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ABSTRACT

Multimodal Large Language Models (MLLMs) have recently emerged as gen-
eral architectures capable of reasoning over diverse modalities. Benchmarks for
MLLMs should measure their ability for cross-modal integration. However, current
benchmarks are filled with shortcut questions, which can be solved using only
single modality, and thereby yielding unreliable rankings. For example, in vision-
language cases, we can find the correct answer without either the image or the text.
These low-quality questions unnecessarily increase the size and computational re-
quirements of benchmarks. We introduce a multi-modal and multidimensional item
response theory framework (M3-IRT) that extends classical IRT by decomposing
both model ability and item difficulty into image-only, text-only, and cross-modal
components. M3-IRT estimates cross-modal ability of MLLMs and each question’s
cross-modal difficulty, enabling compact, high-quality subsets that better reflect
multimodal reasoning. Across 24 VLMs on three benchmarks, M3-IRT prioritizes
genuinely cross-modal questions over shortcuts and preserves ranking fidelity even
when 50% of items are artificially generated low-quality questions, thereby reduc-
ing evaluation cost while improving reliability. M3-IRT thus offers a practical tool
for assessing cross-modal reasoning and refining multimodal benchmarks.

1 INTRODUCTION

Multimodal Large Language Models (MLLMs) (Yin et al., 2024) have recently emerged as general
architectures capable of reasoning over diverse modalities. A prominent subclass, Visual–Language
Models (VLMs), jointly process images and text and are expected to support downstream tasks that
require cross-modal reasoning (Jiang & Ye, 2023), such as medical image diagnosis and industrial
inspection (Zhang et al., 2024). Consequently, rigorous and trustworthy multimodal benchmarks are
essential for practitioners to choose appropriate models (Chen et al., 2024; Yue et al., 2025).

Benchmarks for MLLMs should measure their ability for cross-modal integration. However, current
benchmarks are often filled with shortcut questions that can be solved using only single modality
(e.g., answerable from text alone or image alone). For example, in vision-language cases, we can find
the correct answer without either the image or the text. These low-quality questions unnecessarily
increase the size and computational requirements of a benchmark and yields unreliable rankings (Yue
et al., 2025). As the pool of candidate models grows, evaluating thousands of mixed-quality questions
per model becomes increasingly costly, while single-modality shortcuts further obstacle evaluating
the cross-modal reasoning ability.

Item Response Theory (IRT) is a principled framework for assessing subject ability and item diffi-
culty (Fan, 1998). Without knowing the questions and answers, IRT estimates the ability and difficulty
as parameters to predict the records of success or failure of a subject on an item. These parameters
allow us to construct a compact subset of items tailored to each subject using Computerized Adaptive
Testing (CAT) (Weiss & Kingsbury, 1984; Han, 2018). Recent work on LLM has leveraged IRT,
where they considered LLM as subject and questions as items, to construct compact and essential
subsets of text questions from benchmarks (Polo et al., 2024). However, classical IRT is agnostic
to the modality of inputs and thus contains only a single latent ability or difficulty parameter. IRT
cannot determine whether success on a multimodal item reflects true cross-modal reasoning or others.
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Question : A recent study of inflationary 

expectations has revealed that the consensus among 

economic forecasters yields the following average 

annual rates of inflation expected over the periods 

noted. (Note: Assume that the risk that future 

interest rate movements will affect longer 

maturities more than shorter maturities is zero; that 

is, assume that there is no maturity risk.) <image 

1> If the real rate of interest is currently 2.5%, find 

the nominal rate of interest on the following U.S. 

Treasury issues: 3-month bill

A: 7.5%

B: 8.5%

C: 10.5%

D: 11.5%

(a) MMMU (Highly quality)

Question : Kimberly's 

classmates revealed how 

many science articles they 

read. What is the range of 

the numbers?

(b) Mathvista (High quality)

Question :  How many fists are present in 

the image?

A: Two

B: One

C: Three

D: Four

(c) SEED-Bench (High quality)

Question :  Based on <image 1>, the 

muse Henrietta Moraes sat for artists 

Francis Bacon and Lucian Freud. 

Which female artist did she also sit for?

A: Maggi Hambling

B: Elisabeth Frink

C: Barbara Hepworth

D: Georgia O'Keeffe

(d) MMMU (Low quality)

Question : What could happen 

that would increase the number of 

krill?

(A) increase in phytoplankton

(B) decrease in penguins

(C) increase in fish

(D) increase in birds

(e) Mathvista (Low quality)

Question :  Where are the family 

standing in the image?

A: On a red carpet

B: On a lawn

C: In a parking lot 

D: On a wooden deck

(f) SEED-Bench (Low quality)

Figure 1: Questions with the highest or lowest cross-modal difficulty bcrossj detected by M3-IRT.
Questions with high cross-modal difficulty require both modalities to find the correct answer. However,
those with low difficulty allow us to solve using only the image or text.

To address the limitations, we introduce MultiModal and Multidimensional Item Response Theory
(M3-IRT), and its variant called M2-IRT. Our proposed methods simply extend classical IRT by
decomposing both model ability and item difficulty into three latent components: image-only,
text-only, and cross-modal integration. This decomposition allows us to (i) estimate each VLM’s
cross-modal ability and (ii) quantify each question’s cross-modal difficulty. Using these estimates,
our proposed methods identifies genuinely cross-modal items and enables compact, high-quality
benchmark subsets that better reflect multimodal reasoning while reducing evaluation cost.

We conduct extensive experiments with 24 VLMs across three benchmarks. We construct semi-
synthetic benchmarks by generating simple low-quality questions through the swapping of image or
text from the original questions to introduce artificial shortcut or unsolvable questions. We obtain the
answers of VLMs and make datasets indicating successes and false. We employ M3-IRT, M2-IRT, and
other methods including IRT to refine our semi-synthetic benchmarks. First, we qualitatively observe
that M3-IRT prioritizes truly cross-modal items over shortcuts and preserves ranking fidelity even
when 50% of the items are replaced with artificially generated low-quality questions. Representative
highly and lower cross-modal difficulty items identified by M3-IRT are shown in Figure 1.

Second, we conducted experiments to extract subsets of questions from the dataset as a high-quality
problem-discovery task. We quantitatively evaluate the degree of ranking reconstruction for VLMs
obtained from a small number of subsets of varying sizes, as well as the proportion of simple low-
quality questions included in these small subsets. The former enables high performance with fewer
items. The results show that our proposed framework nearly reconstructs the original ranking using
only a 10% subset across all datasets, while also reducing the proportion of low-quality questions to
less than half that of existing methods.

Our contributions are threefold:

1. We propose M3-IRT, which explicitly models modality-specific (image-only, text-only) and
cross-modal components of both item difficulty and model ability for multimodal evaluation.

2. We show that M3-IRT yields compact, high-quality subsets that emphasize cross-modal
reasoning and maintain reliable model rankings at substantially reduced computational cost.

3. Through experiments with 24 VLMs across three benchmarks, we demonstrate that M3-IRT
is robust to large fractions of low-quality items (up to 50%) and provides interpretable
characterizations of both benchmarks and models.
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2 RELATED WORK

Recent VLM evaluation has relied on large, static benchmarks such as MMMU (Yue et al., 2024),
MathVista (Lu et al., 2024), SEED-Bench (Li et al., 2024a), EMMA (Hao et al., 2025) and
CCHall (Zhang et al., 2025). These efforts shift the center of evaluation toward integration it-
self rather than isolated unimodal skills. Static expansions such as MMBench (Liu et al., 2024)
broaden ability coverage but still exposed to low-quality question contamination and leakage. Several
dynamic or live evaluation approaches have emerged such as VLB/FLEX (Yang et al., 2025) proposes
to automatically generate both image and text. MAC (Jiang et al., 2025b) and LiveXiv (Shabtay
et al., 2025) automatically constructs VQA from current news and papers. While valuable, these
benchmarks still exposed to the risk of contaminating low-quality questions, such as shortcuts.

Existing methods for single-modal benchmarks can be categorized into Non-IRT-based and IRT-based
approaches. First, Non-IRT-based approaches include question clustering that selects representative
questions from clustering results, such as active testing with multi-stage sampling (Huang et al., 2024),
tailored benchmark creation (Yuan et al., 2025), LLM predictability exploration (Ye et al., 2023), and
anchor points (Vivek et al., 2024). Adaptive sampling dynamically selects questions based on current
assessments of a model’s performance, including SubLIME (Xu et al., 2024), Dele (Saranathan et al.,
2024), and methods that model inter-example dependencies (Li et al., 2024b). FlashEval (Zhao et al.,
2024) was recently proposed, offering a novel evolutionary algorithm for text-to-image generation.
However, they have not considered whether a question demand the cross-modal integration or not.

Item Response Theory (IRT) (Lord, 1980), originating in psychometrics, provides simultaneous
modeling of subject (model) ability and item (question) parameters (e.g., difficulty, discrimination).
The application of IRT has expanded to NLP (Lalor et al., 2016), dialogue (Hirai et al., 2023), and
recommendation systems (Liu et al., 2023). In the LLM domain, IRT has been leveraged to reduce
benchmark volumes; i. e. , MetaBench (Kipnis et al., 2025) distills a sparse benchmark from several
benchmarks, and TinyBenchmarks (Polo et al., 2024) provides an efficient cluster-based sampling
method. IRT has also been employed for adaptive sampling/testing of LLMs; for example, dynamic
test adjustment based on model performance (Zhuang et al., 2023b), CAT-based cognitive ability
measurement (Zhuang et al., 2023a), human chatbot evaluation, training of difficulty-calibrated
question generators (Jiang et al., 2025a), and automated model evaluation (Guinet et al., 2024).

3 BACKGROUND

Consider a collection of MLLMs, treated as subjects and indexed by M = {1, . . . ,m}, and a
multimodal benchmark with questions treated as items and indexed by N = {1, . . . , n}. For each
subject–question pair (i, j), let ri,j ∈ {0, 1} indicate whether subject i answers question j correctly
(ri,j = 1) or not (ri,j = 0). We denote the resulting response matrix by R = {ri,j}(i,j)∈M×N . Our
objective is to assess the cross-modal abilities of the MLLMs and the difficulty of the questions, and
to identify a compact subset N̂ ⊂ N consisting of items that demand strong cross-modal reasoning.

Item Response Theory (IRT) is a family of latent variable models that jointly infer subject ability and
item characteristics from observed response data (Fan, 1998). Given only the pattern of correct or
incorrect responses, IRT estimates ability and difficulty parameters and predicts the probability that a
subject will answer a given item correctly. We use the two-parameter logistic (2PL) model, which
can be viewed as a logistic regression with item-specific slope and threshold:

Pr(ri,j = 1 | θi, aj , bj) = σ
(
aj(θi − bj)

)
, (1)

where σ(x) = 1/(1 + exp(−x)) is the sigmoid function. For each subject i, we define an ability
parameter θi ∈ R; higher values indicate a greater propensity to answer difficult items correctly. For
each item j, we define a discrimination parameter aj > 0 and a difficulty parameter bj ∈ R. Larger
aj means the probability of a correct response is more sensitive to changes in ability, whereas smaller
aj implies weaker sensitivity. As the difficulty bj increases, greater ability is required to achieve a
high probability of a correct response. IRT has been applied to CAT (Weiss & Kingsbury, 1984) to
select test questions from an item pool to estimate a subject ability. Namely, we randomly initialize a
student ability, select a question with the maximum Fisher information for a current ability, get an
answer, and update a subject ability. We repeat this procedure.
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Adaptive Question 
Selection & Rank

Answer

Cross-modal
Difficulty &
Ability

Modality-
based Qn

Image ✅
Text ✅

Cross ✅

Q1
Image ❌
Text     ❌
Cross   ❌

Q2
Image ✅
Text     ✅
Cross   ❌

…

MLLMs

Multimodal
Benchmark

MMIRT

Answers CAT New MLLM

Decompo
sition

Figure 2: M2-IRT investigates the modality-specific and cross-modal difficulties of questions that
enables to contract a tailored, compact, and high-quality subset for evaluating a new MLLM.

Multi-dimensional IRT (MIRT) is a method that extends IRT to consider the relationship between
models and questions in a more complex manner (Reckase, 2009). This method supposes a d-
dimensional latent parameter space. The ability vector for subject i is θi ∈ Rd, and the difficulty
and discriminative vectors for question j as aj , bj ∈ Rd. MIRT parametrizes the probability for
providing a correct answer for a pair of (i, j) and finds maximum likelihood estimator:

P (ri,j = 1) = σ
(
a⊤
j θi − bj

)
, P (ri,j = 0) = 1− P (ri,j = 1). (2)

4 PROPOSED METHOD

To assess modality-specific and cross-modal properties of MLLMs and multimodal benchmarks, we
introduce the decomposition of the standard IRT parameters into latent components. Building on this
decomposition, we introduce MultiModal Item Response Theory (M2-IRT) and Multidimensional
MultiModal Item Response Theory (M3-IRT) as extensions of classical IRT and MIRT. We also
develop a procedure for selecting a compact subset of benchmark items tailored to these models.
Figure 2 illustrates the overall framework. Although the method is applicable to arbitrary modalities
(e.g., action, audio), this paper primarily focuses on vision and language.

4.1 MODALITY-BASED DECOMPOSITION OF IRT PARAMETERS

We assume that an MLLM has modality-specific abilities as well as an ability to integrate information
across modalities. Likewise, each multimodal question exhibits modality-specific and cross-modal
characteristics that can determine whether a subject can provide the correct answer.

In the vision–language setting, we define binary indicators simage, stext ∈ {0, 1} to represent the
modalities present in a question: simage = 1 if an image is provided and stext = 1 if text is provided;
otherwise, the indicator is 0. Let s = (simage, stext) ∈ S = {(0, 0), (0, 1), (1, 0), (1, 1)} denote a
format of representing a question. When (simage, stext) = (0, 0), the stimulus are withheld and the
subject answers using only a guess from introductions or the multiple-choice options.

We assume each subject has a base reasoning ability that, depending on the input format s, combines
with image-specific, text-specific, and cross-modal integration abilities. For subject i, denote the
base, image, text, and cross-modal abilities by θbasei , θimage

i , θtexti , θcrossi ∈ [0, q], respectively, where
q ≥ 0 is a shared upper bound that balances their scales. Given a question j and its modality indicator
s, we define the ability of a subject j as follows:

θi(s) = θbasei + simageθimage
i + stextθtexti + simagestextθcrossi . (3)

The second and third terms contribute when an image or text is present, respectively; the fourth term
contributes only when both are present. This construction naturally extends to additional modalities.

We view answering as exploiting hints provided by the item. For item j, let bbasej , bimage
j , btextj ,

bcrossj ∈ [0, q] be the base, image, text, and cross-modal difficulties, respectively, using the same
upper bound q ≥ 0. We define the difficulty bj(s) of question j given the indicator s as

bj(s) = bbasej − simagebimage
j − stextbtextj − simagestextbcrossj . (4)

4
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Similarly, let abasej ∈ [0, q] be the base discrimination, let aimage
j , atextj , acrossj ∈ [0, q] capture the

contributions from image, text, and cross-modal integration. The discrimination becomes

aj(s) = abasej + simageaimage
j + stextatextj + simagestextacrossj . (5)

In a general setting, we define indicators to represent the all modalities in a benchmark, and extend
parameters applicable to represent combinations of modalities.

4.2 MULTIMODAL ITEM RESPONSE THEORY (M2-IRT)

To capture cross-modal behavior, we control which modalities are provided, thus each subject answers
each item under the four input formats corresponding to all s ∈ S. For each subject–question-format
combination (i, j, s), let ri,j,s ∈ {0, 1} indicate whether subject i answers question j given the format
indicator s correctly (ri,j,s = 1) or not (ri,j,s = 0). We denote full response set as the resulting
response tensor by R′ = {ri,j,s}(i,j,j)∈M×N×S .

M2-IRT extends the logistic IRT model in Equation 1. Given discrimination aj(s), difficulty bj(s),
and ability θi(s), we define zi,j,s = aj(s)(θi(s)− bj(s)) and introduce M2-IRT as follows:

P (ri,j,s = 1) = σ
(
zi,j,s

)
and P (ri,j,s = 0) = 1− P (ri,j,s = 1). (6)

This parameterization captures the modality-aware behavior of subject i on item j.

4.3 MULTIMODAL MULTI-DIMENSIONAL ITEM RESPONSE THEORY (M3-IRT)

M3-IRT extends the logistic MIRT model in Equation 2 with the modality-based decomposition.
We modify the decomposed components into vectors. For subject i, define the ability vector θi =
[θbasei , θimage

i , θtexti , θcrossi ]⊤. For item j, define the discrimination and difficulty vectors aj =

[abasej , aimage
j , atextj , acrossj ]⊤, bj = [bbasej , bimage

j , btextj , bcrossj ]⊤. For convenience, we introduce a
format indicator vector s = [1,−simage,−stext,−simagestext]⊤, where the negative signs align with
the subtractive role of the modality terms in Equation 4 and with the decomposition in Equation 5.
From these vectors, we define z′i,j,s = a⊤

j diag(s)θi − s⊤bj . We propose M3-IRT as follows:

P (ri,j,s = 1) = σ
(
z′i,j,s

)
and P (ri,j,s = 0) = 1− P (ri,j,s = 1). (7)

Here, diag(s) is the diagonal matrix whose diagonal elements are s. The probabilistic model equa-
tion 6 is a variant of multi-dimensional IRT with the parametrization zi,j,s. This parametrization
takes in the modality-aware nature of subject i when answering multimodal question j.

4.4 LEARNING M3-IRT USING STOCHASTIC GRADIENT DESCENT

Instead of the EM algorithm commonly used in IRT, we estimate M3-IRT parameters with stochastic
gradient descent (SGD). Let a training dataset as R′′ ⊂ R′. Given R′′ and the Bernoulli model in
Equation 6, the negative log-likelihood is the negative log likelihood of is

L(Θ) = −
∑

(i,j,s)∈R′′

(ri,j,s logP (ri,j,s = 1) + (1− ri,j,s) logP (ri,j,s = 0)) , (8)

where the parameters set is Θ = {{aj}j∈N , {bj}j∈N , {θi}i∈M}. We minimize L(Θ) busing
mini-bach SGD, Θ̂ = argminΘ L(Θ). We can estimate M2-IRT in a similar manner. Note that our
approach does not require a dense response matrix: M2-IRT and M3-IRT can be learned from partially
observed data like a tensor completion, reducing the cost of evaluating MLLMs and benchmarks.

4.5 COMPUTER ADAPTIVE TEST WITH M2-IRT AND M3-IRT

We integrate M2-IRT and M3-IRT with classical Computerized Adaptive Testing (CAT) (Weiss &
Kingsbury, 1984) to adaptively select an informative subset of items N̂ ⊆ N , guided by Fisher
information. For M2-IRT model, the Fisher information of item j for subject i under format s is

Ii,j = P (ri,j,s = 1)P (ri,j,s = 0)(aj(s))
2, (9)
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where P (ri,j,s = 1) is given by Equation 6. For the multidimensional M3-IRT model, the Fisher
information matrix for item j at ability θ is

Ii,j = P (ri,j,s = 1)P (ri,j,s = 0)(diag(s)aj)(diag(s)aj)
⊤. (10)

We adopt the D-optimality criterion (Mulder & Linden, 2009) to minimize estimation uncertainty by
maximizing the determinant of the cumulative information. Let Ui ⊆ N be the set of items not yet
answered by subject i. At stage t, given the cumulative information matrix I

(t−1)
i , we select the next

item and update:

j∗ = argmax
j∈Ui

det
(
I
(t−1)
i + Iij

)
, I

(t)
i = I

(t−1)
i + Iij∗ . (11)

Iterating this rule yields a subset that is maximally informative for estimating the subject’s ability.

5 EXPERIMENT

5.1 DATASETS AND BASELINES

We employed three benchmarks for VLMs in this experiment. MMMU (Yue et al., 2024) is designed
to evaluate the reasoning capabilities of VLM through undergraduate-level questions in diverse
disciplines such as art and design, business, and science. We used 900 questions in the validation
set. MATHVISTA (Lu et al., 2024) evaluates mathematical reasoning capabilities through questions
involving visual context including puzzle figures and graphs. We used 1000 questions of the test-min
set. SEED-BENCH (Li et al., 2024a) is a large-scale benchmark designed to comprehensively
evaluate the multimodal abilities. We used 1000 questions from L1 and L2 sets.

To simulate the presence of questionable samples in real-world datasets, we constructed a synthetically
contaminated benchmark. We made semi-synthetic benchmarks by generating simple low-quality
questions through the swapping of image or text from the original questions. This process introduces
artificial shortcut or unsolvable questions. We compile a benchmark contaminated with 50% low-
quality questions. We provide a detailed description of our data generation process in Appendix A.
To create more realistic low-quality questions, methods such as modifying text and options using
LLM or adding noise to images could be considered. Since such methods make the experiment overly
complex, we excluded them. Note that our method learns ability and problem characteristics from
whether VLMs answer questions correctly, even if there are different types of low-quality questions,
the estimation results are unlikely to change.

We collected responses from 24 VLMs, including the GPT-4.1 series, Gemini-2.0 series, and Claude-
3.7 series, as well as open-source models such as Qwen-2.5-vl (Bai et al., 2025), Llama-3.2 (Meta,
2024), and Pixtral (Agrawal et al., 2024). On SEED-BENCH, since Claude-sonnet-3 became
unavailable at the start of the experiments on SEED-Bench, the experiments on SEED-Bench were
conducted with 23 models other than Claude-sonnet-3.

We use four baseline methods in our experiments. Random selects subset questions at random. IRT
uses a Fisher information-based subset selection estimated by IRT (Reckase, 2009). MIRT uses a
Fisher information-matrix-based subset selection estimated by MIRT (Reckase, 2009). TinyBench-
marks (Polo et al., 2024) is an IRT-based problem selection method for benchmark refinement in
LLM. FlashEval (Zhao et al., 2024) is a SOTA to select prompts for image generation. We extended
FlashEval to deal with VLM benchmarks by regarding questions as prompts.

We implemented our proposed method with PyTorch (Paszke, 2019), and used Adam opti-
mizer (Kingma & Ba, 2014) whose learning rate was 0.01. We used a grid search to select hy-
perparameter q from 2, 4, 8, 16. We selected the optimal hyperparamters based on the highest AUC in
predicting the correctness of the VLMs’ responses on the validation dataset. We provide the detailed
explanation of the experimental setting in Appendix D.

5.2 MULTIMODAL DIFFICULTY AND ABILITY DECOMPOSITION

M3-IRT estimates the extent to which a question requires cross-modal reasoning, represented by
difficulty bcrossj . This facilitates the identification of questions that truly benefit model’s cross-modal

6
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Figure 3: Distributions of θ estimated by M3-IRT sorted in descending order.
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(c) SEED-BENCH

Figure 4: The average and standard deviation of Spearman’s rank correlations between model rankings
on the original benchmark and those estimated on extracted question subsets with different sizes.

capability assessment. Figure 1 shows examples of questions with high and low bcrossj . The questions
with low bcrossj are judged that they can be solved only with images or text. For example, the bottom
one in MMMU can be answered based on knowledge of artists without looking into the image.
On the other hand, the questions with high bcrossj cannot be solved if either the image or the text is
missing. For example, the one in MATHVISTA requires reading the numerical values in the table that
cannot be confirmed only by the question text. Similarly, if only images are provided, it is not clear
what is being asked about in the table. We provide more examples in Appendix B.

M3-IRT also estimates the extent to which the reasoning ability for each modality contributes to
the VLM performance. Figure 3 shows the decomposed reasoning abilities of VLMs. The top-
performing model on MMMU exhibits high (θcrossi ), suggesting strong cross-modal reasoning
capabilities. On the other hand, the second and third best-performing models demonstrate high
textual reasoning ability (θtexti ) but limited cross-modal reasoning capability. This analysis suggests
that these latter VLMs rely heavily on text understanding when solving the MMMU benchmark,
rather than effectively integrating visual information. In MATHVISTA, most VLMs have high θtexti .
This may reflect MATHVISTA’s emphasis on text understanding. Most VLMs also exhibit moderate
θimage
i , suggesting that they also leverage the visual ability to process diagrams and graphs. The

result for SEED-BENCH is shown Appendix B.

5.3 BENCHMARK REFINEMENT

We investigate whether a method can extract a compact subset of questions that enables us to evaluate
the performance of unseen VLMs. We randomly select a VLM from a collection of VLMs and
construct a subset of the responses of remaining VLMs. For a method, we select a subset of questions,
estimate the performance of the VLM from its responses to the subset, and obtain an estimated
ranking of VLMs. We compare the difference between rankings on the original benchmark for all
models. We also investigate how much the artificial low-quality questions are included in the subset.

We use two measures to assess the quality of a subset N̂ ⊆ N selected by a method. First, we
assess how much a method avoid the low-quality questions in the estimation of model rankings. We
compute the Spearman’s rank correlation between model rankings on the original benchmark and

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 10 20 30 40 50
Subset size (|N|/|N|) [%]

0.0

0.1

0.2

0.3

0.4

0.5

M2IRT
M3IRT
IRT
MIRT
TinyBenchmarks
FlashEval
Random

(a) MMMU

0 10 20 30 40 50
Subset size (|N|/|N|) [%]

0.0

0.1

0.2

0.3

0.4

0.5

0.6 M2IRT
M3IRT
IRT
MIRT
TinyBenchmarks
FlashEval
Random

(b) MATHVISTA

0 10 20 30 40 50
Subset size (|N|/|N|) [%]

0.0

0.1

0.2

0.3

0.4

0.5

M2IRT
M3IRT
IRT
MIRT
TinyBenchmarks
FlashEval
Random

(c) SEED-BENCH

Figure 5: The average and standard deviation of the proportions of the low-quality questions in
extracted question subsets γ with different sizes.
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Figure 6: ROC-AUC on predicting answers of the noisy benchmarks containing the different size of
the low-quality questions inserted into the original benchmark.

the extracted subset. Second, we evaluate how a method can distinguish between the original and
low-quality questions. We measure the proportion of low-quality questions in the extracted subset as

γ =
|{q ∈ N̂ | q is a low-quality question}|

|N̂ |
.

We varied the subset size from 1% to 50% of the whole benchmark in 1% increments. We employed
CAT with M2-IRT using the maximum Fisher information in Sec. 4.5 and M3-IRT using D-Optimality.
We obtained the average and standard deviation from twenty four independent experiments.

Figure 4 shows the Spearman’s rank correlations between the model rankings on the original bench-
mark and on different sizes of subsets. Figure 5 shows the proportion γ with varying size of subsets.

As shown in Figure 4, our methods accurately estimate model rankings from contaminated bench-
marks, even with small subsets. In MMMU, M2-IRT achieves a rank correlation of 0.9 using only 3%
of the benchmark subset, and M3-IRT suprizingly achieves a rank correlation of 0.8 using the only
1% subset. FlashEval, which is SOTA but does not account for the presence of low-quality questions,
performs similarly to Random. In MATHVISTA, M3-IRT achieves a rank correlation of 0.84 with
a subset fraction of only 2%, requiring 30% to achieve a rank correlation of 0.9. In SEED-BENCH,
M2-IRT achieves a rank correlation of 0.9 using only 3% of the benchmark subset, while M3-IRT
achieves the same rank correlation using only 1% of the benchmark subset.

From Figure 5, we confirmed that the proportion of artificial low-quality questions included in the
subset selected by the proposed method is significantly smaller compared to existing methods. In
MMMU, even with an extraction subset size of 50%, all proposed methods keep the proportion of
low-quality questions notably low at 24%. In contrast, the baseline methods choose substantially
more low-quality questions than ours, which skew the estimated model rankings. When extracting
30% of MATHVISTA, the rank correlation between M3-IRT and Random is about the same, but γ is
smaller for M3-IRT. We observed similar trends in the results of SEED-BENCH.
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5.4 ROBUSTNESS AGAINST LOW-QUALITY QUESTIONS

We have evaluated the performance of the proposed method using a subset of questions. Here, we
assess its performance as a latent variable method for predicting missing responses from observed
ones. First, from the set of questions N , we randomly select 100 or 10% questions each for validation
and testing, using the remainder as training data. Next, we perform parameter estimation using the
training data for both the proposed method and IRT. Finally, we evaluate the prediction performance
on the test data using the estimated parameters with ROC-AUC. We measured ROC-AUC by varying
the proportion of low-quality problems introduced in Sec. 5.1. We used IRT as a baseline in this
experiment. We obtained the average and standard deviation from ten independent experiments.

We show the results in Figure 6. Our proposed methods achieved performance comparable to the
standard IRT on ROC-AUC. M2-IRT was slightly better than IRT on MMMU, and comparable to
IRT on MATHVISTA and SEED-BENCH. M3-IRT was slightly lower than IRT on MATHVISTA
but the difference is small. Even when low-quality questions are mixed in, the proposed method and
IRT achieve ROC-AUC values around 0.8, suggesting that they effectively capture both the abilites
of VLMs and the characteristics of the questions.

6 CONCLUSION

We addressed the challenge of assessing cross-modal reasoning characteristics in MLLMs and
multimodal benchmarks while reducing evaluation cost. We introduced M3-IRT and its variant
M2-IRT, which decompose both model ability and item difficulty of IRT into image-only, text-only,
and cross-modal components. This decomposition enables the identification of highly cross-modal
items that require cross-modal reasoning and supports lightweight assessment with far fewer items.

Across three benchmarks and 24 VLMs, we qualitatively evaluated that M3-IRT can estimate the
degree to which an item requires cross-modal reasoning, and assigns higher cross-modal difficulty to
genuinely cross-modal items than to single-modality shortcut. Moreover, analyses with synthetically
contaminated benchmarks confirmed that M3-IRT and M2-IRT yields evaluations aligned with the
original benchmarks, demonstrating robustness to low-quality contamination.

Limitations and future work. Our study focuses on multiple-choice, which is a typical form of
closed-ended questions. Extending the framework to open-ended settings with open-ended questions
is a natural next step, enabling the discovery of items that demand stronger cross-modal reasoning
and the evaluation of MLLMs under generative outputs. Beyond vision–language, applying the
approach to additional modalities (e.g., audio, actions) and developing question-generation methods
that control cross-modal difficulty are promising directions.

ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. Our study does not involve human subjects, private
or sensitive data, or personally identifiable information. All datasets used in this paper (MMMU,
MathVista, SEED-Bench) are publicly released benchmarks, and we strictly followed their respective
licenses and usage guidelines.

REPRODUCIBILITY STATEMENT

The code used in our experiments is attached as a zip file. The steps to reproduce our experiment are
as follows.

1. Download zip file.

2. Read README.MD file.

3. If you don’t want to use either rye or uv, use venv and so on.

4. Run commands writtenm in README.
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A DETAILS OF LOW-QUALITY QUESTION GENERATION

For MMMU, we made three types of low-quality questions: (A) 300 questions consisting of the
image, text, and multiple-choice selected from all different questions, (B) 300 questions where the
image was replaced with that from different questions; and (C) 300 questions where the text was
replaced with that from different questions. For MATHVISTA, we made 333 questions each for (A),
(B), and (C). For SEED-BENCH, we made 333 questions each for (A), (B), and (C).

B OMITTED RESULTS OF MULTIMODAL DIFFICULTY AND ABILITY
DECOMPOSITION
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Figure 7: Distributions of θ estimated by M3-IRT sorted in descending order.
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(c) SEED-BENCH

Figure 8: Distributions of θ estimated by M2-IRT sorted in descending order.

Figure 8 shows the decomposed reasoning abilities of VLMs for SEED-BENCH. In SEED-BENCH,
most VLMs have high θimage

i . This result corresponds to the fact that SEED-BENCH contains
problems which require images strongly to solve. Fig. 8a, Fig. 8b, and Fig. 8c show the decomposed
reasoning abilities of VLMs for MMMU, MATHVISTA, and SEED-BENCH.

We show the questions detected by M2-IRT that require the high or low cross-modal reasoning
ability from MMMU in Fig. 10 and Fig. 9, from MATHVISTA in Fig. 12 and Fig. 11, and from
SEED-BENCH in Fig. 14 and Fig. 13, respectively.
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As shown in Fig. 9, Fig. 11, and Fig. 13, questions which require the high cross-modal reasoning
ability, whereas questions in Fig. 10, Fig. 12, and Fig. 14 can be solved by using a single-modality
only. For example, the question shown in Fig. 10c presents an image of cholera bacteria, where the
correct answer (A) can be identified solely from the image and answer choices, even without the text.
The question shown in Fig. 12b can be solved correctly without the image if one knows the number of
veins for each plant. For the question shown in Fig. 14c , since the question in Fig. 14c, this problem
can be solved correctly simply by answering the characters shown in the image. On the other hand,
the question shown in Fig. 9b requires both the image, which provides velocity information, and
the text, which specifies the particular conditions to identify within the figure. Consequently, the
problem cannot be solved correctly if either the image or text component is missing. The question
shown in Fig. 11c. The question in Fig. 13c, requires both the image, which provides there is one
person who wears black clothes, and the text, which specifies specifying what to count within the
figure. Consequently, the problem cannot be solved correctly if either the image or text component
is missing. Thus, the bcrossj successfully distinguishes between questions suitable for evaluating
cross-modal ability where essential information is distributed across both image and text, requiring
an examination of both to obtain the necessary information and those that do not effectively evaluate
cross-modal ability.

Question : An 82-year-old woman presents to the 

office with a 1-year history of worsening cough and 

shortness of breath. She has a 45 pack-year history of 

cigarette smoking and quit smoking 15 years ago. 

Vital signs reveal: <image 1>. ECG findings are 

normal. Her FEV1/FVC ratio is 65% of predicted. The 

most appropriate inhaled medication for this patient 

works by blocking which of the following receptors?

A: $¥beta $1-adrenergic receptors

B: glucocorticoid receptors

C: histamine H1 receptors

D: leukotriene receptors

E: muscarinic receptors

(a) validation Pharmacy 2

Question : <image 1>Given the graph of the 

velocity vs. time of a duck flying due south for 

the winter. At what point did the duck stop its 

forward motion?

A: A

B: B

C: C

D: D

<Image 1>

(b) validation Physics 26

Question :  <image 1> Hicks Products produces and 

sells patio furniture through a national dealership 

network. They purchase raw materials from a variety of 

suppliers and all manufacturing, and assembly work is 

performed at their plant outside of Cleveland, Ohio. 

They recorded these costs for the year ending 

December 31, 2017. What is total revenue?

A: $3,100,000

B: $2,616,000

C: $2,474,000

D: $484,000

<Image 1>

(c) validation Accounting 12

Figure 9: MMMU: Questions with the high cross-modal difficulties bcrossj

Question : Refer to the figure <image 1>, 

which term refers to lines that give the 

impression of calm and tranquility, such as 

those seen in the ocean and open prairies?

A: Diagonal line

B: Horizontal line

C: Vertical line

D: List spacing

<Image 1>

(a) validation Literature 6

Question : Name the written-out ornament, 

which is marked with bracket. <image 1>

A: acciaccatura

B: appoggiat

C: lower morden

D: upper turns

<Image 1>

(b) validation Music 11

Question :  The circular rings of muscle that 

are at the entrance and exit of the stomach are 

called. Choosing the matching term:<image 1> 

A: Cholera

B: Emulsification

C: Anthrax

D: Peristalsis

<Image 1>

(c) validation Agriculture 12

Figure 10: MMMU: Questions with the low cross-modal difficulties bcrossj .
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Question :  Across all years, what is the 

maximum rating of statistical capacity in 

Maldives

(a) 784

Question Is Dark Orchid the maximum?

(A) yes

(B) no

(b) 618

Question如图：∠AOB：∠BOC：∠COD＝
2：3：4，射线OM、ON，分别平分∠AOB

与∠COD，又∠MON＝84°，则∠AOB为
（）

(A) 28°
(B) 30°
(C) 32°
(D) 38°

(c) 998

Figure 11: MATHVISTA: Questions with the high cross-modal difficulties bcrossj . Each caption is the
ID of the problem in MATHVISTA

Question :  What time is shown? Answer by 

typing a time word, not a number. It is (_) to 

five. 

(A) half

(B) quarter

(C) o'clock

(D) quarter to

(E) quarter past

(a) 531

Question :  If you wanted the leaf with the 

least main veins, which would you choose?

(A) 3 main veins

(B) pinnate

(C) reticulate

(D) palmate

(b) 514

Question In the diagram above, angle A is congruent to 

angle BED, and angle C is congruent to angle D. If the 

ratio of the length of AB to the length of EB is 5:1, and 

the area of the triangle BED is 5*a^2 + 10, what is the 

area of triangle ABC?

(A) 5*a^2 + 10

(B) 25*a^2 + 50

(C) 25*a^2 + 100

(D) 125*a^2 + 250

(E) cannot be determined

(c) 315

Figure 12: MATHVISTA: Questions with the low cross-modal difficulties bcrossj . Each caption is the
ID of the problem in MATHVISTA

Question :  How many buildings are in the 

image?

A: 0

B: 3

C: 2

D: 1

(a) 234357012

Question :  Which object is closest to the 

bottom of the image?

A: Tree

B: Grass

C: Fog

D: Sun

(b) VizWiz train 00018501

Question :  How many people in the image are 

wearing black jackets?

A: One

B: Two

C: Four

D: Three

(c) 1907002

Figure 13: SEED-BENCH: Questions with the high cross-modal difficulties bcrossj .
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Question : What is the relation between 

the people standing on the beach and the 

ocean?

A: The ocean is behind them

B: The ocean is on their left

C: The ocean is in front of them

D: The ocean is on their right

(a) VizWiz train 00003082

Question : What color are the hats worn 

by the two men?

A: Red and green

B: White and green

C: Red and white

D: Blue and yellow

(b) 354261000

Question : What is the text in the 

image?

A: None of the above

B: SIRE

C: SINE

D: SIZE

(c) 279787000

Figure 14: VQAAT: Questions with the low cross-modal difficulties bcrossj

B.1 DETAILED RESULT

Table 1, Table 2, and Table 3 show the values of θ predicted in Fig. 3 and Fig. 8.

Table 1: Estimated θ on MMMU

model θbase θimage θtext θcross total

Gemini-1.5-flash-8b 0.00 1.2 0.00 4.0 5.2
Claude-3.7-sonnet 0.03 0.78 4.0 0.00 4.8
Claude-3.5-sonnet 0.06 0.68 4.0 0.00 4.7
Gemini-2.0-flash 0.09 1.4 0.68 2.1 4.3
Gemini-1.5-pro 0.10 1.0 0.29 2.8 4.2
GPT-4.1-mini 0.09 1.8 0.70 1.4 3.9
Pixtrl-large 0.03 0.90 0.37 2.5 3.8
GPT-4.1 0.10 1.4 0.57 1.7 3.8
GPT-4o 0.10 0.66 0.71 2.2 3.7
Gemini-1.5-flash 0.06 0.75 0.38 2.4 3.6
Qwen2.5-VL-72B 0.07 1.2 0.51 1.7 3.5
Pixtral-12b 0.00 0.81 0.00 2.6 3.4
Nova-Pro 0.08 0.62 0.68 1.7 3.0
Llama-3.2-90B 0.09 0.08 0.20 2.7 3.0
GPT-4o-mini 0.07 0.43 0.41 2.0 3.0
GPT-4-turbo 0.10 0.54 0.94 1.1 2.7
Grok-2-Vision 0.10 0.38 1.0 1.0 2.5
Llama-3.2-11B 0.01 0.65 0.00 1.6 2.3
Qwen2.5-VL-7B 0.03 1.0 0.32 0.79 2.2
Nova-Lite 0.10 0.22 0.24 1.6 2.1
GPT-4.1-nano 0.10 0.13 0.19 1.4 1.9
Claude-3-haiku 0.10 0.00 0.63 0.09 0.82
Claude-3-sonnet 0.10 0.07 0.50 0.00 0.67
MiniMax-01 0.00 0.00 0.00 0.00 0.00

C OMITTED RESULTS OF MULTIMODAL BENCHMARK REFINEMENT

First, we illustrate our problem setting for benchmark refinement in Fig. 15. To investigate how
the estimated parameters of the original questions and low-quality questions vary, we show the
distribution of the estimated difficulty, discrimination, and the Fisher information of the original
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Table 2: Estimated θ on MATHVISTA

model θbase θimage θtext θcross total

Gemini-2.0-flash 0.00 0.93 0.99 4.0 5.9
Claude-3.7-sonnet 0.00 0.63 2.0 3.1 5.7
Nova-Pro 0.10 0.36 4.0 0.56 5.0
Grok-2-Vision 0.10 0.89 3.4 0.57 5.0
Gemini-1.5-pro 0.00 0.97 1.4 2.6 4.9
Gemini-1.5-flash 0.00 0.60 0.84 2.7 4.1
Nova-Lite 0.10 0.00 4.0 0.00 4.1
Qwen-2.5-VL-72b 0.10 0.00 0.00 4.0 4.1
Pixtral-Large 0.10 0.70 2.4 0.25 3.4
GPT-4o 0.00 0.32 2.5 0.57 3.4
GPT-4o-mini 0.00 0.00 2.8 0.41 3.2
Llama-3.2-90B 0.10 0.00 3.0 0.00 3.1
Claude-3.5-sonnet 0.00 0.38 1.7 0.61 2.7
GPT-4-turbo 0.00 0.46 1.1 0.51 2.1
Gemini-1.5-flash-8b 0.00 0.36 0.60 0.78 1.7
Pixtral-12b 0.00 0.41 1.1 0.00 1.5
GPT-4.1 0.10 0.30 0.00 1.1 1.5
Qwen-2.5-VL-7b 0.10 0.00 0.00 1.2 1.3
GPT-4.1-mini 0.10 0.00 0.00 1.2 1.3
Claude-3-sonnet 0.00 0.00 0.98 0.00 0.98
MiniMax-01 0.00 0.64 0.02 0.31 0.96
Claude-3-haiku 0.00 0.00 0.71 0.00 0.71
Llama-3.2-11B 0.10 0.00 0.40 0.00 0.50
GPT-4.1-nano 0.10 0.00 0.00 0.15 0.25

Table 3: estimated θ on SEEDBENCH

model θbase θimage θtext θcross total

GPT-4.1 0.10 2.0 1.9 2.0 6.0
GPT-4o 0.00 2.0 0.51 2.0 4.5
GPT-4.1-mini 0.10 2.0 2.0 0.00 4.1
Gemini-2.0-flash 0.10 2.0 2.0 0.00 4.1
Gemini-1.5-pro 0.10 2.0 2.0 0.00 4.1
Qwen-2.5-VL-72b 0.10 2.0 2.0 0.00 4.1
Gemini-1.5-flash 0.10 1.7 2.0 0.00 3.8
Claude-3.5-sonnet 0.00 0.80 0.00 2.0 2.8
GPT-4o-mini 0.00 2.0 0.58 0.07 2.6
GPT-4.1-nano 0.00 0.98 1.6 0.00 2.6
Claude-3.7-sonnet 0.10 0.35 0.00 2.0 2.4
Nova-Lite 0.00 1.9 0.00 0.54 2.4
MiniMax-01 0.00 2.0 0.39 0.00 2.4
Grok-2-Vision 0.10 1.4 0.23 0.43 2.2
Pixtral-Large 0.00 1.3 0.45 0.02 1.8
Pixtral-12b 0.00 1.2 0.30 0.00 1.5
Nova-Pro 0.00 1.1 0.00 0.00 1.1
Gemini-1.5-flash-8b 0.00 0.96 0.00 0.00 0.96
Qwen-2.5-VL-7b 0.00 0.63 0.09 0.00 0.73
GPT-4-turbo 0.00 0.00 0.00 0.00 0.00
Claude-3-haiku 0.00 0.00 0.00 0.00 0.00
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Figure 15: An illustration of our benchmark refinement and testing processes.

MMMU Mathvista SEED-Bench

6

4

2

0

2

4

b f
ul

l (
di

ff
ic

ul
ty

)

*** *** ***

Origiinal
Shuffled

(a) Difficulty

MMMU Mathvista SEED-Bench
0

5

10

15

a 
(d

is
cr

im
in

at
io

n)

***

***

***
Original
Low-quality

(b) Discrimination

MMMU MATHVISTA SEED
0

10

20

30

40

50

60

Fi
sh

er
 In

fo
rm

at
io

n

***

*** ***

Original
Low-quality

(c) Fisher information

Figure 16: Comparisons of parameters estimated by M2-IRT between the original and artificial
questions.

questions and the low-quality questions in Fig. 16 and Fig. 17. We also investigated whether there is
a significant difference between the two distributions with the Mann-Whitney U test. Asterisks mark
the Mann-Whitney U test results comparing the original questions with the low-quality questions. 1

We confirmed significant differences between the groups of original and low-quality questions.

We additionally examined the Wasserstein distance between original and low-quality questions, and
found that the Wasserstein distance for MMMU, MATHVISTA, and SEED-BENCH were 0.20, 0.14,
and 0.051, respectively.

C.1 DETAILED RESULTS

Detailed results of the experiments depicted in Fig. 4 are reported in Table 4, Table 6, and Table 8.
Detailed results of the experiments depicted in Fig. 5 are reported in Table 5, Table 7, and Table 9.

1Significance follows: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.
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Figure 17: Comparisons of parameters estimated by M3-IRT between the original and artificial
questions.
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Table 4: Spearman’s rank corr on MMMU with 5%, 10%, 30%, 50% of whole dataset.

Method 5% 10% 30% 50%

M2-IRT 0.93± 0.048 0.96± 0.061 0.96± 0.047 0.96± 0.035
M3-IRT 0.91± 0.034 0.89± 0.046 0.92± 0.033 0.93± 0.023
FlashEval 0.77± 0.041 0.79± 0.029 0.79± 0.024 0.8± 0.015
IRT 0.58± 0.16 0.5± 0.21 0.38± 0.2 0.12± 0.28
MIRT 0.082± 0.11 0.16± 0.089 0.47± 0.11 0.69± 0.055
Random 0.71± 0.053 0.77± 0.062 0.82± 0.028 0.81± 0.024
TinyBenchmarks 0.42± 0.13 0.43± 0.13 0.56± 0.11 0.67± 0.082

Table 5: The proportions of the low-quality questions on MMMU with 5%, 10%, 30%, 50% of whole
dataset.

Method 5% 10% 30% 50%

M2-IRT 0.02± 0.014 0.038± 0.015 0.12± 0.014 0.19± 0.013
M3-IRT 0.048± 0.012 0.091± 0.017 0.14± 0.012 0.19± 0.007
FlashEval 0.28± 0.026 0.28± 0.014 0.29± 0.021 0.29± 0.01
IRT 0.31± 0.047 0.32± 0.04 0.36± 0.029 0.38± 0.02
MIRT 0.43± 0.03 0.42± 0.02 0.38± 0.012 0.36± 0.011
Random 0.3± 0.039 0.31± 0.031 0.3± 0.0096 0.3± 0.008
TinyBenchmarks 0.37± 0.032 0.38± 0.023 0.38± 0.022 0.36± 0.02

Table 6: Spearman’s rank corr on Mathvista with 5%, 10%, 30%, 50% of whole dataset.

Method 5% 10% 30% 50%

M2-IRT 0.78± 0.067 0.81± 0.036 0.88± 0.042 0.93± 0.017
M3-IRT 0.9± 0.03 0.92± 0.028 0.93± 0.022 0.93± 0.01
FlashEval 0.88± 0.026 0.89± 0.02 0.91± 0.01 0.91± 0.0082
IRT 0.79± 0.046 0.81± 0.047 0.91± 0.023 0.94± 0.014
MIRT 0.54± 0.057 0.58± 0.049 0.72± 0.029 0.81± 0.022
Random 0.85± 0.056 0.89± 0.04 0.92± 0.018 0.93± 0.013
TinyBenchmarks 0.76± 0.058 0.79± 0.038 0.86± 0.018 0.88± 0.011

Table 7: The proportions of the low-quality questions on Mathvista with 5%, 10%, 30%, 50% of
whole dataset.

Method 5% 10% 30% 50%

M2-IRT 0.0036± 0.0027 0.011± 0.006 0.068± 0.021 0.15± 0.016
M3-IRT 0.023± 0.01 0.054± 0.013 0.15± 0.019 0.2± 0.0078
FlashEval 0.27± 0.021 0.27± 0.016 0.3± 0.016 0.3± 0.014
IRT 0.26± 0.059 0.27± 0.055 0.24± 0.028 0.22± 0.018
MIRT 0.52± 0.029 0.5± 0.024 0.39± 0.018 0.33± 0.0083
Random 0.3± 0.032 0.29± 0.031 0.29± 0.0086 0.29± 0.007
TinyBenchmarks 0.33± 0.042 0.33± 0.027 0.3± 0.015 0.28± 0.0065
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Table 8: Spearman’s rank corr on SEEDBench with 5%, 10%, 30%, 50% of whole dataset.

Method 5% 10% 30% 50%

M2-IRT 0.92± 0.029 0.94± 0.0078 0.97± 0.0082 0.95± 0.0049
M3-IRT 0.96± 0.022 0.94± 0.019 0.95± 0.011 0.95± 0.017
FlashEval 0.87± 0.032 0.89± 0.021 0.9± 0.013 0.9± 0.0092
IRT 0.86± 0.13 0.86± 0.13 0.84± 0.15 0.79± 0.17
MIRT 0.22± 0.17 0.42± 0.12 0.71± 0.052 0.82± 0.035
Random 0.8± 0.069 0.86± 0.046 0.89± 0.027 0.91± 0.011
TinyBenchmarks 0.62± 0.092 0.69± 0.057 0.77± 0.056 0.81± 0.044

Table 9: The proportions of the low-quality questions on SEEDBench with 5%, 10%, 30%, 50% of
whole dataset.

Method 5% 10% 30% 50%

M2-IRT 0.03± 0.018 0.045± 0.016 0.13± 0.0074 0.22± 0.0037
M3-IRT 0.095± 0.016 0.14± 0.018 0.18± 0.011 0.24± 0.008
FlashEval 0.3± 0.028 0.3± 0.019 0.33± 0.014 0.34± 0.016
IRT 0.28± 0.054 0.31± 0.048 0.34± 0.04 0.37± 0.031
MIRT 0.46± 0.034 0.43± 0.023 0.39± 0.012 0.37± 0.0087
Random 0.35± 0.036 0.34± 0.036 0.34± 0.011 0.34± 0.0084
TinyBenchmarks 0.36± 0.027 0.36± 0.015 0.35± 0.012 0.34± 0.0081

C.2 VQAAT

VQA-ANSWERTHERAPY (VQAAT) (Chen et al., 2023) consists of VizWiz Dataset (Gurari et al.,
2018), which is visual questions asked by visually impaired people, and VQA v2.0 (Goyal et al.,
2017). We randomly sample 1000 questions from the train and validation sets of Single Answer
Grounding Challenge. This dataset presents images, questions, and multiple annotators’ responses to
those questions to the VLM, asking whether the annotators’ answers are based on the same part of
the image. Therefore, this dataset consists solely of binary-choice questions.

We conducted an additional experiment on VQAAT under the same condition as Section 5.3. Figure 4
shows the Spearman’s rank correlations between the model rankings on the original benchmark and
on an extracted subset and proportions of the low-quality questions. In contrast to experiment in
Section 5.3, on VQAAT, M2-IRT and M3-IRT are worse than baselines in terms of the Spearman’s
rank correlation. Interestingly, while proposed methods extracts fewer low-quality questions than the
baselines, this filtering does not translate to improved accuracy in model ranking. We hypothesize that
the discrepancy arises because VQAAT itself contains numerous low-quality questions, significantly
influencing its "ground truth" ranking. As our method filters such low-quality questions, the resulting
ranking deviates from the original benchmark.

C.3 FOR SPARSE RESPONSE MATRIX

In Section 4.4, we explain that M2-IRT and M3-IRT don’t require all models to respond to all
questions. To demonstrate this, we conducted an additional experiment identical to Section 5.3,
except that we used only 10% of all (model, question) pairs on MMMU for training M2-IRT and
M3-IRT. We then selected informative questions for evaluating a new model. These models trained
with sparse dataset are compared with original and strong baselines.

Figure 19 shows the Spearman’s rank correlations between the model rankings on the original
benchmark and on different sizes of subsets. Figure 20 shows the proportion γ with varying size of
subsets.

Remarkably, as shown in Fig. 19a using just 3% of the total questions, M3-IRT trained only 10% of
all (model, question) pairs achieved a Spearman rank correlation exceeding 0.84 with the original full-
dataset rankings—equivalent to the baseline performance that requires 50% of the dataset. Beyond
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(a) Spearman’s rank correlations on VQAAT
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(b) The proportions of the low-quality questions γ
on VQAAT

Figure 18: The average and standard deviation of Spearman’s rank correlations on extracted question
subsets of VQAAT and the proportions of the low-quality questions γ in extracted question subsets
with different sizes.
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(a) MMMU
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(b) MATHVISTA
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(c) SEED-BENCH

Figure 19: The average and standard deviation of Spearman’s rank correlations between model
rankings on the original benchmark and those estimated on extracted question subsets with different
sizes.M2-IRT and M3-IRT are trained with sparse-response matrix.
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(b) MATHVISTA
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(c) SEED-BENCH

Figure 20: The average and standard deviation of the proportions of the low-quality questions in
extracted question subsets γ with different sizes. M2-IRT and M3-IRT are trained with sparse-
response matrix.
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this point, M2-IRT consistently maintained higher ranking consistency than all baselines. Moreover,
the proportion of low-quality questions selected remained below 23%, showing that M2-IRT is not
only efficient but also discriminative in identifying high-quality items.

This setting allows model comparison at only 13% of the inference cost required for full evaluation
across all models and questions, demonstrating that M2-IRT offers substantial cost savings while
preserving evaluation reliability.

C.4 STATISTICAL SIGNIFICANCE TESTS

We conducted a one-sided Wilcoxon signed-rank test to evaluate the performance difference between
M2-IRT and FlashEval,M2-IRT and TinyBenchmarks, M3-IRT and FlashEval,and M3-IRT and
TinyBenchmarks. Table 10, Table 11, and Table 12 show the results for 5%, 10%, 30%, and 50%
of Fig. 4 and Fig. 5 with a confidence level of 1%. MMMU shows significant differences from the
baseline method. MATHVISTA shows significant differences in all conditions except for Spearman’s
rank corr at 5% against FlashEval’s score. SEED-BENCH shows significant differences from the
baseline method.

Table 10: Wilcoxon signed-rank test on MMMU comparing FlashEval and TinyBench against M3-
IRT.

Comparison 5% subset 10% subset 30% subset 50% subset
p-value W p-value W p-value W p-value W

vs FlashEval (Rank corr.) < 0.0001 0.0 < 0.0001 0.0 < 0.0001 0.0 < 0.0001 0.0
vs TinyBench (Rank corr.) < 0.0001 0.0 < 0.0001 0.0 < 0.0001 0.0 < 0.0001 0.0
vs FlashEval (Shuffle ratio) < 0.0001 0.0 < 0.0001 0.0 < 0.0001 0.0 < 0.0001 0.0
vs TinyBench (Shuffle ratio) < 0.0001 0.0 < 0.0001 0.0 < 0.0001 0.0 < 0.0001 0.0

Table 11: Wilcoxon signed-rank test on MATHVISTA comparing FlashEval and TinyBench against
M3-IRT.

Comparison 5% subset 10% subset 30% subset 50% subset
p-value W p-value W p-value W p-value W

vs FlashEval(Rank Corr.) 0.0197 222.0 0.0004 262.0 0.0019 251.5 < 0.0001 293.0
vs TinyBench(Rank Corr.) < 0.0001 300.0 < 0.0001 300.0 < 0.0001 300.0 < 0.0001 300.0
vs FlashEval(Shuffle ratio) < 0.0001 0.0 < 0.0001 0.0 < 0.0001 0.0 < 0.0001 0.0
vs TinyBench(Shuffle ratio) < 0.0001 0.0 < 0.0001 0.0 < 0.0001 0.0 < 0.0001 0.0

Table 12: Wilcoxon signed-rank test on SEEDBench comparing FlashEval and TinyBench against
M3-IRT.

Comparison 5% subset 10% subset 30% subset 50% subset
p-value W p-value W p-value W p-value W

vs FlashEval (Rank corr.) < 0.0001 231.0 < 0.0001 231.0 < 0.0001 231.0 < 0.0001 231.0
vs TinyBench (Rank corr.) < 0.0001 231.0 < 0.0001 231.0 < 0.0001 231.0 < 0.0001 231.0
vs FlashEval (Shuffle ratio) < 0.0001 0.0 < 0.0001 0.0 < 0.0001 0.0 < 0.0001 0.0
vs TinyBench (Shuffle ratio) < 0.0001 0.0 < 0.0001 0.0 < 0.0001 0.0 < 0.0001 0.0

D DETAILS OF EXPERIMENTAL SETTINGS

D.1 COMPUTATIONAL RESOURCES

The computational resources utilized in this study are presented in Table 13. The experiments in
Section 5.3 require 2 hours per dataset, and those in Section 5.4 necessitate 3 hours per dataset.
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Table 13: Computer Specifications Used for Experiments

Component Specification
Operating System Ubuntu 20.04 LTS
CPU AMD EPYC Milan 7763 DP/UP (64C/128T, 2.45GHz) × 2
Memory 2048GB
python version 3.12.9
torch version 2.6.0

D.2 DATASETS

A Massive Multi-discipline Multimodal Understanding and Reasoning Benchmark for Expert
AGI (MMMU) (Yue et al., 2024) : The license for this dataset is "Apache License 2.0".

MATHVISTA (Lu et al., 2024) : The license for this dataset is "Creative Commons Attribution Share
Alike 4.0 International".

VQA-ANSWERTHERAPY (VQAAT) (Chen et al., 2023) : The license for this dataset is "Creative
Commons Attribution 4.0 International License".

SEED-BENCH (Li et al., 2024a) : The license for this dataset is "Creative Commons Attribution
Non Commercial 4.0".

D.3 VLMS

We use 24 commonly used VLMs listed in Table 14 for our experiments. We access open-source
models and a subset of closed models through Openrouter.

Table 14: Overview of AI Models Used

Model Name Type License or Terms
GPT-4-turbo Closed OpenAI Terms of Use
GPT-4o (OpenAI, 2024a) Closed OpenAI Terms of Use
GPT-4o-mini (OpenAI, 2024b) Closed OpenAI Terms of Use
GPT-4.1 (OpenAI, 2025) Closed OpenAI Terms of Use
GPT-4.1-mini (OpenAI, 2025) Closed OpenAI Terms of Use
GPT-4.1-nano (OpenAI, 2025) Closed OpenAI Terms of Use
Gemini-1.5-flash (Team, 2024) Closed Gemini API Additional Terms of Service
Gemini-1.5-flash-8b (Team, 2024) Closed Gemini API Additional Terms of Service
Gemini-1.5-pro (Team, 2024) Closed Gemini API Additional Terms of Service
Gemini-2.0-flash (Pichai, 2024) Closed Gemini API Additional Terms of Service
Claude-3-haiku (Anthropic, 2024a) Closed Anthropic Consumer Terms of Service
Claude-3-sonnet (Anthropic, 2024a) Closed Anthropic Consumer Terms of Service
Claude-3.5-sonnet (Anthropic, 2024b) Closed Anthropic Consumer Terms of Service
Claude-3.7-sonnet (Anthropic, 2025) Closed Anthropic Consumer Terms of Service
Grok-2 (xAI, 2024) Closed xAI Terms of Service
Nova-pro (Intelligence, 2024) Closed AWS Terms of Service
Nova-lite (Intelligence, 2024) Closed AWS Terms of Service
Qwen-2.5-vl-7b (Bai et al., 2025) Open Apache 2.0
Qwen-2.5-vl-72b (Bai et al., 2025) Open Apache 2.0
Llama-3.2-11b-instruct (Meta, 2024) Open Llama 3.2 Community License
Llama-3.2-90b-instruct (Meta, 2024) Open Llama 3.2 Community License
Pixtral-12b (Agrawal et al., 2024) Open Apache 2.0
Pixtral-large (Agrawal et al., 2024) Open Apache 2.0
Minimax-01 (Team, 2025) Open MIT License
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