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Abstract

We present a Hierarchical Transformer Net-
work for modeling long-term dependencies
across clinical notes for the purpose of patient-
level prediction. The network is equipped with
three levels of Transformer-based encoders to
learn progressively from words to sentences,
sentences to notes, and finally notes to pa-
tients. The first level from word to sentence
directly applies a pre-trained BERT model as
a fully trainable component. While the sec-
ond and third levels both implement a stack
of transformer-based encoders, before the final
patient representation is fed into a classifica-
tion layer for clinical predictions. Compared
to conventional BERT models, our model in-
creases the maximum input length from 512 to-
kens to much longer sequences that are appro-
priate for modeling large numbers of clinical
notes. We empirically examine different hyper-
parameters to identify an optimal trade-off
given computational resource limits. Our ex-
periment results on the MIMIC-III dataset for
different prediction tasks demonstrate that the
proposed Hierarchical Transformer Network
outperforms previous state-of-the-art models,
including but not limited to BIGBIRD.

1 Introduction

Transformers have gained popularity and have
achieved superior performance in many natural
language processing (NLP) tasks. The scheme of
Transformers entirely dispenses with convolution
and recurrence, solely relying on multi-headed self-
attention mechanisms and position-wise feed for-
ward networks (Vaswani et al., 2017). Inspired by
Transformers, the BERT model (Devlin et al., 2019)
and its variants (Lan et al., 2019; Liu et al., 2019;
Sanh et al., 2019; Joshi et al., 2020; Zaheer et al.,
2020) have been solidly established as the state-of-
the-art methods in numerous NLP studies. BERT-
based models impose an input length constraint,
which limits their applicability of processing mul-
tiple, longitudinal documents. To handle this chal-

lenge, previous efforts have proposed to split long
documents (or, by extension, a sequence of docu-
ments) into small chunks and then aggregate their
respective representations (Adhikari et al., 2019;
Pappagari et al., 2019). However, these approaches
do not consider the temporal interrelations between
longitudinal sequences of (potentially many) docu-
ments, and also disregard the knowledge of hierar-
chical structure within the document (Yang et al.,
2020). For humans, it is important to understand
hierarchical and longitudinal document structure
when reading a series of long documents, such as
chapters in a full-length novel, legal documents,
and clinical notes in patient trajectories. Similarly,
to process longitudinal documents, a model should
incorporate this information into its architecture.

Motivated by Hierarchical Attention Networks
(Yang et al., 2016), we propose Hierarchical Trans-
former Networks to capture the structure inher-
ent in longitudinal sequences of documents. Our
model constructs three levels—from words to sen-
tences, then sentences to documents, and finally
documents to the prediction label—Ieveraging both
temporal and structural interrelations. We utilize
a BERT model directly at the word level, experi-
menting with different sized BERT models to eval-
uate the relative trade-off between model size and
sequence length. At the sentence and document
levels, we employ a Transformer-based encoder
architecture first proposed in Vaswani et al. (2017).
Also, we implement a time-aware adaptive segmen-
tation at the document level to capture the real tem-
poral relationship of notes across long time periods,
while aggregating notes in short time periods.

We conduct experiments using clinical notes
from MIMIC-III (Johnson et al., 2016). Due to
the difficulty of training Transformers successfully
(Popel and Bojar, 2018), we extensively experiment
with numerous hyper-parameter settings to achieve
a robust training system. We also integrate dis-
tributed training to resolve memory constraints and



to incorporate longer input texts. We compare our
proposed model with the state-of-the-art models for
two clinical outcome predictions: in-hospital mor-
tality and phenotype prediction. Our experimen-
tal evaluation shows that Hierarchical Transformer
Networks consistently outperform other alterna-
tives with an overall improvement of up to 21% in
AUC, 51% in PRC and 46% in F1 score. Through
extensive ablation studies, we show that the com-
ponents of the Hierarchical Transformer Networks
successfully process temporal and hierarchical in-
formation of clinical notes and effectively enhance
clinical predictions.

We note that while the notion of a hierarchical
network for Transformers might not be conceptu-
ally novel, the fact that it has not yet been proposed
for processing long-sequence clinical notes demon-
strates that there are serious challenges to such a
method. The difficulties largely exist, for example,
optimization failure without appropriate learning
rates, convergence difficulty without valid initial-
izations, overfitting easily on training sets without
proper dropout. Our main contribution is to make
the model applicable and feasible to train for long
and multiple text classification, as we are not sim-
ply classifying an individual document, but rather
large collections of documents longitudinally over
time (i.e., one classification for all of a patient’s
notes). To the best of our knowledge, this is the ear-
liest attempt to build the Hierarchical Transformer
Network for modeling long and multiple clinical
text classifications.

2 Related Work

2.1 Hierarchical Deep Learning Architecture
To handle long documents, previous works have ap-
plied hierarchical deep learning models that stack
neural networks to draw inference at each level of
the hierarchy (Zhou et al., 2016; Gao et al., 2018).
Yang et al. (2016) first proposed the hierarchical at-
tention network based on GRUs for document clas-
sification. Kowsari et al. (2017) later applied mul-
tiple deep learning architectures, including fully-
connected DNN, GRU, LSTM, and CNN into a
hierarchical model. More recent work, HIBERT
(Zhang et al., 2019), presented a hierarchical ar-
chitecture to pre-train document-level Transformer
encoders with unlabeled data for extractive docu-
ment summarization. These hierarchical models
progressively learn a representation for long-term
dependencies, which could in theory enable them
to explicitly deal with longitudinal sequences of

documents.

2.2 Transformer Models in Clinical Domain

With the wide implementation of Transformer-
based models in NLP, these have also been adapted
to clinical tasks. One category of such tasks is
clinical predictive modeling (Si et al., 2021). In a
similar paradigm of sequence modeling with Re-
current Neural Networks, Transformers attempt to
model the entire patient trajectory by encoding clin-
ical events at each time stamp(Choi et al., 2020).
One of the earliest efforts intended to develop a
multi-headed attention-based model for processing
multivariate clinical time series data (Song et al.,
2018). Recently, BEHRT (Li et al., 2020) was
built based on BERT for analyzing large-scale, se-
quential clinical data. Another notable domain
where Transformers continue to push the frontier
is clinical NLP. Many studies pre-trained BERT
models with biomedical literature (Lee et al., 2020;
Beltagy et al., 2019) or clinical notes (Alsentzer
et al., 2019; Peng et al., 2019; Si et al., 2019) to
develop the domain-specific language model, and
these studies showed that such models generally
outperform off-the-shelf models in varied clinical
NLP tasks. However, for clinical text classifica-
tion (e.g., automatic ICD coding, clinical outcome
predictions) which generally requires a series of
clinical notes as input, BERT does not always per-
form well, probably due to its restriction on com-
putational resources and its fixed-length restriction
(Li and Yu, 2020; Makarenkov and Rokach, 2020;
Si and Roberts, 2020). In keeping more closely
with the spirit of Transformers, our work is also
built on top of Transformers with an emphasized
focus on effective representation of long document
sequences.

2.3 Clinical Text Classification

Unstructured notes contain important details about
patient status that do not exist in the structured
data of Electronic Health Records (EHR). Previous
studies have developed advanced neural networks
to classify clinical notes with word embeddings
(Liu et al., 2018). Despite the success, context-free
word embeddings fail to encode the information
of a given surrounding context (Si et al., 2019).
More advanced pre-trained language models show
their capability to provide context-sensitive repre-
sentations for clinical words (Feng et al., 2020). In
this work, we integrate one of the prominent lan-
guage models, BERT, as the word-level encoder of



our architecture to better represent clinical words.
A closer comparison to our work is FTL-Trans,
which implements BERT at the word level and Bi-
LSTMs at the note level (Zhang et al., 2020). To
this end, we propose a Hierarchical Transformer
Network architecture to encode sequences of clin-
ical notes. This goes beyond FTL-Trans by both
(1) modeling an additional level (more than one
document) and (2) utilizing a full stack of Trans-
formers in the model. We hypothesize this model
can learn the contextual complexity of documents,
and also leverage structural and temporal informa-
tion at each level of the hierarchy.

3 Model Architecture

The proposed model architecture is illustrated in
Figure 1. The model progressively constructs the
representation from the word level towards the final
classification level. The model at each level auto-
matically captures the important parts with multi-
headed self attention and accumulates the entire
sequence with pooling into the input representation
of the next level. The input length is cropped or
padded to a fixed size at the word, sentence, and
document levels. The final representation from the
document level is fed to a fully-connected dense
layer with a Sigmoid function to output the predic-
tion probability. In the following subsections, we
will introduce each model component in detail.

3.1 Word-level BERT encoders

As shown in Figure 1, at the word level, a BERT
model is employed and the word-pieced tokens in a
sentence are fed into the model. We implement the
encoder part of the BERT model to represent the
words in a sentence, and all parameters in the mod-
ule are trainable. Words are preprocessed to obtain
the word-pieced tokens through the preprocessing
module and with the same token vocabulary list
used in BERT (Devlin et al., 2019). Similar to the
BERT word-level module, we keep the two special
tokens [CLS] and [SEP] at the start and end of
the sentence respectively. The first token of each
sentence is [CLS] and its corresponding hidden
state is always considered as the aggregation to rep-
resent the entire sentence. [SEP] is located at the
end of the sentence and it is important in differenti-
ating sentences. We omit the segment embeddings
and keep the positional encoding. Therefore, for a
given token ¢, the input embedding F; is built by
concatenating the word-pieced token embedding
Tok;, and the positional encoding vector P;.
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Figure 1: Model Architecture

3.2 Sentence- and Document-level
Transformer-based Encoders
We stack Transformer-based encoders to build the
representation of each sentence and each docu-
ment, respectively. We briefly introduce the Trans-
former architecture, and for more details, we rec-
ommend the work by Vaswani et al. (2017). The
Transformer-based encoder is constructed by N
layers, and each layer is a residual connection of
multi-headed self-attention and a fully-connected
feed forward network. Each self-attention takes
three inputs — Q(query), K (key), V (value) — to pro-
cess through the scaled dot-product attention. The
outputs from the scaled dot-product attention are
concatenated and put through a linear dense layer.
As opposed to a single self-attention head, @), K,
and V are partitioned into multiple heads to en-
able the model to attend to information at different
positions from different representation subviews.
For both sentence- and document-level, posi-
tional encoding vectors are concatenated with the
input states. The input state of each sentence is
obtained from the first [CLS] hidden state of the
respective sentence, which is termed as the CLS-
pooling strategy. Instead, from sentence to docu-
ment, and from document to label, we experiment
with different pooling strategies for aggregating the
representations from previous levels. This enables



providing high levels of the model with more ac-
cess to the lower-level representations instead of
simply using what is accumulated in the [CLS]

token. The other pooling strategies we consider
consist of mean, max, and mean_max poolings.
Take the mean_max pooling as an example. The
average and maximum of hidden states on the se-
quence length axis are first obtained separately, and
then concatenated to get the pooled output of the
whole sequence. Following this practice, at the
sentence level, the complete sequence of sentences
in a given document is pooled to generate the input
embeddings of the document. At the document
level, the entire series of documents for a given
patient is pooled to produce the corresponding pa-
tient representation. For the final label, we simply
apply a dense layer with a Sigmoid function to
output the classification probabilities. The model
is also generalizable to be easily adapted to other
machine learning NLP tasks such as pre-training,
clustering, and matching, equipped with different
loss functions.

3.3 Time-aware Adaptive Segmentation and
Filling at Document Level

Timestamps associated with clinical notes do not
always reflect the temporal reality of clinical prac-
tice. Notes often come in bursts and short real-
time periods do not inherently have real tempo-
ral sequence between each other. On the other
hand, notes outside a long time span contain mean-
ingful sequential information that can be encoded
by the neural network. In order to differentiate
short-period co-occurrences with long-range de-
pendencies, we dynamically merge clinical notes
into groups to capture the real temporal informa-
tion between notes. Meanwhile, such approaches
reduce the input sequence length (i.e., number of
documents) that are fed into the neural network,
which enables the model to learn long-term depen-
dencies more effectively.

For each patient, we first sort the notes in a
chronological order, and then apply a greedy al-
gorithm to find the segmentation points. The algo-
rithm minimizes the maximum time span of con-
tiguous groups.

Formally, given 1" documents in a sequence
{dt}thl, we have k-1 segmentation points {Si}i-:ll
to split the sequence into & groups {G }?:1, where

{d; | d;.time < s1}, if j=1
{dt | dt.timeZSk_l}, lfJ:k
{d; | d;.time € [s;_1,s;)}, otherwise.

Gj =

where d;. time is the charttime of document d;.
The span of a group is defined as the time difference
of the earliest and the latest document in the group:

span {G;} = dr,flgé(j {dp. time}_dfflei%j {dys. time}

The optimal choice of the segmentation points
can be found by minimizing the following:

81,...8,—1 = argmin{k}
S1,..-Sk—1

bject t Gt <D
subject to llgjagk{span( i)} <

where D constrains the upper bounding of the span.
Intuitively, for a given maximum time span, notes
within the span are considered as one “document”.
The notes outside the span are segmented into dif-
ferent units. In this way, we attempt to preserve the
temporal relationship of notes across long terms
while combining the notes that come in bursts.

4 Data and Tasks

4.1 Dataset Description

Our experiments are performed with the MIMIC-
IIT (Medical Information Mart for Intensive Care
IIT) (Johnson et al., 2016), which is a de-identified
clinical database composed of 46,520 patients
with 58,976 admissions in the intensive care units
(ICUs). MIMIC-III has been widely studied in clin-
ical NLP tasks as it contains extensive resources
of unstructured clinical notes (i.e., 2 million notes
in the NoteEvent s table). We describe note pre-
processing in detail in Appendix A.1.

4.2 Prediction Tasks

We evaluate our proposed model to predict in-
hospital mortality and phenotypes. These tasks
are standard clinical outcomes of interest that are
important to support clinical decisions. Note that
our model is not specifically constrained to these
tasks and can be extensively applied to other clini-
cal applications. Descriptive statistics about patient
cohorts are shown in Table 1.

In-hospital Mortality Prediction

MIMIC-III indicates the time of death for pa-
tients who die in the hospital, enabling us to
form the cohorts for in-hospital mortality. We use
hospital_expire_flag (in Admissions
table) to label positive cases. In addition, to avoid
confusion with multiple admissions of the same pa-
tient, we include patients with only one admission.



Table 1: Descriptive Statistics of Datasets.

In-hospital ~ Phenotype
Mortality ~ Prediction
# Total Patients 30,881 30,990
(% Positives) (13.80%) (Table A.5)
# Notes Mear_l 18.1 16.9
Per Patient Medlap 12 11
80 %tile 24 22
# Sentences Mear} 29.8 374
Per Note Medlap 18 21
80 %tile 42 50
. Mean 19.2 18.9
e w11
80 %tile 22 22
# Total Sentences 16,662,894 19,656,126
Raw 906,717 866,735
#TolNotes  p\jantive 559042 525222

* %tile: percentile.

We exclude discharge summaries in mortality pre-
diction because discharge summaries mention the
mortality outcome textually. For the same reason,
we also remove all notes with charttime later than
the time of death and discharge time.

Phenotype Prediction

The purpose of phenotype prediction is to classify
patients into a variety of diagnoses. Specifically,
we select the top ten relatively high-prevalence phe-
notypes, each of which is associated with more than
2000 patients. We consider the diagnostic ICD-9
codes to be the prediction label (a widely-used,
though incomplete, surrogate for the phenotype).
The phenotype disease name, ICD-9 code, disease
type, and the number/percentage of patients for
each phenotype in MIMIC-III are reported in Ta-
ble A.5. For this task, we include all the notes up
to and including the discharge date, because ICD
codes are assigned after discharge.

5 Experiments

Here, we describe the compromises made in order
to feasibly train such a large model on GPUs, as
well as the baselines and evaluation metrics used
in the experiments. Notably, Hierarchical Trans-
former Networks require smaller BERT models
than what are normally used, even when utilizing
multiple GPU architectures. To achieve a fast and
effective optimization, we implement an exponen-
tial decay with linear warmup for learning rate
decay.

5.1 Distributed Training

The sequence lengths required by our model are
significantly longer (many thousands of words)
than the standard GPU training can handle without
significant compromises (i.e., the standard BERT
model has a maximum input length of 512 word

pieces). To resolve resource limits and augment
text lengths, we implement the mirrored distribu-
tion strategy to distribute the training across mul-
tiple GPUs. We introduce the strategy with more
details in Appendix A.2. Specifically, we train our
proposed model on 4 NVIDIA Tesla V100 GPUs
(32G), which means the batch size is quadrupled.
Each training step takes approximately the same
time between using 1 GPU verses using N+ GPUs,
so the overall time is decreased four-fold if the
training takes the same steps.

5.2 Compared Baselines

We compare the proposed model with the following
alternative models:

BIGBIRD: Zaheer et al. (2020) extend the BERT
model to longer sequences with sparse attention
mechanisms, which is assumed as the current state-
of-the-art method for long-sequence text classifica-
tion. We implement BIGBIRD for each document
at the word-level, and apply a fully-connected layer
for the output probability (shown in Appendix A.3).
The BIGBIRD utilizes a flattened representation of
texts, directly from word to label.

HAN: The Hierarchical Attention Network
(HAN) model is widely used for document classifi-
cation. We follow Si and Roberts (2020) to build
the architecture into a triplet structure that encodes
notes over a long time (shown in Appendix A.3).
The model learns the representations at each level
with Bi-LSTMs and global context-based attention.

BERTLSTM: We also develop a variation of the
proposed model, termed BERTLSTM, where the
Transformers at the sentence and document levels
are replaced with Bi-LSTMs. The architecture and
model summary is shown in Appendix A.3. This
allows us to measure the absolute performance im-
provement provided by the top-to-bottom Trans-
former architecture by replacing the top two Trans-
former levels with Bi-LSTMs layers. This model
is also FTL-Trans (Zhang et al., 2020) extended to
multiple documents.

To ensure a fair comparison, we enable the hi-
erarchical models (i.e., HAN,BERTLSTM, and the
proposed model) contain the same number of pa-
rameters (around 5.6-million), while the BIGBIRD
remains the same as in the released version (be-
cause the model is fixed). We carefully select the
hyper-parameters to meet this comparison require-
ment. The detailed descriptions of the model hyper-
parameters are described in Appendix A.3.



5.3 Evaluation Metrics

For method comparisons, we use the Area Under
the Receiver Operating Characteristic curve (AUC),
the Area Under Precision-Recall curve (PRC), Pre-
cision, Recall, and F1-score to report the predictive
performance. The use of PRC in addition to AUC
attempts to mitigate variance due to imbalanced
class distributions, as the Precision-Recall curve is
particularly tailored for identifying less-frequent
cases. Each cohort is split into train, validation,
and test, with a ratio of 8:1:1. We train the model
on the train set, apply early stopping on the val-
idation set to prevent overfitting, and report the
metrics on the test set. More specifically, we calcu-
late the loss on the validation set at the end of each
epoch (a complete pass over the training data), and
early stopping is triggered when the loss has been
increasing for three subsequent epochs.

6 Performance Comparisons

Table 2 reports the performance comparisons of
in-hospital mortality and phenotypes. We observe
that our proposed model, Hierarchical Transformer
Networks, outperforms other baselines for all tasks
in AUC, PRC and F1-score. The performances of
the flattened model, BIGBIRD, are considerably
worse than the other three hierarchical models in
all tasks. This is reasonable considering the large
number of notes in MIMIC-III, as the abundance
of data causes the contribution from hierarchical
levels to become essential.

The performances of HAN and BERTLSTM are
approximately the same. The advantages of Hier-
archical Transformer Networks over BERTLSTM
are significant in phenotype predictions with im-
provements of 0.0258 in AUC, 0.0541 in PRC, and
0.0542 in F1-score. And Hierarchical Transformer
Networks have relatively small improvements of
0.0251 in AUC, 0.0416 in PRC, and 0.0429 in
F1-score, compared to HAN. This demonstrates
that the Transformers applied at hierarchical lev-
els make a steady contribution to the performance
improvement. More importantly, the direct usage
of BERT models at the word level has a decisive
impact on the predictive performance. Note that
we only adopt one layer of encoder in our proposed
model, which already yields the best performance
across alternatives. According to findings from
the Ablation Study Section 7, the model still has
room to improve by enlarging the model and in-
corporating more data. Thus, we believe the great
potential of the Hierarchical Transformer Networks

Table 2: Performance comparisons in in-hospital mor-
tality and phenotype predictions. Per-phenotype met-
rics are shown in Table A.6.

Macro-AVG of 10-phenotype prediction

AUC PRC  Precision Recall F1
BIGBIRD 0.7497 0.4647 0.6513  0.3515 0.4421
HAN 0.8845 0.6608 0.7037 0.5546 0.6033
BERTLSTM | 0.8838 0.6483  0.6712 0.5733 0.5919
Our Model | 0.9096 0.7024 0.7003  0.6342 0.6462

In-hospital mortality prediction

AUC PRC  Precision Recall F1
BIGBIRD 0.8769 0.8139 0.6924  0.7049 0.6986
HAN 0.9610 0.8992 0.7837  0.8356 0.8088
BERTLSTM | 0.9608 0.8946  0.8740  0.7283 0.7945
Our Model | 0.9677 0.9032 0.8810 0.7603 0.8162

“All models have the same input lengths. BERTLSTM and
Our Model use the same BERT;,, at word level.

would outperform strong state-of-the-art methods
in clinical outcome predictions.

We also note that Hierarchical Transformer Net-
works generate the highest PRCs in in-hospital
mortality and almost all phenotype predictions (Ta-
ble A.6 b). Considering the fact that PRC is a criti-
cal metric in clinical problems where properly clas-
sifying the positives is important, which is always
the case in clinical outcome predictions. Higher
PRC indicates that Hierarchical Transformer Net-
work is more likely to find all the positive cases
without accidentally marking negative cases as pos-
itive, and such performance is more preferred, es-
pecially in clinical phenotype predictions.

7 Ablation Study

Considerable factor of the Transformer’s success
relies on the right setting of hyper-parameters. We
examine some of the important parameters that
impact training performance, robustness, and ef-
ficiency to identify an optimal trade-off. This is
critically necessary for our model as the hierarchi-
cal transformers require carefully-selected compro-
mises to keep the model size manageable.

7.1 Input Text Lengths

The off-the-shelf BERT models are pre-trained
with an input sequence length of 128, which is
much longer than most sentences in clinical notes.
As shown in Table 1, the number of word pieces
per sentence has a mean value of around 19 (19.2
for the in-hospital mortality cohort, and 18.9 for the
phenotype cohort) and a median value of 12. Thus,
it might be a waste of resources to use 128 tokens
at the word level. However, cutting off too many



Table 3: Performance of hypertension with different in-
put lengths. We denote the first non-header row as the
base input, where the models contain 80" percentile
data length at the patient and document level, and 64
word pieces at the sentence level.

ii(cl::zzce length at each level Hypertension
Patient Document Sentence AUC PRC
22 801 50 s0™ 64 196.7™ 0.8722 0.8327
34 oo™ 0.8720 0.8337
16 (70" $0.8623 | 0.8183
85 (90" 0.8733 0.8299
37 1707 }0.8655 | 0.8209
128 (986" | 0.8744 0.8309
32 90™ }0.8546 | 0.8147
22 (80" $4.0.8347 |1 0.7997

“Unlisted values are identical to those of the base input.

tokens would also harm the pre-trained model ca-
pability. Thus, it would be interesting to evaluate
such a trade-off. We evaluate the performances of
hypertension phenotype prediction with varied in-
put sequence lengths at different levels. The results
are shown in Table 3.

We first examine the results of different sequence
lengths at the sentence level, or the number of to-
kens in a sentence, shown in the last row in Table 3.
Even though the sequence length with 128 tokens
has reached to 98.6™ percentile, the performance
does not sizably improve (i.e., from 64 to 128, the
AUC slightly increases by 0.0022). However, start-
ing from 32, the performances drop steadily. For
lengths of 32 and 22, they do not perform well
(with AUCs of 0.85 and 0.83) although they reach
the 90™ and 80" percentiles, respectively. Thus,
we assume that chopping off a large number of
tokens out of the original 128 token input, indeed
harms the pre-trained model capability.

The results with sequence lengths at the patient
and document levels (i.e., the number of notes and
sentences) are shown in the Patient and Document
columns. We experiment with 90", 80™, and 70t
percentile data. All three settings yield an approxi-
mately comparable performance with AUC scores
around 0.86 to 0.87. It is reasonable to have low
performance with 70t percentile data (0.86+), but
it makes a rather minor difference between 80"
and 90" percentiles (0.87+).

7.2 BERT Variations

We investigate different distilled BERT models at
the word level, including BERTiny, BERT 44,
BERT 5411, BERT 1edivm, BERT pgse (Turc et al.,
2019). The parameter sizes of the models are

Table 4: Performance of hypertension with distilled
BERT models. Each BERT model is evaluated with
three different settings: 1. The maximum length that
the memory can afford (Max Sequence Length); 2. As
BERT s incorporates only 6 documents, all the other
models are fed with the same 6 documents (Last Six
Notes); 3. Only discharge summary is fed into the
model (Discharge Summary).

Hypertension

Max Sequence Length | AUC PRC
BERT i,y D50_S75_W128 0.8750 0.8181
BERT ppin; D40_S60_W64 0.8706 0.8066
BERT 5411 D25_S50_W64 0.8863 0.8333
BERT pedivm | D12_S50_W64 0.8869 0.8365
BERT g5 D6_S50_Wo64 0.8788 0.8178

Last Six Notes
BERT 7y 0.8660 0.8115
BERT i 0.8776 0.8213
BERT smau1 D6_S50_W64 0.8645 0.8040
BERT pedium 0.8763 0.8231
BERTpgse 0.8788 0.8178

Discharge Summary
BERT 7y 0.8497 0.8030
BERT 1in; 0.8496 0.7978
BERT 011 D1_S50_W64 0.8627 0.8094
BERT medium 0.8503 0.8036
BERT pgse 0.8649 0.8161

“All other hyper-parameters are the same across all BERT
models. Only the BERT models applied at the word level and
the input sequence lengths are different.

shown in Appendix A.4 Table A.3. Given the
same memory limits, we feed into the maximum
sequence length for each distilled model, and we in-
vestigate if larger models would yield better perfor-
mance even with smaller input lengths. As shown
in the column Max Sequence Length of Table 4,
different models have varied max input lengths
(max_seq_len:D_S_W) that can be incorporated
into 4 GPU memories (128G) at maximum capac-
ity.

Notably, the max document Ilength for
BERT ,edium is only 12, but the performance of
BERT,,c4ivm achieves the best AUC (0.8869)
and PRC (0.8365) among all other combinations.
For BERT}4i,y, BERT 04, and BERT s,4y1, €ven
though these three models incorporate many more
documents than BERT ;c4ium, the performances
of them are still slightly worse than BERT ,;cq:um -
Interestingly, BERT;,s. performs worse than
BERT 5,411 and BERT p,eg50m -

Meanwhile, we investigate the impact of keep-
ing the document length fixed at the BERT 45, max
capacity of 6 documents. We run all other dis-



tilled models on the same 6 documents to evaluate
if larger models would outperform smaller mod-
els given the same amount of input data. As pre-
sented in the column Last Six Notes, we notice that
BERT ;. achieves the best AUC and BERT ,,cdium
achieves the best PRC.

Furthermore, we evaluate our model capacity
using only one document to predict the phenotype.
We only process the discharge summary to predict
whether the patient has hypertension. This would
be more challenging than using all the notes be-
cause we have a small portion of data. We want
to see if the proposed hierarchical architecture can
still be used with the same architecture and achieve
good performance. As reported in the Discharge
Summary column, the models continue to perform
reasonably well with AUC around 0.85. The best
AUC (0.8649) and PRC (0.8161) are achieved by
BERT e

However, compared to the performances that ex-
tensively use the majority of notes to make predic-
tions, the results using only one note are worse. For
all BERT models, the performances with the max
sequence length and the last six notes outperform
those only using discharge summary. Thus, we
show the necessity of incorporating as many docu-
ments as possible. This is more important when the
phenotype is hard to get a satisfactory performance.
Adopting all possible notes into the model would
yield sufficient room for improvement.

Given the results of the above experiments, along
with the general mantra “more data and larger mod-
els”, we conclude that sufficient data is more cru-
cial and would further improve the performance
even if the model size may not be the largest. We
therefore provide an applicable recommendation
for those cases with less GPU memory: we should
first make sure to incorporate sufficient data, then
choose the larger model.

7.3 Transformer Encoder Variations

We first evaluate the performance with different
numbers of encoder layers (L = 1,2,4,6,8) in
the sentence- and document-level transformers. Ta-
ble 5(A) shows that the model with 2 encoder layers
achieves the best AUC (0.8722) and PRC (0.8327).
Notably, models with fewer layers (L=1, 2) gen-
erally perform better than those with more layers
(L=4,6). Although this is opposed to the general
mantra that larger models yield better performance,
we assume it is because extreme model sizes might
lead to an improvement bottleneck if the model is

Table 5: Performance of hypertension predictions:
(A) numbers of encoder layers, (B) pooling, (C) posi-
tional encoding, and (D) adaptive segmentation.

Hypertension

L AUC PRC

1 0.8674 0.8218

(A) 2 0.8722 0.8327

4 0.8645 0.8199

6 0.8672 0.8213

8 0.8684 0.8285
pooling

first 0.8683 0.8214

(B) mean 0.8702 0.8295

max 0.8675 0.8222

mean_max 0.8722 0.8327

©) w/o 0.8700 0.8294

positional encoding | 0.8722 0.8327

D) w/o 0.8558 0.7887

adaptive segment 0.8722 0.8327

“Unless specified, other hyper-parameters identical to best-
performing model.

only used as fine-tuning classification.

We also compare different pooling strategies
of how to aggregate the representations from the
previous to the next level. Table 5(B) finds that
mean_max pooling is the best-performing pooling
method.

As shown in Table 5(C), excluding positional
encodings slightly hurts performance. Thus,
position-sensitive information is necessary for each
representation unit to incorporate the orders of
words/sentences/documents.

The results in Table 5(D) show that there are sig-
nificant decreases in AUC and PRC if we remove
the adaptive segmentation. If clinical notes for
the same patient are all independent without proper
segmentation, the effect is clearly reflected in the
performance (0.8558 in AUC and 0.7887 in PRC).

8 Conclusion

In this work, we develop the Hierarchical Trans-
former Network to effectively process the sequen-
tial and hierarchical structure of clinical notes. The
model takes the interrelations among clinical notes
and the multilevel hierarchical information into ac-
count. We evaluate our approach using common
clinical predictions, including in-hospital mortality
and phenotype predictions. Our results demon-
strate that the proposed model outperforms strong
baselines in AUC, PRC and F1-score for both pre-
dictions. We also perform an extensive range of
experiments on the proposed model with an optimal
trade-off to achieve robust and effective training
given computational resource limits.
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A Appendix
A.1 Note Preprocessing

For all predictions, we keep patients more than
18 years old. We consider each note entry in
NoteEvents as a single note. Notes labeled
with ISERROR tags and blank entries are ex-
cluded. Notes are sorted in ascending order by
charttime. For each patient, notes are segment-
ed/filled according to Section 3.3. Sentence seg-
mentation is performed simply using periods and
newline characters. (It results in highly sub-optimal
sentence segmentation, but this is a very challeng-
ing problem on clinical notes.) Regular expres-
sions are applied to remove special tokens includ-
ing masked Protected Health Information (PHI)
and numerical digits. Even though such tokens
can be matched with BERT word-pieced vocabu-
laries, these special characters would occupy space
in sentences and overall provide less meaningful
information related to the clinical prediction tasks.

A.2 Mirrored Strategy

The mirrored distribution strategy is developed
with data parallelism, where the same model is
replicated on multiple GPU devices on a single
machine and different slices of the input data are
fed into them accordingly. The model variables on
each GPU will be mirrored and trained indepen-
dently in sync. After each epoch of training, the
learned variables are aggregated across each of the
GPUs using an all-reduce algorithm by NVIDIA
NCCL.

A.3 Model Hyper-parameter and
Architecture

We introduce the hyper-parameter of each model
in the baselines and the proposed model in this
section. Note that except BIGBIRD, we enable the
compared models contain the similar number of pa-
rameters to ensure the fairness of the comparison.

Hierarchical Transformer Network: We de-
note L as the number of layers in the encoder,
num_heads as the number of parallel heads in
multi-headed attention, diod4e as the dimension
of hidden units, and dg as the dimensions of
the position-wise feed forward networks. At
the word level, we experiment with a series of
smaller uncased BERT models with distilled knowl-
edge including BERT i, BERT 344, BERT 73411,
BERT.ed4iwm» BERT pase (Turc et al., 2019). The
BERT models are downloaded from TensorFlow
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Table A.1: Hyper-parameter of the Hierarchial Trans-
former Networks

param_name value
num_layers 2
word_level d_model 128
num_heads 2
num_layers 1
sentence- d_model 128
document- num_heads 8
levels dff 2048
dropout 0.2

Model: "bert_transformerlayerone_model"

Layer (type Output Shape Param #

keras_layer (KerasLayer) multiple 4385921

encoder (Encoder multiple 625920

encoder_1 (Encoder multiple 625920

dense_14 (Dense multiple 129

Total params: 5,637,890
Trainable params: 5,637,889
Non-trainable params: 1

Figure A.1: Model Summary of the Hierarchical Trans-
former Network with One Encoder Layer

Hub! to be used as a trainable component di-
rectly. For instance, BERT,, is a two-layer
encoder (L 2) with a 2-head self-attention
(num_heads = 2), and produces an output em-
bedding with a hidden size of 128 (dmoqel = 128).

At the sentence and document levels, we keep
the encoder with the same hidden unit size as the
BERT model. That is, if BERT;,y is used at the
word level, dyodel = 128 at both the sentence and
document levels. We set the default values from
Transformerqs. (Vaswani et al., 2017) for other
hyper-parameters as follows: num_heads = 8,
dgg = 2048, input position encoding dimension
is the same with dpoge1, layer normalization € =
le — 6, and dropout rate Pgyrop = 0.2. The detailed
hyper-parameter of the proposed model is shown
in Table A.1.

The models are trained with the Adam optimizer.
More importantly, to achieve a fast and effective
optimization, we implement an exponential decay
with linear warmup for learning rate decay.

For the model that is specifically used in the
performance comparison, we adopt an one-layer
encoder both at the sentence and document levels,
so that the model has around 5.6M parameters. The
detailed summary of the proposed model architec-
ture is shown in Figure A.1.

'nttps://tfhub.dev/
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Table A.2: Hyper-parameter of the BIGBIRD model

param_name value
attention_probs_dropout_prob 0.1
hidden_act gelu
hidden_dropout_prob 0.1
hidden_size 768
initializer_range 0.02
intermediate_size 3072
max_position_embeddings 4096
num_attention_heads 12
num_hidden_layers 12
type_vocab_size 2
scope bigbird
use_bias TRUE
rescale_embedding FALSE
use_gradient_checkpointing FALSE
attention_type block_sparse
norm_type postnorm
block_size 16
num_rand_blocks 3
max_encoder_length 1024
vocab_size 50358
Model: "big_bird_flat_model"
Layer (type) Output Shape Param #
bigbird (BertModel) multiple 127468800
dense (Dense) multiple 769
dropout (Dropout) multiple 1)

Total params: 127,469,569
Trainable params: 127,469,569
Non-trainable params: ]

Figure A.2: Model Summary of the BIGBIRD

BIGBIRD: It is a sparse-attention based trans-
former model that allows to handle significantly
longer sequences than the original BERT model.
BIGBIRD also adopts global and random attentions
to a more computationally efficient attention mech-
anism. It shows such attentions closely resemble
the full attention in BERT models. BIGBIRD also
improve the performance on a wide variety of NLP
tasks as a result of its capacity feeding into more
input sequences. We apply the BIGBIRD for each
document at the word-level. In other words, each
clinical note is fed into the BIGBIRD from words.
The hidden output from BIGBIRD for each note is
then fed into a fully-connected network for the fi-
nal classification. Although this pipeline is not the
same with other compared baselines and the pro-
posed model (flattened vs hierarchical), we assume
this workflow is the current best way to implement
BIGBIRD at patient-level classification (based on
our preliminary experiment results). In the future,
we will further investigate into how to implement
BIGBIRD into a hierarchical manner.

The detailed hyper-parameter of BIGBIRD is
reported in Table A.2. We also implement an expo-
nential decay with linear warmup for the learning
rate decay. The detailed model summary is shown
in Figure A.2.
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Figure A.3: The BERTLSTM Model Architecture

Model: "bert_lstm_model"

Layer (type) Output Shape Param #

keras_layer (KerasLayer) multiple 4385921

bi_lstm_attention (BiLSTMAtt multiple 666800

bi_lstm_attention_1 (BilLSTMA multiple 691400

dense_2 (Dense) multiple 301

Total params: 5,684,422
Trainable params: 5,684,421
Non-trainable params: @

Figure A.4: Model Summary of the BERTLSTM

BERTLSTM The architecture and model sum-
mary of BERTLSTM is shown in Figure A.3 and
Figure A.4, respectively. The word level still main-
tains a BERT model as a fully-trainable component.
The sentence and document sequential information
are encoded through Bi-LSTM. A global context-
based attention is also adopted to capture the im-
portant knowledge and aggregate the embeddings
from the previous level to the next level.

The BERT size in BERTLSTM is the same with
the proposed model at the word level (BERT ¢,y ).
The Bi-LSTM in BERTLSTM takes a hidden unit
size of 200 and 150 at the sentence and document
level, respectively. The output size at the document
and patient level is 200 and 100, respectively.

HAN: The HAN is the same with Hierarchical
Transformer Network where three layers of net-
works progressively build from word to sentence,



Model: "han_model"

Layer (type Output Shape Param #

bi_lstm_attention (BiLSTMAtt multiple 1023000

bi_lstm_attention_1 (BiLSTMA multiple 2343000

bi_lstm_attention_2 (BiLSTMA multiple 2252708

dense_3 (Dense multiple 601

Total params: 5,619,301
Trainable params: 5,619,301
Non-trainable params: @

Figure A.5: Model Summary of the HAN

sentence to document, and document to patient.
The only difference is that we replace Transform-
ers with Bi-LSTM for the HAN model at all layers.
For Bi-LSTM in HAN, we use a hidden unit size
of 300 for all three levels. The output size at the
sentence, document, patient level is 300, 300, and
150, respectively. The model summary of HAN is
shown in Figure A.5.

A.4 Distilled BERT Model Sizes

The model sizes with different word-level BERT
models and various numbers of sentence and docu-
ment transformer layers are in Table A.3.

Table A.3: Millions of parameters.

size | BERTyiny BERTymini BERTgma BERTomedium BERTpgg
L 44M)  (112M)  (28.8M) (41.4M) (110M)
1 5.6 13.9 35.6 482 121.7
2 6.8 16.7 424 55 133.9
4 9.2 222 56.1 68.7 158.3
6 11.6 27.7 69.7 824 182.7
8 13.9 333 83.4 9 207.1

'L: number of encoder layers at sentence and document level.

A.5 Parameter Allocation Experiments

We explore the effect of allocating memory to dif-
ferent levels of the hierarchy. to assess impact
on performance. That is, given the same mem-
ory constraints and parameter sizes, we examine
which level of the Hierarchical Transformer Net-
work should be provided with more resources: the
upper levels in documents and sentences, or the
lower word level; and whether such allocation
would impact the performance.

We train BERT4,, L8 and BERT,,,; L1,
both of which have 13.9-million parameters.
BERT;y_L8 allocates more to the document and
sentence levels with deep encoders (L=8), but has
only two layers of encoder at the word level (built
in BERT ;). While BERT ,;,;_L1 allocates more
to the word level with 4 layers (built in BERT ,1,),
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but has only one layer of encoders at document and
sentence levels.

Table A.4 shows training with deeper layers at
the word level achieves slightly better performance
than deeper layers at upper levels with the same
overall model size. It indicates the hierarchical
model reaches good results by focusing largely on
the word layer and capturing the underlying low-
level features in language, at least for phenotype
classifications (perhaps other tasks may require
more emphasis on higher-level representation).

Table A.4: Allocation at different hierarchical levels
given the same parameter sizes. BERT,, L8 repre-
sents the model applies BERT ;,, at the word level and
8 encoder layers at the sentence and document levels.
BERT ,;in;_L1 represents the model applies BERT ,;,,;
at the word level and only 1 encoder layer at the sen-
tence and document levels.

Hypertension

size (M) | AUC PRC
BERT},y I8 13.9 | 0.8684 0.8285
BERT ;L1 13.9 | 0.8782 0.8316

A.6 Descriptive statistics of phenotype
prediction cohorts

The MIMIC-III ICD-9 diagnosis table is used to
determine phenotypes as the prediction labels. The
detailed information about phenotypes including
disease name and ICD-9 code, and the number of
patients from MIMIC-III are shown in Table A.5.
These are top ten of the most frequent diseases by
cumulative patient counts. The selected phenotypes
cover the majority of organ systems including cir-
culatory system, genitourinary system, respiratory
system, digestive system, and etc. This also indi-
cates that our model performs well across a broad
spectrum of diseases.

Table A.5: Descriptive Statistics of Phenotypes

Phenotype ICD-9 Type # Patients (%)
Essential hypertension 4019 chronic 13399 (43.2)
ch;zﬁirengi‘:;gfycﬁgys 41401 chronic 8208 (26.5)
Atrial fibrillation 42731 mixed 7525 (24.3)
Congestive heart failure 4280 mixed 6473 (20.9)
hyperlipidemia 2724 chronic 5387 (17.4)
Acute respiratory failure 51881 acute 4329 (14.0)
Pure hypercholesterolemia 2720  chronic 3874 (12.5)
Esophageal reflux 53081 chronic 3629 (11.7)
Pneumonia 486 mixed 2577 (8.3)
Chronic airway obstruction 496 chronic 2360 (7.6)




A.7 Performance of Different Models on
Phenotype Prediction Tasks

We report the performance metrics in AUC (Ta-
ble A.6 A), PRC (Table A.6 B), Precision (Ta-
ble A.6 C), Recall (Table A.6 D), and F1 score
(Table A.6 E) for all phenotype predictions using
different models, shown in Table .

Table A.6: Performance metrics of Different Models
for All Phenotypes

A. AUC D. Recall
ICD-9 BIGBIRD HAN BERTLSTM  Our Model ICD-9 BIGBIRD HAN BERTLSTM  Our Model
4019 0.8193 0.8331 0.8693 0.8720 4019 0.6769 0.7328 0.8155 0.7963
41401 0.8208 0.9587 0.9482 0.9599 41401 0.4480 0.8055 0.7559 0.8176
42731 0.8023 0.9499 0.9565 0.9545 42731 0.3949 0.8305 0.8292 0.8238
4280 0.7657 0.9075 0.9216 0.9212 4280 0.3713 0.5472  0.6762 0.5925
2724 0.7835 0.8967 0.9235 0.9192 2724 0.3826 0.6536 0.7875 0.7821
51881 0.7424 0.9092 0.8902 0.9083 51881 0.3137 0.4152 0.3913 0.4630
2720 0.7461 0.8044 0.6923 0.8693 2720 0.2861 0.3165 0.1064 0.6208
53081 0.7782 0.8666 0.8882 0.8932 53081 0.3169 0.5924 0.6774 0.6979
486 0.6212 0.8687 0.8480 0.8666 486 0.0279 0.1361 0.0850 0.1058
496 0.6178 0.8504 0.9003 0.9320 496 0.2964 0.5161 0.6083 0.6419
Macro_AVG 0.7497 0.8845 0.8838 0.9096 Macro_AVG 0.3515 0.5546 0.5733 0.6342
B. PRC E. F1 score
ICD-9 BIGBIRD HAN BERTLSTM  Our Model ICD-9 BIGBIRD HAN BERTLSTM  Our Model
4019 0.7590 0.7817 0.8148 0.8166 4019 0.6972 0.7212  0.7717 0.7790
41401 0.6967 0.9131 0.8938 0.9163 41401 0.5759 0.8339 0.8053 0.8465
42731 0.6589 0.8771 0.8963 0.8995 42731 0.5436 0.8215 0.8374 0.8374
4280 0.5734 0.7592 0.7675 0.7665 4280 0.4945 0.6530 0.7159 0.6747
2724 0.4985 0.6940 0.7309 0.7384 2724 0.4838 0.6589 0.7177 0.7198
51881 0.4068 0.6277 0.6051 0.6396 51881 0.4196 0.5197 0.5007 0.5525
2720 0.4064 0.4522  0.2650 0.5594 2720 0.4078 0.4232 0.1685 0.5878
53081 0.4073 0.6259 0.6532 0.6754 53081 0.4292 0.6322  0.6896 0.6714
486 0.1228 0.4131 0.3587 0.4084 486 0.0519 0.2204 0.1462 0.1792
496 0.1167 0.4640 0.4976 0.6037 496 0.3175 0.5490 0.5665 0.6133
Macro_AVG  0.4647 0.6608 0.6483 0.7024 Macro_AVG 0.4421 0.6033 0.5919 0.6462

C. Precision

1ICD-9 BIGBIRD HAN BERTLSTM  Our Model
4019 0.7187 0.7099 0.7325 0.7625
41401 0.8059 0.8644 0.8616 0.8775
42731 0.8720 0.8127 0.8456 0.8514
4280 0.7403 0.8093 0.7605 0.7833
2724 0.6580 0.6642  0.6592 0.6667
51881 0.6333 0.6945  0.6950 0.6849
2720 0.7099 0.6384 0.4043 0.5581
53081 0.6645 0.6779 0.7021 0.6467
486 0.3684 0.5797 0.5208 0.5849
496 0.3419 0.5864 0.5301 0.5872
Macro_AVG 0.6513 0.7037 0.6712 0.7003
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