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ABSTRACT

Self-supervised learning of video representations has received great attention. Ex-
isting methods typically require frames to be decoded before being processed,
which increases compute and storage requirements and ultimately hinders large-
scale training. In this work, we propose an efficient self-supervised approach to
learn video representations by eliminating the expensive decoding step. We use a
three-stream video architecture that encodes I-frames and P-frames of a compressed
video. Unlike existing approaches that encode I-frames and P-frames individually,
we propose to jointly encode them by establishing bidirectional dynamic connec-
tions across streams. To enable self-supervised learning, we propose two pretext
tasks that leverage the multimodal nature (RGB, motion vector, residuals) and the
internal GOP structure of compressed videos. The first task asks our network to
predict zeroth-order motion statistics in a spatio-temporal pyramid; the second task
asks correspondence types between I-frames and P-frames after applying temporal
transformations. We show that our approach achieves competitive performance on
compressed video recognition both in supervised and self-supervised regimes.

1 INTRODUCTION

There has been significant progress on self-supervised learning of video representations. It learns
from unlabeled videos by exploiting their underlying structures and statistics as free supervision
signals, which allows us to leverage large amounts of videos available online. Unfortunately, training
video models is notoriously difficult to scale. Typically, practitioners have to make trade-offs between
compute (decode frames and store them as JPEG images for faster data loading, but at the cost of
large storage) and storage (decode frames on-the-fly at the cost of high computational requirements).
Therefore, large-batch training of video models is difficult without high-end compute clusters.
Although these issues are generally applicable to any video-based scenarios, they are particularly
problematic for self-supervised learning because large-scale training is one key ingredient (Brock
et al., 2019; Clark et al., 2019; Devlin et al., 2019) but that is exactly where these issues are aggravated.

Recently, several approaches demonstrated benefits of compressed video recognition (Zhang et al.,
2016; Wu et al., 2018; Shou et al., 2019; Wang et al., 2019b). Without ever needing to decode frames,
these approaches can alleviate compute and storage requirements, e.g., resulting in 3 to 10 times faster
solutions than traditional video CNNs at a minimal loss on accuracy (Wu et al., 2018; Wang et al.,
2019b). Also, motion vectors embedded in compressed videos provide a free alternative to optical
flow which is compute-intensive; leveraging this has been shown to be two orders of magnitude
faster than optical flow-based approaches (Shou et al., 2019). However, all the previous work on
compressed video has focused on supervised learning and there has been no study that shows the
potential of compressed videos in self-supervised learning; this is the focus of our work.

?Equal Contribution

1



Published as a conference paper at ICLR 2021

I-Frames

Motion Vectors

Residuals

Compressed video IMR Network Self-supervised pretraining

··· I - Network

M - Network

R - Network

Pyramidal Motion Statistics Prediction

Correspondence Type Prediction

Bidirectional Dynamic Connection

···

···

Where is the most
dynamic region?

How are I-frames and P-frames related?

,,

,,

Aligned
Random
Shuffled
Shifted

•
•
•
•

Figure 1: IMR network consists of three sub-networks encoding different information streams
provided in compressed videos. We incorporate bidirectional dynamic connections to facilitate
information sharing across streams. We train the model using two novel pretext tasks designed by
exploiting the underlying structure of compressed videos.

In this work, we propose a self-supervised approach to learning video representations directly in
the compressed video format. We exploit two inherent characteristics of compressed videos: First,
video compression packs a sequence of images into several Group of Pictures (GOP). Intuitively, the
GOP structure provides atomic representation of motion; each GOP contains images with just enough
scene changes so a video codec can compress them with minimal information loss. Because of this
atomic property, we enjoy less spurious, more consistent motion information at the GOP-level than at
the frame-level. Second, compressed videos naturally provide multimodal representation (i.e. RGB
frames, motion vectors, and residuals) that we can leverage for multimodal correspondence learning.
Based on these, we propose two novel pretext task (see Fig. 1): The first task asks our model to predict
zeroth-order motion statistics (e.g.where is the most dynamic region) in a pyramidal spatio-temporal
grid structure. The second involves predicting correspondence types between I-frames and P-frames
after temporal transformation. Solving our tasks require implicitly locating the most salient moving
objects and matching their appearance-motion correspondences between I-frames and P-frames; this
encourages our model to learn discriminative representation of compressed videos.

A compressed video contains three streams of multimodal information – i.e. RGB images, motion
vectors, and residuals – with a dependency structure between an I-frame stream and the two P-frame
streams punctuated by GOP boundaries. We design our architecture to encode this dependency
structure; it contains one CNN encoding I-frames and two other CNNs encoding motion vectors and
residuals in P-frames, respectively. Unlike existing approaches that encode I-frames and P-frames
individually, we propose to jointly encode them to fully exploit the underlying structure of compressed
videos. To this end, we use a three-stream CNN architecture and establish bidirectional dynamic
connections going from each of the two P-frame streams into the I-frame stream, and vice versa, and
put these connections layer-wise to learn the correlations between them at multiple spatial/temporal
scales (see Fig. 1). These connections allow our model to fully leverage the internal GOP structure of
compressed videos and effectively capture atomic representation of motion.

In summary, our main contributions are two-fold: (1) We propose a three-stream architecture for
compressed videos with bidirectional dynamic connections to fully exploit the internal structure
of compressed videos. (2) We propose novel pretext tasks to learn from compressed videos in a
self-supervised manner. We demonstrate our approach by pretraining the model on Kinetics-400 (Kay
et al., 2017) and finetuning it on UCF-101 (Soomro et al., 2012), HMDB-51 (Kuehne et al., 2011).
Our model achieves new state-of-the-art performance in compressed video classification tasks in
both supervised and self-supervised regimes, while maintaining a similar computational efficiency as
existing compressed video recognition approaches (Wu et al., 2018; Shou et al., 2019).
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Figure 2: Bidirectional dynamic connections are established between I & M pathways and between
I & R pathways to facilitate information sharing between I-frames and P-frames. We incorporate
multimodal-gated attention to dynamically modulate the connections based on input. Feature tensors
(orange and blue cubes) are placed in the T-HxW-C plane.

2 APPROACH

We use videos compressed according to the MPEG-4 Part 2 specifications (Le Gall, 1991) as our
input, following the previous work (Wu et al., 2018; Shou et al., 2019; Wang et al., 2019b). This
compression format encodes an RGB image sequence as a series of GOPs (Group of Pictures) where
each GOP starts with one I-frame followed by a variable number of P-frames. An I-frame stores
RGB values of a complete image and can be decoded on its own. A P-frame holds only the changes
from the previous reference frame using motion vectors and residuals. The motion vectors store
2D displacements of the most similar patches between the reference and the target frames, and the
residuals store pixel-wise differences to correct motion compensation errors. We use all the three
modalities contained in compressed videos as our input.

Formally, our input is T GOPs, G0, · · · , GT−1, where each Gt contains one I-frame It ∈ RH×W×3

followed by K − 1 pairs of motion vectors Mt,k ∈ RH×W×2 and residuals Rt,k ∈ RH×W×3,
k ∈ [1,K). For efficiency and simplicity, we assume an identical GOP size K for all t ∈ [0, T ).

2.1 IMR NETWORK FOR COMPRESSED VIDEOS

Our model consists of three CNNs, each with 3D convolutional kernels modeling spatio-temporal
dynamics within each input stream {It}, {Mt,k}, {Rt,k}, t ∈ [0, T ), k ∈ [0,K); we denote these
sub-networks by I-network fI , M-network fM , and R-network fR, respectively, and call our model
IMR Network (IMRNet). We account for the difference in the amount of information between I-frames
and P-frames by adjusting the capacity of networks accordingly. Specifically, following (Wu et al.,
2018), we make the capacity of fI larger than fM and fR by setting the number of channels in each
layer of fI to be γ times higher than those of fM and fR (we set γ = 64).

Existing models for compressed videos typically perform late fusion (Wu et al., 2018; Shou et al.,
2019), i.e., they combine embeddings of I-frames and P-frames only after encoding each stream.
However, we find that it is critical to allow our sub-networks to share information as they encode their
respective input streams. To this end, we establish layer-wise lateral connections between fI & fM
and between fI & fR.

Bidirectional dynamic connections. Lateral connections have been used to combine information
from different streams, e.g., RGB images and optical flow images (Feichtenhofer et al., 2016), and
RGB images sampled at different frame rates (Feichtenhofer et al., 2019). In this work, we use
it to combine information from I-frames and P-frames. Our approach is different from previous
work in two key aspects: (1) We establish bidirectional connections between streams, instead of
unidirectional connections as was typically done in the past (Feichtenhofer et al., 2016; 2019), so that
information sharing is symmetrical between streams. (2) We incorporate multimodal gated attention
to dynamically adjust the connections based on multimodal (I-frame and P-frames) information. We
call our approach bidirectional dynamic connections to highlight these two aspects and differentiate
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Figure 3: Pyramidal motion statistics prediction asks our network to find a region with the highest
energy of motion. Here we visualize two levels in a spatio-temporal pyramid for illustration.

ours from previous work, e.g., SlowFast networks (Feichtenhofer et al., 2019) establish unidirectional
lateral connections and the connections are static regardless of the content from the other stream.

We combine embeddings from different sub-networks via channel-wise concatenation, which requires
embeddings to match their spatio-temporal dimensions. However, fI processes κ times less frames
than fM and fR, producing embeddings that are κ times smaller in the temporal dimension. Therefore,
we transform the embeddings with time-strided 3D (de-)convolution with (κ× 1× 1) kernels, C/8
channels, and (κ, 1, 1) temporal stride: We use convolution for fI → fM/fR to decrease the time
dimension and deconvolution for fM/fR → fI to increase it. Note that simply using the (de-)conv
layers will perform static transformation regardless of what is provided from the other sub-network,
similar to (Feichtenhofer et al., 2019). However, we find it critical to make the transformations aware
of information from both sub-networks so that the networks can dynamically adjust the connections
and selectively share only the most relevant information from each sub-network.

To achieve this, we dynamically modulate (de-)conv layer outputs using multimodal-gated attention
weights. Let xI ∈ RTI×W×H×CI and xM ∈ RTM×W×H×CM be the embeddings from fI and
fM , respectively. We max-pool xI and xM and concatenate them to obtain multimodal embedding
z ∈ RCZ with CZ = CI + CM . We define multimodal gate functions that take as input z and
generate attention weights aI ∈ RCI/8 and aM ∈ RCM/8 as

aI = σ (W3h+ b3) , aM = σ (W4h+ b4) , h = ζ (W2ζ (W1z+ b1) + b2) (1)

where σ is a sigmoid function, ζ is a Leaky ReLU function, and W1,W2 ∈ RCZ×CZ , b1, b2 ∈
RCZ ,W3 ∈ RCI/8×CZ , b3 ∈ RcI/8,W4 ∈ RCM/8×CZ , b4 ∈ RCM/8 are weight parameters. Next,
we use these attention weights to modulate the (de-)conv output embeddings,

vI→M = aM ⊗ 3d_conv(xI), vM→I = aI ⊗ 3d_deconv(xM ) (2)

where ⊗ is channel-wise multiplication. We repeat the same process for fI & fR to obtain vI→R and
vR→I , and combine them with the feature embeddings via channel-wise concatenation,

x̂I = [xI ;vM→I ;vR→I ], x̂M = [xM ;vI→M ], x̂R = [xR;vI→R] (3)

Each of these is fed into the next layer in the corresponding sub-network. We establish these lateral
connections across multiple layers of our network. To obtain the final embedding, we apply average
pooling on the output from the final layer of each sub-network and concatenate them channel-wise.

Note that the design of IMRNet is orthogonal to the design of video CNNs; while we adapt 3D-
ResNet (He et al., 2016) as the backbone in our experiments, we can use any of existing CNN
architectures as the backbone, e.g., C3D (Tran et al., 2015), I3D (Carreira & Zisserman, 2017),
R(2+1)D (Tran et al., 2018). What is essential, however, is that (i) there are three sub-networks, each
modeling one of the three input streams, and (ii) information from different networks are combined
via bidirectional dynamic connections as they are encoded.

2.2 SELF-SUPERVISED LEARNING OBJECTIVES

Compressed videos have unique properties, i.e., the multimodal nature of information (RGB, motion
vector, residuals) and the internal GOP structure that provides atomic representation of motion. We
turn these properties into free self-supervisory signals and design two novel pretext tasks.

Pyramidal Motion Statistics Prediction (PMSP). One important desideratum of video CNNs is
learning visual representation that captures salient objects and motion. We hypothesize that there is an
implicit videographer bias captured in videos in-the-wild that naturally reflect visual saliency: Videos
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Figure 4: Correspondence type prediction asks our network to categorize different types of data
transformations applied on P-frames. We illustrate four transformation types used in our experiments.

are purposely recorded to highlight important objects and their movements.1 Therefore, regions with
the highest energy of motion can provide clues to learning the desired video representation. We
can easily find those regions in compressed videos: the motion vectors in P-frames readily provide
magnitude and angular information of motion, which we can harness to find the most vibrant regions.

Based on this intuition, we design a task that asks our model to predict the zeroth-order motion
statistics (i.e., the most vibrant region) in a given video. For this, we must be able to deal with a
variety of object sizes because a salient moving object can appear at any location in any size. A
classical solution to this is to perform pyramidal prediction (Grauman & Darrell, 2005; Lazebnik
et al., 2006): We divide a video into spatio-temporal 3D grids at multiple scales and ask our network
to predict the most vibrant region at each scale.

Specifically, we define a pyramidal classification task with the following loss function,

LPMSP = −
∑
i

∑
r

∑
q

y(i)q,r · logαr

(
x(i)
q,r

)
(4)

This is a cross-entropy loss computed at every q-th grid in every r-th level of a spatio-temporal
pyramid; i is the sample index. We define a 9-level spatio-temporal pyramid with 3 spatial and 3
temporal scales, i.e., r ∈ {(s, t)|s ∈ {[2×2], [3×3], [4×4]}, t ∈ {1, 3, 5}}. The index q iterates over
all possible temporal coordinates in the r-th level of the pyramid, e.g., in Figure 3 (a), q ∈ [0, · · · , 4]
with r = ([2×2], 5). y(i)q,r is a one-hot label marking the location with the highest energy of motion in
the q-th grid in r-th level in the pyramid, e.g., in Figure 3 (a), y(i)q,r is a 4-dimensional one-hot vector.
We provide a pseudo-code to obtain the ground-truth labels from motion vectors in Appendix. x(i)

q,r is
the (q, r)-th feature in a 3D grid; we concatenate output embeddings from all three sub-networks,
x(i) = [x

(i)
I ;x

(i)
M ;x

(i)
R ]. Finally, αr(·) is a 2-layer MLP with a softmax classifier predicting the most

vibrant region in the given grid; we define one such classifier for each r.

Correspondence Type Prediction (CTP). One idea often used in self-supervision is applying certain
transformations to data and asking a network to predict the correspondence type given a pair of
instances (e.g., true pair or randomly selected pair) (Owens & Efros, 2018; Chen et al., 2020; He et al.,
2020; Misra & van der Maaten, 2020). The multimodal nature of compressed videos makes them
an ideal data format to apply such self-supervision technique: The three frame types in compressed
videos exhibit different characteristics, yet they are strongly correlated with each other. This allows
us to consider I-frames as a heavily transformed version of the corresponding P-frames, and vice
versa. Learning the correspondence type between I-frames and P-frames can therefore encourage our
network to learn discriminative representation of videos.

1This is, of course, a weak hypothesis. But we show some convincing empirical evidence in Appendix.
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We define a correspondence type prediction task with the following loss function,

LCTP = −
∑
i

∑
j

y
(i)
j · log β

(
x
(i)
I , T (x(i)

M ,x
(i)
R , j)

)
(5)

where i is the sample index and j iterates over a set of transformations. y(i)j is a one-hot label
indicating different correspondence types determined by the type of transformation done, and T (·, j)
is a data transformation function that changes the input using the j-th transformation. We define
four transformation types (see Figure 4): (1) Aligned keeps the original input (no transformation),
(2) Random replaces the data with P-frames from a randomly selected video, (3) Shuffle randomly
shuffles the GOP order, (4) Shift randomly divides GOPs into two groups and switch the order, e.g.,
[1, 2, 3, 4, 5] to [2, 3, 4, 5, 1]. Finally, β(·) is a 2-layer MLP with a softmax classifier.

Note that there is a nuanced difference between random P-frames and shuffled/shifted P-frames.
The former contains P-frames that come from a different clip, while the latter contains P-frames of
the same clip as the I-frames, yet in a different frame order. Intuitively, the former encourages our
network to learn from global (clip-level) correspondence, while the latter formulates a local (frame-
level) correspondence task. Therefore, our CTP task encourages our network to learn discriminative
representations at both global and local levels. We provide empirical evidence showing the importance
of this global-local mixed objective in Section 3.2.

Final Objective. We optimize our model using a learning objective LPMSP + λLCTP with λ = 1.
The classifiers αr and β are used only during self-supervised training; we detach them thereafter.

3 EXPERIMENTS

Implementation Detail. We adopt 3D ResNet (He et al., 2016) as the backbone; see Appendix
for architectural details. We establish bidirectional dynamic connections after {conv1, res2, res3,
res4} layers. We pretrain our model end-to-end from scratch for 20 epochs, including the initial
warm-up period of 5 epochs. For downstream scenarios, we finetune our model for 500 epochs for
UCF-101 and for 300 epochs for HMDB-51, including the warm-up period of 30 epochs. For both
the pretraining and finetuning stages, we use SGD with momentum 0.9, weight decay 10−4, and
half-period cosine learning rate schedule. We use 4 NVIDIA Tesla V100 GPUs and use a batch size
of 100.

Data. We pretrain our model on Kinetics-400 (Kay et al., 2017). For evaluation, we finetune the
pretrained model for action recognition using UCF-101 (Soomro et al., 2012) and HMDB-51 (Kuehne
et al., 2011). We use 2-second video clips encoded in 30 FPS with a GOP size T = 12. We use all
T = 5 GOPs but subsample every other P-frames within each GOP; this results in 5 I-frames and
25 P-frames. We randomly crop 224× 224 pixels from videos resized to 256 pixels in the shorter
side while keeping the aspect ratio. For data augmentation, we resize the video with various scales
[.975, .9, .85] and apply random horizontal flip. For test videos, we take three equidistant 224× 224
pixel crops from videos resized to 256 pixels to fully cover the spatial region. We approximate the
fully-convolutional testing (Wang et al., 2018) by averaging the softmax scores for final prediction.

3.1 SUPERVISED LEARNING EXPERIMENTS

We first demonstrate our proposed IMR network in the fully-supervised setup, training it without
using our self-supervised pretext tasks. We use the standard training and evaluation protocols for
both UCF-101 (Soomro et al., 2012) and HMDB-51 (Kuehne et al., 2011). For fair comparisons with
existing approaches (Wu et al., 2018; Shou et al., 2019), we report results both when we train the
model from scratch and when we pretrain it on Kinetics-400 (Kay et al., 2017) and finetune it on
downstream datasets (indicated in column Pretrain).

Table 1 summarizes the results. When trained from scratch, our model outperforms CoViAR (Wu
et al., 2018) by a large margin regardless of the chosen backbone. The performance gap is alleviated
when the models are pretrained on Kinetics400, but our approach continues to outperform them even
in this scenario. This suggest that CoViAR struggles to learn discriminative representations without
help from a large-scale pretraining data. We believe the performance gap comes from the difference
in how the two models encode compressed videos: CoViAR combines information from I-frames and
P-frames only after encoding them separately, while we combine them in the early layers of CNN.
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Models OF Pretrain Backbone UCF101 HMDB51
CoViAR‡ 7 Scratch ResNet152 43.8 27.3
IMR (No connection) 7 Scratch 3D-ResNet18 52.7 34.6
IMR (Unidirectional) 7 Scratch 3D-ResNet18 69.7 40.8
IMR (No conv) 7 Scratch 3D-ResNet18 71.7 42.6
IMR (No attention) 7 Scratch 3D-ResNet18 73.2 43.5
IMRNet 7 Scratch 3D-ResNet18 74.1 43.7
IMRNet 7 Scratch 3D-ResNet50 80.2 55.9
CoViAR† 7 ImageNet ResNet152 (I), ResNet18 (P) 90.4 59.1
CoViAR‡ 7 Kinetics400 ResNet152 90.8 59.2
IMRNet (Ours) 7 Kinetics400 3D-ResNet18 91.4 62.8
IMRNet (Ours) 7 Kinetics400 3D-ResNet50 92.6 67.8
CoViAR† 3 ImageNet ResNet152 (I), ResNet18 (P, OF) 94.9 70.2
DMC-Net† 3 ImageNet ResNet152 (I), ResNet18 (P) 90.9 62.8
DMC-Net† 3 ImageNet ResNet152 (I), I3D (P) 92.3 71.8
IMRNet (Ours) 3 Kinetics400 3D-ResNet50 (I, P), I3D (OF) 95.1 72.2

Table 1: Results from the supervised setting. Column OF indicates results using optical flow during
training. Column Pretrain indicates datasets used for supervised pretraining. †: published results.
‡: our results based on official implementations by the authors.

Models ResNet152∗ R(2+1)D† CoViAR‡ DMC‡ IMR‡ (R18) IMR‡ (R50)
Preprocess (ms) 75.00 75.00 2.87 2.87 2.87 2.87
Inference (ms) 7.50 1.74 1.30 1.91 1.36 1.44
Total (ms) 82.50 76.74 4.17 4.78 4.23 4.31
GFLOPs 11.3 0.96 4.2 4.4 0.66 1.04

Table 2: Runtime analysis of per-frame speed (ms) and FLOPs. The number of input frames are
different across models: ∗ 1 frame (since it is a 2D CNN), † 16 frames, ‡ 25 frames.

CoViAR and DMC-Net reported improved results when they are trained using optical flow. Therefore,
we also conduct experiments by adding an I3D network (Carreira & Zisserman, 2017) to encode
optical flow images; we simply concatenate our IMRNet features with the I3D features as our final
representation (no lateral connections between IMRNet and I3D). This model outperforms both
CoViAR and DMC-Net trained with optical flow (bottom group, Table 1). DMC-Net improves upon
CoViAR by adapting GANs (Goodfellow et al., 2014) to reconstruct optical flow from P-frames.
Note that our approach (with 3D-ResNet50 backbone) outperforms DMC-Net (with ResNet152/18
backbones) on both datasets even without using optical flow during training and thus significantly
simplifies the training setup (no GANs required).

Next, we conduct an ablation study on the bidirectional dynamic connection: (a) No connection
removes lateral connections and thus is similar to CoViAR, (b) Unidirectional establishes
connections from M/R-Networks to I-Network, but not vice versa, i.e., Equation equation 3 becomes
x̂M = xM , x̂R = xR, (c) No conv replaces (de-)conv layers with simple up/down-sampling,
(d) No attention removes the multimodal-gated attention module. The results are shown in
Table 1. We can see that lateral connections are critical component of our model (Ours vs. No
connection) and doing so in a bidirectional fashion significantly improves performance (Ours
vs. Unidirection). We can also see that using (de-)conv layers and dynamically modulating the
connection with gate functions improve performance (Ours vs. No conv and No attention).

Table 2 shows per-frame runtime speed (ms) and GFLOPs measured on an NVIDIA Tesla P100
GPU with Intel E5-2698 v4 CPUs (∗ process individual frames. † and ‡ process 16- and 25-frame
sequences, respectively). Our approach has the same preprocessing time of CoViAR and DMC
because all three approaches use the same video loader implementation (Wu et al., 2018). As for the
inference speed, IMRNet is comparable to CoViAR and even slightly faster than DMC (we divide
the total inference time by #frames following the convention of Wu et al. (2018)). This is partly
because we use lighter backbones (R18/R50 vs. R152 used in CoViAR and DMC) to compensate
for the expensive 3D convolutional operations, while DMC requires an OF generator network of 7
all-convolutional layers, which adds extra cost. In terms of per-frame FLOPs, ours is more efficient
than CoViAR and DMC because the computation is done at the sequence-level rather than per-frame;
we observe a similar trend for R(2+1)D (which uses ResNet18) vs. ResNet152. This shows that our
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Models Compressed Modality Pretext Pretrain Backbone UCF101 HMDB51
C3D 7 V MotPred Kinetics400 C3D 61.2 33.4
3D-ResNet18 7 V RotNet3D Kinetics600 3D-ResNet18 62.9 33.7
3D-ResNet18 7 V ST-Puzzle Kinetics400 3D-ResNet18 65.8 33.7
R(2+1)D-18 7 V ClipOrder UCF101 R(2+1)D-18 72.4 30.9
3D-ResNet34 7 V DPC Kinetics400 3D-ResNet34 75.7 35.7
Multisensory 7 A+V Multisensory Kinetics400 Audio-VisualNet 82.1 –
AVTS 7 A+V AVTS Audioset MC3 89.0 61.6
ELo 7 A+V ELo Kinetics400 (2+1)D ResNet-50 93.8 67.4
CoViAR‡ 3 V Scratch None ResNet152 43.8 27.3
IMRNet 3 V Scratch None 3D-ResNet18 74.1 43.7
CoViAR‡ 3 V AOT Kinetics400 ResNet152 53.6 29.3
CoViAR‡ 3 V Rotation Kinetics400 ResNet152 56.7 31.4
IMRNet 3 V InfoNCE Kinetics400 3D-ResNet18 73.9 43.7
IMRNet 3 V AOT Kinetics400 3D-ResNet18 74.6 44.0
IMRNet 3 V Rotation Kinetics400 3D-ResNet18 75.1 44.3
CoViAR‡ 3 V PMSP Kinetics400 ResNet152 63.5 35.9
CoViAR‡ 3 V CTP Kinetics400 ResNet152 64.4 37.4
CoViAR‡ 3 V CTP (Binary) Kinetics400 ResNet152 63.7 37.1
IMRNet 3 V PMSP Kinetics400 3D-ResNet18 76.0 44.9
IMRNet 3 V CTP Kinetics400 3D-ResNet18 76.7 44.8
IMRNet 3 V CTP (Binary) Kinetics400 3D-ResNet18 74.6 44.2
IMRNet 3 V PMSP+CTP Kinetics400 3D-ResNet18 76.8 45.0

Table 3: Results from the self-supervised setting. Column Compressed indicates the methods
that learn directly from compressed videos without decoding them. Modality indicates whether
a method used only visual (V) modality or audio-visual modalities (A+V). Pretrain indicates
datasets used for self-supervised pretraining. ‡: based on an official implementation by the authors.

3D CNN backbones do not bring any significant extra cost compared to CoViAR and DMC, and thus
our model enjoys all the computational benefits of compressed video processing.

3.2 SELF-SUPERVISED LEARNING EXPERIMENTS

We move to the self-supervised regime and demonstrate our pretext tasks by pretraining our IMRNet
on Kinetics400 (Kay et al., 2017) and transferring it to action recognition. Because ours is the first
self-supervised approach to learn compressed video representation, there exist no published baseline
that we can directly compare with. Therefore, we provide results from existing self-supervised
approaches that require the decoding step. We include approaches that learn from RGB images –
AOT (Wei et al., 2018), Rotation (Jing et al., 2018), MotPred (Wang et al., 2019a), RotNet3D (Jing
et al., 2018), ST-Puzzle (Kim et al., 2019), ClipOrder (Xu et al., 2019), DPC (Han et al., 2019) – as
well as those that learn from audio and visual channels in videos – Multisensory (Owens & Efros,
2018), AVTS (Korbar et al., 2018), Elo (Piergiovanni et al., 2020).

Table 3 summarizes the results. We first notice that pretraining the models with any pretext tasks
improves downstream performance (the first group of results), suggesting self-supervised pretraining
is effective in general. We also see that IMRNet pretrained using our pretext tasks (PMSP+CTP)
outperforms the baseline pretext tasks (second group) and self-supervised methods for uncompressed
videos (third group). This shows the effectiveness of our IMRNet pretrained with our pretext tasks.

Next, we conduct an ablation study by pretraining the base models using either PMSP and CTP alone.
We also test CTP (Binary) which is a simplied version of our CTP task with only two modes:
Aligned and Random (see Figure 4). Note that this is a typical pair correspondence setup used in the
literature (Arandjelovic & Zisserman, 2017). Table 3 (fourth group) shows the results. We can see
that using either of our pretext tasks leads to a significant improvements compared to the Scratch
result. The CTP (Binary) results suggests that the two additional transformation types (Shuffle
and Shift in Figure 4) improves the task by making it more difficult to solve; we noticed that the loss
curve of CTP (Binary) decreases significantly faster than CTP and quickly saturates thereafter.
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4 RELATED WORK

Self-supervised learning of video representation. Self-supervised learning has received significant
attention (Kumar BG et al., 2016; Santa Cruz et al., 2017; Doersch et al., 2015; Wang & Gupta, 2015).
Based on strong progress in the image domain, several works proposed to learn video representations
in a self-supervised manner. One popular idea is leveraging temporal information (Wang & Gupta,
2015; Isola et al., 2015; Jayaraman & Grauman, 2016; Misra et al., 2016; Fernando et al., 2017;
Wei et al., 2018). Temporal coherence of video pixels has been leveraged as a self-supervisory
signal (Vondrick et al., 2018; Wang et al., 2019c). Another popular idea is learning transformation-
invariant representations (Kim et al., 2019; Gidaris et al., 2018; Jing et al., 2018). Also, contrastive
learning (Oord et al., 2018; Hjelm et al., 2018; He et al., 2020; Chen et al., 2020) has been successfully
applied to videos (Han et al., 2019). Despite active research in this field, to the best of our knowledge,
there has not been prior work on self-supervised learning from compressed videos.

Compressed video recognition. Compressed video understanding has been tackled in a supervised
setting (Zhang et al., 2016; Wu et al., 2018; Shou et al., 2019). Existing approaches encode each
stream separately and perform late fusion, e.g., feature concatenation (Zhang et al., 2016; Wu et al.,
2018). However, as we show in our experiments, this can miss out useful information that can only be
learned by modeling the interaction across streams. Unlike previous approaches, our approach shares
relevant information across streams during the encoding process. In addition, because compressed
videos do not provide continuous RGB frames, it is not easy to directly apply 3D CNNs to encode
I-frames. Therefore, existing approaches use 2D CNNs to process compressed video frames, e.g.,
CoViAR (Wu et al., 2018) uses 2D CNNs to process each stream and perform average pooling
over P-frames, which is insufficient to model complex motion dynamics. DMC-Net (Shou et al.,
2019) reconstructs the optical flow from P-frames and later use the reconstructed signal as input to
I3D (Carreira & Zisserman, 2017), but this requires ground-truth optical flow which is compute-
intensive. Instead, our IMR network adopts the gated attention Hu et al. (2018); Ryoo et al. (2020a)
and bidirectional connection Ryoo et al. (2020b); Feichtenhofer et al. (2019) for lateral connection to
model complex motion dynamics with I,P frames freely available in compressed videos.

5 CONCLUSION

We introduced an IMR network for compressed video recognition and two pretext tasks for self-
supervised learning of compressed video representation. Our work complements and extends existing
work on compressed video recognition by (1) proposing the first self-supervised training approach on
the compressed videos, and (2) proposing a three-stream 3D CNN architecture to encode compressed
videos while dynamically modeling interaction between I-frames and P-frames. We demonstrated that
our IMRNet outperforms state-of-the-art approaches for compressed videos in both fully-supervised
and self-supervised settings, and that our pretext tasks yield better performance in downstream tasks.
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A PMSP GROUND-TRUTH LABELS

We obtain the ground-truth labels for the pyramidal motion statistics prediction (PMSP) task directly
from motion vectors provided in compressed videos. Algorithm 1 shows a pseudo-code to compute
the labels at multiple spatio-temporal scales, r ∈ {(s, t)|s ∈ {[2× 2], [3× 3], [4× 4]}, t ∈ {1, 3, 5}}.

Algorithm 1: Self-supervision label for Pyramidal Motion Statistics Prediction
[1] Motion vectors {M0,1, ...,MT,K} with T GOPs each having K − 1 motion vectors Generate
dx, dy by convolving motion vectors with Prewitt operator, Gx, Gy t← 1 ;
. Set temporal scale t to 1 Y ← [] . Empty list for labels i = 0 2 n = 0 t− 1
sum_dx← sum(dx[n ∗K : (n+ T − t+ 1) ∗K])
sum_dy ← sum(dy[n ∗K : (n+ T − t+ 1) ∗K])
magnitude← cartToPolar(sum_dx, sum_dy)
magnitude[2×2] ← makeGrid(magnitude, spatial = 2)
magnitude[3×3] ← makeGrid(magnitude, spatial = 3)
magnitude[4×4] ← makeGrid(magnitude, spatial = 4)
y[2×2] ← argmaxq∈[1,··· ,22](magnitude[2×2]) y[3×3] ← argmaxq∈[1,··· ,32](magnitude[3×3])

y[4×4] ← argmaxq∈[1,··· ,42](magnitude[4×4]) Y ← Y ∪ [y[2×2], y[3×3], y[4×4]] t← t+ 2

PMSP labels, Y , at multiple scales {(s, t)|s ∈ {[2× 2], [3× 3], [4× 4]}, t ∈ {1, 3, 5}}

B PMSP LABEL VISUALIZATION

In Section 2.3 of the main paper, we motivated the design of our PMSP task by arguing that there is
an implicit videographer bias captured in videos in-the-wild that naturally reflects visual saliency:
Videos are purposely recorded to highlight important objects and their movements; therefore, regions
with the highest energy of motion – captured by our PMSP labels – can provide clues to learning
video representation that captures salient moving objects. We acknowledged that this is, of course, a
weak hypothesis (footnote 1 in the main paper). However, in this section we provide some convincing
empirical evidence.

Figures 5-12 are generated by visualizing regions with the highest energy of motion – i.e. , the PMSP
labels – at multiple spatio-temporal scales. It needs a bit of explanation on how to read the figures
as there is a lot going on. Each figure is organized into three rows; each row shows results with
multiple spatial regions at a particular temporal scale, t ∈ {1, 3, 5}. We color-code different spatial
scales: Red boxes are in a [2× 2] spatial scale, green boxes are in a [3× 3] spatial scale, and blue
boxes are in a [4× 4] spatial scale. Notice that all five I-frames in the top rows (t = 1) in each set
of results always contain identical regions. This is because, at the temporal scale t = 1 (meaning, a
temporal grid of size 1), we compute the regions with the highest motion energy over the entire video
(5 GOPs), hence the regions are identical across all I-frames in a video. Conversely, the bottom rows
(t = 5, a temporal grid of size 5) show the regions computed at each GOP, and hence the regions may
differ by every I-frame (recall that each GOP contains a single I-frame). The middle rows (t = 3)
show regions computed over 3 GOPs. We overlay the regions at the overlapping I-frames, e.g., the
third I-frame at t = 3 contains regions computed at all three grid locations spanning over the I-frame
indices [1,2,3], [2,3,4], and [3,4,5]. We order the figures at an increasing level of complexity, and
provide detailed analyses of the results in the captions of the figures.

The results in Figures 5-12 suggest that the most vibrant regions, as computed by our PMSP labels,
tend to overlap with semantically important regions, e.g., the most salient moving objects. Intuitively,
training our model to detect those regions encourages it to learn visual representations that capture
salient objects and motion. This allows our model to learn discriminative visual representation in a
self-supervised manner.
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t =
1

t =
3

t =
5

Figure 5: PMSP label visualization. The most vibrant regions, as highlighted by boxes of varying
sizes indicating different spatial scales ([2× 2], [3× 3], [4× 4]), all successfully capture the most
salient moving object (the hand with a eye brush) and its motion (applying eye makeup).

t =
1

t =
3

t =
5

Figure 6: PMSP label visualization. At t = 1, the most vibrant region is the punching bag, correctly
capturing the semantic category of the video (BoxingPunchingBag). As we get temporally finer, the
regions start to capture the boxer’s movement, e.g., the elongated green boxes in the third and the
fourth I-frames at t = 3.
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1

t =
3

t =
5

Figure 7: PMSP label visualization. This example highlights the benefit of formulating our task in
a spatially pyramidal manner. Notice the boxes at different spatial scales capture different moving
objects at varying sizes, i.e., green boxes ([3× 3]) capture the referee, blue boxes ([4× 4]) capture
the hands of the two sumo wrestlers, and red boxes ([2× 2]) capture the wrestlers’ legs.

t =
1

t =
3

t =
5

Figure 8: PMSP label visualization. This example highlights the benefit of formulating our task
in a temporally pyramidal manner. While the vibrant regions at t = 1 fail to capture the tumbling
gymnast, the vibrant regions at t = 3 and t = 5 successfully track her trajectory (especially the three
middle I-frames at t = 3). In general, different videos will contain moving objects at different speeds;
our pyramidal formulation allows us to capture a wide variety of moving objects at different speeds
via multiple temporal scales.
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t =
5

Figure 9: PMSP label visualization. Another example highlighting the benefit of our pyramidal
formulation. While some regions at t = 1 miss the toddler in swing (see the first and the fifth I-frames
in the first row), at t = 3 and t = 5 the boxes successfully track the toddler’s trajectory.

t =
1

t =
3

t =
5

Figure 10: PMSP label visualization. This example contains a dynamically moving object (a women
with a bow and an arrow) spanning across a large region in the frames, representing a challenging
situation. Notice the boxes at different spatial and temporal scales highlight different parts: at t = 1,
both the green ([3× 3]) and the red ([2× 2]) boxes capture the bow, which exhibits the sharpest edge
with motion (hence the highest motion energy in those spatial scales), while the blue boxes ([4× 4])
capture the arm that takes out an arrow. At t = 3 and t = 5, the regions start to capture different
parts, e.g., the woman, which exhibits dynamic motion only towards the end of the video.
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t =
1

t =
3

t =
5

Figure 11: PMSP label visualization. Another challenging example containing a small, dynamically
moving object (Surfing). At t = 1, all the boxes focus on the crushing waves on the bottom right
corner, which is on average the most vibrant region in this video. Things are not much better at t = 3;
the surfer is still too fast to capture, and thus the boxes fail to capture the surfer and instead highlight
crushing waves. At the finest temporal scale t = 5, the boxes begin to capture the surfer (see the first,
second and the fifth frames on the bottom).

t =
1

t =
3

t =
5

Figure 12: PMSP label visualization. This is a partial-failure example that shows boxes highlighting
game statistics during horse race TV broadcast (see the boxes at t = 1). The game statistics constantly
change frame-by-frame (e.g., time marks, rank, etc.), which caused those regions to exhibit on average
the highest energy of motion for the entire duration of the video. Learning representations that strictly
focus on those regions could lead to non-discriminative information (many sports videos show similar
game statistics on screen). Fortunately, the boxes begin to highlight the horse riders at a finer temporal
scale; see the green boxes ([3 × 3]) at t = 3 and t = 5. This, again, suggests that the pyramidal
formulation makes our PMSP task robust to a variety of challenging real-world scenarios.
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C PMSP PREDICTION RESULTS

Figure 13 and Figure 14 show side-by-side comparisons of the ground-truth PMSP labels and our
prediction results. We adopt the same visualization scheme used in the figures in Appendix B. Overall,
our prediction results are mostly identical to the ground-truth regions. When our prediction deviates
from the ground-truth, the predicted regions still tend to capture important moving objects, e.g.,
Figure 13 (a) captures different parts of the punching bag, Figure 14 (b) captures different parts of
the boxer, and Figure 14 (d) captures different arms of the swimmer.

t =
1

t =
3

t =
5

Ground-truth PMSP labels Prediction results

t =
1

t =
3

t =
5

t =
1

t =
3

t =
5

t =
1

t =
3

t =
5

(a)

(b)

(c)

(d)

Figure 13: PMSP prediction results. Overall, the predicted regions tend to highlight salient
moving objects (although sometimes different from the ground-truth). (a): BoxingPunchingBag, (b):
BaseballPitch, (c): Archery, (d): ThrowDiscus.

18



Published as a conference paper at ICLR 2021

t =
1

t =
3

t =
5

t =
1

t =
3

t =
5

t =
1

t =
3

t =
5

t =
1

t =
3

t =
5

Ground-truth PMSP labels Prediction results

(a)

(b)

(c)

(d)

Figure 14: PMSP prediction results. Overall, the predicted regions contain the salient moving
objects (although sometimes different from the ground-truth). (a): Biking, (b): BoxingPunchingBag,
(c): CricketShot, (d): FrontCrawl.
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D VIDEO-TO-VIDEO RETRIEVAL

To demonstrate the quality of video representations learned using our self-supervised learning
objectives (Section 2.3 in the main paper), we evaluate our method in the video-to-video retrieval
task. To do this, we measure the cosine similarity between a query video and all the other video
in a candidate set, and show the top-1 retrieved video. We compare ours to two baselines: 3D
Rotation Jing et al. (2018) is our IMRNet pretrained using the 3D rotation prediction task (we used
the IMRNet + Rotation pretrained model reported in Table 2 of our main paper), and ImageNet is a
ResNet152 fully-supervised with ImageNet ILSVRC-2012 Russakovsky et al. (2015). We visualize
the results in Figures 15-18 and analyze the results in the caption of each figure.
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Figure 15: Video-to-video retrieval result. Ours finds the most similar video to the query in terms
of both the appearance (a gymnast) and the motion (handspring). The 3D Rotation baseline captures
perhaps more similar appearance (a gymnast with the audience in the back) but less similar motion
(horizontal bar jump vs. handspring). The ImageNet baseline fails to capture both appearance and
motion (ImageNet does not contain a category relevant to floor gymnastics).
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Figure 16: Video-to-video retrieval result. Ours finds the most similar video to the query in terms
of both the appearance (swim stadium) and motion (swimming). The ImageNet baseline does capture
similar appearance (water), but fails to capture motion (swimming vs. surfing). The 3D Rotation
baseline shows little to no semantic similarity to the query video.
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Figure 17: Video-to-video retrieval result. Ours finds the most similar video to the query in terms
of both the appearance (scene layout) and the motion (pitching). The ImageNet baseline does capture
similar high-level semantics appearance-wise (baseball pitcher) but motion is relatively less similar
(different camera angle, no catcher and no hitter). The 3D Rotation baseline shows little to no
semantic similarity to the query video.
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Figure 18: Video-to-video retrieval result. All three retrieval results fail to find videos that belong to
the same semantic category as the query video (pole vault). However, ours finds a video that contains
similar appearance (running track) and similar motion (running and jumping). The ImageNet baseline
also captures similar appearance (javelin throw) but less similar motion (running at a substantially
slower pace). The 3D Rotation baseline shows little to no semantic similarity to the query video.
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E ARCHITECTURE DETAILS

Table 4 provides architecture details of our IMRNet. In our experiments, we used both 3D ResNet-18
and 3D ResNet-50 as the backbone; we provide the details of both models in the table. We also include
the details of our bidirectional dynamic connections, which include 3D convolutional/deconvolutional
layers that downsamples/upsamples the computed features along the temporal dimension. We
establish the connections after {conv1, res2, res3, res4} layers, each with different numbers of
channels.

Stage I Pathway M/R Pathway Output sizes T × S2

raw clip – – 60× 2242

data layer stride 12, 12 stride 2, 12
I: 5× 2242

M/R: 25× 2242

conv1
1× 72, 64
stride 1, 22

5× 72, 8
stride 1, 22

I: 5× 1122

M/R: 25× 1122

pool1
1× 32,max
stride 1, 22

5× 32,max
stride 1, 22

I: 5× 562

M/R: 25× 562

res2

(3D ResNet-18)[
1× 32, 64
1× 32, 64

]
×2

(3D ResNet-18)[
3× 32, 4
1× 32, 4

]
×2

I: 5× 562

M/R: 25× 562
(3D ResNet-50) 1× 12, 64
1× 32, 64
1× 12, 256

×3

(3D ResNet-50) 3× 12, 4
1× 32, 4
1× 12, 16

×3

res3

(3D ResNet-18)[
1× 32, 128
1× 32, 128

]
×2

(3D ResNet-18)[
3× 32, 8
1× 32, 8

]
×2

I: 5× 282

M/R: 25× 282
(3D ResNet-50)1× 12, 128
1× 32, 128
1× 12, 512

×4

(3D ResNet-50) 3× 12, 8
1× 32, 8
1× 12, 32

×4

res4

(3D ResNet-18)[
3× 32, 256
1× 32, 256

]
×2

(3D ResNet-18)[
3× 32, 16
1× 32, 16

]
×2

I: 5× 142

M/R: 25× 142
(3D ResNet-50) 3× 12, 256
1× 32, 256
1× 12, 1024

×6

(3D ResNet-50)3× 12, 16
1× 32, 16
1× 12, 64

×6

res5

(3D ResNet-18)[
3× 32, 512
1× 32, 512

]
×2

(3D ResNet-18)[
3× 32, 32
1× 32, 32

]
×2

I: 5× 72

M/R: 25× 72
(3D ResNet-50) 3× 12, 512
1× 32, 512
1× 12, 2048

×3

(3D ResNet-50) 3× 12, 32
1× 32, 32
1× 12, 128

×3

Stage conv1 res2 res3 res4

I to M/R 1× 52, 8
stride 5, 12

1× 52, 8
stride 5, 12

1× 52, 16
stride 5, 12

1× 52, 32
stride 5, 12

M/R to I 5× 72, 4
stride 5, 12

5× 72, 4
stride 5, 12

5× 72, 8
stride 5, 12

5× 72, 16
stride 5, 12

Table 4: IMRNet architecture details. We show two versions of IMRNet with different backbones:
3D ResNet-18 and 3D ResNet-50. We denote the input dimensions by {temporal size, spatial size2},
kernels by {temporal size, spatial size2, channel size} and strides by {temporal stride, spatial stride2}.
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