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Fig. 1: Our proposed model can realize real-time zero-shot motion generation over various terrains by using composite and
ever-changing text prompts. Further elaboration can be found in the supplementary video.

Abstract—Real-time motion generation has garnered signif-
icant attention within the fields of computer animation and
gaming. Existing methods typically realize motion control via
isolated style or content labels, resulting in short, simply motion
clips. In this paper, we propose a motion generation framework,
called SPORT (“from zero-Shot Prompt tO Real-Time motion
generation”), for generating real-time and ever-changing motions
using zero-shot prompts. SPORT consists of three primary com-
ponents: (1) a body-part phase autoencoder that ensures smooth
transitions between diverse motions; (2) a body-part content
encoder that mitigates semantic gap between texts and motions;
(3) a diffusion-based decoder that accelerates the denoising
process while enhancing the diversity and realism of motions.
Moreover, we develop a prototype for real-time application in
Unity, demonstrating that our approach effectively considering
the semantic gap caused by abstract style texts and rapidly chang-
ing terrains. Through qualitative and quantitative comparisons,
we show that SPORT outperforms other approaches in terms of
motion quality, style diversity and inference speed.

Index Terms—Character animation, motion generation, diffu-
sion models, contrastive learning, GPT-3.

I. INTRODUCTION

CREATING real-time VR/AR human-like avatars is a hot
research topic and has many applications in the field

of computer animation and games. Recently, deep neural
networks have become an attractive option to tackle this
challenge. Utilizing the Mixture of Expert (MoE) architecture,
several works, such as PFNN [1], MANN [2] and MVAE [3],
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have achieved notable success in learning motion periodicity,
a crucial aspect for online generation of high-quality motions.
However, these methods fall short in providing adequate
control over motion content and style.

To incorporate style control into real-time motion synthesis,
some methods [4], [5] retain phase networks to capture fun-
damental locomotion characteristics and further accomplish
motion stylization on a frame-by-frame basis by employing
residual connections. Nonetheless, it’s worth noting that the
complexity of the residual module is closely related to the
quantity of style types, and it may struggle when dealing with
an excessive number of style variations. Later, Mason et al.
[6] propose a framework based on local phase network (LPN)
[7], aiming to model 100 distinct performative styles using a
feature-wise linear modulation (FiLM). This kind of example-
based systems generate stylized motions by imitating provided
motion clips. While effective for the styles included in the
training dataset, these approaches lack a precise definition of
motion content and style, and fail to facilitate the learning
of disentangled style features. Consequently, these limitations
hamper their ability to generalize to unseen styles.

Recently, numerous studies explore the zero-shot generation
of motions from textual prompts using diffusion-based meth-
ods [8]–[11]. Their generation processes are conditioned on the
semantic embeddings extracted from Contrastive-Language-
Image-Pretraining (CLIP) model [12] or Large Language Mod-
els (LLM) [13]. In contrast to the aforementioned approaches,
which directly utilize text embeddings from CLIP or LLMs, al-
ternative methods such as GestureDiffuCLIP [14], TMR [15],
and HumanTOMATO [16] pre-train a text encoder and a mo-
tion encoder in a contrastive manner [12]. They explicitly learn
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text-motion aligned priors, resulting in a more motion-aware
text embedding for driving motion generation. Despite their
advancements, these methods face challenges in three aspects:
(1) whole-body text-motion alignment remains difficult due to
huge semantic gap; (2) the seq2seq architecture struggles to
ensure seamless transition between different prompts without
a large-scale cross-modal dataset; (3) the inference of diffusion
model is computationally expensive, requiring iterations over
thousands of timesteps to generate high-quality samples [17].

To address the semantic gap caused by the ambiguity in
abstract descriptions (e.g. style text labels), we propose a
fine-grained text-motion alignment using a novel body-part
contrastive learning strategy. First, we employ GPT-3 [18] to
extract body-part motion content descriptions from the abstract
prompt. These descriptions are then converted into CLIP rep-
resentations, which are aligned with the corresponding body-
part motions via a contrastive objective. This strategy offers
two advantages: (1) body-part descriptions are fundamental
and concrete, making them easier to be aligned with motions;
(2) GPT-3 can flexibly combine learned body-part descriptions
based on user input prompts, enabling the generation of a
diverse range of zero-shot content-specific motions, as well
as more abstract stylistic movements. Additionally, given the
limitations of text-based approaches in responding promptly
to high-frequency, aperiodic motions on complex terrains, we
also integrate terrain geometry to enhance terrain-adaptive
motion generation.

Unlike the previous work [19], which employs a sequence-
level framework for direct temporal-domain motion transi-
tions, our model encodes motion sequences into a phase
embedding space composed of finite channels. This encoding
constructs decoupled motion embeddings by using motion’s
inherent periodicity, wherein smooth transitions are achieved
by linear interpolation of motion embeddings corresponding
to different actions. Therefore, our framework eliminates the
need for large datasets with numerous transition motions and
paired lengthy text descriptions, as required by [19]. The core
of this framework lies in leveraging phase variables, a strategy
shown to improve movement synchronization over time [1],
[7], [20]. Recently, Starke et al. introduce the Periodic Au-
toencoder (PAE) [21] to learn the non-linear periodicity from
large unstructured datasets in an unsupervised manner. In this
paper, we propose the Body-Part Periodic Autoencoder (BP-
PAE) to learn body-part local periodicity, ensuring coherent
and plausible motion transitions while implementing specified
body-part motion control.

To balance inference efficiency with high-quality sampling,
we propose a novel diffusion-based framework. Our method
enables real-time denoising in five inference steps by employ-
ing a compact neural network for noise prediction at each step.
Additionally, we draw on Analytic-DPM [22] to analytically
estimate variance per step, ensuring superior motion quality.

To this end, we propose SPORT, a method for real-time
ever-changing motion generation. The architecture of SPORT
comprises four key components: MoE-based motion encoder,
body part-based text content encoder, recursive MoE-based
content modulator and a diffusion-based motion decoder. The
motion encoder, comprising a MoE model, is employed to

encode motions into a non-linear phase embedding space.
Simultaneously, a body part-based text content encoder is
trained to extract content embeddings aligned with motion se-
quences using contrastive learning. These content embeddings
then modify means and variances of the motion embeddings
via adaptive instance normalization (AdaIN) layers [14], [23],
[24] in a recursive MoE module. Finally, the modified motion
embeddings are fed into the diffusion-based motion decoder,
guiding the generation of probabilistic motions within only
five inference steps.

In summary, contributions of our work are fourfold:
• We propose a prompt-conditioned framework for real-

time motion generation, which is capable of generating
ever-changing motions using zero-shot prompts.

• We develop a body-part contrastive learning strategy to
bridge the semantic gap between texts and motions.

• We propose BP-PAE, an unsupervised method for learn-
ing body-part local periodicity, which improves seamless
transitions between different motion types.

• We propose a diffusion model in the phase embedding
space that optimally balances inference efficiency with
the quality of the generated motions.

II. RELATED WORK

A. Data-driven Motion Generation

Motion generation is a booming research area and has
important application in VR/AR scenarios. The development
of deep neural networks have opened up a new paradigm
for the synthesis of motion conditioned on input frames.
These approaches can be categorised into deterministic and
probabilistic methods. For deterministic methods, Holden et
al. [1] propose PFNN, a pioneering real-time framework that
integrates phase-related features as parameters to synchronize
locomotion with the timeline. After that, the concept of phase
has been incorporated into MoEs scheme to tackle more
intricate tasks like character-scene interactions [20] and multi-
contact character movement [7]. However, deterministically
predicted motions usually regress to the mean pose, which
ignores diverse details of the motion.

In contrast to deterministic methods, probabilistic generative
methods aim to describe a range of possible motions, which
shows promise in preventing collapsing on a mean pose.
Many GAN-related works have been implemented for motion-
related tasks. For instance, Wang et al. [25] combine recurrent
neural networks and adversarial training for motion modeling.
Lee et al. [26] introduce a music-to-movement GAN (MM-
GAN) designed to synthesize dance from music inputs. Li
et al. [27] present GANimator, a generative model capable of
synthesizing novel motions from a single, short motion clip. A
different kind of generative model, known as normalizing flow,
has also gained recent interest. Alexanderson et al. [28] utilize
a flow-based model to generate attribute-controllable gesture
animations. Ji et al. [29] propose FlowSMM to establish
invertible transformations between motions and style latent
codes. Nonetheless, it’s worth noting that the computational
demands of the methods based on both GANs and normalizing
flows can be prohibitively high, making them unsuitable for
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real-time animation systems. On the other hand, another VAE-
architecture, MVAE [3] can address generation speed and
motion quality simultaneously. Notably, there exists substantial
evidence [30]–[32] indicating that VAE-based approaches face
challenges in accurately capturing and representing diverse
motion distributions, particularly in tightly-constrained tasks
involving various styles or varying terrains.

Lately, diffusion models have attracted substantial interest
within the realm of motion generation. Pioneering efforts such
as MotionDiffuse [11] and MDM [9] focus on generating mo-
tions aligned with textual prompts using diffusion models. On
one hand, some recent works attempt to enhance the model’s
capability to learn motion representations. For instance, MLD
[10] employs a diffusion process on the motion latent space,
aiming to acquire a representative and low-dimensional latent
code for human motion. In contrast, TEDi [33] adapts diffu-
sion to the temporal-axis of motion. Both methods face chal-
lenges when confronted with lengthy and constantly changing
prompts. To tackle this issues, AMD [19] adopts a sequence-
level autoregressive generation, enabling a seamless transition
between different motion segments. However, this method
relies on a large dataset that pairs long textual prompts with
complex motions and is unsuitable for real-time applications
due to its sequence-to-sequence generation strategy. On the
other hand, some works focus on enhancing motion generation
efficiency. EMDM [34] introduces a condition denoising diffu-
sion GAN that models the complex denoising distribution and
allows for a larger sampling step size. Nevertheless, EMDM
is limited to sequence-level generation tasks. Additionally,
certain endeavors [22], [35] focus on theoretically minimizing
the number of iterative steps required for diffusion model
inference, a strategy proven successful in image generation.
In this work, to obtain the trade-off between quality and
efficiency, we propose a autoregressive diffusion model within
the latent phase manifold. For efficiency, we convert the
diffusion model’s input from a long time-series format to a
compact phase-domain channel sequence. Additionally, our
model reduces the denoising process to only five inference
steps. To preserve generation quality, we draw inspiration from
Analytic-DPM [22], employing analytical estimation of the
optimal reverse variance at each inference step.

B. Style Transfer and Content Manipulation

Style transfer have been applied successfully in fields of
image [23], talking face and human motion [24]. Early in-
vestigations use handcrafted features [36], [37] to establish
a correspondence between content and style. Given the elu-
sive nature of the term “style”, contemporary methods have
focused on learning style features through statistical learning
techniques like linear time-invariant model [38], conditional
restricted boltzmann machine [39] and mixtures of autoregres-
sive models [40]. However, these methods require the prior
specification of motion content, involving a laborious data
collection process where actors must replicate the same motion
content across different styles while adhering to identical steps.

Then, the emergence of deep learning has significantly
advanced the task of style transfer. Holden et al. [41] propose

a convolution autoencoder to encode motion styles into the
Gram matrix [42] of hidden layers. Du et al. [43] improve the
method by replacing the optimization procedure with a neural
network. However, these methods are limited in their ability
to learn a diverse range of style representations. Recently,
inspired by Adaptive Instance Normalization (AdaIN) [23],
Aberman et al. [24] disentangle style features from motion
clips and inject them into the generation process with a
temporally invariant AdaIN. Although this method can be
generalized to unseen styles, the limited style features it learns
may cause generated results to be overfitted to existing styles.

To realize real-time style transfer, some works [4], [5]
design residual connections for style feature capture. How-
ever, these methods face limitations due to their single-style
encoding capacity per residual branch, resulting in increased
model complexity when scaling to multiple style categories.
In contrast, Mason et al. propose a style modulation network
[6] that employs feature-wise linear modulation (FiLM) [44]
to effectively learn compact representations for up to 100
motion styles. However, the coupled nature of the learned style
features presents challenges for generalization to unseen styles.

Recently, to achieve flexible manipulation of motion content
using text prompts, methods like GestureDiffuCLIP [14] and
TMR [15] align motion with textual descriptions explicitly.
While GestureDiffuCLIP demonstrates promising capabilities
in zero-shot style control of gestures, it exhibits two limita-
tions: (1) it lacks a clear definition of motion content and style;
(2) it directly partitions the full-body motion into several body
parts, ignoring the connection between body part and global
motion characteristics. To address these limitations, we define
“motion content” as the fundamental movements of individ-
ual body parts and characterize “motion style” as high-level
combinations of these basic movements. We then propose a
contrastive learning strategy to align body-part motion content
with textual descriptions in an embedding space. Both joint-
wise and global transformed features are integrated into these
embeddings. Subsequently, we employ GPT-3 to translate the
abstract style prompts into specific body-part descriptions,
employing the aligned content embeddings to generate the
final stylized motion.

III. METHODOLOGY

As illustrated in Fig.2, we introduce our solution for real-
time motion generation. Our system consists of four primary
components. To manipulate motion content in a phase mani-
fold, we employ a motion encoder based on MoE architecture
to learn motion embeddings. Simultaneously, a body part-
based content encoder is employed to extract text content
embeddings aligned with motions at body part level. Following
this, extracted content embeddings are fed into a recursive
MoE-based content modulator to modify the motion embed-
ding. This adaptation is achieved by using AdaIN layers within
the phase manifold. Finally, the modified motion embedding
is fed into the diffusion-based motion decoder to produce a
probabilistic and realistic animation.

Our model operates in a frame-level autoregressive manner,
where the generated output from the previous frame serves as
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Fig. 2: The framework of SPORT. Our method consists of four components: (a) a motion encoder responsible for extracting
the phasic motion embedding from the input variable; (b) a content encoder that utilizes GPT-3 guidance and pretrained text
encoder to derive content embeddings aligned with textual descriptions at body part level; (c) a content modulator that integrates
content embeddings into motion embeddings using AdaIN layers within the phase manifold; (d) a motion decoder that generates
probabilistic and realistic results through a short denoising process. The whole system operates in an autoregressive fashion.

input for the motion encoder in the subsequent iteration. In
the following sections, we will provide more details about the
system’s components and their training process.

A. Motion Representation

Our system’s data formats closely resemble those of PFNN
[1], comprising four components: character state, environmen-
tal information, phase variables and user control signals.

For frame i, the character state is represented by positions
jpi ∈ R3J and velocities jvi ∈ R3J for J body joints, along
with the root transformation di∈R3 (containing root velocity
(rxi ,r

z
i ) ∈ R2 in the horizontal XZ-plane and the angular

velocity rai around the Y-axis direction) and one-hot gait
vectors gi ∈R6L that indicate the character’s gait type (e.g.,
standing, walking, jogging, crouching, jumping and other).
Here, L = 12 refers to a time window centered at frame i,
capturing motion states from past and future every 10 frames.

Environmental information includes terrain heights hi ∈
R3L around the trajectory, which are measured at three po-
sitions (left, right, and center) spaced 25 cm apart. It also
features foot contact labels ci ∈ R4, which indicate whether
each heel and toe joint is in contact with the ground.

Input phase variable pi−1 ∈ R2×C×(L+1) contains phase
encodings from C=5 channels across the entire time window.
In contrast, output phase variables pi ∈ R2×C×(0.5L+1) only
contains the future one-second time window. Both pi and
pi−1 are obtained through a pre-trained BP-PAE, with further
details provided in the following sections.

For user control signals, trajectory positions tpi ∈R2L and
directions tdi ∈ R2L represent the user-controlled trajectory
across the entire time window, projected onto the horizon X-Z
plane. In contrast, the predicted trajectory variable tpi+1∈RL

and tdi+1 ∈ RL focus solely on the future half. Notably,
all trajectory and body joint transformations are calculated
relative to the root trajectory transformation.

Finally, the input variable for a single frame i is defined
as xi = {tpi , tdi ,hi, j

p
i−1, j

v
i−1, gi,pi−1} ∈ R472, while the

complete parameterization of the output variable for frame i
is given by yi={tpi+1, t

d
i+1, j

p
i , j

v
i ,di, ci,pi}∈R287.

B. Motion Encoder
As is shown in Fig. 2, the motion encoder is composed

of a 2-layer MoE network Em and a gating network Ep
g .

According to [1], [2], the motion transition distribution ex-
hibits multimodality, and the majority of its characteristics can
be effectively represented by a set of time-varying principal
component features. Considering a single network is prone to
regress towards the average feature, Em learns eight principle
embedding components {Wk}8k=1 ∈R8×1024 of the motion’s
non-linear periodicity with eight branches of neural network
experts. These component vectors are collectively utilized
to reconstruct the motion embeddings, denoted as W =∑8

k=1 αkWk ∈R1024, where the phase blending coefficients
{αk}8k=1∈R8 are computed by the gating network Ep

g .
Ep
g takes as input the phase variable pi−1, which is de-

rived from a pretrained Body Part Periodic Autoencoder (BP-
PAE). Starke et al. [21] were the first to introduce periodic
autoencoders (PAEs), allowing motion to be clustered on
a continuous multi-dimensional phase manifold. Given the
velocity sequence Jv

i ∈RT ×3J centered at jvi , PAE encodes
Jv
i into lower-dimensional phase channels, denoted as Li =
Epae(J

v
i ) ∈ RT ×C , where the time window T 1s

−1s = 121
and C represents the number of phase channels. Li is then
parameterized by several sinusoidal functions, characterized
by amplitude ai∈R5, frequency fi∈R5, offset bi∈R5, and
phase shift si∈R5. Finally, each phase encoding Pi ∈ R5×2

at frame i is represented as:

P2j−1
i = aj

i · sin(2π · sji), P2j
i = aj

i · cos(2π · sji), (1)

where j is the channel index. To enhance the temporal align-
ment of movements, the final phase variable pi contains phase
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Fig. 3: The training process of BP-PAE. The process in-
volves: a periodic encoder, a periodic parameterization process
and a periodic decoder. To learn nonlinear periodic features at
both the body-part and whole-body levels, the periodic encoder
applies two-hop graph convolution. In the illustration, we take
the left hip joint as an example. Its adjacent joints in two hops
include joints within the body part (left knee and left ankle)
and joints around hip (right hip, spine, and hip).

encodings sampled every 10 frames over the time window
T 1s
−1s as pi = {Pi−60, ...,Pi−10,Pi,Pi+10, ...,Pi+60}.
Since PAE learns full-body periodic features in an unsuper-

vised manner, it struggles to capture local periodicity, which
is crucial for maintaining the consistency of other body parts
when modifying specific body-part action. To address this, we
introduce the Body Part Periodic Autoencoder (BP-PAE) to in-
corporate body-part periodicity into the unsupervised learning
process. We achieve this by utilizing graph convolution within
two-hop joint neighborhoods to encode each joint and its
correlation with other inner-part joints into a learnable token.
This produces a feature sequence Jf

i =Egraph(J
v
i )∈RT ×J×3,

which is subsequently processed by Epae(·) as described ear-
lier. Due to the articulated topology of the human skeleton, the
correlation features learned in the two-hop joint neighborhood
only involve joints in the same body part (body part features)
or extra spinal joints (global transformation features). As a
result, BP-PAE enables the learning of nonlinear periodic
features at both the body-part and whole-body levels.

C. Content Encoder

Our goal is to establish a joint embedding space for text
prompts and motion, forming the foundation for text-driven
motion control. Current methods [8], [14], [15] suffer from
a notable semantic gap between textual representations and
corresponding movements. This disparity stems from two
factors: (1) the complexity in describing quickly changing
movements, (e.g., interactive actions on complex terrain); (2)
the ambiguity in abstract descriptions.

To address the first challenge, we incorporate terrain topol-
ogy information hi into the input variable xi. To further
resolve the textual ambiguity, we employ a multi-faceted
approach: initially, we leverage GPT-3 to convert the abstract
prompt into more concise and precise body-part content de-
scriptions. Subsequently, we introduce a body-part contrastive
learning strategy to achieve fine-grained text-motion align-
ment. Additionally, We train an additional motion sequence

decoder to make body-part content embeddings more conduc-
tive to whole-body motion generations. Notably, we opt for
contrastive learning in the temporal domain rather than in the
phase manifold. In the temporal domain, segmenting the entire
body into distinct body parts is straightforward. Conversely, in
the phase manifold, unsupervised learning of periodicity lacks
a clear definition of body parts, making text-motion alignment
at the body-part level challenging.

As is shown in Fig. 4, the training of text-motion alignment
occurs at the body-part level. Following TEMOS [45], we
apply a transformer-based VAE encoder-decoder architecture.
Our proposed motion sequence encoder is composed of a
Joint Transformer Encoder EJ and a Temporal Transformer
Encoder ET , designed to capture the hierarchical spatio-
temporal structure of the motion sequence. Within EJ , we
incorporate a novel body part-aware attention mechanism that
aggregates inner-part joints’ features and global motion fea-
tures into each body part’s learnable token with 64 dimensions.
Subsequently, the body part embeddings of length T, denoted
as ZJ

1:T ∈ RT×6×64, are fed into ET to integrate each body
part’s temporal features into their respective VAE distribution
parameter tokens {µp

i +Σp
i }5i=0∈R2×6×64 isolately.

Simultaneously, we train a text encoder to map the abstract
prompt into a shared VAE parameter embedding space. In-
spired by SINC [46], we initially employ GPT-3 to convert
the abstract prompt into body-part content description. How-
ever, unlike SINC, our approach instruct GPT-3 to describe
the content of all six body parts (left arm, right arm, left
leg, right leg, torso and head), rather than restricting it to
specific parts associated with the target content. This process
is accomplished through a structured prompt comprising two
components: (a) Prompt Specification, which provides GPT-
3 with lists of body joints, verbs, adverbs and adjectives
for use in characterizing movement or positioning, and (b)
Question-Answer Examples, which guide GPT-3 in generating
descriptive contents. Questions are formatted as “Describe the
< style/action > into six body parts with provided lists of
body joints, verbs, adverbs and adjectives”, and the answers
furnish detailed descriptions involving six body parts and rele-
vant verbs/adverbs/adjectives. After providing some question-
answer examples, GPT-3 autonomously extracts descriptive
texts from the input abstract prompt. We then take the CLIP
text embeddings of these descriptions {zc

i }5i=0 ∈ R6×512 as
the language prior and translate them into body-part VAE
parameters {µt

i +Σt
i}5i=0∈ R2×6×64 via a body-part MLP.

Subsequent to the operation of vector concatenation, we
can obtain µp + Σp ∈ R2×384 and µt + Σt ∈ R2×384,
which represent the VAE parameters for body-part motion
sequences and textual descriptions, respectively. To improve
the alignment, we train these encoders via an InfoNCE-based
contrastive loss [15]. Given Nb pairs of VAE parameters
(µp

0 + Σp
0, µ

t
0 + Σt

0), ..., (µ
p
Nb−1 + Σp

Nb−1, µ
t
Nb−1 + Σt

Nb−1),
the objective during training is to maximize the similarity of
the parameters within the same pair (µp

i + Σp
i , µ

t
i + Σt

i) and
simultaneously maximize the differences between parameters
from different pairs (µp

i+Σ
p
i , µ

t
j+Σ

t
j)i ̸=j . The contrastive loss
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Fig. 4: The training process of the text-motion joint embedding space. Initially, a joint transformer encoder is utilized to
transform a motion sequence p1:T into body part embeddings ZJ

1:T , which are then aggregated into sequence VAE parameters
{µp

i +Σp
i }5i=0 for 6 body parts via a temporal transformer encoder. Concurrently, after the steps of GPT-guidance and CLIP-

based text encoding, a body part MLP is trained to extract textual VAE parameters {µt
i+Σt

i}5i=0 for 6 body parts. The training
of these encoders involves a explicit supervision for aligning text and motion through a contrastive loss as well as a implicit
supervision for the generated motions derived from the joint content embedding space using a reconstruction loss.

can be defined as:

Lcon=− 1

2Nb

∑
i

(log
exp(Sii/τ)∑
j exp(Sij/τ)

+log
exp(Sii/τ)∑
j exp(Sji/τ)

),

(2)
where Sij = cos(µp

i + Σp
i , µ

t
j + Σt

j) computes the pairwise
cosine similarities and τ is the temperature hyperparameter.

Moreover, we implicitly conduct text-motion alignment
supervision by sampling sequence embedding Zp ∈ R384

and text content embedding Zt ∈ R384 from the VAE latent
distributions N (µp,Σp) and N (µt,Σt), and feed them into a
transformer-based motion sequence decoder Ds to reconstruct
the motion sequence p̂1:T . The reconstruction loss is defined
as:

Lrecon=L1(p1:T , p
p
1:T ) + L1(p1:T , p

t
1:T ), (3)

where L1 denotes the smooth L1 Loss, pp1:T and pt1:T respec-
tively refer to the reconstructed motion sequences originating
from distributions N (µp,Σp) and N (µt,Σt).

D. Content Modulator

In the content modulator, we propose a recursive MoE to
constructs a content sub-space within the phase embedding
space. Specifically, in Fig. 2, recursive MoE operates in two
recursive steps. In the inner step, we create a Cont MoE
Es
k within k-th expert branch to learn content components

{skj }8j=1 ∈ R8×2048, derived from the fusion of motion
embedding W and text content embedding Zt. The assump-
tion is made that dynamic blending of content components
suffices to represent the motion content feature of k-th expert
branch. Utilizing a uniform set of content blending coefficients
{βj}8j=1∈R8 across all experts, the motion content feature of
k-th expert branch, denoted as sk =

∑8
j=1 βjs

k
j ∈ R2048, is

extracted, where {βj}8j=1 ∈R8 are computed by the content
gating network Es

g (·), which takes Zt as input. This approach
allows us to encode all content characteristics within the phase

manifold using only eight Cont MoEs, denoted as {Es
k}8k=1.

In the outer step, k-th expert initially modifies the mean and
variance of the original motion embedding W via an AdaIN
layer, producing the modified motion embedding Ek ∈R1024

of k-th expert. The full-body modified motion embedding
is then obtained by blending {Ek}8k=1 ∈ R8×1024 with
the phase blending coefficients {αk}8k=1 ∈ R8, denoted as
E =

∑8
k=1 αkEk ∈ R1024.

E. Motion Decoder

In this section, we introduce a diffusion model to generate
the output variable yi. Unlike previous work, we apply a
frame-level diffusion process conditioned on the modified full-
body motion embedding E to compute the modified motion
code Zc

0 = {ck0}8k=1∈R8×287 across only eight compact phase
channels, rather than over a longer time sequence. Formally,
the motion decoder computes:

Zc
0 = G(E, Zc

N ), (4)

where Zc
N ∼ N (0, I) is the input Gaussian noise. Finally, the

output variable yi is a linear combination of these modified
motion codes, denoted as yi=

∑8
k=1 αkc

k
0 .

Diffusion models begin with a forward process q(Zc
1:N |Zc

0)
to introduce noise into the motion code distribution q(Zc

0)
and then reverse the forward process to recover it. Since the
forward process involves N steps, the reverse process also
follows a sampling procedure of N steps. Recently, DDIM
[47] accelerates the reverse process to within dim(τ) steps:

qλ(Z
c
τn−1

|Zc
τn) ≈ qλ(Z

c
τn−1

|Zc
τn , Z

c
0 = µ̂θ(Z

c
τn , τn))

=N (Zc
τn−1

|
√

ᾱτn−1√
ᾱτn

(
Zc
τn−

(√
β̄τn−

√
ᾱτn−1√
ᾱτn

√
β̄τn−1

− λ2τn

)
·ϵθ, λ2τnI

)
,

(5)

µ̂θ(Z
c
τn , τn) =

1
√
ᾱτn

(Zc
τn −

√
β̄τnϵθ(Z

c
τn , τn)), (6)
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Fig. 5: (Left) The generative process of the diffusion model. The accelerated generation progress starts with a sub-sequences
of [1, ..., N ], denoted as τ = [τ1, τ2, ..., τdim(τ)]. The initial iteration step involves the following key actions: (a) sampling the
random noise Zc

τdim(τ)
; (b) utilizing the prediction Neural Network µ̂θ to estimate Ẑc

0 conditioned on: the noise Zc
τdim(τ)

, the
modified motion embedding E and the index of step τdim(τ); (c) obtaining the state of next step Zc

τdim(τ)−1
, following the

Eq. 5. By repeating these iterative steps dim(τ) times, we can finally obtain the final Zc
0 . (Right) The architecture of the

prediction neural network. The model has two kinds of components: (a) a feedforward network that handles multimodal inputs;
(b) residual block designed to deals with serial and spatial information, utilizing 1D convolution and FC layers, respectively.

where αn and βn are scalars, with αn = 1− βn, αn =∏n
i=1 αi and αn = 1− βn. I is the identity matrix. Zc

N

tends to an isotropic Gaussian distribution when N −→ ∞.
τ = [τ1, τ2, ..., τdim(τ)] is a sub-sequence of [1, ..., N ]. λ =
(λ1, · · · , λN ) ∈ RN

≥0 represents a set of unspecified non-
negative coefficients. ϵθ(Zc

τn , τn) is a function approximator
intended to predict noise from Zc

τn and step index τn.
While reducing the iteration count in the reverse process

can significantly improve computational efficiency, it often
compromises the quality of generated results. To maintain
comparable performance while accelerating the reverse pro-
cess, we adopt the optimal reverse variance proposed by
[22] to replace the covariance term λ2τnI in Eq. 5 with

(λ2τn+(
√
ατn−1−

√
ατnκτn)

2σ̄2
τn)I, where κτn =

√
βτn−1

−λ2
τn√

βτn

,

σ̄2
τn can be estimated using the Monte Carlo method: σ̄2

τn =
β̄τn

ᾱτn

(
1− 1

dEZc
τn

∼q(Zc
τn

)

[
∥ϵθ∥2

])
, d is the dimension of Zc

τn .
In our approach, we use a diffusion model to generate the

modified motion content code Zc conditioned on the modified
motion embedding E. Consequently, the above reverse step
qλ(Z

c
τn−1

|Zc
τn) takes a conditional form: qλ(Zc

τn−1
|Zc

τn ,E).
The details of the generative process are shown in Fig. 5.

Following [48], we propose a neural network to directly pre-
dict µ̂θ(Z

c
τn , τn,E) rather than the noise term ϵθ(Z

c
τn , τn,E).

ϵθ(Z
c
n, n,E) can be achieved in reverse as detailed in Eq. 6.

Our design for µ̂θ(·) follows two principles: (1) it should be
lightweight for real-time operation; (2) it should be compatible
with ONNX format for Unity integration. As a result, µ̂θ(·)
is built using common operations such as 1D Convolution
(Conv1d) layers, Fully Connected (FC) layers, Layer Normal-
ization (LN) and Sigmoid Linear Unit (SiLU) functions.

As depicted in Fig. 5, µ̂θ(·) comprises two main modules:

a feedforward network (FFN) and residual blocks. The FFN
functions as an encoder, hierarchically fusing the multimodal
inputs (Zc

τn ,E, τn). First, FC layers project Zc
τn and E into

high-dimensional feature spaces independently. Then, E is
expanded to a length of 8, allowing it to be concatenated
with Zc

τn and ensuring that each expert component of Zc
τn

effectively incorporates motion features during the denoising
process. To provide the residual blocks with iteration or-
der information, the FFN also transforms τn into positional
embeddings. Each residual block contains a Conv1d layer
and a FC layer, responsible for extracting serial and spatial
information from Zc

0 . To avoid vanishing gradient problem,
skip-connections are employed, as detailed in [49].

F. Losses

The training process of SPORT primarily comprises three
distinct stages. In the first stage, we only train the content en-
coder via a body-part contrastive learning strategy mentioned
in Sec. III-C. In addition to Lcon and Lrecon, inspired by
TEMOS [45], we further supervise the VAE architecture by
leverage a Kullback-leibler (KL) divergence loss LKL and an
embedding similarity loss Lemb. Specifically,

Lstage1=Lrecon+λconLcon+λKLLKL+λembLemb, (7)

LKL=KL(ϕ
t,ϕp)+KL(ϕp,ϕt)+KL(ϕt,ψ)+KL(ϕp,ψ), (8)

Lemb=L1(Z
p,Zt), (9)

where ϕt = N (µt,Σt), ϕp = N (µp,Σp), ψ = N (0, I).
Due to the challenges of joint training, in the second stage,

we replace the diffusion-based motion decoder with a 1-layer
MoE-based decoder Ed to train all modules except the motion
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decoder and pretrained content encoder. The loss function for
this stage combines reconstruction and contact losses:

Lstage2 = Lrec + Lcontact, (10)

Lrec = Lmse(Mi,M̂i), (11)

Lcontact = Lmse(ci, δ(f̂
2
v )), (12)

δ(f̂2v ) =

{
1, f̂2v ≤ 0.02,

0, f̂2v > 0.02.
(13)

where Mi={tpi+1, t
d
i+1, j

p
i , j

v
i ,di,pi} contains information

regarding trajectory, joints, displacement and phase, while M̂i

denotes predicted results from SPORT. Lmse is the standard
MSE loss, f̂v∈R4 refers to predicted foot velocities (left/right
ankle/feet) derived from (ĵpi−1, ĵ

p
i ).

In the third stage, we initially train the µ̂(·) of motion
decoder using the following loss function:

Lstage3 = Lmse(Z
c, Ẑc), (14)

where Zc is the output from the pretrained Ed and Ẑc is
generated by the motion decoder. After 10 epochs, we apply
additional Lstage2 supervision to refine µ̂(·).

G. Implementation Details

We configure EJ with 1 transformer layer, 1 heads, a
dropout rate of 0.1 and a feedforward dimension of 256. For
both ET and DS , we use 6 transformer layers, 4 attention
heads, a dropout rate of 0.1 and a feedforward dimension
of 1024. In the latent diffusion model, the forward process
consists of N = 1000 steps, with the non-negative coefficient
computed as λn = β̄n−1

β̄n
βn. The reverse process has been

accelerated to dim(τ)=5 iterative steps, and µ̂(·) employs 12
residual blocks. During training, we set the sequence length
T to 40 and the batch size to 1024. The loss weights are
configured as follows: λcon to 1e−2, while λemb and λKL

were set to 1e−5. We employ a dropout rate of 0.3 with the
initial learning rate and weight decay both set to 1e−4. In
the first training stage, we use the AdamW optimizer with the
fixed learning rate. In the second stage, following [21], we
employ the AdamWR optimizer with cosine annealing warm-
restart scheduling, configuring the iterations to 10 and the
restart factor to 2.0. In the final training stage, we revert to
the AdamW optimizer, starting with a learning rate of 4e−4
and reducing it to 1e−5 after 373,500 steps. Our model is
implemented using PyTorch. We further develop an ONNX
version suitable for execution in Unity.

IV. EXPERIMENT AND EVALUATION

A. Datasets

To evaluate SPORT’s ability to address the semantic gap in
long-term motion generation, we conduct experiments using
mixed batches of stylized and terrain-fitting datasets. The first
dataset, 100STYLE [6], consists of 100 styles of locomotion
performed on flat terrain. The second dataset, a terrain-
fitting dataset [1], covers fundamental motion scenarios (e.g.,
walking, jogging, crouching, jumping, beam balancing and
climbing) across various terrains. To ensure compatibility with

(a) (b) (c)

Fig. 6: The comparison of motion embedding spaces.
Components obtained from PFNN (a), PAE (b) and BP-PAE
(c) are assessed within the 2D embedding space via t-SNE.
The latent space of PFNN exhibits two distinct regions where
feature coupling is evident. In contrast, the motion embed-
dings derived from both PAE and BP-PAE display a more
pronounced clustering with a noticeable decoupling effect.

100STYLE, we downsample the terrain-fitting dataset from
120fps to 60fps. The textual annotation process is conducted
differentially across the datasets. For 100STYLE, we anno-
tate body-part content associated with each stylized motion,
utilizing the predefined vocabulary introduced in the prompt
specification process (Sec. III-C). Conversely, the terrain-
fitting dataset is annotated solely for body-part descriptions
corresponding to the motion content. Furthermore, we aug-
ment each frame with phase variables by utilizing BP-PAE.

B. Ablation Study

To put the performance of SPORT in perspective, we con-
duct thorough evaluations to validate various design choices
of our framework, including the effectiveness of BP-PAE,
diffusion models, MoE and body part-based content encoder.

1) The Evaluation on BP-PAE: As described in Sec. III-B,
the motion embedding space is constructed through the 2-layer
MoE Em, where the gating network Ep

g leverages periodic
features extracted from phase variables to allocate feature
subdomains to individual expert branches of Em for specialized
learning. Our approach leverages BP-PAE to generate phase
variables that encapsulate both body part-aware and non-linear
periodicity. The non-linear periodicity ensures expert branches
to learn principal motion patterns in a decoupled manner, while
the body part-aware periodicity ensures temporal coherence
during body part-level motion editing.

To validate BP-PAE’s capability in learning non-linear pe-
riodic features, we conduct a comparative analysis of mo-
tion embedding spaces, as illustrated in Fig. 6. The analysis
employs identical MoE network architectures while varying
the phase variable constraints across three conditions. The
analysis examines phase variables derived from: (1) the foot-
step phase methodology proposed in PFNN [1]; (2) the PAE
framework; (3) our proposed BP-PAE. To ensure experimental
parity, given the limited periodic features inherent in footstep
phases, we standardize the number of expert networks in the
MoE architecture to four across all experimental conditions.
The experimental results, visualized in Fig. 6, demonstrate
notable differences in embedding space characteristics. The
PFNN-based motion embedding space (Fig. 6 (a)) exhibits
four distinct modes. However, feature coupling is evident in
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BP-PAE PAE

(a)

(b)

(c)

Fig. 7: The comparison of phase variables. We compare phase variables generated by BP-PAE and PAE, analyzing amplitude
and frequency characteristics across three styles: (a) akimbo with single-hand elevation above the head, (b) standard akimbo
and (c) floor sweeping. For BP-PAE, kinematically similar motions—(a) and (b)—demonstrate obvious variation only in the
first high-frequency channel (denoted by green annotations), while maintaining consistency across other channels. Motion (b)
and (c), which are semantically distinct, exhibit similarity only in the fourth low-frequency channel, with differentiation across
remaining channels. PAE, however, produces obvious differentiation even between kinematically similar motions (a) and (b).

two regions. In contrast, both PAE and BP-PAE frameworks
(Fig. 6 (b) and (c), respectively) facilitate more effective
mode separation, demonstrating superior decoupling of motion
features within their respective embedding spaces.

To further evaluate BP-PAE’s capacity in unsupervised
learning of body part-aware periodicity, we conduct a compar-
ative analysis between phase variables generated by BP-PAE
and PAE, as depicted in Fig. 7. The analysis focuses on three
motion types: akimbo with one hand elevated above the head,
standard akimbo and floor sweeping. The analysis reveals that
BP-PAE successfully differentiates between high- and low-
frequency features through unsupervised learning, resulting
in the formation of two distinct low-frequency channels and
three high-frequency channels. The low-frequency components
exhibit larger magnitude characteristics, whereas the high-
frequency components display more modest magnitude pro-
files. Furthermore, these frequency components demonstrate
adaptive variation that correlates with the degree of differentia-
tion between motions: kinematically similar motions that vary
by a single body part primarily exhibit differences within a
single high-frequency channel of the phase space, while signif-
icantly different motions reveal considerable variations across
multiple channels. In contrast, PAE’s inability to decouple
body-part periodicity from whole-body periodicity leads to the
generation of mixed high- and low-frequency characteristics.
This limitation results in substantial phase variable differenti-
ation, even among similar motions. Subsequent visualization
analysis suggests that this characteristic compromises PAE’s
capacity to generate high-quality motions.

2) The Evaluation on Diffusion Model: To assess the ef-
fectiveness of the autoregressive diffusion model, we maintain
the other components of SPORT as constant while introducing
variations in the motion decoder (diffusion model or 1-layer
MoE decoder DMoE). Our evaluation focuses on three key
aspects: motion quality, diversity and model complexity.

Assessing motion quality in a quantitative manner remains a
challenging task. One feasible solution involves employing the
Fréchet Motion Distance (FMD) [50], [51], which compares

the distribution of the generated motions with that of the
dataset. This comparison gauges the overall ability of the
diffusion model in learning the authentic data distribution.
Moreover, following MANN, we assess the local motion qual-
ity of each frame by measuring the foot skating artifacts. The
amount of foot skating sf is calculated by adding the horizon-
tal component of the foot velocity vf if the foot height hf is
within a threshold H=2.5cm: sf =vf ·clamp(2−2hf/H , 0, 1).

To evaluate motion diversity, inspired by the metric of
multimoldality [52], we propose to randomly sample a set of
40 motion clips with the size of 180 frames, denoted as pi,t,
where i is the index of clip and t is the index of frame. For
each motion clip, we keep the control variables {tp, td, tg, th}
of pi,t unchanged and generate a pair of motion clips like
(p̂1i,t, p̂

2
i,t). The diversity of this motion set is formalized as:

diversity = 1
7200

∑40
i=1

∑180
t=1

∥∥p̂1i,t − p̂2i,t
∥∥
2
.

As presented in Tab. I, the integration of a diffusion model
has notably improved the learning of motion distribution, as
indicated by the FMD scores (0.96 vs. 4.33). However, this
improvement comes at the expense of increased foot skating
(0.16 vs. 0.13), extended runtime (52.09 ms vs. 12.29 ms) and
a larger model parameter count (55.46M vs. 47.98M). Our
supplementary video provides further evidence that SPORT,
aided by the diffusion model, can generate superior motions
in challenging terrain scenarios. In the context of motion gen-
erations, we argue that the FMD metric should be prioritized,
as foot skating can be addressed through post-processing and
the current hardware capabilities are sufficient to execute our
model. Specifically, the ONNX version of SPORT achieves a
24 FPS performance on a laptop equipped with an RTX 2060
graphics card. Conversely, when evaluating the diversity, we
observe that the diversity score of SPORT does not exhibit a
significant increase compared to that of SPORT-w/o-Diffusion
(2.47× 10−2 vs. 0.0). This distinction is discernible in the
supplementary video when the character remains stationary.
However, when the avatar is in motion, the contrast between
these two models appears less pronounced.
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TABLE I: Comparison on FMD, foot skating, diversity, runtime, number of parameters, number of styles, motions across
different terrains and transitions between different styles

Models FMD ↓ Foot Skating ↓ Diversity ↑ Runtime (ms) ↓ #Params ↓ #Styles ↑ Multi-terrain? Seamless Trans?
Ours-4Experts 1.27 0.21 2.32× 10−2 46.27 31.49M 100+ ✓ ✓
Ours-4ContExperts 1.18 0.17 2.28× 10−2 49.67 47.05M 100+ ✓ ✓
Ours-w/o-Diffusion 4.33 0.13 0.00 12.29 47.98M 100+ ✓ ✓
Ours-PAE 0.99 0.19 2.41× 10−2 52.09 55.46M 100+ ✓ ✓
Ours-w/o-ContEnc 1.06 0.23 2.18× 10−2 53.65 66.64M 100+ ✓ ✓
Ours 0.96 0.16 2.47× 10−2 52.09 55.46M 100+ ✓ ✓
StyleERD [5] 2.31 0.57 0.00 22.85 0.48M 7 × ×
Mason et al. [4] 6.98 0.27 0.00 16.31 4.32M 58 × ×
Mason et al. [6] 3.15 0.20 0.00 8.30 18.42M 100 × ×
Motion Puzzle [50] 9.44 0.41 0.00 95.20 37.16M 100+ × ×
Ours(100STYLE) 1.76 0.11 2.31× 10−2 52.09 55.46M 100+ × ✓
PFNN 10.25 0.03 0.00 7.55 2.39M 1 ✓ ×
Ours(PFNN dataset) 1.94 0.09 2.16× 10−2 52.09 47.71M 1 ✓ ✓

“Walking like a teapot and kicking back” “Walking with high knee and extending arms”

whole-body 

alignment

body-part 

alignment

(a) (b)

Interpolation from “Shield-left” to “Shield-right”

(c)

Fig. 8: The evaluation of contrastive learning. The comparative analysis of body-part and whole-body alignment strategies
indicates that body-part contrastive learning significantly enhances the SPORT framework by: (a)-(b) enabling the generation
of unseen motions, and (c) facilitating precise linear interpolation for smooth transitions between divergent styles.

3) The Evaluation on MoE: In the motion encoder and
content modulator, we employ a standard MoE and a recursive
MoE to learn motion and content embeddings, respectively.
To evaluate the efficacy of these modules, we conduct com-
parative experiments with reduced expert branches (from 8
to 4), denoted as SPORT-4Experts and SPORT-4ContExperts.
As presented in Table I, while the original SPORT demon-
strates superior performance in both motion quality and di-
versity indicators, SPORT-4Experts outperforms both SPORT-
4ContExperts and the original SPORT in terms of runtime
(46.27ms vs. 49.67ms vs. 52.09ms) and model parameter
count (31.49M vs. 47.05M vs. 55.46M). Visualization analysis
indicates that both reduced-expert models can generate the
majority of style actions present in the 100STYLE, with
limitations primarily in dynamic body part styles. Specifically,
SPORT-4Experts exhibits constraints in rolling and flapping
arm motions, while SPORT-4ContExperts demonstrates limita-
tions exclusively in rolling arm motions. Notably, both models
maintain the capability to generate unseen style motions.

4) The Evaluation on Body-part Contrastive Learning: The
content encoder creates a compact and decoupled alignment
space that enhances continuity by clustering semantically
similar motion embeddings and facilitates seamless transitions
between different prompts. We conduct two analyses to vali-
date our approach. First, to evaluate compactness, we examine
a variant without the content encoder, where CLIP embeddings
for six body parts are directly utilized as the content embed-

ding. While this approach maintains decoupling capabilities
and enabled body part-level motion editing, it increases the
content embedding dimension from 384 to 3072, resulting
in a significant expansion of model parameters compared to
SPORT (66.64M vs. 55.46M in Tab. I). Second, to assess
decoupling effectiveness, we implement a full-body contrastive
learning strategy following [46], where GPT-3 generated full-
body motion text prompts for each style. This approach
requires modifications to both text and motion sequence en-
coders to process full-body motion. Experimental results in
Fig. 8 indicate that body-part contrastive learning effectively
constructs a decoupled text-motion alignment space with two
principal capabilities: (1) synthesizing unseen motions through
local prompt amalgamation, and (2) executing precise linear
interpolation facilitating smooth transitions between differ-
ent types of motions. Conversely, the whole-body alignment
paradigm demonstrates limitations in zero-shot stylized motion
generation and seamless inter-type transitions.

C. Comparative Performance

To evaluate SPORT’s effectiveness in addressing the seman-
tic gap caused by abstract input prompt, we first benchmark
our approach against SOTA real-time style transfer methods,
including styleERD [5], Mason et al. [4], [6] and MotionPuz-
zle [50]. A quantitative evaluation is conducted using three
types of metrics: (1) motion quality, including FMD, foot
skating and seamless transitions between different styles; (2)
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(a) (b)
Fig. 9: Visual comparison with PFNN. When executing the
wall climbing action, the animation generated by SPORT (a)
seems more plausible than the one produced by PFNN (b).

TABLE II: Likert scale markers to assess the rationality
Extremely Unsatisfied Physically implausible poses
Slightly Unsatisfied Clipping/foot-sliding/jitter
Mediocre Reasonable yet uninspiring results
Satisfied Natural character-terrain interactions
Highly Satisfied Vivid character-terrain interactions

generalization capabilities, encompassing motion diversity, the
breadth of style representation and multi-terrain adaptability;
(3) model complexity, considering parametric complexity and
runtime efficiency.

Results in Tab. I validate the superior performance of our ap-
proach in both quality and generalization when compared to all
baseline methods. StyleERD and the work of [6] surpass our
results in terms of model parameters and runtime respectively.
While it is worth noting that styleERD is limited to handling
only 7 periodic styles and [6] does not extend to accommo-
date unseen styles. Additionally, Motion Puzzle can achieve
zero-shot stylized generation with fewer model parameters.
However, the supplementary video reveals that the motion
generated by Motion Puzzle exhibits unnatural movements like
foot-sliding and lacks seamless transition between different
styles. Despite our method being more time-consuming and
leveraging a larger number of model parameters compared to
other methods, it adeptly captures decoupled content features
at body part level, thereby composing high-quality zero-shot
stylized motions. Moreover, considering our earlier discussion
in Sec. IV-B2, where we emphasized that our model can be
readily deployed on a laptop equipped with an RTX 2060
graphics card and run in real time, we believe the trade-off
between performance and model complexity is justified.

Furthermore, to assess SPORT’s effectiveness in address-
ing the semantic gap caused by rapidly changing terrains,
we conducted a comparative analysis with PFNN, focusing
on motion performance over complex terrains. While PFNN
slightly outperforms our model in terms of foot skating, our
method surpasses PFNN in terms of FMD and diversity. This
distinction becomes more apparent in Fig. 9, where our model
can generate more reasonable animations during interactions
with varying terrains. Additionally, in Sec. IV-D, we perform
a user study to perceptually evaluate their motion quality.

D. User Study

We recruited a group of 20 participants, with 14 of them
being male, from Shanghai Jiao Tong University to participate
in our experiment. They were unaware to the purposes of
the experiment. The average age was 25.5 (SD=2.4). The
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Fig. 10: Responses on the rationality of motions over
complex terrains. The evaluation compared motions across
different terrains with those of PFNN and MoCap.
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Fig. 11: Mean ratings of the user study. Mean ratings
with standard deviation bars are calculated to assess the
performance of models.

experiment was approved by Shanghai Jiao Tong University
Research Ethics Committee.

We measure motion rationality over complex terrains with
a trial that followed the within-subject design. In this trial,
participants were asked to rate three sets of twelve animations,
each set comprising two animations for six motions: hurdling,
balance beam traversal, ascending stairs, platform jumps, hill
climbing, and wall scaling. Three different methods were
employed in generating these animations. Participants who
rated the MoCap clips poorly (scores≤ 2) were asked to test
again. The presentation order of animations war randomized.
Evaluations were based on a five-point Likert sacle in Tab. II.

The results are visualized in Fig. 10. Feedback collected
for SPORT indicated a strong preference for high rat-
ings (“Satisfied”:38.75%,“Highly Satisfied”:37.92%), surpass-
ing the scores of PFNN (“Satisfied”:38.33%,“Highly Satis-
fied”:25.83%). Participants observed that animations produced
by PFNN often faced issues with clipping, particularly no-
ticeable when characters climbed walls or slopes. Specifically,
the characters’ legs occasionally penetrated the model in such
scenarios, and their feet exhibited unrealistic heights during
climbing actions. On the other hand, SPORT received a lower
percentage of “highly satisfied” responses (37.92%), compared
to MoCap clips (59.17%). Participants noted that while our
generated animations were acceptable, they exhibited a more
cyclical pattern and lacked nuanced expressions.

Fig. 11 illustrates meaning ratings of the user study. SPORT
received a higher rating compared to PFNN. Notably, there
was an obvious disparity between the outcomes of FlowSMM
and MoCap. To assess the statistical significance of these
differences, we conducted a series of statistical tests. First, we
performed a one-way repeated measures ANOVA, followed
by a post-hoc Tukey HSD test. Prior to these operations,
we conducted Kruskal-Wallis and Bartlett’s tests to confirm
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the normality and homoscedasticity assumptions of ANOVA.
Additionally, we examined the boxplot, which did not detect
any data outliers. The results of ANOVA show significant main
effects among these models F(2,237)=231.60, p<0.001). Then
Tukey’s HSD test indicated that all differences between the
models were statistically significant (p<0.001).

V. CONCLUSION

This paper introduces SPORT, a real-time motion generation
framework designed to generate ever-changing motions using
composite prompts and terrain geometries. This framework
enables users to input extensive text prompts and interac-
tively control the creation of stylized animations through a
gamepad in an autoregressive manner. By incorporating BP-
PAE, SPORT enhances the learning of local periodicity, which
improves seamless transitions between different motion types.
Furthermore, the application of body-part contrastive learning
enables the model to capture fundamental motion features,
bridging the semantic gap between texts and motions. The use
of a diffusion model further improves the generation of proba-
bilistic and realistic motions. Notably, SPORT circumvents the
challenges associated with sequence processing and eliminates
the need for large-scale cross-modal datasets. A prototype of
SPORT has been implemented in Unity, showcasing its robust-
ness in handling zero-shot style prompts and complex terrains.
Through both qualitative and quantitative comparisons, we
demonstrate that SPORT outperforms current SOTA methods
in terms of quality, generalization and inference speed.

The synchronous integration of motion equilibrium mainte-
nance and style transfer in the multi-terrain scenes presents a
fundamental challenge. Consequently, SPORT adopts a con-
servative approach. It only seeks to demonstrate that, in cases
where text prompts fail to consistently respond to varying
terrains, terrain-specific actions can still be performed by
incorporating terrain geometries. In the future, we plan to
explore the use of large-scale motion-language models, such as
MotionGPT [53] and advanced multimodal architectures like
GPT4 to develop a controller capable of comprehensively eval-
uating both the input task prompt and terrain signals, thereby
offering more precise control instructions. Furthermore, most
existing datasets focus on either style or terrain individually.
To bridge this disparity, we aim to collect a dataset that
incorporates both style and terrain aspects simultaneously.
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