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ABSTRACT

Zero-Shot Object State Classification (ZS-OSC) aims to recognize unseen object
states without any visual training examples. Existing methods typically rely on
Knowledge Graphs (KGs) to provide semantic information about states, but they
often treat KGs as homogeneous, overlooking the rich relational knowledge en-
coded in their structure. We propose a novel approach to ZS-OSC1 that leverages
meta-paths to capture complex relationships between object states in a KG. Our
method learns to project semantic information from the KG into the visual space
via meta-path learning, generating discriminative visual embeddings for unseen
state classes. To the best of our knowledge, this is the first work to utilize meta-
paths for ZS-OSC. We conduct extensive experiments on four benchmark datasets,
demonstrating the superior performance of our approach compared to SoTA zero-
shot learning methods and a graph-based baseline. Our ablation study further
provides insights into the impact of key design choices on the effectiveness of our
method.

1 INTRODUCTION

Knowledge graphs (KGs) have become increasingly important in addressing various computer vi-
sion (CV) tasks, such as object classification (Marino et al., 2017), zero-shot recognition (Wang
et al., 2018b) and Visual Question Answering (Krishna et al., 2017). This surge in KG utilization
can be attributed to their ability to provide rich semantic information and contextual knowledge that
can enhance the understanding of visual data. However, current approaches often under-utilize the
full potential of KGs. Several factors contribute to this sub-optimal utilization. First, KGs used in
Computer Vision (CV) are often large and contain irrelevant or erroneous information, which can
introduce noise and hinder performance. Second, many methods fail to consider the diversity of
edge types in KGs, treating all edges as homogeneous and overlooking valuable relational knowl-
edge. This simplistic approach limits the ability to effectively exploit the rich semantic information
embedded within KGs.

A number of approaches such as filtering mechanisms (Wang et al., 2014; Domingos & Richardson,
2007), ad-hoc KG construction (Dong et al., 2014; Gouidis et al., 2024) and random walking (Per-
ozzi et al., 2014; Grover & Leskovec, 2016) were proposed as strategies against these shortcomings.
An alternative approach focusing on the overcoming of these limitations concerned the concept of
meta-paths (Sun et al., 2011; Dong et al., 2017). The utilization of meta-paths essentially involves
the learning of the relative importance of the different paths between nodes within the KG via the
assignment of weights to them. Meta-path-based approaches offer several advantages when applied
to heterogeneous information networks (HINs). First, meta-paths enable the modeling of complex
semantic relationships by explicitly defining sequences of node and edge types (Figure 1), making
them particularly suitable for capturing the diverse interactions in multi-typed networks (Sun et al.,
2011; Shi et al., 2014). This provides a significant advantage over traditional graph learning meth-
ods (Sun et al., 2011) , which treat all nodes and edges as homogeneous, thus failing to leverage
the rich information embedded in HINs. Furthermore, meta-paths allow for task-specific traversal
and filtering, enabling more accurate representations for applications such as link prediction, recom-

1The code can be found at https://anonymous.4open.science/r/Metapaths-7811/
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Figure 1: Unlike standard graph learning methods that prioritize local connections, meta-paths can
capture distant relationships. In this toy example of a household objects graph, a meta-path can
detect the stronger connection in specific contexts between “bottle” and “glass” (linked indirectly)
than between ”bottle” and “table”, ”bottle” and “kitchen” and ”bottle” and “water” (directly linked).

mendation systems, and node classification. The ability to define domain-specific meta-paths also
allows for more precise similarity measures, improving performance in tasks like clustering and
search. Importantly, meta-paths enhance the interpretability of models by making the relationships
between entities more transparent, providing domain experts with insights into how predictions are
generated (Xiong et al., 2017).

Motivated by the great potential that the meta-paths learning seems to hold, this work attempts
to explore the utilization of this approach in the context of the Object State Classification (OSC)
task (Isola et al., 2015; Gouidis et al., 2022; Souček et al., 2022; Saini et al., 2023), which is a CV
task attracting growing research attention over the last few years. OSC concerns the recognition of
object states appearing in images and videos and is closely related to the more popular problems
of Object Recognition and Action Recognition. OSC is an important problem whose solution is of
significant impact. The recognition of object states and state changes is crucial for determining an
object‘s condition and the interaction that was performed upon or could be performed in the future
on it (Jamone et al., 2016). Moreover, the capacity for efficient OSC is of primary importance in
AI systems that support tasks such as learning object affordances (Chuang et al., 2018), recognizing
interactions (Wang et al., 2016b; Isola et al., 2015; Liu et al., 2017; Mancini et al., 2022), reasoning
to achieve an object state change (Farhadi et al., 2009), recognizing the completion or failure of goals
and recovery from possible mistakes during procedural activities (Schoonbeek et al., 2024) and many
others. Meanwhile, large-scale video datasets (Grauman et al., 2022; Saini et al., 2023) concerning
human-object interactions provide rich annotation data which are related to object state changes
enabling the definition of new problems and the establishment of benchmarks and challenges related
to object state detection and classification (Grauman et al., 2022).

This work addresses the challenging task of Zero-Shot Object State Classification (ZS-OSC), where
the goal is to classify object states without any visual training examples. The key challenge lies
in leveraging auxiliary non-visual information to enable the classification of these unseen states.
Existing state-of-the-art methods typically utilize KGs as sources of structured semantic informa-
tion (Gouidis et al., 2023), but they often treat KGs as homogeneous, potentially overlooking valu-
able relational information. We propose a novel approach that leverages meta-paths for more effec-
tive learning of zero-shot representations. Our method learns to project semantic information from
a KG into the visual space via meta-path learning, generating visual embeddings for unseen state
classes. To the best of our knowledge, this is the first method to utilize meta-paths in the context of
Zero-Shot Visual Classification, and therefore ZS-OSC, through embedding generation.

Beyond their demonstrated utility in ZS-OSC, we posit that the generation of meta-path-based em-
beddings as a primary research objective holds significant promise. This direction offers several
compelling advantages. First, meta-path-based embeddings can capture both local and global se-
mantic relationships in heterogeneous networks, providing universal entity representations applica-
ble across diverse tasks and domains without requiring task-specific fine-tuning. This fosters the
development of multi-purpose, generalizable embeddings. Second, generating embeddings with a
focus on representation quality can facilitate knowledge transfer across domains. Third, while cur-
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rent embedding techniques, such as (Dong et al., 2017), are often task-specific, a framework that
prioritizes the generation of meta-path embeddings as an independent objective would offer a gen-
eralized tool for analyzing heterogeneous information networks. This would mitigate the need for
task-dependent tuning and enable researchers to investigate embeddings without being constrained
by a particular task. Finally, since meta-paths effectively capture complex, higher-order relation-
ships within networks, prioritizing the efficient generation of meta-path-based embeddings can lead
to more compact and informative representations, optimizing storage and computational efficiency,
particularly in large-scale heterogeneous networks.

This work makes the following key contributions:

• We introduce a novel method for generating embeddings by leveraging meta-paths within
Graph Neural Networks (GNNs). This approach enables GNNs to effectively harness the
rich information encoded in KGs. To the best of our knowledge, this is the first work to
explore meta-path utilization for embedding generation in this context.

• We conduct a comprehensive ablation study to analyze the impact of various design choices
and parameters on the performance of our proposed method. This analysis provides valu-
able insights into the interplay between meta-path learning and embedding generation.

• We perform an extensive experimental evaluation on four diverse datasets, comparing our
method against established KG-based baselines and SoTA Large Pre-trained Models. The
results demonstrate that our approach achieves superior performance by a significant mar-
gin.

2 RELATED WORK

Meta-path Learning: Meta-paths, a fundamental concept in heterogeneous information networks
(HINs) (Shi et al., 2016), have been widely studied in applications such as similarity search, recom-
mendation systems, and link prediction. Meta-paths were introduced to capture complex relation-
ships in HINs, enabling the study of object proximities and connectivity patterns. The work by Sun
et al. (2011) proposed PathSim that used meta-paths to measure similarity between objects based on
shared relationships, with success in applications like similarity search and clustering. Extending
this, Shi et al. (2014) proposed HeteSim, which computes relevance between objects via meta-paths,
incorporating directionality and node types for enhanced flexibility. Meta-paths have also enhanced
recommendation systems in HINs. Yu et al. (2013) developed a collaborative filtering algorithm
incorporating meta-path-based similarities between users and items, improving recommendation
accuracy. Similarly, Wang et al. (2016a) used meta-path-based features in matrix factorization for
item recommendation, leveraging HIN structure to model user-item interactions more effectively.

Learning optimal meta-path weights for specific tasks has been a key research area. Dong et al.
(2017) introduced MetaPath2Vec, which learns node embeddings through meta-path-based random
walks, showing improved performance in classification and clustering tasks. Fu et al. (2020) ex-
tended this with a scalable meta-path-guided graph neural network, learning meta-path importance
for tasks in large-scale HINs. In link prediction, meta-paths have been used to predict missing
or future links in networks. Liu et al. (2018) proposed a meta-path-based link prediction method,
capturing complex node interactions and outperforming traditional algorithms in networks with mul-
tiple types of nodes. Recent advancements in graph neural networks (GNNs) have further improved
meta-path-based link prediction. Zhang et al. (2019) introduced a heterogeneous graph neural net-
work (HGNN) that integrates meta-path-based features into node aggregation, achieving better link
prediction.

Sun & Han (2013) introduced the concept of meta-paths for mining HINs, capturing semantic re-
lationships across data types. Automatic discovery methods for meta-paths were later explored
by Meng et al. (2015) to address challenges in manually retrieving meta-paths. Ferrini et al. (2024)
proposed a novel approach to enhance GNN accuracy through effective meta-path identification,
while Noori et al. (2023) explored meta-paths for flexible similarity search in biological knowledge
graphs. Additionally, Yun et al. (2022) discussed learning new graph structures using meta-paths,
demonstrating their role in enhancing GNN performance. Recent studies have also focused on chal-
lenges such as automatic meta-path discovery (Huang et al., 2020), integration with deep learning
models (Wang et al., 2019), and the application of meta-paths in dynamic HINs (Trivedi et al., 2019).

3
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The main novelty of our work distinguishing it from the aforementioned works concerns the utiliza-
tion of meta-paths in the context of embeddings generation. Although many actual works focusing
on meta-paths utilize embeddings, they serve as a means for another goal, i.e. downstream task,
such as link prediction or entity alignment. In contrast, in our work, the generation of embeddings
is a final objective.

Object State and Attribute Classification: Visual attributes are commonly defined as visual con-
cepts that are both machine-detectable and human-understandable (Duan et al., 2012). The prevail-
ing approach to learning attributes mirrors that of object classes, where a convolutional neural net-
work is trained with discriminative classifiers using annotated image datasets (Singh & Lee, 2016).
However, existing labeled attribute datasets suffer from limitations such as smaller scale compared
to object datasets, a restricted number of generic attributes, and limited category coverage (Lam-
pert et al., 2009; Isola et al., 2015; Patterson & Hays, 2016; Yu & Grauman, 2017; Mancini et al.,
2022). Furthermore, research specifically focusing on state classification remains limited (Gouidis
et al., 2022), with most existing approaches relying on similar assumptions and techniques as those
employed for attribute classification. This highlights a need for dedicated methods tailored to the
unique challenges of state recognition.

Zero-shot Classification: Zero-shot learning (ZSL) has attracted significant attention due to its
ability to address the practical challenge of classifying objects without any training examples (Xian
et al., 2018a). This is particularly crucial in real-world scenarios where obtaining labeled data for
every possible class is often infeasible. Several approaches have been proposed for zero-shot ob-
ject classification, including semantic embedding-based methods (Wang et al., 2018a; Xian et al.,
2018b), attribute-based methods (Lampert et al., 2014), generative models (Xian et al., 2018b;
Changpinyo et al., 2016), and learning compatibility functions between image and class embed-
dings (Akata et al., 2015). Semantic embedding methods utilize compact semantic spaces or at-
tribute sets to bridge the gap between seen and unseen object classes. Attribute-based methods
leverage descriptive attributes to infer the class of unseen objects. Generative models synthesize
images of unseen classes based on similarities to seen classes. Additionally, recent work has ex-
plored the use of knowledge graphs to capture semantic relationships between objects and facilitate
ZSL (Kampffmeyer et al., 2019; Nayak & Bach, 2022). While ZSL has been extensively studied
for object recognition, its application to Zero State Classification (ZSC) remains relatively unex-
plored. With the exception of Gouidis et al. (2023), which focuses exclusively on state classification
without relying on prior knowledge about object classes, existing ZSC methods primarily address
the Compositional Zero-Shot Learning (CZSL) variant of the problem. CZSL aims to generalize
to unseen combinations of object and state primitives by learning their compositionality from the
training set (Misra et al., 2017; Nagarajan & Grauman, 2018; Yang et al., 2020).

3 METHODOLOGY

This work introduces a novel approach for generating embeddings in heterogeneous graphs by syn-
ergistically combining KGs structures with meta-path-based GNNs. These generated embeddings
are then employed for the task of ZS-OSC. Our methodology harnesses the strengths of both KGs
embeddings and the rich relational information encapsulated by meta-paths. The core idea is to
leverage a designated set of KG nodes as guides for meta-path learning. Specifically, we utilize the
visual embeddings of these nodes as ground truth and train a Graph Transformer Network (GTN)
to assign weights to different KG edge types. This is achieved by generating embeddings for the
guide nodes that align with their visual embeddings. The GTN architecture is inspired by Yun et al.
(2022), while the training procedure draws inspiration from Kampffmeyer et al. (2019); Gouidis
et al. (2023). Figure 2 provides a general overview of our method.

3.1 PRELIMINARIES

Before proceeding with describing our method, it is necessary to present related backgrounds related
to our work. Additionally, Table S1 presented in the supplementary section lists commonly used
notations in this paper for quick reference.

Heterogeneous Graph: A heterogeneous graph is denoted as G = (V,E, ϕ, ψ) and is associated
with a node type mapping function ϕ : V → Tv and an edge type mapping function ψ : E → Te,

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 2: Overview of the proposed approach. A Graph Transformer Network (GTN) with a soft-
max selection mechanism assigns weights to different meta-paths. Meta-paths are aggregated and
combined with node features to generate node embeddings. Visual ground truth embeddings for a
set of guide nodes are produced using a pre-trained convolutional neural network. These embed-
dings guide the training of the GTN.

where Tv and Te denote the set of nodes types and edges types respectively. A necessary requirement
for a graph to be considered heterogeneous is to contained more than one type of nodes or more than
one type of edges, i.e., |Tv|+ |Te| > 2.

Metapath: Within heterogeneous graphs, a meta-path represents a sequence of connected nodes
traversed through diverse edge types. Formally, it can be defined as a path:

v1
ψ(e1)−−−→ v2

ψ(e2)−−−→ ...
ψ(eℓ)−−−→ vℓ+1,

where each edge eℓ in the path has a corresponding edge type τe(eℓ), belonging to the set of all
possible edge types Te.

Metapath Instance: A metapath instance p of a metapath P in a heterogeneous graph is defined as
a sequence of nodes that follows the schema defined by P .

Metapath-based Neighbor: For a node v and a metapath P in a heterogeneous graph, the set of
metapath-based neighborsNP (v) is defined as the set of nodes connected to v via metapath instances

5
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of P . A neighbor that is connected through two different metapath instances is treated as two distinct
nodes in NP (v). If P is symmetric, NP (v) includes the node v itself.

Metapath-based Graph: For a given metapath P , the metapath-based graph GP is the graph con-
structed using all metapath-based neighbor pairs from the original graph G. If P is symmetric, GP
is homogeneous.

Heterogeneous Graph Embedding: Given a heterogeneous graph G = (V,E), with node attribute
matricesXAi ∈ R|VAi

|×dAi for each node typeAi ∈ A, the goal of heterogeneous graph embedding
is to learn d-dimensional node representations hv ∈ Rd for each node v ∈ V , where d ≪ |V |,
capturing rich structural and semantic information from G.

3.2 META-PATH-BASED EMBEDDING GENERATION

Meta-paths represent semantic connections between different node types in a heterogeneous graph.
GTNs automatically learn useful meta-paths by selecting and combining adjacency matrices of dif-
ferent edge types. This process allows the model to generate new graph structures that are useful
and is used typically for downstream tasks such as node classification. In our case, the meta-paths
learning is not mediated by a downstream task. Instead, meta-paths are learned via the generation
of embeddings for the graph’s nodes.

Following the notation introduced previously, we can use adjacency matrices, a different one for
each edge type, to compute the different meta-paths. Specifically, the meta-path‘s adjacency matrix
AP ∈ {0, 1}V×V of the graph is computed as:

AP =

ℓ∏
i=1

Ati =⇒ AP = At1At2 . . . Atℓ ,

where Ati is the adjacency matrix corresponding to edge type ti and l corresponds to the length of
the meta-paths, with aij = 1 denoting a meta-path with length equal than l between nodes i and j
and aij = 0 an absence of meta-path, respectively. In order to have also meta-paths with lengths
less than l we add the identity matrix I ∈ RV×V to the adjacency matrices.

With the utilization of a soft selection mechanism, weights are assigned to the different types of
edges. This technique enables the learning of the optimal combination of edge types for each meta-
path. Specifically, this is achieved with a 1 × 1 convolution with softmax activation over the adja-
cency matrices of different edge types:

WA(k) =

|Te|∑
t=1

α
(k)
t At,

where α(k)
t is the learnt weight for edge type t at the k-th transformer layer. The resulting meta-

path adjacency matrices are normalized using degree matrices D and applied to perform multi-hop
convolutions. More than one softmax convolutions could be also applied, in which case the objective
is that each channel learns a different representation and the overall combination of the different
representations results in more a robust outcome.

With the learnt softmax weights, the meta-path‘s adjacency matrix WAP ∈ RV×V of the graph is
computed as:

WAP =

ℓ∏
i=1

Ati =⇒
|Te|∑
t=0

α
(k)
t At =

|Te|∑
t=1

α(0)At0

|Te|∑
t=1

α(1)At1

|Te|∑
t=1

α(2)At2 · · ·
|Te|∑
t=1

α(l)Atl .

After having computed the weighted adjacency matrixWAP we can compute the aggregation meta-
paths-based features matrix XP ∈ R|VAi

|×dAi for the graphs nodes by multiplying the nodes features
matrix matrices XAi ∈ R|VAi

|×dAi with WAP :

6
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XP = XA ×WAP .

In order to generate embeddings for the graphs nodes we use a multi-layer Graph Neural Network
which learns to project the nodes features into the target space:

EP = fθ(XP ).

The weights corresponding to the softmax layers and the stacked layers of the GNN are updated
based on the minimization of a L2 distance function LE between the generated nodes embeddings
and the ground truth nodes embeddings for the set of nodes which serve as ground truths:

LE =
1

2N

∑
n∈N

∑
d∈D

(EP − ẼP )2,

where D is the dimension of the embeddings and N the number of the ground truth concepts,
respectively.

3.3 ZERO-SHOT OBJECT STATE CLASSIFICATION

To achieve zero-shot object-state classification, it is crucial to learn representations for the unseen
target state classes. To this end, we construct a KG with state classes as nodes and utilize the
GTN trained in the previous step for meta-path learning to generate embeddings for these target
classes. These embeddings are then integrated into a visual classifier, specifically a pre-trained
CNN, to serve as visual representations of the visually known state classes. Following established
practices in transfer learning and zero-shot learning, we replace the final layer of the pre-trained
CNN with these generated embeddings. To ensure compatibility, the dimensionality (D) of the
generated embeddings is set to match the dimension of the CN‘s last layer. This adaptation enables
the CNN to effectively classify the target state classes in a zero-shot manner.

4 EXPERIMENTAL EVALUATION

4.1 IMPLEMENTATION AND EVALUATION ISSUES

Implementation Details: The KG provided as input to the Graph Transformer Network (GTN) for
meta-path learning was the WordNet hierarchy of the 1000 classes from the ImageNet1000 dataset
(Russakovsky et al., 2015). These 1000 classes served as the ground truth set for training the GTN,
which was trained for 200 epochs with five different learning rates (see Section 4.2 for details). The
same KG was also used to generate the target object state classes. In experiments with multiple
softmax channels, the generated embeddings were averaged. The convolutional neural network
(CNN) used for zero-shot object-state classification (ZS-OSC) was ResNet-101 (He et al., 2016)
pre-trained on the ImageNet1000 dataset.

Datasets: We utilized four publicly available datasets containing object state annotations: OSDD
Gouidis et al. (2022), CGQA Mancini et al. (2022), MIT Isola et al. (2015), and VAW Pham et al.
(2021). While OSDD is specifically designed for state detection, the other three are attribute datasets
that include object states among their classes. We extracted subsets concerning exclusively object
state classes. For OSDD and VAW, bounding boxes from the original images were extracted to
create images suitable for the OSC task. Table S2 in the supplementary section provides details on
the four datasets.

Metrics: Our evaluation follows the zero-shot method from (Purushwalkam et al., 2019). Following
those guidelines we calculate accuracy per class and then average these instead of reporting overall
accuracy. This ensures each class is equally important, regardless of its sample size.

4.2 ABLATION STUDY

This ablation study investigates the optimal configuration of key parameters related to meta-path-
based embedding generation, including: (a) the maximum length of meta-paths, (b) the number of
softmax channels used for meta-path selection, and (c) the training learning rate.

7
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Meta-paths Max Length OSDD CGQA-States MIT-States VAW-States
1 27.1 44.9 47.1 29.3
2 29.5 46.7 47.3 29.8
3 31.3 47.6 48.7 32.1
4 30.2 46.5 47.9 31.0

Table 1: Ablation results for maximum length of meta-paths. The number of softmax channels in
the GTN was 3. The networks were trained with a learning rate equal to 1e− 2.

Number of Channels OSDD CGQA-States MIT-States VAW-States
1 27.2 44.3 46.2 28.5
2 28.9 46.1 46.4 29.7
3 31.3 47.6 48.7 32.1
4 30.5 46.9 47.0 30.7

Table 2: Ablation results for number of softmax channels. The maximum length of the meta-paths
was 3. The networks were trained with a learning rate equal to 1e− 2.

Length of meta-path: Table 1 presents the results of varying the maximum length of meta-paths (1,
2, 3, and 4 hops). The best performance across all datasets was achieved with a maximum length of 3
hops. Performance generally improved with increasing meta-path length, likely because longer paths
capture more global graph information. However, performance slightly decreased with a length of 4
hops, suggesting that excessively long paths might introduce noise, potentially by incorporating less
relevant or spurious relationships. This finding highlights the importance of carefully selecting the
appropriate meta-path length to balance information gain and noise reduction.

Number of Softmax Channels: Table 2 shows the impact of varying the number of softmax chan-
nels used for meta-path selection. The best performance was achieved with 3 channels, suggesting
that multiple channels allow the GTN to learn diverse meta-path representations, thereby improving
embedding quality. Increasing the number of channels allows the model to capture different aspects
of the relationships encoded in the meta-paths, leading to richer and more informative embeddings.
However, using too many channels, e.g., 4 in this case, might not provide further benefits and could
potentially increase model complexity without a corresponding improvement in performance.

Training Learning Rate: Table 3 presents the results of using different learning rates (LR) during
GTN training. The best performance was obtained with a learning rate of 1e-2. Smaller learning
rates led to a significant performance drop, indicating the importance of this parameter for effective
model training. This suggests that a learning rate of 1e-2 strikes a good balance between convergence
speed and stability, allowing the model to effectively learn from the data without overshooting or
getting stuck in local optima. The observed performance drop with smaller learning rates could be
attributed to slower convergence and potential difficulties in escaping local optima.

4.3 COMPARISON TO COMPETING METHODS

This experiment had a two-fold objective. First, we compared our method against SoTA Large Pre-
trained Models (LPMs) capable of ZS-OSC. We used six different prompts2 related to the target
states and report the mean average performance across all prompts, following standard convention.
Second, we compared our approach to a graph-based method (Gouidis et al., 2023) specifically
designed for ZS-OSC, which allows us to assess the impact of meta-paths on performance. For
comparison with the baseline method (Gouidis et al., 2023), which relies on random walks, we
used five different random seeds for initialization and report the mean performance over all seeds.
The same KG was used as input to both the GCNs of the baseline method and our method. It is
important to note that other ZSL methods, such as CZSL, are not applicable in this context, because
they require information about object classes, which is not available in this zero-shot setting.

2The prompts are presented in the supplementary material.
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LR OSDD CGQA-States MIT-States VAW-States
5e− 2 29.2 46.2 47.5 30.1
1e− 2 31.3 47.6 48.7 32.1
5e− 3 28.9 45.1 47.0 28.5
1e− 3 27.2 44.5 46.1 26.2
5e− 4 26.1 43.8 44.5 24.6

Table 3: Ablation results for learning rate. The maximum length of the meta-paths was 3, and the
number of softmax channels was 3.

Method OSDD CGQA-States MIT-States VAW-States
Baseline (Gouidis et al., 2023) 27.3 45.1 43.3 25.6
CLIP-RN101 (Radford et al., 2021) 22.5 46.9 39.3 28.0
CLIP-VITBP16 (Radford et al., 2021) 28.8 44.9 46.4 30.1
CLIP-VITLP14 (Radford et al., 2021) 28.4 43.4 48.6 27.9
ALIGN (Jia et al., 2021) 29.5 40.0 44.2 28.4
BLIP (Li et al., 2022) 13.3 26.0 27.2 16.1
Ours 31.3 47.6 48.7 32.1
Our improvement over the SoTA 1.8 0.7 0.1 2.0
Our improvement over the Baseline 4.0 2.4 5.4 6.5

Table 4: Results against competing methods. Bold/Blue text indicates best/2nd best performance.

Table 4 presents the results. Our method achieved the best performance across all datasets, outper-
forming both the baseline method and all LPMs. Notably, our method surpassed the baseline by a
large margin (4.0%, 2.5%, 5.4%, and 6.5% for OSDD, CGQA, MIT, and VAW, respectively).This
outcome highlights the effectiveness of meta-path learning compared to random walks for represen-
tation learning in graph structures. The superior performance of our method can be attributed to the
ability of meta-paths to capture and exploit specific semantic relationships within the KG, leading to
more informative and discriminative embeddings for ZS-OSC. In contrast, random walk techniques
might not effectively capture these relationships, resulting in less effective representations.

Furthermore, the fact that our method outperforms SoTA LPMs (1.8%, 0.7%, 0.1%, and 2.0% for
OSDD, CGQA, MIT, and VAW, respectively) demonstrates the potential of incorporating KG in-
formation and meta-path learning into ZS-OSC. LPMs, while powerful, might not fully capture
the nuanced semantic relationships between objects and their states that are encoded in KGs. By
leveraging meta-paths to extract and utilize this information, our method achieves a significant per-
formance improvement.

5 CONCLUSION

This paper introduced a novel method for generating embeddings in heterogeneous graphs by lever-
aging meta-paths within a graph neural network framework. Our approach utilizes KGs structures
and visual embeddings to guide the learning of meta-paths, enabling the generation of informative
and discriminative embeddings. We demonstrated the effectiveness of our method in the context
of ZS-OSC, achieving superior performance compared to state-of-the-art LPMs and a graph-based
baseline. Our ablation study provided insights into the impact of key parameters on the performance
of our method.

Future work will focus on several promising directions. First, we aim to explore the applicability
of our method to other zero shot CV tasks such as semantic segmentation, image captioning and
visual question answering to further evaluate its generalizability. Second, we plan to investigate the
integration of different types of KGs such as multimodal KGs and KGs containg different type of
nodes and explore the impact of KG quality on embedding generation. Finally, we intend to extend
our approach to incorporate more complex meta-path structures and explore alternative graph neural
network architectures for enhanced performance.
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6 SUPPLEMENTARY MATERIAL

This section presents tables that due to space limitation were omitted from the main body of the
paper. Specifically, Table S1 shows the notation symbols that are used, Table S2 presents the details
about the datasets used in the experimental evaluation and Table S3 shows the prompts that were
using for the LPMs respectively.

Symbol Description

G = (V,E) Heterogeneous graph
V Set of nodes in G
E Set of edges in G
ϕ : V → Tv Node type mapping function
ψ : E → Te Edge type mapping function
Tv Set of node types
Te Set of edge types
|Tv| Number of node types
|Te| Number of edge types
P Meta-path
p Meta-path instance
vi Node in G
el Edge in G
τe(el) Edge type of edge el
NP (v) Set of metapath-based neighbors of node v under meta-path P
GP Metapath-based graph derived from meta-path P
XA Node feature matrix
A Adjacency matrix
AP Meta-path adjacency matrix
EP Meta-path based generated embedding of node v
ẼP Ground truth embedding of node v
D Dimensionality of node embeddings
N Number of ground truth concepts
LE L2 distance loss function

Table S1: Notation Table

Dataset Train Val Test States Objects VOSC TOSC S\O
OSDD (Gouidis et al., 2022) 6,977 1,124 5,275 9 14 35 126 2.36
CGQA-states (Mancini et al., 2022) 244 46 806 5 17 41 75 1.71
MIT-states (Isola et al., 2015) 170 34 274 5 14 20 70 1.57
VAW (Pham et al., 2021) 2,752 516 1,584 9 23 51 207 2.61

Table S2: Details about the four image datasets utilized in this work. Train/Val/Test: Number of
Training/Validation/Testing Images. States: Number of State classes, Objects: Number of Object
classes. VOSC/TOSC: Valid/Total Object-State combinations. S\O: Average number of states than
an Object can be situated in.

Prompt
1 An image of a {} object
2 The object in the image is {}
3 The state of the object in the image is {}
4 The object in the image is currently {}
5 An image of a object in a state of {}
6 The scene depicts a object that appears to be {}

Table S3: Prompts used for the Large Pretained Models.
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