively interprets out-
of-distribution contexts and outperforms other
methods, even in the presence of significant envi-
ronmental noise.
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People don’t 
wear space 

suits on Earth.
He must be on 

the Moon!

The jump is 
not very high. 
He could be 
training on 

Earth!

Figure 1. Illustration of the core idea behind BATI. The boy (left)
infers the astronaut’s location using behavioral cues (e.g., wearing
space suits), while the girl (right) relies on physical dynamics
(e.g., jump height). Although the former behavioral correlation is
easier to spot, the latter is more robust to distribution shifts and
leads to the correct answer in this example. BATI mirrors the latter
strategy, prioritizing dynamics over behavior.

1. Introduction
The ability of AI agents to adapt to new environments with
noisy dynamics and unknown objectives is becoming in-
creasingly important as we push the boundaries of artifi-
cial intelligence applications. Meta-reinforcement learn-
ing (Finn et al., 2017; Duan et al., 2016; Beck et al., 2023)
has emerged as a promising paradigm for developing adap-
tive policies. This approach leverages the concept of learn-
ing to learn, enabling agents to generalize from previous
experiences and effectively tackle novel tasks quickly. Re-
cently, the marriage of in-context learning (Brown et al.,
2020; Min et al., 2022; Hendel et al., 2023) and meta-RL
has attracted attention from the community, referred to as
in-context reinforcement learning (ICRL) (Laskin et al.,
2023; Grigsby et al., 2024; Ma et al., 2024). It leverages a
context trajectory of interactions during testing to infer the
true task and determine the corresponding optimal policy
without any gradient update, showing significant potential
for effective generalization across diverse and unknown en-
vironments. However, such context-conditioned policies
can be expensive and time-consuming to train with online
interactions due to the sample inefficiency of RL algorithms
and the costs associated with online data collection (Yu,
2018; Gu et al., 2024). People thus turn to offline ICRL to
extract in-context policies from offline data without online
interactions (Laskin et al., 2023; Li et al., 2024).
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Despite its promise, ICRL faces substantial challenges, as
the performance of ICRL agents can be sensitive to the be-
havior shown in the context. During testing, any shifts in
context distribution can lead to a marked decrease in perfor-
mance (Gao et al., 2024). This issue is exacerbated when
learning from offline data, where the distribution of train-
ing data is likely to differ from the conditions encountered
during deployment. As a result, the robustness and gen-
eralization capabilities of offline ICRL methods are often
compromised by context shifts.

We identify a critical limitation in existing offline ICRL
methods (Li et al., 2021b; Yuan & Lu, 2022; Gao et al.,
2024; Li et al., 2024): they are typically trained for approxi-
mate Bayesian inference based on the training distribution.
This approach makes them vulnerable to distribution shifts
at test time, undermining their ability to generalize to new,
unseen contexts. Addressing this limitation is crucial for ad-
vancing the practical applicability of ICRL in real-world sce-
narios. Figure 1 shows an example of the effect of context
shift when inferring the location of the jumping astronaut.
In this case, the commonsense inference using behavioral
characteristics leads to a wrong answer under distribution
shifts, while the correct answer is given by an analysis of
environmental dynamics.

In this paper, we propose a new Behavior-agnostic Task
Inference1 (BATI) framework to enhance the robustness
of ICRL. BATI is a model-based maximum-likelihood ap-
proach that infers task representations without being in-
fluenced by the behavior of the context collection policy.
Unlike previous methods that depend on a learned encoder
to approximate the posterior, BATI focuses exclusively on
the dynamics of the environment. This focus allows BATI
to remain insulated from the variability introduced by dif-
ferent behavior policies, thereby improving its resilience to
distribution shifts. We conduct extensive experiments in sev-
eral MuJoCo environments to evaluate the effectiveness of
BATI. Our results demonstrate that BATI not only interprets
out-of-distribution contexts more effectively than existing
methods but also outperforms them in environments with
significant noise. These findings highlight the potential of
BATI to enhance the adaptability and reliability of AI agents
operating in complex and dynamic settings.

Our contributions are three-fold: 1) We identify and address
a key vulnerability in existing ICRL methods related to
context distribution shifts; 2) We introduce BATI, a robust
task inference framework that enhances generalization by
focusing on environmental dynamics; and 3) We validate
the generalization of BATI through comprehensive experi-
mental evaluations, setting a new benchmark for ICRL in
noisy and unpredictable environments.

1Project page: https://sites.google.com/view/
bati-icrl

2. Related Works
In-Context / Meta-Reinforcement Learning. In-context
reinforcement learning (ICRL) aims to train agents that
can generalize to solve new tasks using test-time interac-
tions and reward signals, or contexts (Duan et al., 2016;
Laskin et al., 2023; Grigsby et al., 2024; Gao et al., 2024;
Li et al., 2024). ICRL falls into the broader category of
meta-reinforcement learning (Beck et al., 2023), which en-
compasses both gradient-based methods (Finn et al., 2017;
Song et al., 2020; Yoon et al., 2018) and context-based meth-
ods (where ICRL belongs) for learning new skills at test
time. Critically, to improve the test-time efficiency(Ma et al.,
2024), ICRL policies need to acquire new capabilities with-
out any gradient updates, resembling the in-context learning
phenomenon of large language models (Brown et al., 2020;
Min et al., 2022; Hendel et al., 2023). In this paper, we focus
on the ICRL problem to obtain agents that can efficiently
adapt to new tasks without parameter updates. While ICRL
has many appealing properties, an in-context policy can be
very expensive or time-consuming to train due to the sample
inefficiency of online RL algorithms and various costs of col-
lecting online interactions in real-world scenarios (Grigsby
et al., 2024; Yu, 2018; Gu et al., 2024). Offline ICRL (Li
et al., 2024; Gao et al., 2024) has emerged to harness the
advantages of both offline RL (Kostrikov et al., 2022; Wang
et al., 2024; Zhong et al., 2025) and ICRL. Our work seeks
to address the context shift problem in this offline setting.

Task Inference. Task inference methods (Humplik et al.,
2019; Liu et al., 2021; Rakelly et al., 2019; Zintgraf et al.,
2020; 2021) cast ICRL as a two-stage problem, where a
latent representation of the true task is first inferred from the
context and an in-context policy is conditioned on this latent
to execute the corresponding optimal behavior. Previous
works use supervision (Humplik et al., 2019), contrastive-
like objectives (Li et al., 2021b), or RL losses (Rakelly
et al., 2019) to guide the task inference. However, the
context distribution may shift between training and test time,
posing a great challenge to the generalization capabilities
of task inference methods (Lin et al., 2020; Yuan & Lu,
2022; Li et al., 2024; Gao et al., 2024; Xu et al., 2024),
especially in the offline setting. To address this context
shift, CSRO (Gao et al., 2024) proposes to minimize the
mutual information between the task latent and the context
collection policy to promote the true correlation between
the latent and the task. Furthermore, UNICORN (Li et al.,
2024) provides a unified information-theoretic framework
for understanding task inference methods and proposes a
tighter approximation to the true objective. In this paper, we
analyze flaws in previous works and propose a maximum-
likelihood-based robust task inference method.
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3. Preliminary
3.1. Problem Formulation

We define the ICRL problem on a distribution of Markov
decision process (MDP) M = (S,A, P,R, ρ0, γ), where S
is the state space,A is the action space, P : S×A → ∆S is
the transition function, R : S×A → ∆R is the reward func-
tion, ρ0 ∈ ∆S is the initial state distribution, and γ is the dis-
count factor. Hereafter we refer to each MDP as a task. We
assume that all the tasks in support of the task distribution
share the same S,A, ρ0, and γ so that we can identify a task
with PM , RM . Define context X = {(si, ai, ri, s′i)}

C−1
i=0

as a set of C transition tuples in a task M ; further denote its
components as Xb = {(si, ai)}i, Xt = {(ri, s′i)}i. Such
a context could be generated by rolling out a (plain) pol-
icy µ : S → ∆A in M , so s0 ∼ ρ0, ai ∼ µ(si), ri ∼
RM (si, ai), s

′
i = si+1 ∼ PM (si, ai)∀i, in which case we

write the context random variables as XM,µ,X
b
M,µ,X

t
M,µ.

Our objective is to learn an in-context policy, or meta-
policy πθ : S × X → ∆A parameterized by θ to optimize
the following discounted objective:

max
θ

EM,µ∼p(M,µ),XM,µ∼XM,µ

∑
t≥0

γtrt

 (1)

where rt is generated by rolling out πθ(· | ·, XM,µ) in M ,
X = (S × A × R × S)∗ is the context space. As the task
M is sampled from a distribution and not directly revealed
to πθ, πθ may only learn about the properties of the current
task it needs to solve via the sampled context XM,µ.

Finally, to characterize the context shift problem, note that
the above objective is an expectation over the joint distri-
bution of task M and context collection policy µ. Denote
the training distribution as ptrain(M,µ) and the testing dis-
tribution as ptest(M,µ). For the same task M , the training
context XM,µtrain induced by µtrain ∼ ptrain(µ | M) may
have a very different distribution from the testing context
XM,µtest , µtest ∼ ptest(µ |M), forming a context shift.

3.2. Background & Analysis

In recent years, as interest in ICRL and meta-RL increased,
many methods have been developed for training effective in-
context policies. Among the existing works, task inference
approaches consider ICRL to be the problem of inferring
a latent task representation from a given test-time interac-
tion context. Once the test-time task is known, the optimal
policy can be determined and executed to achieve a good
performance efficiently without time-consuming and unsta-
ble test-time gradient updates. Early works thus focus on
effectively extracting task information from the context us-
ing a context encoder, with the main differences being the
learning objectives used (Humplik et al., 2019; Ren et al.,
2022; Sohn et al., 2020; Zhang & Kan, 2022; Lee et al.,

2019; Peng et al., 2021; Kamienny et al., 2020). For exam-
ple, Humplik et al. (2019) assumes that supervision of task
parameters is available during training, while FOCAL (Li
et al., 2021b) takes a distance metric learning approach.

However, in an offline learning setting, where the ICRL
policy needs to be extracted from a fixed dataset without
any online interactions, context shift becomes a major con-
cern. The context distribution may dramatically change
between the offline training and the online testing, causing
the context encoder to go out of distribution and produce
incorrect task encodings, which leads to unsatisfactory pol-
icy performance. Among works that have sought to address
the context shift problem (Lin et al., 2020; Li et al., 2024;
Gao et al., 2024; Yuan & Lu, 2022; Li et al., 2021b;a), re-
cently, UNICORN (Li et al., 2024) proposed an information-
theoretic framework for offline ICRL, arguing that the task
representation learning should be done by optimizing the
following mutual information objective:

max
ϕ

I(Z;M) (2)

whereZ := fϕ(X) is the context encoding, fϕ is the context
encoder parameterized by ϕ. Intuitively, Z should capture
the part of X that describes the true task M. From this
perspective, UNICORN proved that the objectives of sev-
eral prior works can be streamlined as approximations or
bounds of the mutual information objective. It proposed an
alternative objective to achieve a tighter and more robust
approximation. A classification-like loss can also be used
to directly optimize Eq. 2 using task indices.

However, we observe that this framework fails to formally
characterize the change of I(Z;M) under context shift. In
particular, its modeling of the ICRL problem does not take
account of the distribution of the context-collection policy
µ. Expanding Eq. 2 under our formulation in Sec. 3.1 yields

I(Z;M)
= H(M)−H(M | Z)
= H(M) + EM,Z p(M | Z)
= H(M) + EM,µ EXM,µ

p(M | fϕ(XM,µ))

This derivation reveals that the mutual information objective
depends on the joint distribution p(M,µ), which may shift
between training and testing time. As a result, even if we
were able to optimize the true objective on the training
data, the testing MI is still not guaranteed to be large.
Furthermore, the posterior estimate p(M | fϕ(XM,µ)) is
also dependent on p(M,µ) and may give incorrect estimates
about M in an out-of-distribution scenario, hurting the pol-
icy performance as shown in our experiments.

To address the discrepancy, CSRO (Gao et al., 2024) ob-
served that context shifts are introduced when the testing
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Figure 2. The graphical model of our proposed formulation. The
dotted red arrow indicates the joint distribution of the task M
and the context collection policy µ, which may change between
training and testing, causing the context Xb,Xt to shift. However,
after conditioning on Xb (blue node), the effect of µ is blocked
(solid red arrow), so we can safely infer M (green node) via Xt.

contexts are collected by a different policy from the train-
ing one, echoing our formulation. Subsequently, CSRO
proposed to maximize the true correlation I(Z;M) while
minimizing the spurious correlation I(Z;Xb) to decor-
relate Z with the behavior of the context collection policy
contained in the state-action pair Xb. However, as UNI-
CORN noted, this mixed objective poses a trade-off because
the two components are sometimes contradictory. For ex-
ample, consider a bandit-like environment where every task
corresponds to a specific action and training contexts always
take that action. In this case, the mutual information be-
tween the task M and the behavior Xb is already high, and
it’s not possible to find a suitable Z with high I(Z;M) yet
low I(Z;Xb). More formally, we have
Theorem 3.1. For arbitrary task representation Z,

I(Z;M)− I(Z;Xb) ≤ H(M)− I(M;Xb) (3)

See App. A for the proof. Consequently, when the training
context collection policy is highly correlated with the task,
the competing objectives of CSRO cannot be achieved si-
multaneously, and a good encoder (in terms of the CSRO
objective) does not exist.

4. Method
4.1. Behavior-agnostic Task Inference

In the analysis of previous works, we note that all of them
fit a context encoder fϕ to estimate the posterior of the task
variable p(M | X) using different objectives and regulariz-
ers. We argue that this direct Bayesian inference approach
is inherently flawed, since

p(M | X) ∝
∫
µ

p(M,µ)p(X |M,µ)dµ (4)

which inevitably depends on the joint distribution p(M,µ).
This is illustrated in the graphical model of our formulation

(Fig. 2), where the inference of M is disrupted by the shift-
ing distribution of µ, which subsequently contaminates the
distributions of Xb and Xt.

To circumvent this failure mode, we make a further obser-
vation from the graphical model that we can remove the
influence of µ by blocking Xb. Once conditioned on Xb

and the variable to be inferred M, all paths going from µ to
Xt are blocked while µ and Xt become independent, so we
can correctly infer M using Xt. Taking advantage of this
observation, we propose behavior-agnostic task inference
(BATI), a maximum-likelihood-based solution to replace
the Bayesian posterior inference of p(M | X):

argmax
M

log p(Xt | Xb,M) (5)

This term, corresponding to the environment dynamics ofM
and irrelevant of µ, can now be safely estimated from offline
data and transferred to online inference without worrying
about the shifted distribution of µ.

We can give another interpretation to this solution by view-
ing it as a robust version of the full likelihood p(X |M):

p(X |M)
=

∫
µ
p(µ |M)p(X |M,µ)dµ

=
∫
µ
p(µ |M)p(Xb |M,µ)p(Xt | Xb,M, µ)dµ

= p(Xt | Xb,M)
∫
µ
p(µ |M)p(Xb |M,µ)dµ

≈ p(Xt | Xb,M)

The third equality stems from the properties of MDP, where
the reward and the next state depend only on the state-action
pair in any given MDP and are independent of the overall
policy. In this expansion, only the integral over µ is affected
by the distribution shift. To estimate it, we would need
information about the test-time joint distribution p(M,µ)
and the behaviors of every µ in every M , a tall order to
fulfill. We thus assume that the integral is approximately the
same over different tasks and ignore this term. Empirically,
we find this approximation to have satisfactory performance
with extensive experiments in Sec. 5.

Given our analysis above, as direct Bayesian inference is
problematic, why do existing methods still work to some
extent? Expanding Eq. 4 in a similar manner as above yields

p(M | X)
∝

∫
µ
p(M,µ)p(X |M,µ)dµ

=
∫
µ
p(M,µ)p(Xb |M,µ)p(Xt |M,µ,Xb)dµ

= p(Xt |M,Xb)
∫
µ
p(M,µ)p(Xb |M,µ)dµ

which also includes the robust term p(Xt |M,Xb). Further-
more, we observe that the evaluation environments of previ-
ous works have deterministic dynamics, which means that
p(Xt | M,Xb) is close to a delta function. Consequently,
the true correlation may nevertheless dominate the Bayesian

4
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Figure 3. Illustrations of Behavior-Agnostic Task Inference (BATI, left) and baselines (right). Baselines use the same encoder to encode
the context X into a task representation Z for both offline training and online testing, in effect performing Bayesian inference over the
training distribution. In contrast, BATI uses the task index during training and searches for an optimal task latent during online evaluation,
avoiding the influence of context shifts.

inference and overwhelm the shifted integral. However,
when the dynamics are noisy, as is common in real-world
scenarios, the discriminative power of p(Xt |M,Xb) might
be weakened, leading the fitted posterior to rely on the spu-
rious correlation p(Xb |M,µ) as a shortcut (Geirhos et al.,
2020). We demonstrate this sensitivity to noise with our
ablations in Sec. 5.4.

4.2. Offline Training Pipeline

We now describe the instantiation of BATI and our of-
fline training pipeline, as shown in Fig. 3. To estimate
p(Xt | Xb,M) without ground-truth task parameteriza-
tions, we build a table of task embedding distributions
{ZMϕ }M (Fig. 3, stacked purple rectangles) containing an
entry for each training task. We parameterize the Gaus-
sian distributions with ϕ, replacing the learned encoder fϕ
in previous works. Both the task embeddings and the dy-
namics estimator (orange rectangle) are supervised by the
following:

min
ϕ,ψ

EM∼ptrain(M),X∼DM ,Z∼ZM
ϕ
LX,Zrecon(ϕ, ψ) (6)

where

LX,Zrecon(ϕ, ψ) :=
(Xt − gψ(Xb, Z))2

exphψ(Xb, Z)
+ hψ(X

b, Z) (7)

is the dynamics reconstruction loss as the negative log-
likelihood of N

(
gψ(X

b, Z); exphψ(X
b, Z)

)
, ptrain(M) is

the training task distribution, DM is the offline training
dataset for task M , and gψ, hψ represent the dynamics esti-
mator.

To train the in-context policy πθ, we use IQL (Kostrikov
et al., 2022) as the offline RL algorithm. During training,

πθ and the value functions receive the same task embedding
as the dynamics estimator, and all modules are trained si-
multaneously. However, gradients from the policy and value
functions are detached from the task embeddings, which
are supervised exclusively with Lrecon. See Alg. 1 for the
pseudocode of the full training pipeline. Note that both the
dynamics estimator and the policy are trained with purely
offline data without any online interactions.

4.3. Online Evaluation Procedure

During the online evaluation, given contexts X collected
by an unknown policy for an unknown task sampled from
ptest(M,µ), we perform the proposed maximum-likelihood
optimization in Eq. 5. Specifically, we compute

argmin
Z∗
LX,Z

∗

recon (8)

with Z∗ sampled from {ZMϕ }M for a fixed number of times
N . The in-context policy πθ takes Z∗ as input and interacts
with the test task to evaluate its performance. See Alg. 2 for
the online evaluation procedure.

5. Experiments
We empirically validate BATI’s performance in several
MuJoCo-based environments commonly used for offline
ICRL. With the experiments in this section, we aim to an-
swer the following questions: 1) Can BATI achieve robust
performance in the presence of significant context shifts?
2) How does BATI’s inference procedure compare with a
learned encoder? 3) How does the noise level impact the
performance of BATI and baselines? 4) Can BATI outper-
form baselines in noiseless environments? 5) How does
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Figure 4. Online evaluation episodic return curves of BATI and baselines on contexts from ptest(M,µ) during training in our evaluation
environments. BATI consistently achieves the best performance in all environments and settings, converging faster and more stably.

BATI scale with more context data? 6) Can BATI handle
OOD contexts and tasks simultaneously?

5.1. Setup

We choose five representative robot locomotion environ-
ments based on the MuJoCo simulator (Todorov et al., 2012)
with varying properties and levels of difficulty. Among the
environments, AntDir, HalfCheetahVel, and HalfChee-
tahDir have different reward functions RM , while Hopper-
Param and WalkerParam have parameterized dynamics
PM . To simulate real-world scenarios more closely, which
are often non-deterministic and noisy, we perturb the dy-
namics of the environments with various noises of scale ϵ.
As noted in Sec. 4.1, dynamics noise weakens the true task
correlation and adds to the challenge of task inference. The
details of the environments are in App. C.1. We also con-
duct an ablative study in Sec. 5.4 demonstrating the effect
of noise on baselines, compared to BATI which remains
unscathed in all scenarios.

In each evaluation environment, we randomly sample 20
tasks as ptrain(M) and another 20 tasks as ptest(M) accord-
ing to its task parameterization, e.g. target directions in
AntDir or physics parameters in HopperParam (see App. C.1
for details). During the online evaluation, the true task in-
dices or parameters are not directly provided to the in-
context policy and must be inferred from the context. To
construct contexts with a large shift, we create a policy µM

as the primary context collection policy associated with each
task M and set

ptrain(M,µ) = ptrain(M) ·

{
0.9, µ = µM

0.1
|ptrain(M)|−1 , µ ̸= µM

(9)

ptest(M,µ) = ptest(M) · I [µ = µM̄ ] (10)

where M̄ is a task most different from M . This creates an
extremely challenging testing distribution, as the in-context
policy will be misguided by the context to execute behavior
that is good for an adversarial task but quite bad for the
true task. Unless otherwise stated, all evaluation results in
this section are on ptest(M,µ). See App. C.2 for details on
dataset construction.

We compare BATI with representative baselines from the
field of offline ICRL: a) UNICORN (Li et al., 2024), a re-
cent state-of-the-art method using an information-theoretic
objective, we use the UNICORN-SS variant reported to have
better performance; b) CSRO (Gao et al., 2024), a strong
baseline that promotes robustness by minimizing mutual
information between the task representation and the context
behavior; c) FOCAL (Li et al., 2021b), a classic method
that uses distance metric learning for self-supervised task
inference; d) Recon, a model-based method that uses the
same reconstruction loss as BATI but with a learned encoder
for inference. This is also called UNICORN-SS-0 or GEN-
TLE (Zhou et al., 2024) and serves as an ablative baseline to
isolate the effects of our task inference procedure. In AntDir
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Figure 5. Online evaluation episodic return curves during training for different noise levels on AntDir. With the noise level rising, baselines
increasingly rely on the behavior of the context collection policy µ to determine the true task, causing their OOD performance to become
flat (b) or even decrease throughout training (c). At the same time, BATI consistently improves during training and performs similarly to
or better than the baselines for all noise levels.

and HalfCheetahVel, we also compare with DPT (Lee et al.,
2024), a recent transformer-based method for ICRL. We
implement BATI and the baselines on the same codebase
with IQL (Kostrikov et al., 2022) as the base offline RL
algorithm. See App. C.3 for implementation details.

5.2. Can BATI achieve robust performance in the
presence of significant context shifts?

In this section, we report the online evaluation results on
ptest(M,µ) as described in the previous section. Each online
evaluation rollouts the in-context policy in all 20 testing envi-
ronments with their respective contexts (Alg. 2) and returns
the average episodic return. Fig. 4 shows the episodic return
curves during training, while Tab. 4 contains the numerical
results at convergence, computed as the average of the final
5 evaluations of each training run. Standard deviations are
reported over 5 training seeds. Across all environments,
BATI outperforms the baselines, usually by a large margin.
In AntDir and HalfCheetahDir, we observe that the evalua-
tion performances of several baselines decrease over time,
indicating the gradual learning of spurious correlation. As a
comparatively strong baseline, CSRO performs somewhat
similarly to BATI in AntDir and HalfCheetahVel but con-
verges more slowly and is less stable. It is dramatically
outperformed in the more difficult environments. The rea-
son for this underperformance and slow learning is that the
competing objectives of CSRO cannot be fulfilled simultane-
ously when the context collection policy is highly correlated
with the true task (see Sec. 3.2).

5.3. How does BATI’s inference procedure compare
with a learned encoder?

To demonstrate the effect of BATI’s maximum-likelihood
inference procedure, we compare BATI with the Recon
baseline (also known as GENTLE and UNICORN-SS-0)
which shares the same reconstruction objective Lrecon with
BATI. The key difference is that Recon encodes the full

trajectory X to produce Z, which is then used with Xb to
decode Xt. In contrast, BATI uses an embedding during
training and maximum-likelihood inference during testing
for Z. As shown in Tab. 4 and Fig. 4, Recon underperforms
BATI in every environment and can have very high vari-
ances in certain cases (e.g. HalfCheetahDir). In Fig. 4a, the
performance of Recon decreases over time, indicating the
capture of spurious correlations. This result reinforces our
argument in Sec. 3.2 that a learned encoder performs ap-
proximate Bayesian posterior inference and cannot handle
context shifts well.

5.4. How does the noise level impact the performance of
BATI and baselines?

We now show the effect of dynamics noise on BATI and
baselines in AntDir and HalfCheetahDir, two representa-
tive environments with continuous (AntDir) and discrete
(HalfCheetahDir) task parameterizations. We rerun the ex-
periments with lower or no dynamics noise. As shown in
Figures 5a to 5c above and Figures 7a to 7c in App. D,
increasing dynamics noise progressively destabilizes base-
lines, while BATI maintains robust performance. The
phenomenon of spurious correlation capture for baselines
is especially evident in AntDir. While most baselines
can achieve a decent performance in the noiseless setting
(Fig. 5a), they fail to learn with a medium level of noise
(Fig. 5b) and even grow steadily worse as learning pro-
gresses in the default high-noise setting (Fig. 5c). This find-
ing supports our analysis in Sec. 4.1 that noisy dynamics
weaken the true correlation, forcing the learned Bayesian
posterior to rely more on the spurious correlation of the
context collection policy as a shortcut.

5.5. Can BATI outperform baselines in noiseless
environments?

With a deeper understanding of the role of noise, we now fur-
ther show that baselines may fail even without any noise in
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Figure 6. t-SNE visualizations of inferred task latents of BATI (a) and Recon (b) in HalfCheetahVel. The dots denote the latents of all
tasks on ptrain, and colors indicate the target velocities. Black dots linked by blue arrows are those inferred from interpolated contexts of a
specific task. The corresponding online evaluation episodic returns are shown in (c). As the ratio of out-of-distribution ptest contexts rises,
the latents inferred by Recon drift off in the direction of the spurious task (from lower-right to upper-left of (b)), At the same time, BATI
consistently produces correct and in-support latent representations (lower-right of (a)), resulting in better performance.

Table 1. Online evaluation episodic returns of the final checkpoints
of BATI and baselines on HalfCheetahDir under various context
lengths. All policies are trained with C = 50 (*) and ϵ = 0.9.

C = 50 (*) C = 200 C = 400

BATI −4.7± 1.2 1.8± 0.5 4.7± 1.5
CSRO −23.8± 1.0 −24.7± 0.7 −25.3± 1.1

FOCAL −25.2± 0.2 −25.6± 0.3 −26.6± 0.2
Recon −11.4± 0.2 −12.2± 0.3 −12.0± 0.2

UNICORN −22.8± 2.3 −24.0± 1.9 −24.8± 2.4

hard scenarios. Fig. 4f shows the performances of BATI and
baselines in HopperParam with no dynamics noise. Com-
pared with the noisy results in Fig. 4c, baselines still under-
perform BATI with only modest gains for the UNICORN
baseline and little change for the others. As explained in
Sec. 4.1, baselines fail when the discriminative power of the
true correlation p(Xt |M,Xb) is weakened. The dynamics
of HopperParam are sufficiently complicated and nonlinear
that p(Xt |M,Xb) is already hard to estimate even under a
noiseless setting. Baselines thus opt to learn the shortcut of
p(Xb |M,µ) instead and fail when the context collection
policy changes.

5.6. How does BATI scale with more context data?

A crucial desideratum for ICRL is the ability to keep im-
proving with more context data. In this section, we demon-
strate this property for BATI in an extremely challenging
setting. We choose HalfCheetahDir, an environment with
two discrete task variants (going left or right), and conduct
an experiment with very high noise (ϵ = 0.9) and short train-
ing context length (C = 50). Under this setting, the reward
for each time step is computed in the true direction with
probability 0.55 and in the other direction with 0.45, so the
ICRL policy may only obtain an exceedingly weak signal of
the true direction with each time step. Coupled with a short

time horizon, this setting presents an enormous challenge
to ICRL algorithms. Tab. 1 contains the performances of
BATI and baselines trained in the setting described above
and tested with different context lengths. BATI outperforms
all baselines with the shortest context length C = 50 and
improves continuously when provided with longer contexts.
As the context grows, BATI can estimate log-likelihoods
with lower variance, leading to improved quality of the in-
ferred task latent and better policy performance. However,
the baselines do not exhibit such a pattern and fluctuate
around the initial performance, even getting slightly worse.

5.7. Can BATI handle OOD contexts and tasks
simultaneously?

In addition to generalizing to OOD contexts, we demon-
strate BATI’s OOD task generalization capability through
experiments in AntDir. OOD task generalization coupled
with context generalization is even more challenging, since
the policy is forced to adapt to an unfamiliar task that differs
dramatically from those seen during training and requires
very different behaviors to solve. We sample target direc-
tions from [0, π) during training while using directions from
[π, 2π) for testing. Results are presented in Tab. 2. While
the performance of BATI decreases compared with the in-
distribution case, it still outperforms baselines by a large
margin and is the only method to achieve positive returns.
This further demonstrates the generalization capability of
BATI to both OOD contexts and tasks.

5.8. t-SNE Visualization with Interpolated Contexts

In this section, we show t-SNE visualizations of task latents
inferred by BATI and Recon in HalfCheetahVel to demon-
strate the impact of context shifts more clearly. We construct
interpolated contexts of various ratios r consisting of N · r
steps from ptest and N · (1 − r) steps from ptrain. Visual-
izations and episodic returns are shown in Fig. 6. While
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Table 2. Final online evaluation episodic returns of BATI and baselines on ptest(M,µ) with OOD tasks in AntDir. BATI outperforms
baselines and is the only method to achieve positive returns, further demonstrating its generalization potential.

Method BATI CSRO FOCAL Recon UNICORN

Episodic Return 12.1± 0.5 −45.8± 14.5 −74.7± 6.1 −51.8± 37.0 −104.6± 9.1

both methods produce reasonable latent patterns on ptrain,
the latents inferred by Recon drift off when the ratio of ptest
rises (Fig. 6b), causing its performance to drop (Fig. 6c). In
contrast, the latents inferred by BATI consistently stay in
the correct region (Fig. 6a) and yield performant policies.

6. Conclusion
Intelligent agents in the real world must adapt to unseen
tasks and environments in noisy conditions based on their
experience. As in-context reinforcement learning emerges
to train context-adaptive policies, the context shift prob-
lem presents a great challenge to the task inference process
and generalization capabilities. In this paper, we introduce
Behavior-Agnostic Task Inference (BATI), a maximum-
likelihood-based approach for robust task inference in ICRL.
In contrast to the previous works, which predominantly use a
learned encoder to perform direct Bayesian inference, BATI
carefully analyzes the problem and infers task latents using
dynamics estimators only, thereby freeing itself from the
influence of context shifts. Extensive experiments in various
benchmark environments validate the performance of BATI
over strong baseline methods.

BATI still has certain limitations. We conducted experi-
ments in several state-based MuJoCo environments com-
monly used in the field of offline ICRL. Going forward, we
hope to scale BATI to vision-based embodied scenarios (Wu
et al., 2022; Wang et al., 2023; Chen et al., 2023; Zhong
et al., 2024) to enhance its applicability in the real world.
The counterfactual estimation of p(Xb | M,µ) may fur-
ther improve the performance of BATI. We may also scale
BATI to multi-agent scenarios (Wang et al., 2022; Pan et al.,
2022; Ci et al., 2023; Long et al., 2024) in the future, where
the tasks involve interactions with or are defined by other
agents.
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A. Proof of Theorem 3.1
To prove this inequality, we use the following simple lemma:

Lemma A.1. For arbitrary random variables X,Y,Z,

H(X | Y) +H(Y | Z) ≥ H(X | Z). (11)

Proof.
H(X | Y) +H(Y | Z)

≥ H(X | Y,Z) +H(Y | Z)
= H(X,Y | Z)
≥ H(X | Z)

Now, for the main proof:

Proof. Applying Lemma A.1 and rearranging, we have

H(Z | Xb)−H(Z |M) ≤ H(M | Xb)

Now,
I(Z;M)− I(Z;Xb)

= H(Z)−H(Z |M)− (H(Z)−H(Z | Xb))
= H(Z | Xb)−H(Z |M)
≤ H(M | Xb)
= H(M)− (H(M)−H(M | Xb))
= H(M)− I(M;Xb)

We can now see that the CSRO objective (at λ = 1) is upper bounded byH(M)−I(M;Xb). Consequently, when I(M;Xb)
is high, e.g. M can be determined fully from Xb, we have I(M;Xb) = H(M) and I(Z;M) ≤ I(Z;Xb). As a result, we
cannot find a Z that simultaneously captures M and is not correlated with Xb.

B. Pseudocode of the Offline Training and Online Testing Procedure

Algorithm 1 Offline Training Pipeline of BATI

Require: Training task distribution ptrain(M) and associated offline datasets {DM}
1: Randomly initialize θ, ϕ, ψ
2: while Maximum training step not reached do
3: Sample a batch of tasks {Mi} ∼ ptrain(M) and corresponding training contexts {XMi

} ∼ {DMi
}

4: Sample {ZMi
} ∼ {ZMi

ϕ } with reparameterization
5: Update ϕ, ψ with {XMi

} and {ZMi
} using the dynamics reconstruction loss Eq. 6

6: Update θ with {XMi} and (detached) {ZMi} using IQL losses
7: end while
8: Return final θ, ϕ, ψ

C. Experiment Details
C.1. Environments

We conduct our experiments in several commonly used environments in the field of offline ICRL. Based on MuJoCo (Todorov
et al., 2012), a popular physics simulator, the environments feature several robot locomotion tasks where the robots must
move to accomplish a certain task:
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Algorithm 2 Online Evaluation Procedure of BATI

Require: Testing task distribution ptest(M) and associated context datasets {CM}, evaluated parameters θ, ϕ, ψ, number of
latent samples per inference N

1: R← 0
2: for M ∈ ptest(M) do
3: Compute Z∗ with X ∼ CM using the dynamics reconstruction loss Eq. 8
4: Sample initial state s ∼ ρ0 of M
5: while Episode not done do
6: Sample action a ∼ πθ(s, Z∗)
7: Execute action a in task M and get the next state s, reward r, done flag d
8: R← R+ r
9: end while

10: end for
11: Return R/|ptest(M)|

• AntDir: A four-legged ant-like robot needs to go along the direction specified by the task. The task is a goal direction
uniformly sampled from [0, 2π), and the reward is the inner product between the position delta and the goal direction.
At every time step t, we set the goal direction Mt to the sum of the true task M∗ and a Gaussian noise of mean 0 and
standard deviation ϵ, such that the reward function is stochastic with respect to the true task.

• HalfCheetahVel: A bipedal cheetah-like robot needs to run with the velocity specified by the task. The task is a target
velocity uniformly sampled from [0, 2], and the reward is the negative absolute difference between the current and the
goal velocity minus a control cost. We add a similar Gaussian noise of mean 0 and standard deviation ϵ to the target
velocity at every time step.

• HalfCheetahDir: A bipedal cheetah-like robot needs to run along the direction specified by the task. The task is a
target direction uniformly sampled from {left, right}, and the reward is the velocity in the target direction minus a
control cost. We use the true target direction to compute the reward with probability 1− ϵ, and a uniformly random
direction with probability ϵ.

• HopperParam, WalkerParam: A single-leg hopper or a bipedal walker needs to move forward. In these two
environments, tasks differ by the transition (physics) PM of the MDP, instead of the reward function RM in the
environments above. The task is a log friction coefficient uniformly sampled from [−3, 3], and the reward is the velocity
in the forward direction minus a control cost. Furthermore, the friction coefficients are also used to perform an affine
projection to the action to ensure that different tasks have different optimal behaviors. We add a Gaussian noise of
mean 0 and standard deviation ϵ to the log friction coefficient at every time step.

C.2. Datasets Construction

To construct the datasets used for training and testing, we train an expert policy µM using SAC (Haarnoja et al., 2018) for
each training task M . For the environments differing in rewards, we use ϵ = 0 when training the context-collection policies.
For the testing task M , we use the expert policy for the most similar training task as its primary context collection policy
µM , and that for the most different training task as the testing context collection policy µM̄ . Furthermore, to ensure that
ptest remains supported by the training data ptrain, we mix 90% data from µM̄ with 10% data from µM to construct ptest for
HopperParam and WalkerParam. Distance between tasks is defined as follows for each environment:

• AntDir: The absolute difference of the goal direction, measured in radians modulo 2π: min(max(M1,M2) −
min(M1,M2),min(M1,M2) + 2π −max(M1,M2)).

• HalfCheetahVel: The absolute difference in target velocities.

• HalfCheetahDir: The target direction is the same (0) or different (1).

• HopperParam, WalkerParam: The absolute difference in log friction coefficients.
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Table 3. Hyperparameters used in each of our evaluation environments.

Parameter Name Environments

AntDir HalfCheetahVel HalfCheetahDir HopperParam WalkerParam

Learning Rate 3 ∗ 10−4 3 ∗ 10−4 3 ∗ 10−4 3 ∗ 10−4 3 ∗ 10−4

Batch Size 4096 4096 4096 4096 4096
Task Contrastive Batch Size 16 16 16 16 16

IQL τ 0.8 0.8 0.8 0.8 0.8
IQL β 0.05 0.05 0.05 0.05 0.05

IQL Exp. Adv. Clip 100 100 100 100 100
# Gradient Steps 105 105 105 105 105

Episode Length 200 200 200 200 200
Dataset Size 105 2 ∗ 105 2 ∗ 105 3 ∗ 105 3 ∗ 105

Task Latent Dim 5 5 5 40 40
BATI # Latent Samples N 40 40 40 40 40

UNICORN Weight 0.15 0.15 0.15 1.5 1.5
CSRO CLUB Weight 5.0 1.0 1.0 2.5 2.5

CLUB Encoder Hidden Dims [200] * 3 [200] * 3 [200] * 3 [200] * 3 [200] * 3
Encoder Hidden Dims [64, 64] [64, 64] [64, 64] [128, 128] [128, 128]
Decoder Hidden Dims [64, 64] [64, 64] [64, 64] [128, 128] [128, 128]

RL Hidden Dims [256, 256] [256, 256] [256, 256] [256, 256] [256, 256]

Table 4. Final online evaluation episodic returns of BATI and baselines on ptest(M,µ). BATI achieves superior performance in all of the
benchmark environments, dramatically outperforming baselines. IQL provides additional optimizations on the basis of oracle data and
may lead to methods with even better performance.

AntDir HalfCheetahVel HalfCheetahDir HopperParam WalkerParam

Oracle (Pre-IQL) 58.7 −139.3 291.2 290.2 549.2
BATI 46.4± 2.9 −122.8± 1.6 286.1± 13.8 285.9± 5.5 565.2± 7.9
CSRO 28.9± 3.0 −134.8± 8.9 −340.0± 17.2 144.4± 21.3 279.5± 34.0

FOCAL −46.5± 2.2 −279.4± 9.4 −336.4± 8.5 162.6± 44.5 317.0± 37.0
Recon −18.3± 13.7 −201.8± 7.4 127.1± 258.5 157.8± 16.7 292.6± 38.4

UNICORN −32.0± 4.2 −267.3± 20.5 −362.9± 6.8 144.7± 21.4 319.0± 11.5

C.3. Implementation Details

Building on the codebase of the official implementation of UNICORN (Li et al., 2024), we implement BATI and all our
baselines. All methods share the same offline RL algorithm and relevant architectures. The networks are implemented as
MLPs with ReLU activations, with hidden dimensions specified in Tab. 3. The CLUB model used in the CSRO baseline is
ported from the official implementation of CSRO (Gao et al., 2024). We found BRAC (Wu et al., 2019), the base offline
RL algorithm used in several prior works, to behave unstably in some cases, and switched to IQL (Kostrikov et al., 2022)
instead for all methods, which yields consistent and satisfactory performance. See Tab. 3 for hyperparameters of the main
experiments. Note that some hyperparameters apply only to the methods that require them, e.g. Task Contrastive Batch
Size applies only to baselines with FOCAL-like losses (Li et al., 2021b), and Encoder Hidden Dims apply only to baselines
and not BATI (which does not have an encoder network). The task latent embedding distributions of BATI {ZMϕ }M are
parameterized as Gaussian distributions with learnable mean and fixed log variance of −4. An optional KL divergence
between the latent distributions and N (0, I) can be used to regularize the task latent distributions. We empirically find the
unregularized version to have good performance and do not use this regularization for all methods, echoing UNICORN.
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Figure 7. Online evaluation episodic return curves during training for different noise levels on HalfCheetahDir. The performance of
baselines mostly decreases relative to BATI as the noise level increases.
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(b) HalfCheetahVel
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(d) HalfCheetahDir
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Figure 8. Online evaluation episodic return curves of BATI and baselines on contexts from ptrain(M,µ) during training in our evaluation
environments.

D. Additional Figures and Experiments
D.1. Additional Figures and Tables Referred by the Main Text

Due to space constraints, we moved some figures and tables used in the main text here. Tab. 4 contains the final online
evaluation episodic returns of the main experiment, while Fig. 7 contains noise level ablations in HalfCheetahDir.

D.2. In-distribution Performances

We show the online evaluation episodic return curves on ptrain here. In Fig. 8, most methods can achieve a similar performance
when evaluated on the training ptrain contexts, echoing our argument that learned encoders can be trained to perform in-
distribution Bayesian inference. The performance of CSRO is somewhat unstable, potentially due to the conflicts among its
objectives. Similar phenomena can be observed in the in-distribution performances of the noise level ablations in AntDir
(Fig. 9 and HalfCheetahDir (Fig. 10).
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Figure 9. Online evaluation episodic return curves on ptrain(M,µ) during training for different noise levels on AntDir.
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Figure 10. Online evaluation episodic return curves on contexts from ptrain(M,µ) during training for different noise levels on HalfChee-
tahDir. All methods perform similarly while CSRO and Recon are somewhat unstable.

D.3. Adaptation to Different Numbers of Training Tasks

We demonstrate the robustness of BATI with respect to the task embedding table size (corresponding to the number of
training tasks). We split the 40 evaluation tasks in AntDir into different training and testing splits and reran the experiments.
As shown in Tab. 5, across all splits, BATI achieves the best performance uniformly and is highly stable.

D.4. Adaptation to Multi-agent Scenarios

We conduct preliminary experiments to showcase the general applicability of BATI to multi-agent domains. We choose Kuhn
Poker, a two-player card game with discrete state and action spaces, differing from the continuous MuJoCo environments
used in our paper. We generate different player-2 (opponent) policies as "tasks" and learn an adaptive policy for player-1
over 10 episodes (20 steps) of contexts. As shown in Tab. 6, BATI maintains superior performance over all baselines, further
showcasing its capabilities and generalization.

Table 5. Final online evaluation episodic returns of BATI and baselines on ptest(M,µ) with different train/test splits in AntDir. BATI
outperforms baselines and has consistently good performance across different numbers of training tasks.

Train/Test Split BATI CSRO FOCAL Recon UNICORN

10/30 45.0± 6.0 4.7± 4.2 −33.2± 3.4 −6.7± 2.8 −22.2± 2.5
20/20 (Main) 46.4± 2.9 28.9± 3.0 −46.5± 2.2 −18.3± 13.7 −32.0± 4.2

30/10 49.9± 4.6 46.2± 4.8 −33.9± 1.4 −4.3± 5.0 −9.4± 7.6

Table 6. Final online evaluation episodic returns of BATI and baselines on ptest(M,µ) in KuhnPoker.

Method Oracle BATI CSRO FOCAL Recon UNICORN

Episodic Return 0.0734 −0.049± 0.025 −0.180± 0.032 −0.191± 0.020 −0.185± 0.052 −0.243± 0.042
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