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ABSTRACT

The combination of transformers and masked image modeling (MIM) pre-training
framework has shown remarkable potential in various vision tasks. However, the
high computational cost of pre-training hinders the practical application of MIM.
This paper introduces FastMIM, a simple and versatile framework that expedites
masked image modeling through two steps: (i) pre-training vision backbones us-
ing low-resolution input images and (ii) reconstructing Histograms of Oriented
Gradients (HOG) feature instead of original RGB values of the input images. Fur-
thermore, we propose FastMIM-P, which progressively increases the input reso-
lution during the pre-training stage to improve the transfer learning performance
of models with high capacity. We point out that: (i) a wide range of input reso-
lutions during pre-training can result in similar performances in fine-tuning and
downstream tasks such as detection and segmentation; (ii) the shallow layers of
encoder are more important during pre-training, and discarding the last few layers
can speed up the training process without affecting fine-tuning performance; and
(iii) HOG is more stable than RGB values when transferring resolution. Equipped
with FastMIM, any type of vision backbone can be efficiently pre-trained. For ex-
ample, using ViT-B/Swin-B as backbones, we achieve 83.8%/84.1% top-1 accu-
racy on ImageNet-1K. Compared to previous approaches, our method can achieve
better top-1 accuracy while accelerating the training procedure by ∼5×.

1 INTRODUCTION

Self-supervised learning is a promising paradigm that aims to learn feature representations from
scalable unlabeled data, and has achieved significant results in natural language processing (NLP)
through masked language modeling (MLM) (Radford et al., 2018; Devlin et al., 2018; Brown et al.,
2020; Chen et al., 2020b). Recently, it has also attracted increasing attention in vision community,
where masked image modeling (MIM) has emerged as a self-supervised pre-training framework.
Different from previous contrastive learning based approaches (Wu et al., 2018; Chen et al., 2020c;
He et al., 2020; Caron et al., 2021), MIM learns representations through a mask-then-predict manner,
e.g., predicting the raw pixels (He et al., 2021; Xie et al., 2022) or other tokenizations (Bao et al.,
2021; Zhou et al., 2021; Chen et al., 2022b) of randomly masked input images.

Figure 1: Comparisons in terms of total GPU hours
(pre-training time) on ImageNet-1K classification task.
FastMIM expedites the pre-training stage by ∼5×.

Despite recent achievements and the state-of-
the-art results on various downstream vision
tasks, the pre-training stage of self-supervised
learning-based approaches is extremely com-
putationally expensive and slow. For exam-
ple, contrastive learning based SimCLR (Chen
et al., 2020c) takes fifteen hours on 128 TPU
v3 cores (1920 TPU hours in total) to finish the
1000 epochs training on ResNet-50 (He et al.,
2016) with a batch size of 4096. Moreover,
MIM based BEiT (Bao et al., 2021) takes about
five days using 16 32GB V100 GPUs (1920
GPU hours in total, not counting the time for
dVAE (Rolfe, 2016; Van Den Oord et al., 2017) pre-training) to accomplish 800 epochs training
on ViT-B (Dosovitskiy et al., 2020). To pre-train vision backbones efficiently, He et al. proposes
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Figure 2: Comparison of our FastMIM, MAE (He et al., 2021) and SimMIM (Xie et al., 2022) in terms of GPU
efficiency. All frameworks use a ViT-B/Swin-B/Swin-L encoder and a batch size of 2048. The experiments are
conducted on a single machine with 8 32GB V100 GPUs. †: MAE decoder has 1 block (1b512d). ‡: MAE
decoder has 8 blocks (8b512d). N/A: MAE is not suitable for Swin (Liu et al., 2021).

the masked autoencoder (MAE) (He et al., 2021) which discards the masked tokens and only op-
erates on the whole input sequences in the lightweight decoder. Notably, although this asymmetric
encoder-decoder design significantly reduces the computational burden, MAE can only support the
isotropic transformer architecture (Dosovitskiy et al., 2020), withholding it from becoming a generic
MIM framework for various vision backbones (Wang et al., 2021; Liu et al., 2021; Guo et al., 2022;
Chu et al., 2021). In contrast to above discarding strategy, SimMIM (Xie et al., 2022) retains both
visible and masked tokens. In this way, SimMIM can be naturally applied to different models,
e.g., isotropic ViT (Dosovitskiy et al., 2020) and hierarchical Swin Transformer (Liu et al., 2021).
However, it suffers from heavy memory consumption that even the base size model such as Swin-B
cannot be trained via SimMIM framework on a single machine with 8 32GB V100 GPUs (Huang
et al., 2022).

To reduce the pre-training costs of self-supervised learning and make MIM a more efficient and
practicable framework for vision, we devise a simple and straightforward framework (Figure 5),
viz, FastMIM, for faster training speed and easier deployment of AI applications. Inspired by Sim-
MIM (Xie et al., 2022), which retains all input tokens during pre-training stage, we directly mask
the raw RGB input and keep the illuminated input the same as in the supervised learning producer.
This presents a fresh opportunity for FastMIM to serve as a generic framework because no modifi-
cation is made to the architecture and the input shape. Yet, standard input images of size 224×224
are inherently used in pre-training stage in common practice (Bao et al., 2021; He et al., 2021). For
example, the encoder of ViT-B (Dosovitskiy et al., 2020) needs to tackle 196 input patches in Sim-
MIM (Xie et al., 2022). To alleviate memory consumption, we propose a straightforward approach
of reducing the input resolution, e.g., from 224×224 to 128×128, and the number of input patches
is reduced to 64 accordingly, as shown in Figure 2 and 5. We further leverage the HOG target (Dalal
& Triggs, 2005; Wei et al., 2022) to compensate for the loss of texture information resulting from
the reduction of image resolution. Our main contributions can be summarized as:
• We investigate various configurations of MIM, identify the key design to expedite the pre-training

stage and reduce the memory consumption: directly reducing the input resolution for MIM.
• We elaborate the characteristic of the HOG feature, which is almost invariant to the geometric

changes in images. Compared with pixel target, reconstructing HOG target can better compensate
for the loss of texture information resulting from the reduction of image resolution.

• Based on the above observations, we propose FastMIM, which can expedite the overall pre-
training speed by 5× and reduce the memory consumption simultaneously. Extensive experiments
demonstrate the effectiveness and efficiency of our proposed framework.

Overall, the heavy memory consumption of previous self-supervised learning frameworks erects an
unfortunate barrier for more researchers to dive into this filed. We hope our findings and FastMIM
can provide avenues and insights for making MIM more accessible to the vision community.

2 RELATED WORK

Masked Image Modeling. Motivated by tremendously successful BERT (Devlin et al., 2018) and
its variants (Brown et al., 2020) for MLM in NLP field, masked image modeling (MIM) is first
studied in BEiT (Bao et al., 2021) to pre-train vision transformers (Dosovitskiy et al., 2020). BEiT
randomly masks a portion of image patches, and adopts a VQ-VAE (Van Den Oord et al., 2017) as
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ep.\inp. 642 962 1282 1602 1922 2242

200 81.89 82.44 82.72 82.96 83.03 83.12
400 82.26 82.98 83.19 83.28 83.40 83.51
800 82.85 83.22 83.51 83.59 83.68 83.79

ep.\inp. 642 962 1282 1602 1922 2242

100 82.82 83.24 83.32 83.38 83.46 83.58
400 83.07 83.51 83.76 83.78 83.85 83.93
800 83.23 83.60 83.84 83.90 83.96 84.03

(a) Pre-training epoch and input resolution for ViT-B (left) and Swin-B (right). Normalized raw pixel is used
as the prediction target.

case inp. encoder top-1 APb APm encoder top-1 APb APm

pixel 2242 ViT-B 83.8 50.4 45.0 Swin-B 84.0 52.3 46.0
HOG 2242 ViT-B 83.9 50.9 45.2 Swin-B 84.2 52.5 46.3
HOG 1282 ViT-B 83.8 50.7 45.1 Swin-B 84.1 52.2 46.1

(b) Prediction target and input resolution.

encoder depth top-1 encoder depth top-1
ViT-B 8 82.9 Swin-B 22 83.9
ViT-B 10 83.4 Swin-B 23 84.1
ViT-B 12 83.5 Swin-B 24 84.1

(c) Encoder depth with 1282 input.

Table 1: Ablation on input resolution, reconstruction target, and encoder depth in pre-training stage.
a) pre-training epoch and input resolution on ViT-B/Swin-B; b) prediction target; c) encoder depth.
ImageNet-1K top-1 accuracy, COCO box APb and mask APm are reported. Default settings are
marked in gray.

the visual tokenizer to generate reconstruction targets to finally predict the visual tokens which are
corresponding to the masked regions. Recently, several works (Xie et al., 2022; Zhou et al., 2021;
Dong et al., 2021; He et al., 2021; Huang et al., 2022; Chen et al., 2022b; Wei et al., 2022; Fang
et al., 2022) have revisited MIM as a promising solution to visual representation learning. MAE (He
et al., 2021) develops an asymmetric encoder-decoder architecture, with an encoder that operates
only on the visible patches (discarding the masked patches), along with a lightweight decoder that
reconstructs the masked patches. However, MAE can only be applied to isotropic backbones. In
contrast, SimMIM (Xie et al., 2022) proposes to retain all input patches (Dong et al., 2021; Bao
et al., 2021; Zhou et al., 2021; Chen et al., 2022a) and thus can serve as generic MIM approach for
hierarchical backbones. However, the large amount of input patches not only slow down its pre-
training speed, but also incur heavy memory consumption, making SimMIM hard to be deployed on
single deep learning machine.

Expedite MIM. An obstacle for practical applications of above MIM is the heavy computational
cost and long pre-training time. Towards this, UM-MAE (Li et al., 2022) designs a secondary
masking strategy to preserve equivalent elements across multiple local window. LoMaR (Chen et al.,
2022a) performs masked reconstruction within a small window of 7×7 patches. GreenMIM (Huang
et al., 2022) proposes a group window attention exclusively for hierarchical Swin Transformer (Liu
et al., 2021). In contrast to them, our FastMIM directly reduce the input resolution, introducing no
additional modification to encoder compared with supervised training paradigm, and achieves better
trade-off between pre-training speed and fine-tuning accuracy.

Reconstruction Target in MIM. In addition to discrete tokens (Bao et al., 2021; Dong et al., 2021)
mentioned above, there are still various target signals designed for MIM, such as normalized pix-
els (He et al., 2021; Xie et al., 2022), HOG (Wei et al., 2022), and latent features (Zhou et al., 2021;
Baevski et al., 2022). Among them, pixel and HOG can be directly obtained from original input
without extra trained networks. The histogram of oriented gradients (HOG) is a feature descriptor
that counts occurrences of gradient orientation in localized portions of an image. And we demon-
strate that HOG target is more invariant to the geometric changes in input image and preserves better
performance (together with lower pre-training loss) under low resolution input compared to the pixel
target.

3 REVISIT MASKED IMAGE MODELING

Our FastMIM is a simple and straightforward framework based on masked image modeling, which
masks a portion of original images, and predicts the masked regions. We start by revisiting MIM by
investigating how resolution/target/encoder depth influence the MIM. Preliminaries about MIM and
our implementation details are provided in supplementary material.

Input resolution. Table 1a explores the impact of pre-training epoch and input resolution on
the fine-tuning result of MIM (the result of MAE can be found in supplementary material).
It reveals that a broad range of input resolutions (e.g., 1282 ∼ 2242) perform equally well.
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Model HOG Target Pixel Target
Input Loss Input Loss

ViT-B 2242/1282 0.028/0.031 2242/1282 0.408/0.494
Swin-B 1922/1282 0.034/0.037 1922/1282 0.521/0.619
Swin-L 1922/1282 0.031/0.035 1922/1282 0.514/0.594

Table 2: Ablation on value of pre-training loss. ViT-B is trained
with 800 epochs, and Swin-B/L are trained with 400 epochs.

The largest input resolution achieves
the best top-1 accuracy as expected.
Notably, reducing the input resolution
to 1282 for Swin-B leads to only a
minor decrease of 0.26%/0.17%/0.19%
in the final fine-tuning results for
100/400/800 epochs, respectively.
When the input resolution is set to
2242, the encoder has to handle a
substantial number of image patches
(e.g., Ne=562 in Swin-B stage-1), leading to a heavy memory burden and a long computing time.
In contrast, setting the input resolution to 1282 naturally reduces the number of image patches to
Ne=322, which is 70% less than the 2242 input, while maintaining similar performance. However,
further reducing the input resolution results in a significant drop in fine-tuning top-1 accuracy, likely
because lower resolution and fewer input patches discard too much essential information, which is
indispensable during the reconstruction stage.

Prediction target. Table 1b compares the effects of two prediction targets. The most straightforward
target involves predicting the colors of original pixels. Specifically, we use normalized RGB values
following (He et al., 2021; Xie et al., 2022). Histograms of Oriented Gradients (HOG) (Dalal &
Triggs, 2005; Wei et al., 2022) is a feature descriptor that counts occurrences of gradient orientation
in localized portions of an image. Here we minimize the ℓ2 distance between the model’s prediction
and the ground-truth RGB value/HOG feature. Under the setting of MIM pre-training and 2242

input, both prediction targets exhibit similar performance on both classification and detection tasks.
But when reducing the input resolution to 1282, pixel and HOG exhibit distinct characteristics,
which will be further analyzed later.

Encoder depth in pre-training. As mentioned above, reducing the input resolution (encoder
patches) can help ease memory overhead and save training time. Additionally, there is another
straightforward method to save computational cost: reducing the number of parameters (encoder
depth) trained in the pre-training stage. Inspired by the layer decay strategy (where shallow layer
has a smaller learning rate compared to deep layer) in fine-tuning of BEiT (Bao et al., 2021), we
conjecture that shallow layers are more important than deep layers during the pre-training phase.
Table 1c illustrates that discarding the last several layers (blocks) in pre-training (discarded layers
will be re-initialized in fine-tuning) yields almost the same performance compared to the original
setting (the third row in Table 1c). Note that the hierarchical Swin-B encoder comprises four stages
(e.g., [2,2,18,2]), Table 1c only presents the results of [2,2,18,0] (the first row) and [2,2,18,1] (the
second row). If we discard layers in the third stage, e.g., [2,2,16,2], the fine-tuning performance will
drop to 83.4%. This phenomenon has also been observed in prior work (Huang et al., 2023). Our
study further offers additional validation across both the isotropic ViT and the hierarchical Swin.

Discussion on Epoch/Resolution/Target. Figure 4 further presents the result of utilizing both
HOG and pixel targets. It is noteworthy that HOG demonstrates superior stability and delivers
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Figure 4: Ablation on epoch/resolution/target. HOG achieves bet-
ter result with low-resolution input compared with the raw pixel.

better performance as the resolution
is reduced. The accuracy improves
consistently as training epochs in-
crease. We observe that HOG tar-
get begins to saturate at 800/400
epochs for ViT-B/Swin-B, in contrast
to the pixel target. One main rea-
son is that the HOG is more resilient
to ambiguity by histogramming lo-
cal gradients (Wei et al., 2022). Be-
sides, HOG can maintain better per-
formance when the input resolution
is reduced due to its characteristic.
To elaborate it, we first qualitatively
compare HOG to pixel as the prediction target in Figure 3. While reducing the image resolution can
significantly expedite the training process, crucial information such as detailed textures and edges
will be lost when using the pixel target. However, HOG is more resistant to resolution changes,
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FIG-1: 224x224 FIG-2: 224x224 (642 2242, bicubic) HOG Feature on FIG-1

PSNR: 15.03, SSIM: 0.44 PSNR: 25.41, SSIM: 0.71

HOG Feature on FIG-2

FIG-1: 224x224 FIG-2: 224x224 (642 2242, bicubic) HOG Feature on FIG-1

PSNR: 16.74, SSIM: 0.49 PSNR: 27.39, SSIM: 0.77

HOG Feature on FIG-2

FIG-1: 224x224 FIG-2: 224x224 (642 2242, bicubic) HOG Feature on FIG-1

PSNR: 11.24, SSIM: 0.43 PSNR: 21.38, SSIM: 0.69

HOG Feature on FIG-2

Figure 3: Visualization on pixel target and HOG target. We choose PSNR (dB) and SSIM to evaluate the sim-
ilarity between two images (features). HOG target can preserve better texture information under low resolution
input compared to pixel target.

making it ideal for our FastMIM. Furthermore, we also display the values of pre-training loss in
Table 2. It is obvious that HOG can reduce the gap between loss values of different resolutions.
Moreover, the loss of using the HOG target is significantly lower than that of using the pixel tar-
get, demonstrating that HOG can effectively mitigate the risk of ambiguity during reconstruction in
MIM.

4 APPROACH

Our FastMIM pre-trains vision backbones through masked image modeling, and is also a reinforced
version of SimMIM (Xie et al., 2022), as illustrated in Figure 5. In principle, it is straightforward
and convenient to replace the encoder with other vision backbones in aforementioned MIM pre-
training framework. We choose the representative isotropic and hierarchical vision transformers,
i.e., ViT (Dosovitskiy et al., 2020) and Swin Transformer (Liu et al., 2021) as our baselines. We
directly mask the input image (e.g., X ∈ R128×128×3) with the mask token (e.g., learnable vector
[MASK] ∈ R1×1×3). The ViT encoder embeds patches by a linear projection added with positional
embeddings (PE), while there is no extra PE for the decoder. As for Swin, the window size for
Swin-B and Swin-L is set to 7 and 14 following (Xie et al., 2022; Huang et al., 2022), respectively.

4.1 FastMIM FRAMEWORK

Masked Input. The input image is randomly cropped and resized to 128×128. Therefore, the num-
ber of patches (pixels) is reduced to Ne=64 and Ne=322/162/82/42 for ViT and Swin, receptively.
We leverage a per-sample random mask strategy, and set the mask size to the same value as the last
layer’s patch size of the encoder. Specifically, the mask size is 16×16 and 32×32 for ViT and Swin,
respectively. The mask ratio is set to 0.75 according to ablation study in supplementary material.
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MAE (baseline, 2069h, 203GB, ViT-B: 83.6%)
 Small amount of encoder patches
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SimMIM (baseline, 3307h, 242GB, ViT-B: 83.8%)
○ Large amount of encoder patches
○ Large amount of decoder patches
○ Slow pre-training and heavy memory consumption
 Works with isotropic and also hierarchical model

FastMIM (ours, 608h, 70GB, ViT-B: 83.8%)
 Small amount of encoder patches
 Small amount of decoder patches
 Quick pre-training and light memory consumption
 Works with isotropic and also hierarchical model

Figure 5: Comparison among MAE (He et al., 2021), SimMIM (Xie et al., 2022) and our FastMIM. MAE
randomly masks and discards input patches, limiting its use to pre-training isotropic ViT which generates
single-scale intermediate features. SimMIM preserves all patches and can serve as a generic framework for
various backbones, but requires processing a large number of patches. In contrast, FastMIM reduces input
resolution and uses HOG target, resulting in a simpler and more efficient approach. FastMIM (i) pre-train
faster; (ii) has lower memory consumption; (iii) can serve as a generic framework for different architectures;
and (iv) achieves comparable or better performance than previous methods.

Decoder. The decoder is only used in pre-training stage to perform the reconstruction task. Note
that the input resolution of FastMIM is set to 128×128, the encoder outputs for ViT-L and Swin-L
are of size 64×1024 and 16×1536, respectively. The memory usage of our decoder is indeed 65%
less than that of MAE (He et al., 2021). According to the ablation study in supplementary mate-
rial, the decoder sizes for ViT-B/ViT-L/Swin-B/Swin-L are set to 1b256d/8b512d/4b256d/4b512d,
respectively.

Prediction Target. We choose Histograms of Oriented Gradients (HOG) (Dalal & Triggs, 2005)
features as the target following MaskFeat (Wei et al., 2022). We first obtain an entire HOG feature
on the whole image and then minimize the ℓ2 distance between the output of FastMIM and original
HOG feature on masked region. The number of orientation bins is set to 9, and spatial cell is set to
8×8. Discussion on HOG is shown in Sec. 3

4.2 FastMIM-P: PROGRESSIVELY ENLARGE THE INPUT

To further improve the scalability of FastMIM, we propose to progressively enlarge the input res-
olution during the pre-training stage, viz, FastMIM-P. Although HOG can preserve the texture in-
formation when reducing the input resolution to some extent, the performance of model with high
capacity, e.g., Swin-L, still has small gap (-0.3% in Table 3) compared to the counterpart trained with
high-resolution input images. More specifically, in contrast to FastMIM that trains Swin-L in fixed
1282 inputs, FastMIM-P trains Swin-L in 1282/1602/1922 for 200/100/100 epochs (400 epochs in
total), and achieve better trade-off between accuracy and training time, as shown in the last row of
Table 3. Additionally, we report the results of FastMIM-P on ViT-L, trained with input resolutions
of 1282/1602/1922 for 500/200/100 epochs respectively. Implementation details can be found in the
supplementary material.

Discussion. As shown in Table 3, FastMIM-P achieves better performance compared to FastMIM
with less pre-training time. However, as the input resolution continually increases, the GPU memory
consumption will inevitably increase. The resolution and training schedule need to be carefully de-
signed to achieve a better space-time trade-off. In addition, we find that reducing the input resolution
results in slightly more pronounced accuracy degradation as the model scales up from ViT-B/Swin-B
to ViT-L/Swin-L. This validates that larger models indeed tend to be more data-hungry, and a smaller
number of input tokens may lead to insufficient pretraining. However, by leveraging the progres-
sively enlarged input resolution strategy, we effectively mitigate this issue and achieve significant
improvements in accuracy for larger models.
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Framework Model # Params PT Ep. Hours/Ep. PT Hours FT Ep. Top-1 (%)
Supervised pre-training
Training from scratch in MAE ViT-B 86M 0 1.6†,‡ 490†,‡ 300 82.3
Training from scratch in Swin Swin-B 88M 0 2.5†,‡ 744†,‡ 300 83.5
PT (192) then FT (224) in SimMIM Swin-L 197M 300 3.8‡ 1139‡ 100 83.5

Self-supervised pre-training with contrastive learning
MoCov3 ViT-B 86M 800 - - 100 83.2
DINO ViT-B 86M 800 - - 100 82.8

Self-supervised pre-training with masked image modeling on isotropic ViT
BEiT ViT-B 86M 800 2.4 1920 100 83.2
MAE ViT-B 86M 1600 1.3 2069 100 83.6
MAE ViT-L 307M 1600 2.0 3260 100 85.9
SimMIM ViT-B 86M 800 4.1 3307 100 83.8
LoMaR ViT-B 86M 800 1.4 1120 100 83.8
CAE ViT-B 86M 1600 - - 100 83.9
MaskFeat ViT-B 86M 800 1.6‡ 1264‡ 100 84.0
iBOT ViT-B 86M 1600 - - 100 84.0
PeCo ViT-B 86M 800 - - 100 84.5
FastMIM (ours) ViT-B 86M 400 0.8 304 100 83.6
FastMIM (ours) ViT-B 86M 800 0.8 608 100 83.8
FastMIM (ours) ViT-L 307M 800 1.3 1062 100 85.1
FastMIM-P (ours) ViT-L 307M 800 1.8 1434 100 85.7

Self-supervised pre-training with masked image modeling on hierarchical Swin
SimMIM Swin-B 88M 800 2.0 1609 100 84.0
GreenMIM Swin-B 88M 800 1.1 887 100 83.8
FastMIM (ours) Swin-B 88M 400 0.8 336 100 84.1

Self-supervised pre-training with masked image modeling on hierarchical Swin
SimMIM Swin-L 197M 800 3.5 2821 100 85.5‡

GreenMIM Swin-L 197M 800 1.3 1067 100 85.1
FastMIM (ours) Swin-L 197M 400 1.4 544 100 85.2
FastMIM (ours) Swin-L 197M 800 1.4 1088 100 85.4
FastMIM-P (ours) Swin-L 197M 400 1.8 736 100 85.5

Table 3: Comparison with state-of-the-art MIM methods. “PT Ep.” refers to the number of pre-training epoch.
“Hours/Ep.” refers to GPU hours per epoch. “PT Hours” refers to total pre-training GPU hour. “FT Ep.” refers
to fine-tuning epoch. We report top-1 accuracy on ImageNet-1K validation set with the ViT-B/Swin-B/Swin-L
models. (†: we report the total hours in fine-tuning stage. ‡: result tested by us.)

5 EXPERIMENTS

5.1 IMAGENET-1K CLASSIFICATION

Table 3 reports the top-1 accuracy on ImageNet validation set (Deng et al., 2009). We compare
our FastMIM with vision transformers trained via supervised pre-training, self-supervised training
with contrastive learning, and self-supervised training with MIM. Compared to the models trained
from scratch with random initialization, we find that pre-training through FastMIM significantly
improves performances on both ViT-B and Swin-B by +1.5% and +0.6%, respectively. Notably, the
total pre-training hour of FastMIM based Swin-B is 336, the total pre-training and fine-tuning time
is 584 hours, which is less than the 744 hours for training from scratch. This result indicates that
our FastMIM can also serve as a regular training paradigm for classification, and is more efficient
and effective than the commonly used scheme. Besides, ViT-B pre-trained with 400 epochs via
FastMIM achieves 83.6% top-1 accuracy on ImageNet-1K, which is +1.3% higher than the baseline
counterpart. And the total pre-training and fine-tuning time is 467 hours, which is also less than 490
hours spent by conventional supervised scheme. These improvements suggest that our FastMIM can
effectively expedite the pre-training process for various vision backbones.

Moreover, we compare FastMIM with previous state-of-the-art self-supervised methods for isotropic
ViT-B, such as BEiT (Bao et al., 2021), MAE (He et al., 2021), SimMIM (Xie et al., 2022),
CAE (Chen et al., 2022b), MaskFeat (Wei et al., 2022), iBOT (Zhou et al., 2021), and PeCo (Dong
et al., 2021). Among them, CAE (Chen et al., 2022b) uses extra 250M DALL-E data (Ramesh et al.,
2021) to pre-train the tokenizer, iBOT (Zhou et al., 2021) uses an extra momentum ViT as the online
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Framework Model Param PTE Hrs/Ep. PT Hrs FTE FT Hrs Total Hrs Top-1 (%)
Supervised (He et al., 2021) ViT-B 86M - 1.6 - 300 490 490 82.3
FastMIM (ours) ViT-B 86M 800 0.8 608 100 163 771 83.8 (+1.5)

Supervised (Liu et al., 2021) Swin-B 88M - 2.5 - 300 744 744 83.5
FastMIM (ours) Swin-B 88M 400 0.8 336 100 248 584 84.1 (+0.6)

Supervised (Xie et al., 2022) Swin-L 197M 300 2.6 780 100 359 1139 83.5
FastMIM (ours) Swin-L 197M 800 1.4 1088 100 359 1447 85.4 (+0.9)

Supervised (Chu et al., 2021) Twins-L 99M - 2.8 - 300 832 832 83.7
FastMIM (ours) Twins-L 99M 800 0.9 716 100 277 993 84.0 (+0.3)

Supervised (Wang et al., 2021) PVTv1-L 61M - 2.1 - 300 624 624 81.7
FastMIM (ours) PVTv1-L 61M 800 0.7 592 100 208 800 82.9 (+1.2)

Supervised (Wang et al., 2022) PVTv2-B2 25M - 1.7 - 300 504 504 82.0
FastMIM (ours) PVTv2-B2 25M 800 0.6 448 200 336 784 82.6 (+0.6)

Supervised (Wang et al., 2022) PVTv2-B5 82M - 3.8 - 300 1152 1152 83.8
FastMIM (ours) PVTv2-B5 82M 800 1.3 1026 200 768 1794 84.3 (+0.5)

Supervised (Liu et al., 2022) ConvNeXt-T 28M - 1.4 - 300 415 415 82.1
FastMIM (ours) ConvNeXt-T 28M 800 0.5 444 300 415 859 82.6 (+0.5)

Supervised (Liu et al., 2022) ConvNeXt-B 89M - 2.7 - 300 816 816 83.8
FastMIM (ours) ConvNeXt-B 89M 800 1.0 776 300 816 1592 84.0 (+0.2)

Supervised (Woo et al., 2023) ConvNeXt V2-B 89M - 2.7 - 300 824 824 84.3
FCMAE (Woo et al., 2023) ConvNeXt V2-B 89M 800 2.0 1592 100 275 1867 84.6 (+0.3)
FCMAE (Woo et al., 2023) ConvNeXt V2-B 89M 800 2.0 1592 300 824 2416 84.7 (+0.4)
FastMIM (ours) ConvNeXt V2-B 89M 800 1.2 948 300 824 1772 84.6 (+0.3)

Supervised (Guo et al., 2022) CMT-S 25M - 2.8 - 300 840 840 83.5
FastMIM (ours) CMT-S 25M 800 1.0 768 200 560 1328 83.9 (+0.4)

Supervised (Guo et al., 2022) CMT-B 46M - 6.4 - 300 1925 1925 84.5
FastMIM (ours) CMT-B 46M 800 1.5 1236 200 1283 2519 85.0 (+0.5)

Table 4: Comparison with supervised training method on more backbones. “PTE” is the number of pre-
training epoch. “Hrs/Ep.” means GPU hours per epoch. “PT Hrs” is total pre-training GPU hour. “FTE” is
fine-tuning epoch. We report top-1 accuracy on ImageNet-1K validation set. “FT Hrs” is total fine-tuning GPU
hour. “Total Hrs” is the total training time.

tokenizer, and PeCo (Dong et al., 2021) leverages both VQ-VAE (Van Den Oord et al., 2017) tok-
enizer and MoCov3 (Chen et al., 2021) framework. These extra modules introduce non-negligible
memory overhead and considerably longer training time. MAE (He et al., 2021), SimMIM (Xie
et al., 2022) and MaskFeat (Wei et al., 2022) are the most comparable methods. Our approach
achieves 83.8% top-1 accuracy, which is on par with above MIM frameworks. As for the computa-
tional cost, FastMIM is 1.6×/2×/5.1× faster than MAE/SimMIM/ MaskFeat, and reduces the GPU
memory consumption by 50%∼70% when compared to MAE and SimMIM, as shown in Figure 2.
We also evaluate FastMIM with hierarchical Swin Transformer (Liu et al., 2021). Our approach ob-
tains 84.1% top-1 accuracy with the Swin-B backbone, which is superior to the supervised learning
counterpart. When compared to the recently proposed GreenMIM (Huang et al., 2022), which ex-
clusively designs a group window attention for pre-training Swin, FastMIM achieves slightly better
result (+0.3%) with only half of the pre-training time, and less memory usage (108.3 vs. 121.6). As
for Swin-L, we fine-tune the SimMIM (Xie et al., 2022) through the grid search, where the result is
slightly better than that reported in SimMIM paper. When pre-trained with 400 epochs, FastMIM
achieves 85.2% top-1 accuracy and surpasses the 800 epochs GreenMIM (Huang et al., 2022). When
the pre-training epoch is extend to 800, FastMIM further improves the Swin-L by +0.2%. Besides,
FastMIM-P achieves 85.5% top-1 accuracy, which is at-par with the result obtained by SimMIM
trained with 800 epochs, while our pre-training speed is ∼4× faster. The corresponding results
demonstrate the effectiveness and efficiency of our method, especially the substantial improvements
on pre-training speed and memory consumption over previous MIM frameworks.

5.2 MORE RESULTS ON VARIOUS BACKBONES

Our FastMIM can serve as a generic MIM framework for various vision backbones, includ-
ing vanilla isotropic ViT (Dosovitskiy et al., 2020), hierarchical Swin Transformer (Liu et al.,
2021), Twins (Chu et al., 2021), PVT (Wang et al., 2021; 2022), ConvNeXt (Liu et al., 2022),
and CMT (Guo et al., 2022). We conduct experiments based on above vision backbones and
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Framework Backbone IN-1K FT FT Epoch Object Detection Instance Segmentation
APb APb

50 APb
75 APm APm

50 APm
75

Training from scratch (random initialization)
Benchmarking ViT-B ✗ 0 48.9 - - 43.6 - -

Self-supervised pre-training, follow the coco fine-tuning setup in MAE
MAE ViT-B ✗ 1600 48.1 69.3 53.3 43.2 66.3 46.7
FastMIM (ours) ViT-B ✗ 800 48.6 70.5 53.6 43.5 67.0 46.9
BEiT ViT-B ✗ 800 49.8 - - 44.4 - -
MAE ViT-B ✗ 1600 50.3 70.9 55.6 44.9 68.3 49.0
FastMIM (ours) ViT-B ✗ 800 50.7 71.3 56.0 45.1 68.6 49.3

Self-supervised pre-training, follow the coco fine-tuning setup in GreenMIM
SimMIM Swin-B ✗ 800 50.4 70.9 55.5 44.4 68.2 47.9
GreenMIM Swin-B ✗ 800 50.0 70.7 55.4 44.1 67.9 47.5
FastMIM (ours) Swin-B ✗ 400 50.3 71.0 55.3 44.4 68.2 48.0

Self-supervised pre-training, follow the coco fine-tuning setup in SimMIM
SimMIM† Swin-B ✓ 800 52.3 73.4 57.9 46.1 70.6 50.2
FastMIM (ours) Swin-B ✗ 400 51.9 72.9 57.2 45.8 70.2 49.5
FastMIM (ours) Swin-B ✓ 400 52.2 73.3 57.6 46.1 70.4 50.2
SimMIM† Swin-L ✓ 800 53.7 74.8 58.6 47.2 71.9 51.5
FastMIM (ours) Swin-L ✓ 400 53.2 74.4 58.1 46.9 71.6 51.3
FastMIM-P (ours) Swin-L ✓ 400 53.6 74.9 58.4 47.2 72.0 51.5

Table 5: COCO object detection and instance segmentation. All methods are based on the Mask R-CNN (He
et al., 2017) architecture with the FPN neck. “IN-1K FT” indicates whether use the model fine-tuned on
ImageNet-1K for the initialization on COCO. (†: our implementation, the IN-1K fine-tuned checkpoint is
downloaded from github, and the final APb is similar with the number reported in SimMIM.)

compare the top-1 accuracy with previous supervised training results. As shown in Table 4,
our FastMIM consumes fewer pre-training hours but obtains consistently better performance on
all architectures. In particular, our FastMIM achieves 82.9/82.6/84.3/82.6/83.9/85.0 top-1 accu-
racy with PVTv1-L/PVTv2-B2/PVTv2-B5/ConvNeXt-T/CMT-S/CMT-B, which is +1.2/+0.6/+0.5/
+0.6/+0.4/+0.5 better than the supervised training counterparts. These results demonstrate the effi-
ciency and effectiveness of our generic FastMIM framework.

5.3 OBJECT DETECTION AND INSTANCE SEGMENTATION

Framework Backbone PT Epoch PT Hours mIoU

Self-supervised pre-training, follow the setup in MAE
MoCov3 ViT-B - - 47.3
BEiT (w/ DALL-E) ViT-B 800 1920 47.1
MAE ViT-B 1600 2069 48.1
PeCo ViT-B 800 - 48.5
CAE (w/ DALL-E) ViT-B 800 - 49.7
FastMIM (ours) ViT-B 800 608 49.4

Self-supervised pre-training, follow the setup in SimMIM
SimMIM Swin-B 800 1609 52.8
FastMIM (ours) Swin-B 400 336 52.6

Table 6: Semantic segmentation on ADE20K. We report the
results of ViT-B and Swin-B following two settings.

We show the transfer learning results
on COCO (Lin et al., 2014) in Table 5.
We first follow the fine-tuning setting
in MAE (He et al., 2021; Li et al.,
2021), and report results of two con-
sidered training lengths: 25 and 100
epochs. Our FastMIM yields up to
0.5 and 0.4 higher APbox than MAE in
both settings, and the pre-training hours
is much less than MAE. Then we di-
rectly use the code base of the Green-
MIM (Huang et al., 2022) without any
modification to the fine-tuning strategy.
Compared with the Swin-B pre-trained
by GreenMIM, our approach performs
prominently better in terms of all met-
rics, e.g., +0.3% improvement in both APbox and APmask, with less pre-training epochs (-400).
Besides, our approach still obtains similar results with the SimMIM (Xie et al., 2022). Our Fast-
MIM can also scale up to larger models and obtain better performance. We conduct the experiments
by following the settings in SimMIM, and use their public checkpoints for direct comparisons. Our
FastMIM achieves 52.2 and 53.2 APbox (46.1 and 46.9 APmask) for Swin-B and Swin-L, respec-
tively, which are comparable to the SimMIM, and are achieved with much less pre-training cost.
Furthermore, FastMIM-P obtains almost the same performance as SimMIM with faster pre-training
speed. In general, the masked image modeling based methods show the potential to substantially
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improve detection transfer learning results, and our FastMIM can save a lot of pre-training overhead
and bring impressive pre-training efficiency.

5.4 ADE20K SEMANTIC SEGMENTATION

Table 6 presents the result of FastMIM on ADE20K (Zhou et al., 2017). Following the setup in He
et al. (2021), we achieve 49.4 mIoU, +1.3 better than MAE while requiring only 30% of its pre-
training time. We note that the performance is also comparable to CAE (Chen et al., 2022b), which
leverages extra DALL-E data to pre-train its tokenizer. Besides, we follow the setup in SimMIM (Xie
et al., 2022) and obtain 52.6 mIoU, which is also comparable to the 52.8 obtained by SimMIM.

Model Param Pixel Target HOG Target
PT inp. Top-1 (%) PT inp. Top-1 (%)

ViT-B 86M 2242/1282 83.8/83.6(-0.2) 2242/1282 83.8/83.8(-0.0)
ViT-L 304M 2242/1282 84.9/84.4(-0.5) 2242/1282 85.1/85.0(-0.1)
Swin-B 88M 1922/1282 84.0/83.8(-0.2) 1922/1282 84.1/84.1(-0.0)
Swin-L 197M 1922/1282 85.5/85.1(-0.4) 1922/1282 85.6/85.4(-0.2)
CMT-S 25M 2242/1282 83.9/83.6(-0.3) 2242/1282 84.0/83.9(-0.1)
CMT-B 46M 2242/1282 85.0/84.6(-0.4) 2242/1282 85.3/85.1(-0.2)
PVTv2-b2 25M 2242/1282 82.5/82.2(-0.3) 2242/1282 82.7/82.6(-0.1)
PVTv2-b5 82M 2242/1282 84.3/84.0(-0.3) 2242/1282 84.3/84.3(-0.0)

Table 7: Ablation on reconstruction target and input resolution for
different vision backbones, pre-trained with 800 epochs.

PT Data Days PT Input FT Input Top-1
IN-1K ∼1.6 1282 2242 84.1
IN-1K ∼1.6 1282 3842 85.3
IN-1K ∼7 2242 3842 85.4
IN-1K ∼18 4482 2242 84.3

IN-22K ∼6.5 1282 3842 86.1

Table 8: Swin-B with larger PT/FT res-
olutions on ImageNet-1K.

5.5 ABLATION OF HOG AND RESOLUTION

Robustness of HOG. Table 7 presents additional results for two reconstruction targets in relation to
changes in input resolution. Notably, the HOG target outperforms the raw pixel target with various
encoders by a substantial margin.

Larger Resolution. We conduct ablations based on Swin-B with larger pre-training and fine-tuning
inputs in Table 8. The performance of Swin-B improves significantly when it is transferred us-
ing high-resolution inputs. Moreover, fine-tuning results can be further improved by pre-training
the model with more data. Pretraining on larger datasets such as ImageNet-22K can significantly
improve performance. However, pre-training the model with larger input may not provide many
immediate benefits for classification tasks.

5.6 EXTENSION TO OTHER MASKED IMAGE MODELING FRAMEWORK

Model ViT-B PVTv2-b2
Baseline 82.3 82.0
FastMIM 83.6 82.4

FastMIM + KD 83.8 82.6

Table 9: Models are pretrained with
400 ep and finetuned with 100 ep.

In this section, we evaluate the effectiveness of FastMIM within
a distillation-based MIM framework (Bai et al., 2023), where
the teacher model is a fine-tuned version. Specifically, to
pretrain ViT-B and PVTv2-b2, we leverage their larger ho-
mogeneous counterparts, ViT-L and PVTv2-b5, as teachers.
The training objective follows the loss function L = Lhog +∑

i ||σ(zSi ) − zTi ||1. As shown in Table 9, our framework can
be seamlessly integrated into other MIM approaches, demonstrating performance improvements
even when using low input resolution during pretraining.

6 CONCLUSION

This paper presents a simple yet effective FastMIM to expedite the self-supervised MIM pre-training
for various vision backbones. As a generic framework, we directly mask input images, allowing all
encoders to be trained in the same way as supervised learning. Besides, simply reducing the image
resolution and reconstructing HOG target can train both isotropic and hierarchical architectures 5×
faster and save the GPU memory consumption by up to ∼70% compared with previous approaches,
while obtaining a comparable performance on classification and other downstream vision tasks. We
hope our observations and the simple framework can make MIM more practicable and demolish the
barrier so that more researchers can dive into this field.
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7 DISCUSSION ON POTENTIAL LIMITATIONS OF FASTMIM

While our proposed FastMIM approach demonstrates significant improvements in training efficiency
and resource utilization, there are inherent limitations to the method. Specifically, while using HOG
features effectively compensates for the loss of texture information caused by reduced image reso-
lution, HOG’s reduced sensitivity to color and texture variations may make it less suitable for tasks
requiring precise appearance modeling. For vision classification and related tasks, where global
structure and high-level semantic features are more critical, this approach can yield performance
improvements, as demonstrated in our experimental results. However, for tasks that heavily depend
on fine-grained visual details, such as image generation or super-resolution, the loss of detailed color
information could hinder performance. This limitation underscores the need for caution when apply-
ing FastMIM to such specialized tasks. Future work could explore hybrid approaches that integrate
HOG with complementary representations to enhance adaptability across a broader range of tasks.
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Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, 2021.

Jun Chen, Ming Hu, Boyang Li, and Mohamed Elhoseiny. Efficient self-supervised vision pretrain-
ing with local masked reconstruction. arXiv preprint arXiv:2206.00790, 2022a.

Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, and Ilya Sutskever.
Generative pretraining from pixels. In International conference on machine learning, 2020a.

Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, and Ilya Sutskever.
Generative pretraining from pixels. In International conference on machine learning, 2020b.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
2020c.

Xiaokang Chen, Mingyu Ding, Xiaodi Wang, Ying Xin, Shentong Mo, Yunhao Wang, Shumin Han,
Ping Luo, Gang Zeng, and Jingdong Wang. Context autoencoder for self-supervised representa-
tion learning. arXiv preprint arXiv:2202.03026, 2022b.

Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised vision
transformers. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
2021.

Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haibing Ren, Xiaolin Wei, Huaxia Xia, and
Chunhua Shen. Twins: Revisiting the design of spatial attention in vision transformers. Advances
in Neural Information Processing Systems, 2021.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning. Electra: Pre-training
text encoders as discriminators rather than generators. arXiv preprint arXiv:2003.10555, 2020.

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated
data augmentation with a reduced search space. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition workshops, 2020.

Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection. In 2005 IEEE
computer society conference on computer vision and pattern recognition (CVPR’05), 2005.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Xiaoyi Dong, Jianmin Bao, Ting Zhang, Dongdong Chen, Weiming Zhang, Lu Yuan, Dong Chen,
Fang Wen, and Nenghai Yu. Peco: Perceptual codebook for bert pre-training of vision transform-
ers. arXiv preprint arXiv:2111.12710, 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Yuxin Fang, Wen Wang, Binhui Xie, Quan Sun, Ledell Wu, Xinggang Wang, Tiejun Huang, Xinlong
Wang, and Yue Cao. Eva: Exploring the limits of masked visual representation learning at scale.
arXiv preprint arXiv:2211.07636, 2022.

Golnaz Ghiasi, Yin Cui, Aravind Srinivas, Rui Qian, Tsung-Yi Lin, Ekin D Cubuk, Quoc V Le, and
Barret Zoph. Simple copy-paste is a strong data augmentation method for instance segmentation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021.

Jianyuan Guo, Kai Han, Han Wu, Yehui Tang, Xinghao Chen, Yunhe Wang, and Chang Xu. Cmt:
Convolutional neural networks meet vision transformers. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, 2016.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of the
IEEE international conference on computer vision, 2017.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2020.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. arXiv preprint arXiv:2111.06377, 2021.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep networks with
stochastic depth. In European conference on computer vision, 2016.

Guoxi Huang, Hongtao Fu, and Adrian G Bors. Masked image residual learning for scaling deeper
vision transformers. Advances in Neural Information Processing Systems, 36:57570–57582,
2023.

Lang Huang, Shan You, Mingkai Zheng, Fei Wang, Chen Qian, and Toshihiko Yamasaki. Green
hierarchical vision transformer for masked image modeling. arXiv preprint arXiv:2205.13515,
2022.

Xiang Li, Wenhai Wang, Lingfeng Yang, and Jian Yang. Uniform masking: Enabling mae pre-
training for pyramid-based vision transformers with locality. arXiv preprint arXiv:2205.10063,
2022.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yanghao Li, Saining Xie, Xinlei Chen, Piotr Dollar, Kaiming He, and Ross Girshick. Benchmarking
detection transfer learning with vision transformers. arXiv preprint arXiv:2111.11429, 2021.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, 2014.

Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie.
Feature pyramid networks for object detection. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 2017.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. arXiv preprint
arXiv:2103.14030, 2021.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 2019.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-
standing by generative pre-training. 2018.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In International Conference on Machine
Learning, 2021.

Jason Tyler Rolfe. Discrete variational autoencoders. arXiv preprint arXiv:1609.02200, 2016.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethink-
ing the inception architecture for computer vision. In Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 2017.

Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo,
and Ling Shao. Pyramid vision transformer: A versatile backbone for dense prediction without
convolutions. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
2021.

Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo,
and Ling Shao. Pvt v2: Improved baselines with pyramid vision transformer. Computational
Visual Media, 2022.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE transactions on image processing, 2004.

Chen Wei, Haoqi Fan, Saining Xie, Chao-Yuan Wu, Alan Yuille, and Christoph Feichten-
hofer. Masked feature prediction for self-supervised visual pre-training. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.

Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, and
Saining Xie. Convnext v2: Co-designing and scaling convnets with masked autoencoders. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16133–
16142, 2023.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learning via non-
parametric instance discrimination. In Proceedings of the IEEE conference on computer vision
and pattern recognition, 2018.

Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and Jian Sun. Unified perceptual parsing for
scene understanding. In Proceedings of the European conference on computer vision (ECCV),
2018.

Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai, and Han Hu.
Simmim: A simple framework for masked image modeling. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In Proceed-
ings of the IEEE/CVF international conference on computer vision, 2019.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. arXiv preprint arXiv:1710.09412, 2017.

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Scene
parsing through ade20k dataset. In Proceedings of the IEEE conference on computer vision and
pattern recognition, 2017.

Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang Xie, Alan Yuille, and Tao Kong. ibot:
Image bert pre-training with online tokenizer. arXiv preprint arXiv:2111.07832, 2021.

A APPENDIX

case mask loc. [M] loc. learn [M] top-1
MAE patch decoder ✗ / ✓ 83.2 / 83.6
MIM patch encoder ✗ / ✓ 83.6 / 83.7
MIM image encoder ✗ / ✓ 83.6 / 83.7

(a) Mask strategy. ViT-B as encoder, raw
pixel as prediction target, pre-trained with
800 epochs.

size\ratio 0.50 0.65 0.75 0.85
8×8 83.3 83.4 83.3 82.9

16×16 83.3 83.5 83.6 83.5
32×32 83.6 83.4 83.2 83.0

size\ratio 0.50 0.65 0.75 0.85
16×16 83.9 84.0 83.8 83.6
32×32 83.9 83.9 84.1 83.8
64×64† 83.6 83.1 - -

(b) Mask size and mask ratio for ViT-B (left) and Swin-B
(right). Pre-trained with 1282 input, HOG target, and 400
epochs.

Table 10: Ablation studies on ImageNet-1K. a) mask strategies for MAE and MIM; b) mask size
and ratio. †: when the mask size is set to 64×64 with 1282 input, mask ratio > 0.5 will lead to the
same result. Default settings are marked in gray.

A.1 PRELIMINARY OF MIM

Notations. Following commonly used configurations (He et al., 2021; Bao et al., 2021; Xie et al.,
2022), given an input image X ∈ RH×W×C , where H , W , and C are the height, width, and number
of channels, some of the pixels in X are randomly masked out by being replaced with a mask token,
denoted as [M]. Let S ∈ {0, 1}H×W×C denotes the spatial mask, where 0 indicates a pixel1 is
invisible for the encoder, and 1 indicates a pixel is visible.

Framework. MIM learns representations by predicting the masked area of an input X. Existing
MIM methods can be roughly classified into two categories: (i) MAE (He et al., 2021; Huang et al.,
2022) discards the masked area and only the visible part is sent to the encoder for latent feature
extracting, then the decoder reconstructs the masked part from latent representation and mask token;
(ii) SimMIM (Xie et al., 2022; Bao et al., 2021; Wei et al., 2022; Dong et al., 2021; Zhou et al.,
2021) retains the masked part, the new input can be formulated as X̂ = X ⊙ S + [M] ⊙ (1 − S),
where ⊙ denotes the Hadamard product.

1Here we directly mask on the input RGB images, which is different with previous methods (Xie et al.,
2022; Bao et al., 2021; Huang et al., 2022) which mask on the image patches (tokens).
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config ViT-B (Dosovitskiy et al., 2020),
Swin-B (Liu et al., 2021),
Swin-L (Liu et al., 2021)

optimizer AdamW (Loshchilov & Hutter,
2017)

base learning rate 1.5e-4
weight decay 0.05
optimizer momentum β1, β2=0.9, 0.95 (Chen et al.,

2020a)
batch size 2048
learning rate schedule cosine (Loshchilov & Hutter,

2016), cosine (Loshchilov &
Hutter, 2016), step (Xie et al., 2022)

warmup epochs 10
pre-training epochs 800, 400, 400
augmentation RandomResizedCrop

Table 11: Hyperparameters for pre-training ViT-B, Swin-B, and Swin-L on ImageNet-1K.

Encoder Architecture. We consider two typical transformers as the encoder (backbone) for pre-
training, i.e., ViT (Dosovitskiy et al., 2020) and Swin (Liu et al., 2021), which are both transferable
to various downstream vision tasks. Therefore, the result can be directly compared with others in
terms of the architecture.

Decoder Architecture. The latent feature extracted by encoder is then fed into the decoder, i.e., a
linear layer (Xie et al., 2022) or several transformer blocks (He et al., 2021), to predict the original
pixels (He et al., 2021; Xie et al., 2022) or other targets (Wei et al., 2022; Bao et al., 2021; Dong
et al., 2021) in the masked area.

Prediction Target. The targets can be the raw pixel values (He et al., 2021), Histograms of Oriented
Gradients (HOG) (Wei et al., 2022), context encoded via dVAE (Bao et al., 2021; Chen et al., 2022b),
etc.

A.2 ABLATION STUDY ON MIM

Mask strategy. We analyze two typical mask strategies of the encoder, i.e., MAE (He et al., 2021)
and MIM (Xie et al., 2022). The former only operates on visible patches without [MASK] to-
kens, while the latter operates on the entire image patches. As shown in the top two rows of Ta-
ble 10a, MIM achieves slightly better transfer performance compared to MAE, but operating on
whole patches results in a heavier computational burden (as demonstrated in Figure 2 of our main
paper). Moreover, the third row illustrates that masking on image patches (e.g., 14×14×768 in
ViT-B (Dosovitskiy et al., 2020)) has almost the same effect as masking on the original image (e.g.,
224×224×3). We further examine the impact of the [MASK]. We study two kinds of mask token,
one with a learnable vector and the other set to zeros. We find that filling mask tokens with zeros
degrades MAE performance by 0.4%, but has little impact on MIM. One primary reason is that the
encoder in MIM can process the [MASK] earlier and more comprehensive than in MAE. In general,
excluding the masked regions will not affect the final fine-tuning (transfer) result, except for the pre-
training computational cost. Mask size and mask ratio. We study how different mask sizes and
ratios affect the effectiveness of MIM in Table 10b. We observe that both isotropic and hierarchical
architectures achieve their best results only when the mask size is equivalent to the patch size of
the last stage of encoder. Notably, when the mask size is smaller than the patch size, MIM can still
obtain comparable results, demonstrating its ability for representation learning. With an appropriate
mask size, MIM remains stable with ratios varying from 0.5 to 0.85.

A.3 IMPLEMENTATION DETAILS

A.3.1 REVISITING OF MIM

In order to make MIM framework compatible with different vision backbones, we directly mask the
original images in a block-wise manner (mask size can be adjusted in a large range), and retain all
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config ViT-B (Dosovitskiy et al., 2020),
Swin-B (Liu et al., 2021),
Swin-L (Liu et al., 2021)

optimizer AdamW (Loshchilov & Hutter,
2017)

base learning rate 1.0e-3
weight decay 0.05
optimizer momentum β1, β2=0.9, 0.999 (Chen et al.,

2020a)
layer-wise lr
decay (Clark et al.,
2020; Bao et al., 2021)

0.7, 0.8, 0.75

batch size 1024
learning rate schedule cosine (Loshchilov & Hutter, 2016)
warmup epochs 5
training epochs 100
augmentation RandAug (9, 0.5) (Cubuk et al.,

2020)
label
smoothing (Szegedy
et al., 2016)

0.1

mixup (Zhang et al.,
2017)

0.8

cutmix (Yun et al.,
2019)

1.0

drop path rate (Huang
et al., 2016)

0.1, 0.1, 0.3

Table 12: Hyperparameters for fine-tuning ViT-B, Swin-B, and Swin-L on ImageNet-1K.

pixels during the pre-training stage. In this way, the encoder (e.g., ViT in MAE (He et al., 2021) and
Swin in SimMIM (Xie et al., 2022)) can be replaced by any architectures because the input image
is of the same size as in supervised training. Here we study how resolution/target/encoder depth
influence the MIM. All models are evaluated on two benchmarks, i.e., ImageNet-1K (Deng et al.,
2009) and COCO (Lin et al., 2014), which are commonly used in previous works (He et al., 2021;
Bao et al., 2021; Xie et al., 2022; Huang et al., 2022; Dong et al., 2021; Chen et al., 2022b).

A.3.2 IMAGENET EXPERIMENTS

Following common practice (He et al., 2021; Xie et al., 2022; Bao et al., 2021), we first conduct
self-supervised pre-training on ImageNet-1K (Deng et al., 2009) training set without label, and then
validate the proposed FastMIM by conducting end-to-end fine-tuning on downstream tasks including
classification, object detection, instance segmentation, and semantic segmentation. All experiments
are conducted on 8 V100 GPUs with PyTorch (Paszke et al., 2019).

ViT architecture. We follow the standard ViT architecture (Dosovitskiy et al., 2020). The encoder
ends with an extra Layer Normalization (LN) (Ba et al., 2016). To match the different widths
between encoder and decoder, we adopt a linear projection layer after the encoder following (He
et al., 2021). Our FastMIM only adds absolute positional embeddings (the sine-cosine version) to
the encoder inputs. And we retain the class token (Dosovitskiy et al., 2020) during our pre-training
stage.

Swin architecture. We follow the standard Swin-B architecture (Liu et al., 2021). When pre-
training with input images of size 128×128, the window size is set to 4 accordingly. When fine-
tuning with input images of size 224×224, the window size is set to 7. And we simply leverage
the “bicubic” interpolation to remap “relative position table” (Liu et al., 2021) when pre-trained
window size mismatches with fine-tuned window size. As for Swin-L, we set the window size to 14
during fine-tuning stage following (Xie et al., 2022; Huang et al., 2022). FastMIM pre-trains Swin-L
with 128×128 inputs and the window size is set to 8 accordingly. FastMIM-P gradually increases
the input resolution during pre-training stage. We first initialize the window size to 14, and then
interpolate the corresponding “relative position table” for different input resolutions.
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Pre-training. The default setting is shown in Table 11. We simply use random resized cropping
for data augmentation. We follow the official codes of ViT (Dosovitskiy et al., 2020) and Swin (Liu
et al., 2021) to initialize corresponding blocks. We set the base learning rate to 1.5e-4, and the
effective learning rate is scaled linearly: lr = base lr × batch size / 256.

Fine-tuning on ImageNet-1K. The default setting is shown in Table 12. We follow previous prac-
tice (Bao et al., 2021; He et al., 2021) and use a layer-wise learning rate decay strategy (Clark et al.,
2020; Bao et al., 2021) for fine-tuning. We fine-tune each backbone for 100 epochs with strong
data augmentation including label smoothing (Szegedy et al., 2016), mixup (Zhang et al., 2017),
and cutmix (Yun et al., 2019) following MAE (He et al., 2021) and SimMIM (Xie et al., 2022). The
drop path rates (Huang et al., 2016) are set to 0.1/0.1/0.3 for ViT-B/Swin-B/Swin-L, respectively.
To be noticed, we report the best top-1 accuracy through the grid search on base learning rate and
layer-wise learning rate decay, as discussed in Sec. A.3.3 .
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Figure 6: Grid search for fine-tuning hyperparameters. Top: ViT-B pre-trained with 400 epochs and pixel
target. Bottom: Swin-B pre-trained with 400 epochs and pixel target. Deeper color indicates higher top-1
accuracy on ImageNet-1K validation set.

A.3.3 HYPERPARAMETERS FOR FINE-TUNING

To better adapt the pre-training formula to each model, we carefully sweep two hyperparameters via
grid search in fine-tuning stage: (i) base learning rate (blr), and (ii) layer-wise decay rate (ldr), while
keeping all others the same for all models. We conducted pilot experiments using ViT-B (Dosovit-
skiy et al., 2020) and Swin-B (Liu et al., 2021) pre-trained with our FastMIM to estimate reasonable
hyperparameter ranges. We center a 3×3 grid at blr, ldr = {1.0e-3, 0.75} and use larger and smaller
values around the center. If a local optimum is not found, i.e., the best value is a boundary value, we
expand the search. Figure 6 shows corresponding results of ViT-B and Swin-B.

A.3.4 OBJECT DETECTION AND SEGMENTATION ON COCO

We adapt the ViT and Swin for the use of an FPN backbone (Lin et al., 2017) in Mask R-CNN (He
et al., 2017). We follow three commonly used settings for fair comparison with other methods.
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config ViT-B (Dosovitskiy et al., 2020),
Swin-B (Liu et al., 2021),
Swin-L (Liu et al., 2021)

optimizer AdamW (Loshchilov & Hutter,
2017)

peak learning rate 8e-5, 6e-5, 6e-5
weight decay 0.1, 0.05, 0.05
optimizer momentum β1, β2=0.9, 0.999 (Chen et al.,

2020a)
batch size 32
learning rate schedule cosine (Loshchilov & Hutter,

2016), step, step
warmup steps 1500
training epochs 25 & 100, 36, 36
input resolution (1024, 1024)
drop path rate (Huang
et al., 2016)

0.1, 0.2, 0.3

Table 13: Hyperparameters for training ViT-B, Swin-B, and Swin-L on COCO benchmark.

config ViT-B (Dosovitskiy et al., 2020),
Swin-B (Liu et al., 2021)

optimizer AdamW (Loshchilov & Hutter,
2017)

peak learning rate 1e-3, 3e-4
weight decay 0.05
optimizer momentum β1, β2=0.9, 0.999 (Chen et al.,

2020a)
layer-wise lr
decay (Clark et al.,
2020; Bao et al., 2021)

0.65, 0.9

batch size 16
learning rate schedule linear
warmup steps 1500
training steps 160K
input resolution (512, 512)
drop path rate (Huang
et al., 2016)

0.1

Table 14: Hyperparameters for training ViT-B and Swin-B on ADE20K benchmark.

ep.\inp. 962 1282 1602 1922 2242

400 82.47 82.89 83.02 83.08 83.15
800 82.74 83.06 83.16 83.24 83.34

Table 15: Ablation on the input resolutions. Setting: MAE (He et al., 2021), ViT-B, raw pixel as prediction
target. Top-1 Acc. is reported.

MAE (He et al., 2021) setting. We equally divide the 12 ViT-B blocks into 4 subsets and apply con-
volutions to upsample or downsample the intermediate feature maps for producing different scales
following (Li et al., 2021; He et al., 2021). We train ViT-B with large-scale jitter (1024×1024 reso-
lution, scale range [0.1, 2.0]) (Ghiasi et al., 2021), AdamW (Loshchilov & Hutter, 2017) with cosine
learning rate decay, and drop path regularization for both 25 & 100 epochs, as shown in Table 13.
More details can be found in (Li et al., 2021).

GreenMIM (Huang et al., 2022) setting. The learning rate setting is slightly different from Ta-
ble 13. The peak learning rate is set to 1e-4 with a batch size of 16. The Swin-B is initialized with
self-supervised pre-trained checkpoint via our FastMIM. More details can be found in (Huang et al.,
2022).

SimMIM (Xie et al., 2022) setting. Table 13 shows the corresponding hyperparameters for Swin-B
and Swin-L following (Xie et al., 2022). The window size for Swin-B is set to 7 and that for Swin-L
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is 14. Notably, we choose upgraded Mask R-CNN (more details in Sec. 2.2 in (Li et al., 2021)) as
basic framework and initialize the backbone with checkpoint fine-tuned on ImageNet-1K, following
SimMIM (Xie et al., 2022). More details can be found in (Xie et al., 2022).

A.3.5 SEMANTIC SEGMENTATION ON ADE20K

We use typical UperNet (Xiao et al., 2018) as the basic framework. We follow two previous settings
to evaluate our FastMIM.

MAE (He et al., 2021) setting. We follow the semantic segmentation code of MAE (He et al.,
2021) and BEiT (Bao et al., 2021). We fine-tune end-to-end for 100 epochs with a batch size of
16. We turn on relative position bias only during transfer learning, initialized as zero. We fine-tune
end-to-end for 160K iterations using AdamW (Loshchilov & Hutter, 2017) optimizer with the peak
learning rate of 3e-4, weight decay of 0.05. The ViT-B model is trained with input resolution of
512×512, as shown in Table 14.

SimMIM (Xie et al., 2022) setting. We follow the setting of SimMIM (Xie et al., 2022): a weight
decay of 0.05, a batch size of 32, a layer-wise learning rate decay rate of 0.9, and a peak learning
rate of 3e-4. The Swin-B model is trained with input resolution of 512×512, as shown in Table 14.
We initialized the backbone with checkpoint after supervised fine-tuning on ImageNet-1K. In infer-
ence, a multi-scale test using resolutions that are [0.75, 0.875, 1.0, 1.125, 1.25]× of 512×2048 is
employed.

enc.\dec. 1b256d 1b512d 1b768d 4b256d 4b512d 4b768d 8b256d 8b512d 8b768d
ViT-B 82.5 82.4 82.2 82.4 82.2 N/A 82.1 82.0 N/A
ViT-L 82.7 82.9 82.9 82.8 83.1 83.2 83.3 83.5 83.4

Swin-B 83.5 83.5 83.3 83.6 83.5 83.3 83.4 83.2 N/A
Swin-L 84.3 84.2 84.1 84.3 84.3 84.2 84.2 84.1 84.0

Table 16: Ablation study on decoder size. Pre-trained by our FastMIM framework with 100 epochs, i.e.,
input size of 1282, HOG as prediction target. “1b256d” indicates one decoder block with 256-d width. Top-1
Accuracy is reported.
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Figure 7: Pre-training loss on ImageNet-1K (Deng et al., 2009). ViT-B (left) is trained with 800 epochs and
Swin-B (right) is trained with 400 epochs.

A.4 MORE ABLATIONS ON BASIC COMPONENTS

Reduce Input Resolution in MAE Table 15 ablates how the pre-training epoch and input resolu-
tion impact the fine-tuning result of MAE framework (He et al., 2021). The final performance de-
creases when the input resolution is reduced. However, the performance drop resulted from decreas-
ing input resolution of MAE from 2242 to 1282 is slightly larger when compared with MIM (Xie
et al., 2022). We conjecture one main reason is that the MAE discards up to 75% patches during
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FIG-1: 224x224 FIG-2: 224x224 (642 2242, bicubic) HOG Feature on FIG-1

PSNR: 17.40, SSIM: 0.68 PSNR: 29.50, SSIM: 0.90

HOG Feature on FIG-2

FIG-1: 224x224 FIG-2: 224x224 (642 2242, bicubic) HOG Feature on FIG-1

PSNR: 10.38, SSIM: 0.34 PSNR: 24.40, SSIM: 0.66

HOG Feature on FIG-2

FIG-1: 224x224 FIG-2: 224x224 (642 2242, bicubic) HOG Feature on FIG-1
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HOG Feature on FIG-2
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HOG Feature on FIG-2

FIG-1: 224x224 FIG-2: 224x224 (642 2242, bicubic) HOG Feature on FIG-1

PSNR: 12.16, SSIM: 0.36 PSNR: 22.16, SSIM: 0.68

HOG Feature on FIG-2

Figure 8: Visualization on pixel target and HOG target. Images are randomly chosen from ImageNet-1K (Deng
et al., 2009). We choose PSNR(dB) and SSIM (Wang et al., 2004) to evaluate the similarity between two images
(features). HOG target can preserve better texture information under low resolution input compared to pixel
target.
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HOG Feature on FIG-2

Figure 9: Visualization on pixel target and HOG target. Images are randomly chosen from COCO (Lin et al.,
2014). We choose PSNR(dB) and SSIM (Wang et al., 2004) to evaluate the similarity between two images
(features). HOG target can preserve better texture information under low resolution input compared to pixel
target.
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mask size = 32×32
Masked Input Pixel Ground Truth (Input) Prediction (Pixel Target) HOG Ground Truth Prediction (HOG Target)

Masked Input Pixel Ground Truth (Input) Prediction (Pixel Target) HOG Ground Truth Prediction (HOG Target)

Masked Input Pixel Ground Truth (Input) Prediction (Pixel Target) HOG Ground Truth Prediction (HOG Target)

Masked Input Pixel Ground Truth (Input) Prediction (Pixel Target) HOG Ground Truth Prediction (HOG Target)

Masked Input Pixel Ground Truth (Input) Prediction (Pixel Target) HOG Ground Truth Prediction (HOG Target)

Failure Case
Masked Input Pixel Ground Truth (Input) Prediction (Pixel Target) HOG Ground Truth Prediction (HOG Target)

Figure 10: Pixel vs. HOG predictions (without normalization) on ImageNet-1K (Deng et al., 2009) validation
set. Using an MIM trained on ImageNet. For each sample, we show the masked image, original input, predic-
tion trained by pixel target, HOG ground truth, and prediction trained by HOG target. The unmasked regions
are not used for loss and thus qualitatively poor.

pre-training stage, and reducing the input resolution will drastically decrease the number of visible
patches, together with crucial position information for encoder. Although there is an extra absolute
positional embedding added to the encoder input, the ability to capture (perceive) location informa-
tion of MAE is inferior to MIM which retains the whole input patches.

Ablation study on decoder size. Table 16 ablates the effect of varying decoder designs. In-
triguingly, the results suggest that different architectures prefer different settings and have opposite
trends. ViT (Dosovitskiy et al., 2020) prefers a simple decoder for the base size and a complicated
one for the large size. While Swin (Liu et al., 2021) seems to be robust with various decoder sizes
and favors a simple one, which conforms with the observation in (Xie et al., 2022; Huang et al.,
2022). In conclusion, the size of decoder should be properly aligned with the specific encoder.
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mask size = 16×16
Masked Input Pixel Ground Truth (Input) Prediction (Pixel Target) HOG Ground Truth Prediction (HOG Target)
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mask size = 32×32
Masked Input Pixel Ground Truth (Input) Prediction (Pixel Target) HOG Ground Truth Prediction (HOG Target)

Masked Input Pixel Ground Truth (Input) Prediction (Pixel Target) HOG Ground Truth Prediction (HOG Target)

Failure Case
Masked Input Pixel Ground Truth (Input) Prediction (Pixel Target) HOG Ground Truth Prediction (HOG Target)

Figure 11: Pixel vs. HOG predictions (without normalization) on COCO (Deng et al., 2009) validation set.
Using an MIM trained on ImageNet. For each sample, we show the masked image, original input, prediction
trained by pixel target, HOG ground truth, and prediction trained by HOG target. The unmasked regions are
not used for loss and thus qualitatively poor.

A.5 MORE ABLATIONS ON THE HOG TARGET

Pre-raining loss of the HOG target. Figure 7 shows the pre-training losses of different input
resolutions. We can find that HOG target can reduce the gap of loss values between different input
resolutions. Besides, the absolute loss values of using HOG target are far smaller than those of
using pixel target, demonstrating that HOG can effectively reduce the risk of ambiguity during
reconstruction in MIM.
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Visualization of ground truth target. Figure 8 and Figure 9 show more visualization results of
pixel and HOG target on ImageNet-1K and COCO, respectively. Although reducing the image res-
olution can significantly expedite the training process, the crucial information, e.g., detailed textures
and edges, will be discarded when using pixel target. However, HOG is more invariant to the reso-
lution changes, which is suitable for our FastMIM.

Visualization of predicted targets. We qualitatively compare the reconstruction result of pixel
target with HOG target as shown in Figure 10 and Figure 11. We can find that both pixel and
HOG predictions are semantically plausible to some extent. However, pixel targets suffer from large
errors caused by ambiguous problems (Wei et al., 2022), while HOG is more robust to ambiguity.
As shown in the second row in Figure 10, the model trained via pixel target predicts the balloon
as dark blue, which is in fact red in the top area. This wrong prediction can result in a high loss
penalty, which can also increase the difficulty of training. This is also affirmed by MaskFeat (Wei
et al., 2022) and is also the main reason for MaskFeat to leverage HOG feature as the prediction
target. In addition to above reason, we demonstrate that HOG is more invariant to the resolution
changes when compared with pixel target. Therefore, HOG target is naturally more suitable for our
FastMIM.
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