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Abstract
We present a Hierarchical Transformer Net-001
work for modeling long-term dependencies002
across clinical notes for the purpose of patient-003
level prediction. The network is equipped with004
three levels of Transformer-based encoders to005
learn progressively from words to sentences,006
sentences to notes, and finally notes to pa-007
tients. The first level from word to sentence008
directly applies a pre-trained BERT model as009
a fully trainable component. While the sec-010
ond and third levels both implement a stack011
of transformer-based encoders, before the final012
patient representation is fed into a classifica-013
tion layer for clinical predictions. Compared014
to conventional BERT models, our model in-015
creases the maximum input length from 512 to-016
kens to much longer sequences that are appro-017
priate for modeling large numbers of clinical018
notes. We empirically examine different hyper-019
parameters to identify an optimal trade-off020
given computational resource limits. Our ex-021
periment results on the MIMIC-III dataset for022
different prediction tasks demonstrate that the023
proposed Hierarchical Transformer Network024
outperforms previous state-of-the-art models,025
including but not limited to BIGBIRD.026

1 Introduction027

Transformers have gained popularity and have028

achieved superior performance in many natural029

language processing (NLP) tasks. The scheme of030

Transformers entirely dispenses with convolution031

and recurrence, solely relying on multi-headed self-032

attention mechanisms and position-wise feed for-033

ward networks (Vaswani et al., 2017). Inspired by034

Transformers, the BERT model (Devlin et al., 2019)035

and its variants (Lan et al., 2019; Liu et al., 2019;036

Sanh et al., 2019; Joshi et al., 2020; Zaheer et al.,037

2020) have been solidly established as the state-of-038

the-art methods in numerous NLP studies. BERT-039

based models impose an input length constraint,040

which limits their applicability of processing mul-041

tiple, longitudinal documents. To handle this chal-042

lenge, previous efforts have proposed to split long 043

documents (or, by extension, a sequence of docu- 044

ments) into small chunks and then aggregate their 045

respective representations (Adhikari et al., 2019; 046

Pappagari et al., 2019). However, these approaches 047

do not consider the temporal interrelations between 048

longitudinal sequences of (potentially many) docu- 049

ments, and also disregard the knowledge of hierar- 050

chical structure within the document (Yang et al., 051

2020). For humans, it is important to understand 052

hierarchical and longitudinal document structure 053

when reading a series of long documents, such as 054

chapters in a full-length novel, legal documents, 055

and clinical notes in patient trajectories. Similarly, 056

to process longitudinal documents, a model should 057

incorporate this information into its architecture. 058

Motivated by Hierarchical Attention Networks 059

(Yang et al., 2016), we propose Hierarchical Trans- 060

former Networks to capture the structure inher- 061

ent in longitudinal sequences of documents. Our 062

model constructs three levels—from words to sen- 063

tences, then sentences to documents, and finally 064

documents to the prediction label—leveraging both 065

temporal and structural interrelations. We utilize 066

a BERT model directly at the word level, experi- 067

menting with different sized BERT models to eval- 068

uate the relative trade-off between model size and 069

sequence length. At the sentence and document 070

levels, we employ a Transformer-based encoder 071

architecture first proposed in Vaswani et al. (2017). 072

Also, we implement a time-aware adaptive segmen- 073

tation at the document level to capture the real tem- 074

poral relationship of notes across long time periods, 075

while aggregating notes in short time periods. 076

We conduct experiments using clinical notes 077

from MIMIC-III (Johnson et al., 2016). Due to 078

the difficulty of training Transformers successfully 079

(Popel and Bojar, 2018), we extensively experiment 080

with numerous hyper-parameter settings to achieve 081

a robust training system. We also integrate dis- 082

tributed training to resolve memory constraints and 083
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to incorporate longer input texts. We compare our084

proposed model with the state-of-the-art models for085

two clinical outcome predictions: in-hospital mor-086

tality and phenotype prediction. Our experimen-087

tal evaluation shows that Hierarchical Transformer088

Networks consistently outperform other alterna-089

tives with an overall improvement of up to 21% in090

AUC, 51% in PRC and 46% in F1 score. Through091

extensive ablation studies, we show that the com-092

ponents of the Hierarchical Transformer Networks093

successfully process temporal and hierarchical in-094

formation of clinical notes and effectively enhance095

clinical predictions.096

We note that while the notion of a hierarchical097

network for Transformers might not be conceptu-098

ally novel, the fact that it has not yet been proposed099

for processing long-sequence clinical notes demon-100

strates that there are serious challenges to such a101

method. The difficulties largely exist, for example,102

optimization failure without appropriate learning103

rates, convergence difficulty without valid initial-104

izations, overfitting easily on training sets without105

proper dropout. Our main contribution is to make106

the model applicable and feasible to train for long107

and multiple text classification, as we are not sim-108

ply classifying an individual document, but rather109

large collections of documents longitudinally over110

time (i.e., one classification for all of a patient’s111

notes). To the best of our knowledge, this is the ear-112

liest attempt to build the Hierarchical Transformer113

Network for modeling long and multiple clinical114

text classifications.115

2 Related Work116

2.1 Hierarchical Deep Learning Architecture117

To handle long documents, previous works have ap-118

plied hierarchical deep learning models that stack119

neural networks to draw inference at each level of120

the hierarchy (Zhou et al., 2016; Gao et al., 2018).121

Yang et al. (2016) first proposed the hierarchical at-122

tention network based on GRUs for document clas-123

sification. Kowsari et al. (2017) later applied mul-124

tiple deep learning architectures, including fully-125

connected DNN, GRU, LSTM, and CNN into a126

hierarchical model. More recent work, HiBERT127

(Zhang et al., 2019), presented a hierarchical ar-128

chitecture to pre-train document-level Transformer129

encoders with unlabeled data for extractive docu-130

ment summarization. These hierarchical models131

progressively learn a representation for long-term132

dependencies, which could in theory enable them133

to explicitly deal with longitudinal sequences of134

documents. 135

2.2 Transformer Models in Clinical Domain 136

With the wide implementation of Transformer- 137

based models in NLP, these have also been adapted 138

to clinical tasks. One category of such tasks is 139

clinical predictive modeling (Si et al., 2021). In a 140

similar paradigm of sequence modeling with Re- 141

current Neural Networks, Transformers attempt to 142

model the entire patient trajectory by encoding clin- 143

ical events at each time stamp(Choi et al., 2020). 144

One of the earliest efforts intended to develop a 145

multi-headed attention-based model for processing 146

multivariate clinical time series data (Song et al., 147

2018). Recently, BEHRT (Li et al., 2020) was 148

built based on BERT for analyzing large-scale, se- 149

quential clinical data. Another notable domain 150

where Transformers continue to push the frontier 151

is clinical NLP. Many studies pre-trained BERT 152

models with biomedical literature (Lee et al., 2020; 153

Beltagy et al., 2019) or clinical notes (Alsentzer 154

et al., 2019; Peng et al., 2019; Si et al., 2019) to 155

develop the domain-specific language model, and 156

these studies showed that such models generally 157

outperform off-the-shelf models in varied clinical 158

NLP tasks. However, for clinical text classifica- 159

tion (e.g., automatic ICD coding, clinical outcome 160

predictions) which generally requires a series of 161

clinical notes as input, BERT does not always per- 162

form well, probably due to its restriction on com- 163

putational resources and its fixed-length restriction 164

(Li and Yu, 2020; Makarenkov and Rokach, 2020; 165

Si and Roberts, 2020). In keeping more closely 166

with the spirit of Transformers, our work is also 167

built on top of Transformers with an emphasized 168

focus on effective representation of long document 169

sequences. 170

2.3 Clinical Text Classification 171

Unstructured notes contain important details about 172

patient status that do not exist in the structured 173

data of Electronic Health Records (EHR). Previous 174

studies have developed advanced neural networks 175

to classify clinical notes with word embeddings 176

(Liu et al., 2018). Despite the success, context-free 177

word embeddings fail to encode the information 178

of a given surrounding context (Si et al., 2019). 179

More advanced pre-trained language models show 180

their capability to provide context-sensitive repre- 181

sentations for clinical words (Feng et al., 2020). In 182

this work, we integrate one of the prominent lan- 183

guage models, BERT, as the word-level encoder of 184
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our architecture to better represent clinical words.185

A closer comparison to our work is FTL-Trans,186

which implements BERT at the word level and Bi-187

LSTMs at the note level (Zhang et al., 2020). To188

this end, we propose a Hierarchical Transformer189

Network architecture to encode sequences of clin-190

ical notes. This goes beyond FTL-Trans by both191

(1) modeling an additional level (more than one192

document) and (2) utilizing a full stack of Trans-193

formers in the model. We hypothesize this model194

can learn the contextual complexity of documents,195

and also leverage structural and temporal informa-196

tion at each level of the hierarchy.197

3 Model Architecture198

The proposed model architecture is illustrated in199

Figure 1. The model progressively constructs the200

representation from the word level towards the final201

classification level. The model at each level auto-202

matically captures the important parts with multi-203

headed self attention and accumulates the entire204

sequence with pooling into the input representation205

of the next level. The input length is cropped or206

padded to a fixed size at the word, sentence, and207

document levels. The final representation from the208

document level is fed to a fully-connected dense209

layer with a Sigmoid function to output the predic-210

tion probability. In the following subsections, we211

will introduce each model component in detail.212

3.1 Word-level BERT encoders213

As shown in Figure 1, at the word level, a BERT214

model is employed and the word-pieced tokens in a215

sentence are fed into the model. We implement the216

encoder part of the BERT model to represent the217

words in a sentence, and all parameters in the mod-218

ule are trainable. Words are preprocessed to obtain219

the word-pieced tokens through the preprocessing220

module and with the same token vocabulary list221

used in BERT (Devlin et al., 2019). Similar to the222

BERT word-level module, we keep the two special223

tokens [CLS] and [SEP] at the start and end of224

the sentence respectively. The first token of each225

sentence is [CLS] and its corresponding hidden226

state is always considered as the aggregation to rep-227

resent the entire sentence. [SEP] is located at the228

end of the sentence and it is important in differenti-229

ating sentences. We omit the segment embeddings230

and keep the positional encoding. Therefore, for a231

given token i, the input embedding Ei is built by232

concatenating the word-pieced token embedding233

Toki, and the positional encoding vector P i.234

Figure 1: Model Architecture

3.2 Sentence- and Document-level 235

Transformer-based Encoders 236
We stack Transformer-based encoders to build the 237

representation of each sentence and each docu- 238

ment, respectively. We briefly introduce the Trans- 239

former architecture, and for more details, we rec- 240

ommend the work by Vaswani et al. (2017). The 241

Transformer-based encoder is constructed by N 242

layers, and each layer is a residual connection of 243

multi-headed self-attention and a fully-connected 244

feed forward network. Each self-attention takes 245

three inputs – Q(query), K(key), V (value) – to pro- 246

cess through the scaled dot-product attention. The 247

outputs from the scaled dot-product attention are 248

concatenated and put through a linear dense layer. 249

As opposed to a single self-attention head, Q, K, 250

and V are partitioned into multiple heads to en- 251

able the model to attend to information at different 252

positions from different representation subviews. 253

For both sentence- and document-level, posi- 254

tional encoding vectors are concatenated with the 255

input states. The input state of each sentence is 256

obtained from the first [CLS] hidden state of the 257

respective sentence, which is termed as the CLS- 258

pooling strategy. Instead, from sentence to docu- 259

ment, and from document to label, we experiment 260

with different pooling strategies for aggregating the 261

representations from previous levels. This enables 262
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providing high levels of the model with more ac-263

cess to the lower-level representations instead of264

simply using what is accumulated in the [CLS]265

token. The other pooling strategies we consider266

consist of mean, max, and mean_max poolings.267

Take the mean_max pooling as an example. The268

average and maximum of hidden states on the se-269

quence length axis are first obtained separately, and270

then concatenated to get the pooled output of the271

whole sequence. Following this practice, at the272

sentence level, the complete sequence of sentences273

in a given document is pooled to generate the input274

embeddings of the document. At the document275

level, the entire series of documents for a given276

patient is pooled to produce the corresponding pa-277

tient representation. For the final label, we simply278

apply a dense layer with a Sigmoid function to279

output the classification probabilities. The model280

is also generalizable to be easily adapted to other281

machine learning NLP tasks such as pre-training,282

clustering, and matching, equipped with different283

loss functions.284

3.3 Time-aware Adaptive Segmentation and285

Filling at Document Level286

Timestamps associated with clinical notes do not287

always reflect the temporal reality of clinical prac-288

tice. Notes often come in bursts and short real-289

time periods do not inherently have real tempo-290

ral sequence between each other. On the other291

hand, notes outside a long time span contain mean-292

ingful sequential information that can be encoded293

by the neural network. In order to differentiate294

short-period co-occurrences with long-range de-295

pendencies, we dynamically merge clinical notes296

into groups to capture the real temporal informa-297

tion between notes. Meanwhile, such approaches298

reduce the input sequence length (i.e., number of299

documents) that are fed into the neural network,300

which enables the model to learn long-term depen-301

dencies more effectively.302

For each patient, we first sort the notes in a303

chronological order, and then apply a greedy al-304

gorithm to find the segmentation points. The algo-305

rithm minimizes the maximum time span of con-306

tiguous groups.307

Formally, given T documents in a sequence308

{dt}Tt=1, we have k-1 segmentation points {si}k−1i=1309

to split the sequence into k groups {Gj}kj=1, where310

311

Gj =


{dt | dt. time < s1} , if j = 1
{dt | dt. time ≥ sk−1} , if j = k
{dt | dt. time ∈ [sj−1, sj)} , otherwise.

312

where dt. time is the charttime of document dt. 313

The span of a group is defined as the time difference 314

of the earliest and the latest document in the group: 315

span {Gj} = max
dk∈Gj

{dk. time}− min
dk′∈Gj

{dk′ . time} 316

The optimal choice of the segmentation points 317

can be found by minimizing the following: 318

ŝ1, . . . ŝk−1 = argmin
s1,...sk−1

{k} 319

320
subject to max

1≤j≤k
{span (Gj)} ≤ D 321

where D constrains the upper bounding of the span. 322

Intuitively, for a given maximum time span, notes 323

within the span are considered as one “document”. 324

The notes outside the span are segmented into dif- 325

ferent units. In this way, we attempt to preserve the 326

temporal relationship of notes across long terms 327

while combining the notes that come in bursts. 328

4 Data and Tasks 329

4.1 Dataset Description 330

Our experiments are performed with the MIMIC- 331

III (Medical Information Mart for Intensive Care 332

III) (Johnson et al., 2016), which is a de-identified 333

clinical database composed of 46,520 patients 334

with 58,976 admissions in the intensive care units 335

(ICUs). MIMIC-III has been widely studied in clin- 336

ical NLP tasks as it contains extensive resources 337

of unstructured clinical notes (i.e., 2 million notes 338

in the NoteEvents table). We describe note pre- 339

processing in detail in Appendix A.1. 340

4.2 Prediction Tasks 341

We evaluate our proposed model to predict in- 342

hospital mortality and phenotypes. These tasks 343

are standard clinical outcomes of interest that are 344

important to support clinical decisions. Note that 345

our model is not specifically constrained to these 346

tasks and can be extensively applied to other clini- 347

cal applications. Descriptive statistics about patient 348

cohorts are shown in Table 1. 349

In-hospital Mortality Prediction 350

MIMIC-III indicates the time of death for pa- 351

tients who die in the hospital, enabling us to 352

form the cohorts for in-hospital mortality. We use 353

hospital_expire_flag (in Admissions 354

table) to label positive cases. In addition, to avoid 355

confusion with multiple admissions of the same pa- 356

tient, we include patients with only one admission. 357
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Table 1: Descriptive Statistics of Datasets.

In-hospital
Mortality

Phenotype
Prediction

# Total Patients
(% Positives)

30,881
(13.80%)

30,990
(Table A.5)

# Notes
Per Patient

Mean 18.1 16.9
Median 12 11
80 %tile 24 22

# Sentences
Per Note

Mean 29.8 37.4
Median 18 21
80 %tile 42 50

# Wordpieces
Per Sentence

Mean 19.2 18.9
Median 12 12
80 %tile 22 22

# Total Sentences 16,662,894 19,656,126

# Total Notes Raw 906,717 866,735
Adaptive 559,942 525,222

* %tile: percentile.

We exclude discharge summaries in mortality pre-358

diction because discharge summaries mention the359

mortality outcome textually. For the same reason,360

we also remove all notes with charttime later than361

the time of death and discharge time.362

Phenotype Prediction363

The purpose of phenotype prediction is to classify364

patients into a variety of diagnoses. Specifically,365

we select the top ten relatively high-prevalence phe-366

notypes, each of which is associated with more than367

2000 patients. We consider the diagnostic ICD-9368

codes to be the prediction label (a widely-used,369

though incomplete, surrogate for the phenotype).370

The phenotype disease name, ICD-9 code, disease371

type, and the number/percentage of patients for372

each phenotype in MIMIC-III are reported in Ta-373

ble A.5. For this task, we include all the notes up374

to and including the discharge date, because ICD375

codes are assigned after discharge.376

5 Experiments377

Here, we describe the compromises made in order378

to feasibly train such a large model on GPUs, as379

well as the baselines and evaluation metrics used380

in the experiments. Notably, Hierarchical Trans-381

former Networks require smaller BERT models382

than what are normally used, even when utilizing383

multiple GPU architectures. To achieve a fast and384

effective optimization, we implement an exponen-385

tial decay with linear warmup for learning rate386

decay.387

5.1 Distributed Training388

The sequence lengths required by our model are389

significantly longer (many thousands of words)390

than the standard GPU training can handle without391

significant compromises (i.e., the standard BERT392

model has a maximum input length of 512 word393

pieces). To resolve resource limits and augment 394

text lengths, we implement the mirrored distribu- 395

tion strategy to distribute the training across mul- 396

tiple GPUs. We introduce the strategy with more 397

details in Appendix A.2. Specifically, we train our 398

proposed model on 4 NVIDIA Tesla V100 GPUs 399

(32G), which means the batch size is quadrupled. 400

Each training step takes approximately the same 401

time between using 1 GPU verses using N+ GPUs, 402

so the overall time is decreased four-fold if the 403

training takes the same steps. 404

5.2 Compared Baselines 405

We compare the proposed model with the following 406

alternative models: 407

BIGBIRD: Zaheer et al. (2020) extend the BERT 408

model to longer sequences with sparse attention 409

mechanisms, which is assumed as the current state- 410

of-the-art method for long-sequence text classifica- 411

tion. We implement BIGBIRD for each document 412

at the word-level, and apply a fully-connected layer 413

for the output probability (shown in Appendix A.3). 414

The BIGBIRD utilizes a flattened representation of 415

texts, directly from word to label. 416

HAN: The Hierarchical Attention Network 417

(HAN) model is widely used for document classifi- 418

cation. We follow Si and Roberts (2020) to build 419

the architecture into a triplet structure that encodes 420

notes over a long time (shown in Appendix A.3). 421

The model learns the representations at each level 422

with Bi-LSTMs and global context-based attention. 423

BERTLSTM: We also develop a variation of the 424

proposed model, termed BERTLSTM, where the 425

Transformers at the sentence and document levels 426

are replaced with Bi-LSTMs. The architecture and 427

model summary is shown in Appendix A.3. This 428

allows us to measure the absolute performance im- 429

provement provided by the top-to-bottom Trans- 430

former architecture by replacing the top two Trans- 431

former levels with Bi-LSTMs layers. This model 432

is also FTL-Trans (Zhang et al., 2020) extended to 433

multiple documents. 434

To ensure a fair comparison, we enable the hi- 435

erarchical models (i.e.,HAN,BERTLSTM, and the 436

proposed model) contain the same number of pa- 437

rameters (around 5.6-million), while the BIGBIRD 438

remains the same as in the released version (be- 439

cause the model is fixed). We carefully select the 440

hyper-parameters to meet this comparison require- 441

ment. The detailed descriptions of the model hyper- 442

parameters are described in Appendix A.3. 443

5



5.3 Evaluation Metrics444

For method comparisons, we use the Area Under445

the Receiver Operating Characteristic curve (AUC),446

the Area Under Precision-Recall curve (PRC), Pre-447

cision, Recall, and F1-score to report the predictive448

performance. The use of PRC in addition to AUC449

attempts to mitigate variance due to imbalanced450

class distributions, as the Precision-Recall curve is451

particularly tailored for identifying less-frequent452

cases. Each cohort is split into train, validation,453

and test, with a ratio of 8:1:1. We train the model454

on the train set, apply early stopping on the val-455

idation set to prevent overfitting, and report the456

metrics on the test set. More specifically, we calcu-457

late the loss on the validation set at the end of each458

epoch (a complete pass over the training data), and459

early stopping is triggered when the loss has been460

increasing for three subsequent epochs.461

6 Performance Comparisons462

Table 2 reports the performance comparisons of463

in-hospital mortality and phenotypes. We observe464

that our proposed model, Hierarchical Transformer465

Networks, outperforms other baselines for all tasks466

in AUC, PRC and F1-score. The performances of467

the flattened model, BIGBIRD, are considerably468

worse than the other three hierarchical models in469

all tasks. This is reasonable considering the large470

number of notes in MIMIC-III, as the abundance471

of data causes the contribution from hierarchical472

levels to become essential.473

The performances of HAN and BERTLSTM are474

approximately the same. The advantages of Hier-475

archical Transformer Networks over BERTLSTM476

are significant in phenotype predictions with im-477

provements of 0.0258 in AUC, 0.0541 in PRC, and478

0.0542 in F1-score. And Hierarchical Transformer479

Networks have relatively small improvements of480

0.0251 in AUC, 0.0416 in PRC, and 0.0429 in481

F1-score, compared to HAN. This demonstrates482

that the Transformers applied at hierarchical lev-483

els make a steady contribution to the performance484

improvement. More importantly, the direct usage485

of BERT models at the word level has a decisive486

impact on the predictive performance. Note that487

we only adopt one layer of encoder in our proposed488

model, which already yields the best performance489

across alternatives. According to findings from490

the Ablation Study Section 7, the model still has491

room to improve by enlarging the model and in-492

corporating more data. Thus, we believe the great493

potential of the Hierarchical Transformer Networks494

Table 2: Performance comparisons in in-hospital mor-
tality and phenotype predictions. Per-phenotype met-
rics are shown in Table A.6.

Macro-AVG of 10-phenotype prediction
AUC PRC Precision Recall F1

BIGBIRD 0.7497 0.4647 0.6513 0.3515 0.4421
HAN 0.8845 0.6608 0.7037 0.5546 0.6033
BERTLSTM 0.8838 0.6483 0.6712 0.5733 0.5919
Our Model 0.9096 0.7024 0.7003 0.6342 0.6462

In-hospital mortality prediction
AUC PRC Precision Recall F1

BIGBIRD 0.8769 0.8139 0.6924 0.7049 0.6986
HAN 0.9610 0.8992 0.7837 0.8356 0.8088
BERTLSTM 0.9608 0.8946 0.8740 0.7283 0.7945
Our Model 0.9677 0.9032 0.8810 0.7603 0.8162

*All models have the same input lengths. BERTLSTM and
Our Model use the same BERTtiny at word level.

would outperform strong state-of-the-art methods 495

in clinical outcome predictions. 496

We also note that Hierarchical Transformer Net- 497

works generate the highest PRCs in in-hospital 498

mortality and almost all phenotype predictions (Ta- 499

ble A.6 b). Considering the fact that PRC is a criti- 500

cal metric in clinical problems where properly clas- 501

sifying the positives is important, which is always 502

the case in clinical outcome predictions. Higher 503

PRC indicates that Hierarchical Transformer Net- 504

work is more likely to find all the positive cases 505

without accidentally marking negative cases as pos- 506

itive, and such performance is more preferred, es- 507

pecially in clinical phenotype predictions. 508

7 Ablation Study 509

Considerable factor of the Transformer’s success 510

relies on the right setting of hyper-parameters. We 511

examine some of the important parameters that 512

impact training performance, robustness, and ef- 513

ficiency to identify an optimal trade-off. This is 514

critically necessary for our model as the hierarchi- 515

cal transformers require carefully-selected compro- 516

mises to keep the model size manageable. 517

7.1 Input Text Lengths 518

The off-the-shelf BERT models are pre-trained 519

with an input sequence length of 128, which is 520

much longer than most sentences in clinical notes. 521

As shown in Table 1, the number of word pieces 522

per sentence has a mean value of around 19 (19.2 523

for the in-hospital mortality cohort, and 18.9 for the 524

phenotype cohort) and a median value of 12. Thus, 525

it might be a waste of resources to use 128 tokens 526

at the word level. However, cutting off too many 527
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Table 3: Performance of hypertension with different in-
put lengths. We denote the first non-header row as the
base input, where the models contain 80th percentile
data length at the patient and document level, and 64
word pieces at the sentence level.

Sequence length at each level
[Percentile]

Hypertension

Patient Document Sentence AUC PRC
22 [80th] 50 [80th] 64 [96.7th] 0.8722 0.8327
34 [90th] 0.8720 0.8337
16 [70th] ↓ 0.8623 ↓ 0.8183

85 [90th] 0.8733 0.8299
37 [70th] ↓ 0.8655 ↓ 0.8209

128 [98.6th] 0.8744 0.8309
32 [90th] ↓ 0.8546 ↓ 0.8147
22 [80th] ↓↓ 0.8347 ↓↓ 0.7997

*Unlisted values are identical to those of the base input.

tokens would also harm the pre-trained model ca-528

pability. Thus, it would be interesting to evaluate529

such a trade-off. We evaluate the performances of530

hypertension phenotype prediction with varied in-531

put sequence lengths at different levels. The results532

are shown in Table 3.533

We first examine the results of different sequence534

lengths at the sentence level, or the number of to-535

kens in a sentence, shown in the last row in Table 3.536

Even though the sequence length with 128 tokens537

has reached to 98.6th percentile, the performance538

does not sizably improve (i.e., from 64 to 128, the539

AUC slightly increases by 0.0022). However, start-540

ing from 32, the performances drop steadily. For541

lengths of 32 and 22, they do not perform well542

(with AUCs of 0.85 and 0.83) although they reach543

the 90th and 80th percentiles, respectively. Thus,544

we assume that chopping off a large number of545

tokens out of the original 128 token input, indeed546

harms the pre-trained model capability.547

The results with sequence lengths at the patient548

and document levels (i.e., the number of notes and549

sentences) are shown in the Patient and Document550

columns. We experiment with 90th, 80th, and 70th551

percentile data. All three settings yield an approxi-552

mately comparable performance with AUC scores553

around 0.86 to 0.87. It is reasonable to have low554

performance with 70th percentile data (0.86+), but555

it makes a rather minor difference between 80th556

and 90th percentiles (0.87+).557

7.2 BERT Variations558

We investigate different distilled BERT models at559

the word level, including BERTtiny , BERTmini ,560

BERTsmall , BERTmedium , BERTbase (Turc et al.,561

2019). The parameter sizes of the models are562

Table 4: Performance of hypertension with distilled
BERT models. Each BERT model is evaluated with
three different settings: 1. The maximum length that
the memory can afford (Max Sequence Length); 2. As
BERTbase incorporates only 6 documents, all the other
models are fed with the same 6 documents (Last Six
Notes); 3. Only discharge summary is fed into the
model (Discharge Summary).

Hypertension
Max Sequence Length AUC PRC

BERTtiny D50_S75_W128 0.8750 0.8181
BERTmini D40_S60_W64 0.8706 0.8066
BERTsmall D25_S50_W64 0.8863 0.8333
BERTmedium D12_S50_W64 0.8869 0.8365
BERTbase D6_S50_W64 0.8788 0.8178

Last Six Notes

BERTtiny

D6_S50_W64

0.8660 0.8115
BERTmini 0.8776 0.8213
BERTsmall 0.8645 0.8040
BERTmedium 0.8763 0.8231
BERTbase 0.8788 0.8178

Discharge Summary

BERTtiny

D1_S50_W64

0.8497 0.8030
BERTmini 0.8496 0.7978
BERTsmall 0.8627 0.8094
BERTmedium 0.8503 0.8036
BERTbase 0.8649 0.8161

*All other hyper-parameters are the same across all BERT
models. Only the BERT models applied at the word level and
the input sequence lengths are different.

shown in Appendix A.4 Table A.3. Given the 563

same memory limits, we feed into the maximum 564

sequence length for each distilled model, and we in- 565

vestigate if larger models would yield better perfor- 566

mance even with smaller input lengths. As shown 567

in the column Max Sequence Length of Table 4, 568

different models have varied max input lengths 569

(max_seq_len:D_S_W ) that can be incorporated 570

into 4 GPU memories (128G) at maximum capac- 571

ity. 572

Notably, the max document length for 573

BERTmedium is only 12, but the performance of 574

BERTmedium achieves the best AUC (0.8869) 575

and PRC (0.8365) among all other combinations. 576

For BERTtiny , BERTmini , and BERTsmall , even 577

though these three models incorporate many more 578

documents than BERTmedium , the performances 579

of them are still slightly worse than BERTmedium . 580

Interestingly, BERTbase performs worse than 581

BERTsmall and BERTmedium . 582

Meanwhile, we investigate the impact of keep- 583

ing the document length fixed at the BERTbase max 584

capacity of 6 documents. We run all other dis- 585
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tilled models on the same 6 documents to evaluate586

if larger models would outperform smaller mod-587

els given the same amount of input data. As pre-588

sented in the column Last Six Notes, we notice that589

BERTbase achieves the best AUC and BERTmedium590

achieves the best PRC.591

Furthermore, we evaluate our model capacity592

using only one document to predict the phenotype.593

We only process the discharge summary to predict594

whether the patient has hypertension. This would595

be more challenging than using all the notes be-596

cause we have a small portion of data. We want597

to see if the proposed hierarchical architecture can598

still be used with the same architecture and achieve599

good performance. As reported in the Discharge600

Summary column, the models continue to perform601

reasonably well with AUC around 0.85. The best602

AUC (0.8649) and PRC (0.8161) are achieved by603

BERTbase .604

However, compared to the performances that ex-605

tensively use the majority of notes to make predic-606

tions, the results using only one note are worse. For607

all BERT models, the performances with the max608

sequence length and the last six notes outperform609

those only using discharge summary. Thus, we610

show the necessity of incorporating as many docu-611

ments as possible. This is more important when the612

phenotype is hard to get a satisfactory performance.613

Adopting all possible notes into the model would614

yield sufficient room for improvement.615

Given the results of the above experiments, along616

with the general mantra “more data and larger mod-617

els”, we conclude that sufficient data is more cru-618

cial and would further improve the performance619

even if the model size may not be the largest. We620

therefore provide an applicable recommendation621

for those cases with less GPU memory: we should622

first make sure to incorporate sufficient data, then623

choose the larger model.624

7.3 Transformer Encoder Variations625

We first evaluate the performance with different626

numbers of encoder layers (L = 1, 2, 4, 6, 8) in627

the sentence- and document-level transformers. Ta-628

ble 5(A) shows that the model with 2 encoder layers629

achieves the best AUC (0.8722) and PRC (0.8327).630

Notably, models with fewer layers (L=1, 2) gen-631

erally perform better than those with more layers632

(L=4, 6). Although this is opposed to the general633

mantra that larger models yield better performance,634

we assume it is because extreme model sizes might635

lead to an improvement bottleneck if the model is636

Table 5: Performance of hypertension predictions:
(A) numbers of encoder layers, (B) pooling, (C) posi-
tional encoding, and (D) adaptive segmentation.

Hypertension
L AUC PRC
1 0.8674 0.8218

(A) 2 0.8722 0.8327
4 0.8645 0.8199
6 0.8672 0.8213
8 0.8684 0.8285
pooling
first 0.8683 0.8214

(B) mean 0.8702 0.8295
max 0.8675 0.8222
mean_max 0.8722 0.8327

(C)
w/o 0.8700 0.8294
positional encoding 0.8722 0.8327

(D)
w/o 0.8558 0.7887
adaptive segment 0.8722 0.8327

*Unless specified, other hyper-parameters identical to best-
performing model.

only used as fine-tuning classification. 637

We also compare different pooling strategies 638

of how to aggregate the representations from the 639

previous to the next level. Table 5(B) finds that 640

mean_max pooling is the best-performing pooling 641

method. 642

As shown in Table 5(C), excluding positional 643

encodings slightly hurts performance. Thus, 644

position-sensitive information is necessary for each 645

representation unit to incorporate the orders of 646

words/sentences/documents. 647

The results in Table 5(D) show that there are sig- 648

nificant decreases in AUC and PRC if we remove 649

the adaptive segmentation. If clinical notes for 650

the same patient are all independent without proper 651

segmentation, the effect is clearly reflected in the 652

performance (0.8558 in AUC and 0.7887 in PRC). 653

8 Conclusion 654

In this work, we develop the Hierarchical Trans- 655

former Network to effectively process the sequen- 656

tial and hierarchical structure of clinical notes. The 657

model takes the interrelations among clinical notes 658

and the multilevel hierarchical information into ac- 659

count. We evaluate our approach using common 660

clinical predictions, including in-hospital mortality 661

and phenotype predictions. Our results demon- 662

strate that the proposed model outperforms strong 663

baselines in AUC, PRC and F1-score for both pre- 664

dictions. We also perform an extensive range of 665

experiments on the proposed model with an optimal 666

trade-off to achieve robust and effective training 667

given computational resource limits. 668
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A Appendix847

A.1 Note Preprocessing848

For all predictions, we keep patients more than849

18 years old. We consider each note entry in850

NoteEvents as a single note. Notes labeled851

with ISERROR tags and blank entries are ex-852

cluded. Notes are sorted in ascending order by853

charttime. For each patient, notes are segment-854

ed/filled according to Section 3.3. Sentence seg-855

mentation is performed simply using periods and856

newline characters. (It results in highly sub-optimal857

sentence segmentation, but this is a very challeng-858

ing problem on clinical notes.) Regular expres-859

sions are applied to remove special tokens includ-860

ing masked Protected Health Information (PHI)861

and numerical digits. Even though such tokens862

can be matched with BERT word-pieced vocabu-863

laries, these special characters would occupy space864

in sentences and overall provide less meaningful865

information related to the clinical prediction tasks.866

A.2 Mirrored Strategy867

The mirrored distribution strategy is developed868

with data parallelism, where the same model is869

replicated on multiple GPU devices on a single870

machine and different slices of the input data are871

fed into them accordingly. The model variables on872

each GPU will be mirrored and trained indepen-873

dently in sync. After each epoch of training, the874

learned variables are aggregated across each of the875

GPUs using an all-reduce algorithm by NVIDIA876

NCCL.877

A.3 Model Hyper-parameter and878

Architecture879

We introduce the hyper-parameter of each model880

in the baselines and the proposed model in this881

section. Note that except BIGBIRD, we enable the882

compared models contain the similar number of pa-883

rameters to ensure the fairness of the comparison.884

Hierarchical Transformer Network: We de-885

note L as the number of layers in the encoder,886

num_heads as the number of parallel heads in887

multi-headed attention, dmodel as the dimension888

of hidden units, and dff as the dimensions of889

the position-wise feed forward networks. At890

the word level, we experiment with a series of891

smaller uncased BERT models with distilled knowl-892

edge including BERTtiny , BERTmini , BERTsmall ,893

BERTmedium , BERTbase (Turc et al., 2019). The894

BERT models are downloaded from TensorFlow895

Table A.1: Hyper-parameter of the Hierarchial Trans-
former Networks

param_name value

word_level
num_layers 2
d_model 128
num_heads 2

sentence-
document-
levels

num_layers 1
d_model 128
num_heads 8
dff 2048
dropout 0.2

Figure A.1: Model Summary of the Hierarchical Trans-
former Network with One Encoder Layer

Hub1 to be used as a trainable component di- 896

rectly. For instance, BERTtiny is a two-layer 897

encoder (L = 2) with a 2-head self-attention 898

(num_heads = 2), and produces an output em- 899

bedding with a hidden size of 128 (dmodel = 128). 900

901
At the sentence and document levels, we keep 902

the encoder with the same hidden unit size as the 903

BERT model. That is, if BERTtiny is used at the 904

word level, dmodel = 128 at both the sentence and 905

document levels. We set the default values from 906

Transformerbase (Vaswani et al., 2017) for other 907

hyper-parameters as follows: num_heads = 8, 908

dff = 2048, input position encoding dimension 909

is the same with dmodel, layer normalization ε = 910

1e− 6, and dropout rate P drop = 0.2. The detailed 911

hyper-parameter of the proposed model is shown 912

in Table A.1. 913

The models are trained with the Adam optimizer. 914

More importantly, to achieve a fast and effective 915

optimization, we implement an exponential decay 916

with linear warmup for learning rate decay. 917

For the model that is specifically used in the 918

performance comparison, we adopt an one-layer 919

encoder both at the sentence and document levels, 920

so that the model has around 5.6M parameters. The 921

detailed summary of the proposed model architec- 922

ture is shown in Figure A.1. 923

1https://tfhub.dev/
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Table A.2: Hyper-parameter of the BIGBIRD model

param_name value
attention_probs_dropout_prob 0.1
hidden_act gelu
hidden_dropout_prob 0.1
hidden_size 768
initializer_range 0.02
intermediate_size 3072
max_position_embeddings 4096
num_attention_heads 12
num_hidden_layers 12
type_vocab_size 2
scope bigbird
use_bias TRUE
rescale_embedding FALSE
use_gradient_checkpointing FALSE
attention_type block_sparse
norm_type postnorm
block_size 16
num_rand_blocks 3
max_encoder_length 1024
vocab_size 50358

Figure A.2: Model Summary of the BIGBIRD

BIGBIRD: It is a sparse-attention based trans-924

former model that allows to handle significantly925

longer sequences than the original BERT model.926

BIGBIRD also adopts global and random attentions927

to a more computationally efficient attention mech-928

anism. It shows such attentions closely resemble929

the full attention in BERT models. BIGBIRD also930

improve the performance on a wide variety of NLP931

tasks as a result of its capacity feeding into more932

input sequences. We apply the BIGBIRD for each933

document at the word-level. In other words, each934

clinical note is fed into the BIGBIRD from words.935

The hidden output from BIGBIRD for each note is936

then fed into a fully-connected network for the fi-937

nal classification. Although this pipeline is not the938

same with other compared baselines and the pro-939

posed model (flattened vs hierarchical), we assume940

this workflow is the current best way to implement941

BIGBIRD at patient-level classification (based on942

our preliminary experiment results). In the future,943

we will further investigate into how to implement944

BIGBIRD into a hierarchical manner.945

The detailed hyper-parameter of BIGBIRD is946

reported in Table A.2. We also implement an expo-947

nential decay with linear warmup for the learning948

rate decay. The detailed model summary is shown949

in Figure A.2.950

Figure A.3: The BERTLSTM Model Architecture

Figure A.4: Model Summary of the BERTLSTM

BERTLSTM The architecture and model sum- 951

mary of BERTLSTM is shown in Figure A.3 and 952

Figure A.4, respectively. The word level still main- 953

tains a BERT model as a fully-trainable component. 954

The sentence and document sequential information 955

are encoded through Bi-LSTM. A global context- 956

based attention is also adopted to capture the im- 957

portant knowledge and aggregate the embeddings 958

from the previous level to the next level. 959

The BERT size in BERTLSTM is the same with 960

the proposed model at the word level (BERTtiny ). 961

The Bi-LSTM in BERTLSTM takes a hidden unit 962

size of 200 and 150 at the sentence and document 963

level, respectively. The output size at the document 964

and patient level is 200 and 100, respectively. 965

HAN: The HAN is the same with Hierarchical 966

Transformer Network where three layers of net- 967

works progressively build from word to sentence, 968
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Figure A.5: Model Summary of the HAN

sentence to document, and document to patient.969

The only difference is that we replace Transform-970

ers with Bi-LSTM for the HAN model at all layers.971

For Bi-LSTM in HAN, we use a hidden unit size972

of 300 for all three levels. The output size at the973

sentence, document, patient level is 300, 300, and974

150, respectively. The model summary of HAN is975

shown in Figure A.5.976

A.4 Distilled BERT Model Sizes977

The model sizes with different word-level BERT978

models and various numbers of sentence and docu-979

ment transformer layers are in Table A.3.

Table A.3: Millions of parameters.

L1

size BERTtiny

(4.4M)
BERTmini

(11.2M)
BERTsmall

(28.8M)
BERTmedium

(41.4M)
BERTbase

(110M)
1 5.6 13.9 35.6 48.2 121.7
2 6.8 16.7 42.4 55 133.9
4 9.2 22.2 56.1 68.7 158.3
6 11.6 27.7 69.7 82.4 182.7
8 13.9 33.3 83.4 96 207.1
1L: number of encoder layers at sentence and document level.

980

A.5 Parameter Allocation Experiments981

We explore the effect of allocating memory to dif-982

ferent levels of the hierarchy. to assess impact983

on performance. That is, given the same mem-984

ory constraints and parameter sizes, we examine985

which level of the Hierarchical Transformer Net-986

work should be provided with more resources: the987

upper levels in documents and sentences, or the988

lower word level; and whether such allocation989

would impact the performance.990

We train BERTtiny_L8 and BERTmini_L1,991

both of which have 13.9-million parameters.992

BERTtiny_L8 allocates more to the document and993

sentence levels with deep encoders (L=8), but has994

only two layers of encoder at the word level (built995

in BERTtiny ). While BERTmini_L1 allocates more996

to the word level with 4 layers (built in BERTmini ),997

but has only one layer of encoders at document and 998

sentence levels. 999

Table A.4 shows training with deeper layers at 1000

the word level achieves slightly better performance 1001

than deeper layers at upper levels with the same 1002

overall model size. It indicates the hierarchical 1003

model reaches good results by focusing largely on 1004

the word layer and capturing the underlying low- 1005

level features in language, at least for phenotype 1006

classifications (perhaps other tasks may require 1007

more emphasis on higher-level representation). 1008

Table A.4: Allocation at different hierarchical levels
given the same parameter sizes. BERTtiny_L8 repre-
sents the model applies BERTtiny at the word level and
8 encoder layers at the sentence and document levels.
BERTmini_L1 represents the model applies BERTmini
at the word level and only 1 encoder layer at the sen-
tence and document levels.

Hypertension
size(M) AUC PRC

BERTtiny_L8 13.9 0.8684 0.8285
BERTmini_L1 13.9 0.8782 0.8316

A.6 Descriptive statistics of phenotype 1009

prediction cohorts 1010

The MIMIC-III ICD-9 diagnosis table is used to 1011

determine phenotypes as the prediction labels. The 1012

detailed information about phenotypes including 1013

disease name and ICD-9 code, and the number of 1014

patients from MIMIC-III are shown in Table A.5. 1015

These are top ten of the most frequent diseases by 1016

cumulative patient counts. The selected phenotypes 1017

cover the majority of organ systems including cir- 1018

culatory system, genitourinary system, respiratory 1019

system, digestive system, and etc. This also indi- 1020

cates that our model performs well across a broad 1021

spectrum of diseases. 1022

Table A.5: Descriptive Statistics of Phenotypes

Phenotype ICD-9 Type # Patients (%)
Essential hypertension 4019 chronic 13399 (43.2)
Coronary atherosclerosis
of native coronary artery 41401 chronic 8208 (26.5)

Atrial fibrillation 42731 mixed 7525 (24.3)
Congestive heart failure 4280 mixed 6473 (20.9)
hyperlipidemia 2724 chronic 5387 (17.4)
Acute respiratory failure 51881 acute 4329 (14.0)
Pure hypercholesterolemia 2720 chronic 3874 (12.5)
Esophageal reflux 53081 chronic 3629 (11.7)
Pneumonia 486 mixed 2577 (8.3)
Chronic airway obstruction 496 chronic 2360 (7.6)
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A.7 Performance of Different Models on1023

Phenotype Prediction Tasks1024

We report the performance metrics in AUC (Ta-1025

ble A.6 A), PRC (Table A.6 B), Precision (Ta-1026

ble A.6 C), Recall (Table A.6 D), and F1 score1027

(Table A.6 E) for all phenotype predictions using1028

different models, shown in Table .1029

Table A.6: Performance metrics of Different Models
for All Phenotypes

A. AUC
ICD-9 BIGBIRD HAN BERTLSTM Our Model
4019 0.8193 0.8331 0.8693 0.8720
41401 0.8208 0.9587 0.9482 0.9599
42731 0.8023 0.9499 0.9565 0.9545
4280 0.7657 0.9075 0.9216 0.9212
2724 0.7835 0.8967 0.9235 0.9192
51881 0.7424 0.9092 0.8902 0.9083
2720 0.7461 0.8044 0.6923 0.8693
53081 0.7782 0.8666 0.8882 0.8932
486 0.6212 0.8687 0.8480 0.8666
496 0.6178 0.8504 0.9003 0.9320
Macro_AVG 0.7497 0.8845 0.8838 0.9096

B. PRC
ICD-9 BIGBIRD HAN BERTLSTM Our Model
4019 0.7590 0.7817 0.8148 0.8166
41401 0.6967 0.9131 0.8938 0.9163
42731 0.6589 0.8771 0.8963 0.8995
4280 0.5734 0.7592 0.7675 0.7665
2724 0.4985 0.6940 0.7309 0.7384
51881 0.4068 0.6277 0.6051 0.6396
2720 0.4064 0.4522 0.2650 0.5594
53081 0.4073 0.6259 0.6532 0.6754
486 0.1228 0.4131 0.3587 0.4084
496 0.1167 0.4640 0.4976 0.6037
Macro_AVG 0.4647 0.6608 0.6483 0.7024

C. Precision
ICD-9 BIGBIRD HAN BERTLSTM Our Model
4019 0.7187 0.7099 0.7325 0.7625
41401 0.8059 0.8644 0.8616 0.8775
42731 0.8720 0.8127 0.8456 0.8514
4280 0.7403 0.8093 0.7605 0.7833
2724 0.6580 0.6642 0.6592 0.6667
51881 0.6333 0.6945 0.6950 0.6849
2720 0.7099 0.6384 0.4043 0.5581
53081 0.6645 0.6779 0.7021 0.6467
486 0.3684 0.5797 0.5208 0.5849
496 0.3419 0.5864 0.5301 0.5872
Macro_AVG 0.6513 0.7037 0.6712 0.7003

D. Recall
ICD-9 BIGBIRD HAN BERTLSTM Our Model
4019 0.6769 0.7328 0.8155 0.7963
41401 0.4480 0.8055 0.7559 0.8176
42731 0.3949 0.8305 0.8292 0.8238
4280 0.3713 0.5472 0.6762 0.5925
2724 0.3826 0.6536 0.7875 0.7821
51881 0.3137 0.4152 0.3913 0.4630
2720 0.2861 0.3165 0.1064 0.6208
53081 0.3169 0.5924 0.6774 0.6979
486 0.0279 0.1361 0.0850 0.1058
496 0.2964 0.5161 0.6083 0.6419
Macro_AVG 0.3515 0.5546 0.5733 0.6342

E. F1 score
ICD-9 BIGBIRD HAN BERTLSTM Our Model
4019 0.6972 0.7212 0.7717 0.7790
41401 0.5759 0.8339 0.8053 0.8465
42731 0.5436 0.8215 0.8374 0.8374
4280 0.4945 0.6530 0.7159 0.6747
2724 0.4838 0.6589 0.7177 0.7198
51881 0.4196 0.5197 0.5007 0.5525
2720 0.4078 0.4232 0.1685 0.5878
53081 0.4292 0.6322 0.6896 0.6714
486 0.0519 0.2204 0.1462 0.1792
496 0.3175 0.5490 0.5665 0.6133
Macro_AVG 0.4421 0.6033 0.5919 0.6462
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