
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FORWARD TARGET PROPAGATION: A FORWARD-ONLY
APPROACH TO GLOBAL ERROR CREDIT ASSIGNMENT
VIA LOCAL LOSSES

Anonymous authors
Paper under double-blind review

ABSTRACT

Training neural networks has traditionally relied on backpropagation (BP), a
gradient-based algorithm that, despite its widespread success, suffers from key
limitations in both biological and hardware perspectives. These include back-
ward error propagation by symmetric weights, non-local credit assignment, update
locking, and frozen activity during backward passes. We propose Forward Target
Propagation (FTP), a biologically plausible and computationally efficient alterna-
tive that replaces the backward pass with a second forward pass. FTP estimates
layer-wise targets using only feedforward computations, eliminating the need for
symmetric feedback weights or learnable inverse functions, hence enabling mod-
ular and local learning. We evaluate FTP on fully connected networks, CNNs,
and RNNs, demonstrating accuracies competitive with BP on MNIST, CIFAR-10,
and CIFAR-100, as well as effective modeling of long-term dependencies in se-
quential tasks. FTP shows improved robustness under quantized low-precision
and emerging hardware constraints while also demonstrating substantial efficiency
gains over other biologically inspired methods such as target propagation variants
and forward-only learning algorithms. With its minimal computational overhead,
forward-only nature, and hardware compatibility, FTP provides a promising direc-
tion for energy-efficient on-device learning and neuromorphic computing.

1 INTRODUCTION

Backpropagation (BP) has been the foundational algorithm for training neural networks, driving the
success of deep learning in tasks such as image recognition, language modeling, and decision-making
(Rumelhart et al., 1986; Vaswani et al., 2017; Brown et al., 2020). Despite its proven effectiveness,
BP faces key limitations in biological plausibility and hardware compatibility. A major issue is
its reliance on symmetric weight transport between forward and backward passes, which conflicts
with biological learning, where synaptic updates are not symmetric (Whittington & Bogacz, 2019).
Moreover, on edge devices and emerging analog in-memory hardware such as resistive random
access memory (RRAM) and phase-change memory (PCM) crossbars, symmetric transport poses
further challenges (Yi et al., 2023; 2022; Shafiee et al., 2016). Each training iteration requires weight
matrices to be written and verified in transposed form for backward error propagation. However,
achieving perfect forward–backward symmetry in analog hardware is often unfeasible (Li et al.,
2018), leading to performance degradation. This issue is amplified in edge applications, where low-bit
precision constraints worsen the problem (Yang & Sze, 2019). Additionally, BP propagates a global
error signal backward through multiple layers, unlike the localized learning signals of biological
neural systems (Lillicrap et al., 2020). Its weight updates depend on information from distant layers,
implying neurons must access far-off signals, a non-locality absent in biology. BP also suffers
from vanishing and exploding gradients, where values become too small for meaningful updates
or too large, destabilizing training, especially in deep and recurrent networks (Bengio et al., 1994).
Furthermore, BP assumes layer-wise processing and exact error computation, whereas biological
systems learn in a noisier, more heuristic manner rather than through precise gradients (Crick, 1989;
Scellier et al., 2023). These challenges have driven interest in biologically plausible alternatives that
better capture how the brain may perform credit assignment (Lillicrap et al., 2020; 2016; Bengio,
2014; Hinton, 2022; Millidge et al., 2021). This paradigm is worth exploring because the brain

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

achieves remarkable efficiency and adaptability through local learning rules, providing valuable
insights for developing energy-efficient learning algorithms.

In this work, we introduce Forward Target Propagation (FTP), a biologically inspired, forward-only
learning framework that addresses key limitations of backpropagation and demonstrate its theoret-
ical basis, empirical competitiveness, efficiency across architectures and tasks, scalability among
forward learning approaches, and compatibility with emerging hardware. Our key contributions are
summarized as:

• We introduce Forward Target Propagation (FTP), a biologically plausible, forward-only learning
algorithm that enables local credit assignment without relying on backward error propagation or
symmetric weight transport.

• We evaluate FTP across fully connected, convolutional, and recurrent neural networks on image
classification and multivariate time-series forecasting tasks, demonstrating competitive accuracy
with backpropagation while being more efficient than other biologically inspired methods.

• We present theoretical justification and empirical evidence showing strong alignment between
FTP and backpropagation, measured via the angular similarity between their respective gradient
directions during training.

• We assess FTP’s robustness in low-precision and noisy hardware settings and benchmark its
efficiency in TinyML scenarios, thereby showing that FTP achieves near-BP-level efficiency while
outperforming other biologically plausible algorithms. This highlights FTP’s suitability for edge
and neuromorphic computing.

2 RELATED WORK

2.1 CONVENTIONAL AND BIOLOGICALLY PLAUSIBLE METHODS

Backpropagation (BP) has long been the backbone of neural network training, relying on forward
and backward passes to compute error gradients. In the forward pass, inputs propagate through the
network to the output layer, where prediction errors are computed against target values. The backward
pass then sends error derivatives through the network using the same weights used in the forward
pass, and the outer product of activity vectors from both passes forms the gradient matrices of the
global objective. Despite its success, BP is often criticized for its biological implausibility, raising
questions about whether such mechanisms exist in real biological systems (Rumelhart et al., 1986).
To address the limitations of backpropagation, several biologically inspired learning algorithms have
been proposed. Feedback Alignment (FA) (Lillicrap et al., 2016) replaces symmetric feedback with
fixed random weights, demonstrating that networks can learn without exact weight mirroring. Direct
Feedback Alignment (DFA) extends this idea by projecting output errors directly to hidden units via
random matrices (Nøkland, 2016). A simplified variant, Direct Random Target Projection (DRTP),
further removes the need for global error signals by using target labels to update hidden layers
(Frenkel et al., 2021). Although these methods mitigate issues such as weight transport and update
locking, they remain limited in biological plausibility due to their reliance on global error signals
and frozen network dynamics. Moreover, DRTP has shown reduced accuracy and poor scalability
compared to more recent approaches.

Equilibrium Propagation offers a biologically inspired alternative to backpropagation by computing
gradients through equilibrium states in energy-based models (Scellier & Bengio, 2017; Scellier et al.,
2023; Yi et al., 2023). Target Propagation (TP) and Difference Target Propagation (DTP) assign credit
via layer-wise targets rather than global error gradients, thus avoiding a full backward pass (Bengio,
2014; Lee et al., 2015; Meulemans et al., 2020; Ernoult et al., 2022). While DTP improves target
estimation with correction terms, both methods become costly in deep networks. Local Representation
Alignment (LRA-E) refines this idea by computing local targets from downstream errors through
fixed feedback pathways, removing the need for gradients or symmetric weights (Ororbia & Mali,
2019). Its recursive variant, rec-LRA, scales this mechanism by aligning internal representations
layer-by-layer, enabling parallel updates in deep architectures (Ororbia et al., 2023). Though effective
on large datasets, both methods introduce additional computational and memory overhead and need
careful tuning for stability. Fixed Weight DTP (FWDTP) simplifies DTP with fixed random feedback
matrices but suffers performance degradation in deeper networks (Shibuya et al., 2023).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

These biologically inspired training schemes aim to match BP’s performance while mitigating the
weight transport problem. However, challenges such as non-local credit assignment, frozen activity,
update locking, and high computational cost remain, underscoring the need for further exploration in
this domain.

2.2 FORWARD LEARNING METHODS

Forward learning methods offer a biologically plausible alternative to backpropagation by avoid-
ing explicit backward passes and instead utilizing feedforward mechanisms to propagate learning
signals. PEPITA is one such forward learning method (Dellaferrera & Kreiman, 2022). It avoids
backpropagation by performing a second forward pass where inputs are modulated by output errors
through a fixed random matrix (Dellaferrera & Kreiman, 2022). Weight updates come from the
difference between standard and modulated activations, enabling local learning without symmetric
weights. This removes the weight symmetry constraint of backpropagation but faces the issue of
scalability beyond 2 hidden layers. Forward-Forward Learning (FF), introduced by Hinton (Hinton,
2022), eliminates backward error propagation by training solely with forward passes. It compares
neuron activations under “positive” and “negative” data, reinforcing those aligned with the desired
output. By avoiding backward gradients, FF addresses weight transport and frozen activity. Yet the
absence of top-down influence limits inter-layer coordination, partly alleviated by adding recurrent
connections at the expense of higher computational complexity. FF also struggles to scale and
underperforms beyond simple fully connected (FC) networks, such as convolutional neural networks
(CNNs) (Lv et al., 2025). Predictive Forward-Forward Learning (PFF) extends FF with a generative
circuit that predicts neural activity to guide local updates (Ororbia & Mali, 2023). Although more
biologically plausible and less reliant on error feedback than predictive coding, PFF incurs extra cost
from repeated prediction steps.

Despite these advancements, forward learning methods remain limited in efficiency, performance,
and scalability. Although they address key biological implausibilities of BP such as symmetric weight
transport and global error gradients, they often introduce new issues, including greater computational
demands and poor scaling in deeper networks.

3 FORWARD TARGET PROPAGATION

3.1 OVERVIEW OF ALGORITHM

Forward Target Propagation (FTP) is a novel algorithm that replaces the backward pass in neural
networks with a second forward pass to compute learning signals. At the core of FTP lies the
concept of layer-wise targets similar to target propagation algorithms (Bengio, 2014; Lee et al., 2015;
Meulemans et al., 2020; Shibuya et al., 2023), which define the desired activations that each layer
should produce during learning. The process begins with a standard forward pass (first forward pass),
where the input data X is propagated through the network to generate the output activation hL based
on the current weights. After obtaining this prediction, the target for the first hidden layer, denoted as
τ1, is estimated using a difference-corrected projection. Specifically, the final-layer output hL and
the ground-truth label y are independently projected through a fixed random matrix G, initialized
with zero mean and small standard deviation. The resulting estimate is computed as:

τ1 = σ(Gy)− σ(GhL) + h1, (1)

where σ(·) is the element-wise nonlinearity, and h1 is the activation of the first hidden layer from
the first forward pass. The estimated targets then serve as inputs for the second forward pass, during
which the same feedforward weights used in the first forward computation are reused to propagate
the target signal and estimate layer-wise targets. Finally, the weights are updated by minimizing a
local loss between activations and targets, thereby enabling layer-wise learning without backward
gradients or symmetric feedback.

This forward-only update features a pipelined training by overlapping minibatches: once the first
layer’s weights are updated and the next layer’s target is being computed, the following minibatch
can begin its first forward pass. In contrast, BP requires all layers to complete backward gradient
computation and weight updates before processing the next minibatch, resulting in strict update
locking. FTP thus allows overlapping computation of minibatches, hereby solves update locking

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(a) BP (b) DTP (c) PEPITA (d) FTP
Figure 1: Configuration of various learning methods: a) BP, b) DTP, c) PEPITA, and d) FTP. Black
arrows represent forward paths, while blue arrows indicate error/target paths. Each W denotes the
learnable weight matrices of hidden layers, whereas the top-down feedback path includes learnable
matrices (G3,G2 for DTP) or randomly initialized and frozen matrix G (for PEPITA and FTP).

partially and can lead to improved wall-clock efficiency over a full training cycle than BP. For
comparison, the configuration of various learning methods- BP, DTP, PEPITA, and FTP, is shown in
Figure 1.

3.2 TARGET ESTIMATION AND LEARNING

In a feedforward neural network, the process begins with input data X and corresponding output
labels y. The activation values for the input layer (layer 0) are given by: h0 = X . For each
subsequent layer i (where i = 1, 2, . . . , L, and L is the final layer), the activation values are computed
as:

hi = σ(Wihi−1) (2)
where Wi is the weight matrix for layer i, hi−1 is the activation from the previous layer, and σ is the
activation function applied element-wise (e.g., tanh, sigmoid).
FTP assigns each layer a target via forward propagation of the initial target signal. We estimate the
first target τ1, which is the target for the first hidden layer, using a fixed random matrix G, through a
difference-corrected projection that contrasts the label and current output in a transformed space:

τ1 = σ(Gy)− σ(GhL) + h1 (3)

This formulation provides a top-down feedback mechanism to estimate layer-wise targets without
relying on the global error gradient propagation. The target for the first hidden layer from Equation (3)
reflects how its activation should shift to ultimately produce the correct output, hL ≈ y. Although
h1 ∈ Rd1 and hL, y ∈ RdL , the fixed random projection G maps hL, y into Rd1 . The difference
σ(Gy) − σ(GhL) captures the directional discrepancy between the desired output and current
prediction in the projected space. Adding this correction to h1 yields a target τ1 that nudges the first
hidden layer toward a representation more likely to result in hL ≈ y after forward propagation.

To transmit this signal to deeper layers, i.e., i = 2, 3, . . . , L − 1, we propagate targets recursively
using the same feedforward weights used in the first forward pass:

τi = σ(Wiτi−1), (4)

Each layer’s weights are then updated by minimizing a local loss that encourages alignment between
activation and target:

Li =

{
∥hi − τi∥22 if i < L

L if i = L,
(5)

where L is the global loss (e.g., cross-entropy, mean-squared loss) used at the final layer.

The FTP weight update is obtained by performing standard gradient descent on the local loss Li,
leading to:

∆Wi = −η∇Wi
Li (6)

where η is the learning rate. This update arises directly from minimizing the layer-wise squared loss
between activation, hi, and target τi.

This formulation demonstrates that FTP enables weight updates using only locally available informa-
tion, where each update implicitly reflects a top-down influence from the global target through fixed

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

projections. FTP also eliminates the need to compute the first hidden layer’s activation from the input
level in second forward pass, unlike other forward-learning algorithms that do so using modulated
inputs or negative image samples (Dellaferrera & Kreiman, 2022; Hinton, 2022).

PEPITA, for example, computes an explicit global error at the output layer and projects it back to the
input using a fixed feedback matrix. A second forward pass with perturbed input induces a modified
hidden activation, which is compared to the original activations to drive learning. This requires
explicit error computation and assumes sensory neurons can access and respond to internal errors- an
implausible assumption, as early sensory neurons act as
feedforward encoders without receiving task-level feedback
(Gilbert & Li, 2013). Moreover, explicit error signaling is
biologically unsupported, as noted by Guerguiev et al. (Guer-
guiev et al., 2017), who argue for dendritic compartmental-
ization as the mechanism for integrating feedforward and
feedback signals. In contrast, FTP generates target activations
for the first hidden layer using a feedback mapping from the
model’s output and label, avoiding explicit error computation
and input perturbation. This aligns with cortical pyramidal
neuron structure, where basal dendrites receive feedforward
inputs and apical dendrites receive feedback, supporting lo-
cal plasticity through dendritic mismatch (Guerguiev et al.,
2017). Furthermore, as shown in Appendix C, this mechanism
introduces the global error e through this forward target propa-
gation, which produces updates that align closely with the BP
gradients and exhibit similarity to Gauss-Newton directions.
The complete training procedure is outlined in Algorithm 1.

Algorithm 1: FTP
Given: Input X , label y
h0 = X , τL = y
First Forward Pass
for i = 1 to L do
hi = σ(Wihi−1)

end for
Estimate First Target
τ1 = σ(GτL)− σ(GhL) + h1

Second Forward Pass
for i = 1 to L do

if 1 < i < L then
τi = σ(Wiτi−1)

end if
∆Wi =

∂Li

∂Wi

end for

4 RESULTS AND DISCUSSION

4.1 METHODS

We evaluated the performance of FTP against conventional BP and other biologically plausible
algorithms such as PEPITA and DTP across two task categories: image classification using FC and
CNN architectures, and time-series forecasting using recurrent neural network (RNN).

All models were trained using cross-entropy loss for classification tasks and mean squared error for
time-series forecasting, optimized by SGD with momentum. For consistency across evaluations,
each model family (FC, CNN, and RNN) was implemented using a consistent architecture across
all corresponding datasets. Architectural specifications, activation functions, initialization schemes,
and training schedules are provided in the Appendix D. Furthermore, we evaluate the impact of
initialization choice of feedback matrix, G which is elaborated in Appendix E.

4.2 FTP FOR IMAGE CLASSIFICATION

We evaluated FTP on FC and CNN networks for image classification. FC models were tested on
MNIST, FMNIST, and CIFAR-10, while CNNs were evaluated on MNIST, CIFAR-10, and CIFAR-
100. Results are summarized in Table 1. Across FC architectures, FTP consistently outperforms DTP
and achieves accuracy comparable to BP and PEPITA, but with significantly lower computational
cost as shown in Table 2. Similarly, in CNNs, FTP performs competitively, demonstrating its ability
to learn spatial features effectively.

Table 1: Test accuracy [%] achieved by BP, DTP, PEPITA, and FTP in the experiments for fully
connected (FC) networks and convolutional neural networks (CNNs).

FC Networks CNNs
Algorithm MNIST FMNIST CIFAR-10 MNIST CIFAR-10 CIFAR-100

BP 98.27±0.08 89.10±0.12 55.31±0.26 98.74±0.05 64.88±0.18 33.83±0.26

DTP 96.51±0.34 85.87±0.41 48.67±0.19 97.23±0.22 52.76±0.27 23.51±0.58

PEPITA 98.05±0.11 88.41±0.14 52.45±0.28 98.41±0.24 56.17±0.62 26.77±0.87

FTP 97.98±0.25 87.24±0.21 52.57±0.37 98.28±0.35 56.32±0.82 26.84±1.13

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 2: MACs (millions) for BP, DTP, PEPITA, and FTP on FC networks, along with percentage
change in MAC (%) with respect to BP.

Dataset BP DTP PEPITA FTP

MNIST MAC (mil.) 2.00 2.94 2.81 2.02
MAC (%) 0.00% 66% 41% 1%

CIFAR-10 MAC (mil.) 6.69 9.97 9.86 6.71
MAC (%) 0% 35% 32% 0%

CIFAR-100 MAC (mil.) 6.72 10.01 10.18 6.93
MAC (%) 0% 36% 34% 3%

Table 2 also shows that FTP requires 30–60% fewer multiply-accumulate (MAC) operations per
input sample than other bio-plausible methods such as PEPITA and DTP, while remaining close to
BP in computational cost. This highlights FTP’s practical efficiency in such shallow-to-moderately
deep architectures, making it a compelling forward-only alternative for both dense and convolutional
models, especially in resource-constrained settings.

4.3 FTP IN CAPTURING LONG-TERM DEPENDENCY

We evaluated FTP on three standard time-series forecasting benchmarks, Electricity, METR-LA
(Traffic), and Solar Energy (Lai et al., 2017), using a RNN trained to predict the 25th time sample
from the previous 24. As in FC and CNN settings, FTP estimates targets using a difference-corrected
projection through a fixed random matrix. We evaluated model performance using two standard
time-series metrics: Root Relative Squared Error (RRSE) and the Pearson correlation coefficient
(CORR). These metrics are defined in Appendix F.

RNNs are inherently deep due to their temporal unrolling and Table 3 shows that FTP consistently
performs well across all datasets in RNNs. FTP has higher correlation coefficient than BP on all three
benchmarks and remains competitive in RRSE. On METR-LA, FTP achieves both the lowest RRSE
and highest CORR. These results suggest that FTP is particularly effective at capturing temporal
structure and underlying patterns in time-series data, a crucial aspect of real-world forecasting
tasks. This highlights FTP’s potential as a biologically plausible alternative to BPTT, with improved
robustness and compatibility for analog or on-device learning environments, which is discussed in
Section 4.6.

Table 3: Performance of RNN-based models on time-series datasets using BP, PEPITA, and FTP. ↑
(↓) indicates that higher (lower) values are better.

Method Electricity METR-LA Solar

RRSE↓ CORR↑ RRSE↓ CORR↑ RRSE↓ CORR↑
BP (BPTT) 0.1059 0.9302 0.4680 0.8750 0.1161 0.9919
PEPITA-RNN 0.1214 0.9929 0.4419 0.8967 0.1170 0.9932
FTP-RNN 0.1219 0.9935 0.4398 0.8987 0.1177 0.9931

4.4 SCALABILITY OF FTP

To demonstrate scalability of FTP, we evaluated both deep FC networks (all hidden layers of 1024
units) and convolutional architectures. Details on architecture choice are described in Appendix G.
As evident from Table 4, across datasets, BP achieves the highest accuracy, but FTP consistently
remains close to BP, while being far more stable and better than PEPITA, which collapses with depth.
Prior work has shown that forward-only learning schemes without extra learnable parameters, such
as FF, were restricted to at most four hidden layers (Hinton, 2022), while PEPITA was originally
limited to one hidden layer (Dellaferrera & Kreiman, 2022) and required auxiliary techniques such
as normalization or weight decay to stabilize deeper FC models (Srinivasan et al., 2023). Potential
scalability for CNNs using FTP is discussed in Appendix G. Our results demonstrate that FTP can
train both deeper FC and convolutional networks without additional learning (Gong et al., 2025) or
stabilization techniques, and produces predictions directly in a single forward pass during inference,
unlike FF, which requires testing all labels explicitly for each sample.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 4: Test accuracy (Mean ± Std) of BP, PEPITA, and FTP across datasets and hidden layer depths
for FC networks. Here, L = Total number of layers in network.

Dataset Algorithm L = 3 L = 4 L = 5 L = 6

MNIST
BP 98.48±0.09 98.55±0.05 98.60±0.06 98.60±0.05

PEPITA 98.19±0.03 94.63±0.21 89.12±0.35 81.71±0.80

FTP 98.36±0.07 98.15±0.11 98.24±0.08 98.20±0.07

CIFAR-10
BP 57.83±0.08 58.06±0.19 57.86±0.39 57.65±0.37

PEPITA 52.46±0.17 52.78±0.56 44.88±0.19 32.72±0.36

FTP 53.88±0.24 54.81±0.18 54.72±0.16 54.93±0.13

CIFAR-100
BP 30.08±0.17 29.31±0.28 28.50±0.11 28.55±0.29

PEPITA 24.80±0.32 18.05±0.16 1.20±0.11 6.57±0.48

FTP 26.27±0.27 27.12±0.20 27.85±0.36 28.35±0.54

4.5 ALIGNMENT OF FTP WITH BACKPROPAGATION

Gradient alignment measures how closely alternative learning rules match BP’s parameter update
directions. This metric is particularly useful in the context of biologically plausible algorithms
(Lillicrap et al., 2016; Nøkland, 2016; Shervani-Tabar & Rosenbaum, 2023), where exact gradient
computation is often replaced by approximate or learned feedback pathways. We quantify the
alignment by computing the cosine angle between flattened gradient vectors of an approximate
method and BP throughout training. A smaller angle indicates a closer match in update directions,
which often correlates with improved learning performance and better convergence. To analyze the
gradient alignment of FTP with BP, we use a fully connected network with two hidden layers, trained
on MNIST for 100 epochs, and average the results over 10 random seeds. A scaling parameter γ,
introduced in detail below, is set to 1 at this point, which corresponds to the standard FTP target. The
alignment angle for the output layer always remains at zero during training, since FTP and BP share
identical gradient expressions for the final layer. As shown in Figure 2a, the alignment angle for both
hidden layers starts near 90◦, indicating no initial alignment between the FTP and BP gradients. This
is expected, as the fixed random feedback matrix G used in FTP is uncorrelated with the forward
weights at initialization, unlike BP, which computes exact gradients via the chain rule. As training
progresses, however, the angle steadily decreases, which reflects that FTP’s updates increasingly
align with those of BP.

To understand how the magnitude of the error signal affects alignment, we introduce a hyperparameter
γ that scales the FTP target as

τ1 = γ(σ(Gy)− σ(GhL)) + h1 (7)

Setting γ = 1 yields the standard FTP formulation. We evaluated its effect over the range [0.1, 1.5],
and here we report results for γ = 0.5 and γ = 1.5 in Figure 2c and 2d to highlight the impact of
error signal scaling. Each setting was evaluated for 10 random seeds, and only the mean alignment
is shown for visual clarity. When γ = 0.5, we observe stronger alignment in both hidden layers,
compared to the case of γ = 1. Conversely, increasing γ to 1.5 degrades the alignment. These results
indicate that γ acts as a regularizer, which governs error-signal strength and directional alignment
with BP. When γ is large, the FTP target shift becomes overly aggressive, potentially pushing the
hidden representations too far from their initial state, which can destabilize learning and lead to
misaligned updates. In contrast, a smaller γ produces more conservative target shifts, allowing the
network to adjust gradually in directions that are more naturally aligned with the forward pathway
and ultimately closer to the BP gradients.

In addition to gradient alignment, we analyze the structural alignment between the product of forward
weights (i.e., W T

2 W T
3) and the projection matrix G, following FA(Lillicrap et al., 2016). We flatten

them and compute the angle between the flattened vectors throughout training, which is depicted in
Figure 2b. Initially, the angle is close to 90◦, reflecting a random orientation. Over time, the angle
steadily decreases, indicating that FTP promotes consistent forward–backward correlations. This
behavior contrasts with the anti-alignment in PEPITA (Dellaferrera & Kreiman, 2022), and supports
the hypothesis (Lillicrap et al., 2016) that biologically plausible learning rules such as FTP naturally
give rise to structured and coordinated representations.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) (b)

(c) (d)
Figure 2: Evolution of alignment during training: (a) Alignment between gradient directions from
FTP and BP with γ = 1; (b) Alignment between products of forward weight matrices (W T

2 W T
3)

and the feedback matrix G; (c,d) Alignment of gradients for W1 and W2 under varying γ.

4.6 PERFORMANCE OF FTP IN EMERGING HARDWARE AND EDGE DEVICES

BP relies on symmetry between forward and backward weights, which is difficult to maintain on
emerging analog accelerators such as RRAM and other non-volatile memories, due to non-idealities
including noise, programming errors, and variability. These asymmetries disrupt gradient flow and
significantly degrade BP performance under low-bit precision. We demonstrate in Appendix J how
the performance of BP is susceptible to such non-ideal conditions.

Programming errors, a key source of non-ideality, accumulate differently in FTP and BP. In FTP, the
feedback matrix G is randomly initialized and programmed only once at the start of training. Any
programming error introduced then remains embedded in G throughout the training process. Since
FTP reuses the same forward matrices for both activations and layer-wise targets, any programming
errror in matrices affects both pathways in consistent manner, making it inherently robust to hardware-
induced asymmetry and stable even in noisy, low-precision settings. In contrast, BP requires continual
reprogramming of forward and backward matrices–unless complicated bidirectional peripheral
circuitry is implemented (Wan et al., 2022). Independent reprogramming of forward and backward
matrices often violates the symmetry, especially in analog crossbars (e.g., RRAM, PCM), where these
two are stored in physically different memory cells (Yi et al., 2023). Here, symmetry refers to the
proportion of elements in the backward weight matrix that remain uncorrupted relative to the forward
matrix. Reduced symmetry means backward weights increasingly deviate from forward-transpose,
introducing new, uncorrelated errors at every step.

To evaluate this effect, we injected additive Gaussian noise into weights to simulate programming
errors. The noise level, shown on the x-axis of Figure 3, is parameterized by α, scaling the standard
deviation of noise distribution as std = α × |w|, where w is the weight being corrupted (Xiao
et al., 2023). Thus, larger weights incur proportionally larger noise, with higher α producing
stronger perturbations. We also compare against FA, which uses fixed random feedback matrices and
avoids reprogramming backward paths in hardware, making it a relevant robustness baseline (see
Appendix H for detailed discussion). As shown in Figure 3 and Appendix H, FTP consistently shows
improved robustness under programming errors, especially as noise levels increase. Notably, in 4-bit
systems, FTP maintains higher accuracy than BP, underscoring its robustness to programming errors
in low-precision and non-ideal hardware.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) (b)
Figure 3: Performance of FTP and BP when programming errors are considered for (a) 8-bit and (b)
4-bit precision devices.

4.7 HARDWARE-AWARE ANALYSIS OF FTP’S EFFICIENCY

To assess FTP’s suitability for resource-constrained environments such as TinyML applications, we
estimated the number of MAC operations based on dataset sizes and epoch counts aligned with the
MLCommons/Tiny Benchmark (MLCommons, 2023), following a methodology similar to Pau &
Aymone (2023). This estimation offers a hardware-aware perspective on training efficiency under
realistic deployment constraints. As shown in Table 5, FTP consistently achieves lower or comparable
MAC counts relative to BP and significantly lower computational overhead compared to other
forward-only methods such as FF, PEPITA, and DTP. These reductions in MAC operations imply
both lower power consumption and faster training–critical factors for edge devices that operate under
tight energy and latency budgets. If pipelined scheduling is enabled, FTP can even be more efficient
than BP in overall runtime, as elaborated in Appendix I. Combined with FTP’s robustness to noisy
gradients and tolerance to analog hardware imperfections, FTP emerges as a promising candidate for
on-device learning in resource-constrained systems.

Table 5: Comparison of MAC (millions) for TinyML datasets with various algorithms and percentage
change in MAC (%) with respect to BP.

Learning Method DS-CNN/SC MobileNet/VWW ResNet/CIFAR10 AE/ToyADMOS

MAC MAC (%) MAC MAC (%) MAC MAC (%) MAC MAC (%)

BP 7.7 0.00% 22.4 0.00% 37.1 0.00% 0.7 0.00%
FF 10.9 42.58% 31.5 40.70% 50.4 35.89% 1.1 49.51%
PEPITA 8.0 4.25% 22.9 2.47% 37.6 1.35% 1.2 69.10%
DTP 17.1 122.7% 50.7 126.7% 76.5 106.1% 1.5 104%
FTP 7.9 2.51% 22.4 0.33% 37.5 0.96% 0.9 23.03%

5 CONCLUSION

We have introduced Forward Target Propagation (FTP), a biologically plausible and computationally
efficient learning algorithm that serves as a forward-only alternative to backpropagation. FTP achieves
performance comparable to that of BP across a variety of architectures, including visual pattern
recognition and long-term temporal modeling. A key feature of FTP is its ability to assign global
credit through purely local losses, thereby eliminating the need for weight symmetry, non-local
objective function, and backward signal propagation. Among recent bio-inspired algorithms and
forward-only learning algorithms, our results demonstrate that FTP shows comparable performance
and better scalability along with greater computational efficiency–yielding lower multiply-accumulate
(MAC) operations than FF, PEPITA, and DTP. FTP also exhibits resilience to low-bit precision and
noisy hardware conditions, where conventional BP tends to degrade. These advantages position
FTP as an effective solution for deployment in TinyML and neuromorphic systems. Current study
focuses on small to medium-scale architectures, and extending FTP to deeper networks and larger
datasets remains an important direction for future work. Furthermore, real hardware validation and
exploration of FTP’s ability to support more complex learning mechanisms such as attention in large
language models would offer valuable insights into its scalability and broader applicability. While
further development is needed to fully realize its potential at scale, our findings establish FTP as a
robust, energy-efficient, and biologically plausible learning framework for embedded AI systems and
neuromorphic computing.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

The FTP algorithm and update rules are fully described in Section 3, with theoretical analysis and
proofs provided in Appendix C. Experimental setups, including datasets, architectures, hyperparame-
ters, and training schedules, are detailed in Appendices D, E and F. Codes used in this work have
been shared as supplementary materials in anonymized form to allow independent verification of our
results.

REFERENCES

Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is difficult. IEEE
Transactions on Neural Networks, 5(2):157–166, 1994.

Yoshua Bengio. How auto-encoders could provide credit assignment in deep networks via target propagation.
ArXiv, abs/1407.7906, 2014. URL https://api.semanticscholar.org/CorpusID:1412698.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models
are few-shot learners. In Proceedings of the 34th International Conference on Neural Information Processing
Systems, NIPS ’20, Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.

Francis Crick. The recent excitement about neural networks. Nature, 337(6203):129–132, January 1989. ISSN
1476-4687. doi: 10.1038/337129a0. URL http://dx.doi.org/10.1038/337129a0.

Giorgia Dellaferrera and Gabriel Kreiman. Error-driven input modulation: Solving the credit assignment
problem without a backward pass. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari,
Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pp. 4937–4955. PMLR, 17–23 Jul 2022. URL
https://proceedings.mlr.press/v162/dellaferrera22a.html.

Maxence M Ernoult, Fabrice Normandin, Abhinav Moudgil, Sean Spinney, Eugene Belilovsky, Irina Rish, Blake
Richards, and Yoshua Bengio. Towards scaling difference target propagation by learning backprop targets.
In Proceedings of the 39th International Conference on Machine Learning, volume 162 of Proceedings of
Machine Learning Research, pp. 5968–5987. PMLR, 17–23 Jul 2022. URL https://proceedings.
mlr.press/v162/ernoult22a.html.

Charlotte Frenkel, Martin Lefebvre, and David Bol. Learning without feedback: Fixed random learning
signals allow for feedforward training of deep neural networks. Frontiers in Neuroscience, 15:629892, 2021.
doi: 10.3389/fnins.2021.629892. URL https://www.frontiersin.org/articles/10.3389/
fnins.2021.629892/full.

Charles D. Gilbert and Wu Li. Top-down influences on visual processing. Nature Reviews Neuroscience, 14(5):
350–363, April 2013. ISSN 1471-0048. doi: 10.1038/nrn3476. URL http://dx.doi.org/10.1038/
nrn3476.

James Gong, Bruce Li, and Waleed Abdulla. Mono-forward: Backpropagation-free algorithm for efficient
neural network training harnessing local errors. ArXiv, abs/2501.09238, 2025. URL https://api.
semanticscholar.org/CorpusID:275570158.

Jordan Guerguiev, Timothy P Lillicrap, and Blake A Richards. Towards deep learning with segregated dendrites.
eLife, 6:e22901, dec 2017. ISSN 2050-084X. doi: 10.7554/eLife.22901. URL https://doi.org/10.
7554/eLife.22901.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. December 2015. doi: 10.1109/iccv.2015.123. URL http:
//dx.doi.org/10.1109/ICCV.2015.123.

Geoffrey E. Hinton. The forward-forward algorithm: Some preliminary investigations. ArXiv, abs/2212.13345,
2022. URL https://api.semanticscholar.org/CorpusID:254537921.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009. URL https://api.
semanticscholar.org/CorpusID:18268744.

10

https://api.semanticscholar.org/CorpusID:1412698
http://dx.doi.org/10.1038/337129a0
https://proceedings.mlr.press/v162/dellaferrera22a.html
https://proceedings.mlr.press/v162/ernoult22a.html
https://proceedings.mlr.press/v162/ernoult22a.html
https://www.frontiersin.org/articles/10.3389/fnins.2021.629892/full
https://www.frontiersin.org/articles/10.3389/fnins.2021.629892/full
http://dx.doi.org/10.1038/nrn3476
http://dx.doi.org/10.1038/nrn3476
https://api.semanticscholar.org/CorpusID:275570158
https://api.semanticscholar.org/CorpusID:275570158
https://doi.org/10.7554/eLife.22901
https://doi.org/10.7554/eLife.22901
http://dx.doi.org/10.1109/ICCV.2015.123
http://dx.doi.org/10.1109/ICCV.2015.123
https://api.semanticscholar.org/CorpusID:254537921
https://api.semanticscholar.org/CorpusID:18268744
https://api.semanticscholar.org/CorpusID:18268744

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long- and short-term temporal
patterns with deep neural networks. The 41st International ACM SIGIR Conference on Research & Devel-
opment in Information Retrieval, 2017. URL https://api.semanticscholar.org/CorpusID:
4922476.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.

Dong-Hyun Lee, Saizheng Zhang, Asja Fischer, and Yoshua Bengio. Difference target propagation. In
Machine Learning and Knowledge Discovery in Databases, pp. 498–515, Cham, 2015. Springer International
Publishing. ISBN 978-3-319-23528-8.

Can Li, Daniel Belkin, Yunning Li, Peng Yan, Miao Hu, Ning Ge, Hao Jiang, Eric Montgomery, Peng Lin,
Zhongrui Wang, Wenhao Song, John Paul Strachan, Mark Barnell, Qing Wu, R. Stanley Williams, J. Joshua
Yang, and Qiangfei Xia. Efficient and self-adaptive in-situ learning in multilayer memristor neural networks.
Nature Communications, 9(1), June 2018. ISSN 2041-1723. doi: 10.1038/s41467-018-04484-2. URL
http://dx.doi.org/10.1038/s41467-018-04484-2.

Timothy P. Lillicrap, Daniel Cownden, Douglas B. Tweed, and Colin J. Akerman. Random synaptic feedback
weights support error backpropagation for deep learning. Nature Communications, 7(1):13276, Nov 2016.
ISSN 2041-1723. doi: 10.1038/ncomms13276. URL https://doi.org/10.1038/ncomms13276.

Timothy P. Lillicrap, Adam Santoro, Luke Marris, Colin J. Akerman, and Geoffrey Hinton. Backpropagation
and the brain. Nature Reviews Neuroscience, 21(6):335–346, Jun 2020. ISSN 1471-0048. doi: 10.1038/
s41583-020-0277-3. URL https://doi.org/10.1038/s41583-020-0277-3.

Changze Lv, Jingwen Xu, Yiyang Lu, Xiaohua Wang, Zhenghua Wang, Zhibo Xu, Di Yu, Xin Du, Xiaoqing
Zheng, and Xuanjing Huang. Dendritic localized learning: Toward biologically plausible algorithm, 2025.
URL https://arxiv.org/abs/2501.09976.

Alexander Meulemans, Francesco Carzaniga, Johan Suykens, João Sacramento, and Benjamin F Grewe. A
theoretical framework for target propagation. Advances in Neural Information Processing Systems, 33:
20024–20036, 2020.

Beren Millidge, Anil. K. Seth, and Christopher L. Buckley. Predictive coding: a theoretical and experimental
review. ArXiv, abs/2107.12979, 2021. URL https://api.semanticscholar.org/CorpusID:
236447532.

MLCommons. Mlcommons tiny benchmark github repository. https://github.com/mlcommons/
tiny, 2023. (Date last accessed 18-February-2023).

Audun Nøkland. Direct feedback alignment provides learning in deep neural networks. In Neural Information
Processing Systems (NeurIPS), 2016.

Alexander Ororbia and Ankur Arjun Mali. The predictive forward-forward algorithm. ArXiv, abs/2301.01452,
2023. URL https://api.semanticscholar.org/CorpusID:255415949.

Alexander G. Ororbia and Ankur Mali. Biologically motivated algorithms for propagating local target repre-
sentations. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01):4651–4658, July 2019.
ISSN 2159-5399. doi: 10.1609/aaai.v33i01.33014651. URL http://dx.doi.org/10.1609/aaai.
v33i01.33014651.

Alexander G. Ororbia, Ankur Mali, Daniel Kifer, and C. Lee Giles. Backpropagation-free deep learning with
recursive local representation alignment. Proceedings of the AAAI Conference on Artificial Intelligence, 37(8):
9327–9335, June 2023. ISSN 2159-5399. doi: 10.1609/aaai.v37i8.26118. URL http://dx.doi.org/
10.1609/aaai.v37i8.26118.

Danilo Pietro Pau and Fabrizio Maria Aymone. Suitability of forward-forward and pepita learning to mlcommons-
tiny benchmarks. In 2023 IEEE International Conference on Omni-layer Intelligent Systems (COINS), pp.
1–6, 2023. doi: 10.1109/COINS57856.2023.10189239.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by back-propagating
errors, volume 323. Springer Science and Business Media LLC, October 1986. doi: 10.1038/323533a0. URL
http://dx.doi.org/10.1038/323533a0.

Benjamin Scellier and Yoshua Bengio. Equilibrium propagation: Bridging the gap between energy-based models
and backpropagation. Frontiers in computational neuroscience, 11:24, 2017.

11

https://api.semanticscholar.org/CorpusID:4922476
https://api.semanticscholar.org/CorpusID:4922476
http://dx.doi.org/10.1038/s41467-018-04484-2
https://doi.org/10.1038/ncomms13276
https://doi.org/10.1038/s41583-020-0277-3
https://arxiv.org/abs/2501.09976
https://api.semanticscholar.org/CorpusID:236447532
https://api.semanticscholar.org/CorpusID:236447532
https://github.com/mlcommons/tiny
https://github.com/mlcommons/tiny
https://api.semanticscholar.org/CorpusID:255415949
http://dx.doi.org/10.1609/aaai.v33i01.33014651
http://dx.doi.org/10.1609/aaai.v33i01.33014651
http://dx.doi.org/10.1609/aaai.v37i8.26118
http://dx.doi.org/10.1609/aaai.v37i8.26118
http://dx.doi.org/10.1038/323533a0

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Benjamin Scellier, Maxence Ernoult, Jack Kendall, and Suhas Kumar. Energy-based learning algorithms for
analog computing: A comparative study. In Advances in Neural Information Processing Systems 36 (NeurIPS
2023), 2023. URL https://openreview.net/forum?id=jey92TQfUG.

Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubramonian, John Paul Strachan, Miao Hu,
R. Stanley Williams, and Vivek Srikumar. Isaac: a convolutional neural network accelerator with in-situ analog
arithmetic in crossbars. In Proceedings of the 43rd International Symposium on Computer Architecture,
ISCA ’16, pp. 14–26. IEEE Press, 2016. ISBN 9781467389471. doi: 10.1109/ISCA.2016.12. URL
https://doi.org/10.1109/ISCA.2016.12.

Navid Shervani-Tabar and Robert Rosenbaum. Meta-learning biologically plausible plasticity rules with
random feedback pathways. Nature Communications, 14(1), March 2023. ISSN 2041-1723. doi: 10.1038/
s41467-023-37562-1. URL http://dx.doi.org/10.1038/s41467-023-37562-1.

Tatsukichi Shibuya, Nakamasa Inoue, Rei Kawakami, and Ikuro Sato. Fixed-weight difference target propagation.
Proceedings of the AAAI Conference on Artificial Intelligence, 37(8):9811–9819, June 2023. ISSN 2159-5399.
doi: 10.1609/aaai.v37i8.26171. URL http://dx.doi.org/10.1609/aaai.v37i8.26171.

R. Srinivasan, Francesca Mignacco, M. Sorbaro, Maria Refinetti, Avi Cooper, Gabriel Kreiman, and Giorgia
Dellaferrera. Forward learning with top-down feedback: Empirical and analytical characterization. ArXiv,
abs/2302.05440, 2023. URL https://api.semanticscholar.org/CorpusID:256808264.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Proceedings of the 31st International Conference on Neural
Information Processing Systems, NIPS’17, pp. 6000–6010, Red Hook, NY, USA, 2017. Curran Associates
Inc. ISBN 9781510860964.

Weier Wan, Rajkumar Kubendran, Clemens Schaefer, Sukru Burc Eryilmaz, Wenqiang Zhang, Dabin Wu,
Stephen Deiss, Priyanka Raina, He Qian, Bin Gao, Siddharth Joshi, Huaqiang Wu, H.-S. Philip Wong,
and Gert Cauwenberghs. A compute-in-memory chip based on resistive random-access memory. Nature,
608(7923):504–512, Aug 2022. ISSN 1476-4687. doi: 10.1038/s41586-022-04992-8. URL https:
//doi.org/10.1038/s41586-022-04992-8.

James C.R. Whittington and Rafal Bogacz. Theories of error back-propagation in the brain. Trends in
Cognitive Sciences, 23(3):235–250, March 2019. ISSN 1364-6613. doi: 10.1016/j.tics.2018.12.005. URL
http://dx.doi.org/10.1016/j.tics.2018.12.005.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking machine
learning algorithms. ArXiv, abs/1708.07747, 2017. URL https://api.semanticscholar.org/
CorpusID:702279.

T P Xiao, B Feinberg, C H Bennett, V Prabhakar, P Saxena, V Agrawal, and Marinella. On the accuracy of
analog neural network inference accelerators. IEEE Circuits and Systems Magazine, 22(4):26–48, 2023.

Tien-Ju Yang and Vivienne Sze. Design considerations for efficient deep neural networks on processing-in-
memory accelerators. In 2019 IEEE International Electron Devices Meeting (IEDM), pp. 22.1.1–22.1.4, 2019.
doi: 10.1109/IEDM19573.2019.8993662.

Peng Yao, Huaqiang Wu, Bin Gao, Jianshi Tang, Qingtian Zhang, Wenqiang Zhang, J. Joshua Yang, and
He Qian. Fully hardware-implemented memristor convolutional neural network. Nature, 577(7792):641–646,
Jan 2020. ISSN 1476-4687. doi: 10.1038/s41586-020-1942-4. URL https://doi.org/10.1038/
s41586-020-1942-4.

Su-in Yi, A. Alec Talin, Matthew J. Marinella, and R. Stanley Williams. Physical compact model for three-
terminal sonos synaptic circuit element. Advanced Intelligent Systems, 4(9):2200070, 2022. doi: https:
//doi.org/10.1002/aisy.202200070. URL https://advanced.onlinelibrary.wiley.com/doi/
abs/10.1002/aisy.202200070.

Su-in Yi, Jack D. Kendall, R. Stanley Williams, and Suhas Kumar. Activity-difference training of deep neural
networks using memristor crossbars. Nature Electronics, 6(1):45–51, Jan 2023. ISSN 2520-1131. doi:
10.1038/s41928-022-00869-w. URL https://doi.org/10.1038/s41928-022-00869-w.

Mohammed A. Zidan, John Paul Strachan, and Wei D. Lu. The future of electronics based on memristive
systems. Nature Electronics, 1(1):22–29, Jan 2018. ISSN 2520-1131. doi: 10.1038/s41928-017-0006-8.
URL https://doi.org/10.1038/s41928-017-0006-8.

12

https://openreview.net/forum?id=jey92TQfUG
https://doi.org/10.1109/ISCA.2016.12
http://dx.doi.org/10.1038/s41467-023-37562-1
http://dx.doi.org/10.1609/aaai.v37i8.26171
https://api.semanticscholar.org/CorpusID:256808264
https://doi.org/10.1038/s41586-022-04992-8
https://doi.org/10.1038/s41586-022-04992-8
http://dx.doi.org/10.1016/j.tics.2018.12.005
https://api.semanticscholar.org/CorpusID:702279
https://api.semanticscholar.org/CorpusID:702279
https://doi.org/10.1038/s41586-020-1942-4
https://doi.org/10.1038/s41586-020-1942-4
https://advanced.onlinelibrary.wiley.com/doi/abs/10.1002/aisy.202200070
https://advanced.onlinelibrary.wiley.com/doi/abs/10.1002/aisy.202200070
https://doi.org/10.1038/s41928-022-00869-w
https://doi.org/10.1038/s41928-017-0006-8

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A BROADER IMPACT OF OUR WORK

As AI systems, particularly large language models (LLMs), grow in scale and deployment breadth, the
energy consumption has become increasingly critical. Our work proposes Forward Target Propagation
(FTP), a biologically inspired, forward-only learning algorithm that offers significant advantages
in efficiency, robustness, and hardware compatibility compared to standard backpropagation (BP).
These characteristics make FTP particularly relevant for enabling sustainable training and deployment
of large-scale models in both cloud and edge settings. Below, we outline key broader impacts of our
approach:

Compatibility with Quantization and Noisy Hardware: Emerging memory technologies such
as Resistive Random Access Memory (RRAM) and Phase-Change Memory (PCM) offer compact,
analog, and energy-efficient platforms for neural computation, but suffer from non-idealities such
as stochastic noise, variability and limited precision. Unlike BP, which requires high-precision
symmetric weight updates, FTP is inherently robust to such hardware imperfections due to its forward-
only and fixed-feedback structure. Our experimental results demonstrate that FTP consistently
outperforms BP under low-bit precision and noisy conditions, making it particularly well suited for
deployment on in-memory computing systems.

Enabling Sustainable, On-Device Intelligence: By aligning algorithmic design with the constraints
and strengths of emerging and edge hardware, FTP opens the door to efficient on-device learning in
applications such as autonomous sensors, wearable devices, and edge robotics. Its robustness and
low-power profile help advance the goal of sustainable and accessible AI, particularly in scenarios
where cloud computation is infeasible due to latency, privacy, or energy constraints.

B BIOLOGICAL PROPERTIES OF FTP

Table 6 compares various learning rules across key criteria relevant to biological plausibility. A
checkmark (✓) indicates that the corresponding issue is addressed (i.e., the property is satisfied),
while a cross (✗) indicates that the issue remains unsolved. The tilde symbol (∼) denotes a partial
solution. Notably, FTP satisfies all the listed criteria, with a partial resolution of update locking.

Table 6: Comparison of learning rules based on key metrics.

Learning Rule Forward Only Weight Symmetry Local Activity Freezing Update Unlocked

BP ✗ ✓ ✗ ✗ ✗
DTP ✗ ✓ ✓ ✗ ✗
PEPITA ✓ ✓ ✓ ✓ ∼
FF ✓ ✓ ✓ ✓ ✓
FTP ✓ ✓ ✓ ✓ ∼

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

C ANALYSIS OF FTP IN NETWORK WITH TWO HIDDEN LAYERS

We consider a neural network with two hidden layers with activation σ(·). In Section C.1, we proved
that (under some conditions) the weight update direction for the hidden layers in FTP is within 90◦

of that of BP. In Section C.2, we showed that the update direction for the hidden neurons in FTP is
aligned with the Gauss-Newton direction. We followed the structure of the proofs from (Lillicrap
et al., 2016).

For an input x ∈ Rdx , we have

h1 = σ(W1x) (8)
h2 = σ(W2h1) (9)
h3 = σ(W3h2) (10)

where h3 ∈ Rdy is the output, and h1 ∈ Rd1 ,h2 ∈ Rd2 are hidden neurons. In forward target
propagation (FTP), the losses to train the weight matrices W1,W2 and W3 are as follows:

L1 =
1

2
|| stop_grad(τ1)− h1||2 (11)

L2 =
1

2
|| stop_grad(τ2)− h2||2 (12)

L3 =
1

2
||y − h3||2 (13)

where y ∈ Rdy is the target value at the output layer and τ1, τ2 are target values (suggested by FTP)
at the hidden layers according to the following.

τ1 = h1 + σ(Gy)− σ(Gh3) (14)
τ2 = σ(W2τ1) (15)

G is a d1 × dy projection matrix where Gi,j can be distributed according to N (0, 1).

C.1 ALIGNMENT IN WEIGHT UPDATE DIRECTION BETWEEN FTP AND BP

In this section, we consider the same neural network described above, except for linear activation
functions. Denoting error signal as e = y − h3, we have the following gradient direction for each
weight matrix.

∂L3

∂W3
= ehT

2 (16)

∂L2

∂W2
= (τ2 − h2)h

T
1 (17)

∂L1

∂W1
= (τ1 − h1)x

T (18)

Note the FTP has the same gradient for W3 as in BP. From Equations (14) and (15), we have

τ1 − h1 = Gy −Gh3 = Ge

τ2 − h2 = W2τ1 −W2h1 = W2(τ1 − h1) = W2Ge

Finally, we get the gradient direction for W1,W2 under FTP as:
∂L2

∂W2
= W2GehT

1 (19)

∂L1

∂W1
= GexT (20)

For BP,
∂L2

∂W2
= W T

3 ehT
1 (21)

∂L1

∂W1
= W T

2 W T
3 exT (22)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

We hypothesize the following alignment between FTP and BP’s gradient direction for any non-zero
e:

⟨Ge,W T
2 W T

3 e⟩ > 0 (23)

⟨W2Ge,W T
3 e⟩ > 0 (24)

Lemma 1. If we initialize W1 and W3 with zero entries and W2 being initialized with A, then there
exist some scalars s1, sW1 , sW2 , sW3 at every time step (during training using FTP) such that,

h1 = s1Gy (25)

W1 = sW1
GyxT (26)

W2 = A(I + sW2
Gy(Gy)T) (27)

W3 = sW3y(AGy)T (28)

Proof. Here, we provide the proof by induction. At initialization (t = 0) Equations (25) to (28)
satisfies with s1 = sW1

= sW2
= sW3

= 0. Now, if this is true for any t > 0, then we need to prove
this holds for t+ 1.

h
(t)
3 = W

(t)
3 h

(t)
2 (29)

= s
(t)
1 s

(t)
W3

y(AGy)TW
(t)
2 Gy (30)

= s
(t)
1 s

(t)
W3

y(AGy)TA(I + s
(t)
W2

Gy(Gy)T)Gy (31)

(AGy)TA(I + s
(t)
W2

Gy(Gy)T)Gy = (Gy)TATA(I + s
(t)
W2

Gy(Gy)T)Gy

= ||AGy||2 + s
(t)
W2

||AGy||2||Gy||2

Now,

h
(t)
3 = s

(t)
1 s

(t)
W3

(
||AGy||2 + s

(t)
W2

||AGy||2||Gy||2
)
y (32)

= s
(t)
3 y (denoting s

(t)
3 = s

(t)
1 s

(t)
W3

(
||AGy||2 + s

(t)
W2

||AGy||2||Gy||2
)
) (33)

e(t) = y − h
(t)
3 = (1− s

(t)
3)y (34)

W
(t+1)
1 = W

(t)
1 + η1Ge(t)xT

= s
(t)
W1

GyxT + η1G(1− s
(t)
3)yxT

= s
(t+1)
W1

GyxT
(

where s
(t+1)
W1

= s
(t)
W1

+ η1(1− s
(t)
3)

)

W
(t+1)
2 = W

(t)
2 + η2W

(t)
2 Ge(t)hT

1

(t)

= A+ s
(t)
W2

AGy(Gy)
T
+ η2

(
A+ s

(t)
W2

AGy(Gy)
T
)
G(1− s

(t)
3)y(s

(t)
1 Gy)

T

= A+ (s
(t)
W2

+ η2s
(t)
1 (1− s

(t)
3))AGy(Gy)

T
+ η2s

(t)
1 s

(t)
W2

(1− s
(t)
3)AGy(Gy)

T
Gy(Gy)

T

= A+ (s
(t)
W2

+ η2s
(t)
1 (1− s

(t)
3))AGy(Gy)

T
+ η2s

(t)
1 s

(t)
W2

(1− s
(t)
3)AGy||Gy||2(Gy)

T

= A+ s
(t+1)
W2

AGy(Gy)
T

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Here, s(t+1)
W2

= s
(t)
W2

+ η2s
(t)
1 (1− s

(t)
3) + η2s

(t)
1 s

(t)
W2

(1− s
(t)
3)||Gy||2

W
(t+1)
3 = W

(t)
3 + η3e

(t)hT
2

(t)

= s
(t)
W3

y(AGy)T + η3s
(t)
1 (1− s

(t)
3)y(W

(t)
2 Gy)T

= s
(t)
W3

y(AGy)T + η3s
(t)
1 (1− s

(t)
3)y(A(I + s

(t)
W2

Gy(Gy)T)Gy)T

= s
(t)
W3

y(AGy)T + η3s
(t)
1 (1− s

(t)
3)

(
1 + s

(t)
W2

||Gy||2
)
y(AGy)T

= s
(t+1)
W3

y(AGy)T (where s
(t+1)
W3

= s
(t)
W3

+ η3s
(t)
1 (1− s

(t)
3)

(
1 + s

(t)
W2

||Gy||2
)
)

h
(t+1)
1 = W

(t+1)
1 x

=
(
W

(t)
1 + η1Ge(t)xT

)
x

= h
(t)
1 + η1(1− s

(t)
3)Gy||x||2

= s
(t)
1 Gy + η1(1− s

(t)
3)||x||2Gy

= s
(t+1)
1 Gy (where s

(t+1)
1 = s

(t)
1 + η1(1− s

(t)
3)||x||2)

Theorem 1. Under the same conditions in Lemma 1, the FTP and BP’s gradient direction for
W1,W2 are within 90◦ of each other, i.e.

⟨Ge,W T
2 W T

3 e⟩ > 0 (35)

⟨W2Ge,W T
3 e⟩ > 0 (36)

Proof. Note ⟨Ge,W T
2 W T

3 e⟩ = ⟨W2Ge,W T
3 e⟩

From Equations (27) and (28) of Lemma 1, we have

W3W2 = sW3
y(AGy)TA(I + sW2

Gy(Gy)T)

= sW3y(Gy)TATA(I + sW2Gy(Gy)T) (37)

= sW3
y(Gy)TATA+ sW3

sW2
||AGy||2y(Gy)T

= sW3
y(Gy)TATA+ s3,2y(Gy)T (denoting s3,2 = sW3

sW2
||AGy||2)

Now for the weight matrix of the first hidden layer, W1

⟨Ge,W T
2 W T

3 e⟩ = (Ge)T (W3W2)
Te

= sW3(1− s3)
2(Gy)T (y(Gy)TATA)Ty + s3,2(1− s3)

2(Gy)T (y(Gy)T)Ty

= sW3
(1− s3)

2||AGy||2||y||2 + s3,2(1− s3)
2||Gy||2||y||2 > 0 ∀y ̸= 0

The last inequality follows from sW2
, sW3

being positive scalars. (Lemma 1).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C.2 RELATION WITH GAUSS-NEWTON UPDATE FOR HIDDEN NEURONS

In linear neural network with two hidden layers, the feedback signal (under FTP) for update in h1

is Ge, and we postulate that it is aligned with the Gauss-Newton update signal, (W3W2)
†. If we

can show there exists a relation such as sGe = (W3W2)
†e with a positive scaler s, then we can

conclude update direction for the hidden neurons h1 is aligned with the Gauss-Newton direction.

Theorem 2. Under the same conditions in Lemma 1 and W2 being initialized with A such that
ATA = I (requires d2 ≥ d1), there exists a positive scaler s such that

sGe = (W3W2)
†e (38)

Proof. From Equation (37) with ATA = I ,

W3W2 = sW3
y(Gy)T + sW3

sW2
||Gy||2y(Gy)T

= s′3,2y(Gy)T (where s′3,2 = sW3
+ sW3

sW2
||Gy||2)

Showing sGe = (W3W2)
†e is equivalent to sGy = (y(Gy)T)†y since we have e = (1 − s3)y

from Equation (34).

(y(Gy)T)†y = (yTGT)†y†y

= (GT)†(yT)†y†y

= (GT)†(yT)†yT (yT)†

= (GT)†(yT)†

= ((Gy)T)†

= Gy((Gy)TGy)−1

= ||Gy||−2Gy

= sGy

Remark 1. When d2 ≥ d1, we can construct A by selecting d1 orthonormal column vectors such
that ATA = I .

D MODEL ARCHITECTURE AND IMPLEMENTATION DETAILS

We evaluated the performance of FTP, BP, DTP, and PEPITA across three model families–fully
connected networks (FC), convolutional neural networks (CNN), and recurrent neural networks
(RNN)–on image classification and multivariate time-series forecasting tasks. While Algorithm 1
and Eqs. (1)–(4) are presented using FC networks for clarity, the underlying principles of FTP
apply equally to CNNs and RNNs with only minor modifications. The core learning algorithm and
update equations remain unchanged across architectures; the only adjustment required is reshaping
the feedback projection to match the dimensionality of the corresponding hidden activations. For
example, in CNNs, a feedback matrix G ∈ RC×(C1·H1·W1) projects the output predictions or labels
y ∈ RB×C into a correction matrix of shape (B,C1 ·H1 ·W1). This is then reshaped into a tensor
of shape (B,C1, H1,W1), matching the spatial dimensions of the first hidden layer activations.
Subsequent targets are propagated forward as in the first forward pass, and weight updates follow the
same principles as in the FC case.

All models were trained using stochastic gradient descent (SGD) with momentum 0.9, batch size
64, and cross-entropy loss. Unless otherwise stated, all hidden layers used the tanh activation
function, and all parameters (including the projection matrix G in FTP) were initialized using He
initialization (He et al., 2015).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D.1 FULLY CONNECTED NETWORKS (FC)

We evaluated FC networks on MNIST (Lecun et al., 1998), Fashion-MNIST (FMNIST) (Xiao et al.,
2017), and CIFAR-10 (Krizhevsky, 2009). For MNIST and FMNIST, input images were flattened
to 784 dimensions; for CIFAR datasets, to 3072 dimensions. The architecture consisted of two
hidden layers with 1024 and 128 neurons, followed by a softmax output layer with 10 units for
MNIST/FMIST/CIFAR-10. A dropout rate of 0.1 was applied after each hidden layer. All models
were trained for 100 epochs, with the learning rate decayed by a factor of 10 at epochs 60 and 90.

D.2 CONVOLUTIONAL NEURAL NETWORKS (CNN)

We applied CNNs to the same four image classification datasets: MNIST (Lecun et al., 1998), CIFAR-
10, and CIFAR-100 (Krizhevsky, 2009). The CNN architecture consisted of a 2D convolutional
layer with 32 output channels and a 5×5 kernel, followed by a 2×2 max pooling layer. The output
feature maps were flattened and passed to a softmax output layer with 10 or 100 units, depending on
the dataset. All CNN models used tanh activations except the final layer where softmax activation
function was used. The models were trained for 100 epochs, and followed the same learning rate
schedule as the FC models (decayed at epochs 60 and 90).

D.3 RECURRENT NEURAL NETWORKS (RNN)

We evaluated RNNs on three multivariate time-series datasets:

• Electricity: Electricity consumption data from 321 clients, recorded every 15 minutes from
2012 to 2014, and resampled to hourly resolution.

• METR-LA: Hourly road occupancy rates from 2015–2016, recorded by sensors on San
Francisco Bay Area freeways.

• Solar-Energy: Solar power output sampled every 10 minutes during 2006 from 137 photo-
voltaic plants in Alabama.

Each task was structured as a sequence prediction problem, where a sliding window of the previous
24 time steps was used to predict the 25th. The RNN architecture consisted of a single recurrent layer
with 512 hidden units and tanh activation. All RNN models were trained for 500 epochs, with the
learning rate decayed by a factor of 10 at epochs 300 and 450.

E SENSITIVITY TO INITIALIZATION AND DIMENSIONALITY OF FEEDBACK
MATRIX G

The feedback matrix G in FTP plays a crucial role in projecting the local error signal (Eq. 1). In our
experiments, we initialized G using He Uniform (He et al., 2015), scaled by a constant factor (0.05)
to regulate the strength of the feedback signal. Since G directly affects the magnitude of projected
error, its initialization impacts learning dynamics and gradient alignment.

To assess sensitivity to initialization schemes, we additionally trained the FC model with He Normal
initialization (He et al., 2015), using a similar scaling factor. As shown in Table 7, FTP yields
comparable performance under both schemes, suggesting that while initialization matters, the method
is not overly sensitive to the exact distribution as long as the scale is appropriately controlled.

Table 7: FTP accuracy (%) under different initialization schemes for G. Mean ± std over 5 trials.

Initialization MNIST FMNIST CIFAR-10
He Uniform 97.98±0.25 87.24±0.21 52.57±0.37

He Normal 97.51±0.31 87.33±0.18 53.44±0.26

The dimensionality of G depends on the number of output classes and the hidden layer size. As
shown in Table 1, FTP achieves strong performance on both CIFAR-10 and CIFAR-100, which

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

differ significantly in class count (10 vs. 100), indicating generalizability across different output
dimensionalities.

To further isolate the effect of class count, we reformulated MNIST into 5-class and 2-class variants
(e.g., grouping digits by adjacent pairs or by even/odd labels). As shown in Table 8, FTP maintains
performance comparable to BP across all class settings. These results indicate that FTP is robust to
variations in G’s dimensionality induced by class count.

Table 8: Accuracy (%) on MNIST variants with reduced class count. Mean ± std over 5 trials.

Method MNIST (10) MNIST (5) MNIST (2)
BP 98.27±0.08 98.14±0.06 98.95±0.04

FTP 97.98±0.25 97.81±0.16 98.66±0.12

F METRICS FOR EVALUATION OF RNNS

Recurrent neural networks are commonly evaluated not only by accuracy but also by statistical
measures that capture both error magnitude and temporal correlation. In this work, we use Root
Relative Squared Error (RRSE) and the Pearson correlation coefficient (CORR), defined as follows:

RRSE =

√∑
t(yt − ŷt)2∑
t(yt − ȳ)2

, CORR =

∑
t(yt − ȳ)(ŷt − ¯̂y)√∑

t(yt − ȳ)2
√∑

t(ŷt − ¯̂y)2
(39)

where yt is the ground truth value, ŷt is the predicted value, ȳ and ¯̂y are the means of the ground truth
and predictions, respectively.

RRSE (Root Relative Squared Error) normalizes the prediction error relative to the variance of
the true series, which ensures comparability across datasets of different scales. A lower RRSE
value indicates better predictive performance. CORR (Pearson correlation coefficient) measures the
linear relationship between the predicted and actual sequences, capturing how well the model tracks
temporal patterns. Values of CORR closer to 1 imply stronger correlation and more faithful temporal
modeling. Together, these two complementary metrics provide a robust evaluation: RRSE quantifies
absolute predictive accuracy, while CORR highlights alignment with the temporal dynamics of the
data.

G SCALABILITY OF FORWARD LEARNING ALGORITHMS

Our initial experiments in Section 4.2 used a two-layer FC network with hidden dimensions of
1024–128, but under this setting PEPITA exhibited unstable training for deeper networks. To ensure a
fair comparison, and following the setup in Srinivasan et al. (2023), we standardized the hidden layer
size to 1024 units across all layers, allowing us to scale architectures to 2–5 layers while maintaining
stability for both FTP and PEPITA. Consistent with prior observations by Srinivasan et al. (2023),
PEPITA struggled to scale beyond three hidden layers: normalization improved convergence for
deeper models but accuracy still declined with depth. In our experiments without normalization
(Table 4), PEPITA’s performance degraded as depth increased, whereas FTP remained stable and
achieved accuracy close to BP without requiring normalization or additional techniques such as weight
decay or weight mirroring. These results suggest that FTP scales more reliably to deeper FC networks
without auxiliary mechanisms, whereas PEPITA shows reduced stability beyond shallow models. On
the other hand, Forward-Forward Leearning has been limited to four hidden layers(Hinton, 2022).
This points to a significant improvement over prior forward-only learning approaches.

For convolutional networks, we extended the baseline 1-Conv design by adding a second convolutional
layer (3×3, 64 channels). In these settings, FTP again outperforms PEPITA, demonstrating its potential
to scale effectively to CNNs.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 9: Test accuracy (Mean ± Std) of BP, PEPITA, and FTP on CNNs with 1 and 2 convolutional
layers.

Dataset Algorithm 1-Conv 2-Conv

MNIST
BP 98.74±0.05 99.05±0.03

PEPITA 98.41±0.24 98.35±0.05

FTP 98.28±0.35 98.69±0.07

CIFAR-10
BP 64.88±0.18 69.42±0.13

PEPITA 56.17±0.62 57.01±0.58

FTP 56.32±0.82 59.57±0.13

CIFAR-100
BP 33.83±0.26 37.75±0.21

PEPITA 26.77±0.87 27.61±0.20

FTP 26.84±1.13 29.95±0.22

H ROBUSTNESS OF FTP COMPARED TO FEEDBACK ALIGNMENT

To evaluate the robustness of FTP against Feedback Alignment (FA)(Lillicrap et al., 2016), we
conducted experiments under the same setup as described in Section 4.6, across 10 independent
trials. Unlike backpropagation, FA employs fixed random feedback matrices, eliminating the need to
reprogram backward paths in hardware. Although FA is less biologically plausible than FTP, its fixed
feedback makes it an important baseline for robustness under hardware constraints. We tested both
8-bit and 4-bit weight precision settings under varying levels of additive noise (0, 0.02, 0.06, 0.1).
The results are reported in Table 10.

Table 10: Robustness comparison of BP, FA, and FTP under 8-bit and 4-bit precision with increasing
noise levels. Accuracy reported as mean ± std over 10 trials.

Noise Levels
Method (8-bit) 0 0.02 0.06 0.1
BP (symmetry = 100%) 97.91±0.08 95.60±0.07 90.81±0.17 84.56±0.81

FA 97.50±0.08 94.29±0.19 88.10±0.53 81.54±1.26

FTP 97.49±0.19 95.17±0.22 90.48±0.29 85.85±0.56

Noise Levels
Method (4-bit) 0 0.02 0.06 0.1
BP (symmetry = 100%) 94.48±0.11 90.12±0.15 81.25±1.34 11.35±0.00

FA 93.69±0.34 90.24±0.38 78.34±6.71 17.83±10.54

FTP 93.52±0.25 90.89±0.27 82.48±2.53 24.73±16.98

As reflected in Figure 3 and the Table 10, we observe that under ideal conditions (i.e., no noise), BP
and FA achieve slightly higher accuracy than FTP in low bit-precision settings. However, as noise
increases, FTP demonstrates consistent and greater robustness. This suggests that FTP has inherent
robustness properties that enable it to maintain stable learning dynamics under realistic hardware
constraints such as low-bit precision and noise.

Importantly, since FTP uses the same forward matrices to compute both the standard activations and
the layer-wise targets, any noise introduced in these matrices affects both pathways in a consistent
manner. In contrast, BP requires separate programming of the forward and backward matrices in
each iteration, which means programming noise can independently corrupt the two directions. This
also applies for FA. This difference may have a greater impact on BP’s updates compared to FTP,
which may explain FTP’s more stable performance in these noisy settings. In real analog hardware,
additional non-idealities, such as device drift, retention loss, and other errors from the system
could further exacerbate this asymmetry for BP, especially due to its reliance on reprogramming

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

of backward matrices. Investigating these broader effects through real hardware implementation
remains an important direction for future work.

I MEMORY AND RUNTIME EFFICIENCY OF FTP

We analyze the memory usage and runtime cost of FTP in comparison to BP and DFA (Nøkland,
2016), particularly in the context of resource-constrained hardware.

Memory Usage. The memory footprint during training arises from two primary sources: (i)
activation storage during the forward pass, and (ii) storage of trainable parameters and feedback
matrices.

Activation storage: All methods (BP, DFA, FTP) require retaining activations during the forward
pass until error signals or targets are computed. Thus, peak memory usage for storing activations is
comparable across all three methods.

Parameter storage: BP stores only the feedforward weights. FTP stores the same feedforward weights
along with a single feedback matrix G. DFA, on the other hand, maintains a separate fixed feedback
matrix for each hidden layer, resulting in the largest weight memory footprint. Notably, in deeper
networks, the overhead of storing a single G in FTP becomes negligible compared to the total number
of trainable parameters.

Runtime Efficiency. FTP performs a standard forward pass, computes the final target, and then
recursively generates intermediate layer targets while updating weights layer-by-layer. Unlike BP,
which updates layers in reverse order and enforces update locking, FTP permits pipelined execution.
Specifically, once the first layer’s weights are updated and the next target is being computed, the
subsequent minibatch can begin its forward pass. This enables partial overlap between batches,
potentially reducing wall-clock training time–particularly in hardware implementations that support
pipelining.

DFA computes all layer gradients in parallel using fixed feedback matrices after the forward pass. The
inter-minibatch delay in DFA corresponds to the time required to update all weights simultaneously.
In contrast, for FTP, the delay is primarily determined by the computation of the first target and
update of the first layer. Therefore, the runtime of FTP is comparable to DFA with a slight overhead
for target computation, and more efficient than BP when pipelined.

J IMPACT OF STRICT WEIGHT SYMMETRY REQUIREMENT OF BP IN
EMERGING ANALOG HARDWARE

Backpropagation (BP) relies on backward matrices to propagate errors, which must maintain sym-
metry with the forward weight matrices in principle mathematically, which is easily achievable
in the case of digital computers. However, in analog computing hardware such as RRAM and
other non-volatile memories, non-idealities such as programming errors, thermal noise, and random
telegraph noise can disrupt this symmetry, leading to significant degradation in performance. Our
results, as shown in Figure 4, demonstrate the vulnerability of BP under these conditions, particularly
in devices with low-bit precision. Here we considered the cases when some weight parameters in
a matrix got corrupted due to device non-idealities, and the asymmetry here refers to the amount
of weights getting corrupted by 10% margin from where the values should be. For instance, in
4-bit systems (Zidan et al., 2018; Yao et al., 2020), test accuracy drops below 80% when only 20%
of the matrices are affected by such errors. The vulnerability is even more pronounced in 3-bit
systems, where a mere 5% mismatch between forward and backward matrices causes test accuracy to
plummet below 60%. As asymmetry increases, test accuracy steadily declines, eventually reaching
approximately 15%, which is equivalent to random guess. The standard deviation of test accuracy
also increases, which indicates greater instability in performance. Each case was tested multiple
times, and the shadowed region in Figure 4 represents the standard deviation of test accuracy across
trials. In contrast, FTP utilizes fixed, random backward matrices for target estimation, eliminating the
dependency on symmetric forward-backward matrix relationships. This design inherently makes FTP

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

resilient to hardware-induced noise and non-idealities, ensuring robust performance even in low-bit
precision environments.

Figure 4: Performance of BP when asymmetry is introduced in backward matrices due to read noise.

K COMPUTE RESOURCES

All experiments were conducted on a local workstation configured with the following specifications:
an AMD Ryzen Threadripper PRO 5955WX processor (16 cores, 4.00–4.50GHz), 256 GB of
DDR4-3200 RAM, and dual NVIDIA GeForce RTX 4090 GPUs.

Experiments involving CNNs and RNNs were executed on the GPUs to leverage accelerated training,
while fully connected network experiments and all evaluations in Section 4.4, Section 4.5 and Section
4.6 were performed on CPU only.

L USE OF LARGE LANGUAGE MODELS (LLMS)

Large language models (LLMs) were used in this work solely as a general-purpose assistive tool for
grammar checking and text editing. All research ideas, experimental designs, analyses, and scientific
claims were conceived, implemented, and validated solely by the authors.

22

	Introduction
	Related Work
	Conventional and Biologically Plausible Methods
	Forward Learning Methods

	Forward Target Propagation
	Overview of Algorithm
	Target Estimation and Learning

	Results and Discussion
	Methods
	FTP for Image Classification
	FTP in Capturing Long-Term Dependency
	Scalability of FTP
	Alignment of FTP with Backpropagation
	Performance of FTP in Emerging Hardware and Edge Devices
	Hardware-Aware Analysis of FTP’s Efficiency

	Conclusion
	Broader Impact of Our Work
	Biological Properties of FTP
	Analysis of FTP in Network with Two Hidden Layers
	Alignment in Weight Update Direction Between FTP and BP
	Relation with Gauss-Newton Update for Hidden Neurons

	Model Architecture and Implementation Details
	Fully Connected Networks (FC)
	Convolutional Neural Networks (CNN)
	Recurrent Neural Networks (RNN)

	Sensitivity to Initialization and Dimensionality of Feedback Matrix G
	Metrics for Evaluation of RNNs
	Scalability of Forward Learning Algorithms
	Robustness of FTP compared to Feedback Alignment
	Memory and Runtime Efficiency of FTP
	Impact of Strict Weight Symmetry Requirement of BP in Emerging Analog Hardware
	Compute Resources
	Use of Large Language Models (LLMs)

