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Abstract

Non-linear dimensionality reduction can be performed by manifold learning approaches, such
as Stochastic Neighbour Embedding (SNE), Locally Linear Embedding (LLE) and Isometric
Feature Mapping (ISOMAP). These methods aim to produce two or three latent embeddings,
primarily to visualise the data in intelligible representations. This manuscript proposes
extensions of Student’s t-distributed SNE (t-SNE), LLE and ISOMAP, for dimensionality
reduction and visualisation of multi-view data. Multi-view data refers to multiple types of
data generated from the same samples.
The proposed multi-view approaches provide more comprehensible projections of the sam-
ples compared to the ones obtained by visualising each data-view separately. Commonly,
visualisation is used for identifying underlying patterns within the samples. By incorpo-
rating the obtained low-dimensional embeddings from the multi-view manifold approaches
into the K-means clustering algorithm, it is shown that clusters of the samples are accu-
rately identified. Through extensive comparisons of novel and existing multi-view manifold
learning algorithms on real and synthetic data, the proposed multi-view extension of t-SNE,
named multi-SNE, is found to have the best performance. We further illustrate the applica-
bility of the multi-SNE approach for the analysis of multi-omics single-cell data, where the
aim is to visualise and identify cell heterogeneity and cell types in biological tissues relevant
to health and disease.

1 Introduction

Data visualisation is an important and useful component of exploratory data analysis, as it can reveal
interesting patterns in the data and potential clusters of the observations. A common approach for visualising
high-dimensional data (data with a higher number of features (p) than samples (n), i.e. p≫ n) is by reducing
its dimensions. Linear dimensionality reduction methods, including Principal Component Analysis (PCA)
(Jolliffe & Cadima, 2016) and Non-negative Matrix Factorization (NMF) (García et al., 2018), assume
linearity within data sets and as a result these methods often fail to produce reliable representations when
linearity does not hold. Manifold learning, an active research area within machine learning, in contrast to
the linear dimensionality reduction approaches do not rely on any linearity assumptions. By assuming that
the dimensions of the data sets are artificially high, manifold learning methods aim to capture important
information with minimal noise, in an induced low-dimensional embedding (Zheng & Xue, 2009). The
generated low-dimensional embeddings can be used for data visualisation in the 2-D or 3-D spaces.

Manifold learning approaches used for dimensionality reduction and visualisation, focus on preserving at least
one of the characteristics of the data. For example, the Stochastic Neighbour Embedding (SNE) preserves
the probability distribution of the data (Hinton & Roweis, 2003). The Locally Linear Embedding (LLE)
proposed by Roweis & Saul (2000) is a neighbourhood-preserving method. The Isometric Feature Mapping
(ISOMAP) proposed by Tenenbaum et al. (2000) is a quasi-isometric method based on Multi-Dimensional
Scaling (Kruskal, 1964). Spectral Embedding finds low-dimensional embeddings via spectral decomposition
of the Laplacian matrix (Ng et al., 2001). The Local Tangent Space Alignment method proposed by Zhang
& Zha (2004) learns the embedding by optimising local tangent spaces, which represent the local geometry
of each neighbourhood, and Uniform Manifold Approximation and Projection (UMAP) preserves the global
structure of the data by constructing a theoretical framework based on Riemannian geometry and algebraic
topology (McInnes et al., 2018).
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This manuscript focuses on data visualisation of multi-view data, which are regarded as different types of
data sets that are generated on the same samples of a study. It is very common nowadays in many different
fields to generate multiple data-views on the same samples. For example, multi-view imaging data describe
distinct visual features such as local binary patterns (LBP), and histogram of oriented gradients (HOG) (Shen
et al., 2013), while multi-omics data, e.g. proteomics, genomics, etc, in biomedical studies quantify different
aspects of an organism’s biological processes (Hasin et al., 2017). Through the collection of multi-view
data, researchers are interested in better understanding the collected samples, including their visualisation,
clustering and classification. Analysing simultaneously the multi-view data is not a straightforward task, as
each data-view has its own distribution and variation pattern (Rodosthenous et al., 2020).

Several approaches have been proposed for the analysis of multi-view data. These include methods on
clustering (Kumar et al., 2011; Liu et al., 2013; Sun et al., 2015; Ou et al., 2016; Ye et al., 2018; Ou
et al., 2018; Wang & Allen, 2021), classification (Shu et al., 2019), regression (Li et al., 2019), integration
(Rodosthenous et al., 2020) and dimensionality reduction (Sun, 2013; Zhao et al., 2018; Xu et al., 2015).
Such approaches have been extensively discussed in the review papers of Xu et al. (2013) and Zhao et al.
(2017).

In this manuscript, we focus on the visualisation task. By visualising multi-view data collectively the aim
is to obtain a global overview of the data and identify patterns that would have potentially be missed if
each data-view was visualised separately. Typically, multiple visualisations are produced, one from each
data-view, or the features of the data-views are concatenated to produce a single visualisation. The former
could provide misleading outcomes, with each data-view revealing different visualisations and patterns. The
different statistical properties, physical interpretation, noise and heterogeneity between data-views suggest
that concatenating features would often fail in achieving a reliable interpretation and visualisation of the
data (Fu et al., 2008).

A number of multi-view visualisation approaches have been proposed in the literature, with some of these
approaches based on the manifold approaches t-SNE and LLE. For example, Xie et al. (2011) proposed
m-SNE that combines the probability distributions produced by each data-view into a single distribution via
a weight parameter. The algorithm then implements t-SNE on the combined distribution to obtain a single
low-dimensional embedding. The proposed solution finds the optimal choice for both the low-dimensional
embeddings and the weight parameter simultaneously. Similarly, Kanaan Izquierdo (2017) proposed two
alternative solutions based on t-SNE, named MV-tSNE1 and MV-tSNE2. MV-tSNE2 is similar to m-SNE
combining the probability distributions through expert opinion pooling.

In parallel to our work, Hoan Do & Canzar (2021) proposed a multi-view extension of t-SNE, named j-SNE.
Both multi-SNE and j-SNE firstly appeared as preprints in January 20211. J-SNE produces low-dimensional
embeddings through an iterative procedure that assigns each data-view a weight value that is updated per
iteration through regularisation.

In addition, Shen et al. (2013) proposed multi-view Locally Linear Embeddings (m-LLE) that is an extension
of LLE for effectively retrieving medical images. M-LLE produces a single low-dimensional embedding by
integrating the embeddings from each data-view according to a weight parameter c, which refers to the
contribution of each data-view. Similarly to m-SNE, the algorithm optimizes both the weight parameter and
the embeddings simultaneously. Zong et al. (2017) proposed MV-LLE that minimises the cost function by
assuming a consensus matrix across all data-views.

Building on the existing literature work, we propose here alternative extensions to the manifold approaches:
t-SNE, LLE, and ISOMAP, for visualising multi-view data. The cost functions of our proposals are different
from the existing ones, as they integrate the available information from the multi-view data iteratively.
At each iteration, the proposed multi-SNE updates the low-dimensional embeddings by minimising the
dissimilarity between their probability distribution and the distribution of each data-view. The total cost of
this approach equals to the weighted sum of those dissimilarities. Our proposed variation of LLE, Multi-LLE,
constructs the low-dimensional embeddings by utilising a consensus weight matrix, which is taken as the
weighted sum of the weight matrices computed by each data-view. Lastly, the low-dimensional embeddings
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in the proposed multi-ISOMAP are constructed by using a consensus graph, for which the nodes represent
the samples and the edge lengths are taken as the averaged distance between the samples in each data-view.
M-ISOMAP is proposed as an alternative ISOMAP-based multi-view manifold learning algorithm. Similar to
m-SNE and m-LLE, m-ISOMAP provide a weighted integration of the low-dimensional embeddings produced
by the implementation of ISOMAP on each data-view separately.

As the field of multi-view data analysis is relatively new, the literature lacks comparative studies between
multi-view manifold learning algorithms. This manuscript makes a novel contribution to the field by conduct-
ing extensive comparisons between the multi-view non-linear dimensionality reduction approaches proposed
in this manuscript, multi-SNE, multi-LLE, multi-ISOMAP and m-ISOMAP with other approaches proposed
in the literature. These comparisons are conducted on both real and synthetic data that have been designed
to capture different data characteristics. The aim of these comparisons is to identify the best-performing
algorithms, discuss pitfalls of the approaches and guide the users to the most appropriate solution for their
data.

We illustrate that our proposals result to more robust solutions compared to the approaches proposed in the
literature, including m-SNE, m-LLE and MV-SNE. We further illustrate through the visualisation of the low-
dimensional embeddings produced by the proposed multi-view manifold learning algorithms, that if clusters
exist within the samples, they can be successfully identified. We show that this can be achieved by applying
the K-means algorithm on the low-dimensional embeddings of the data. The K-means (MacQueen, 1967) was
chosen to cluster the data points, as it is one of the most famous and prominent partition clustering algorithms
(Xu & Tian, 2015). A better clustering performance by K-means suggests a visually clearer separation of
clusters. Through the conducted experiments, we show that the proposed multi-SNE approach recovers
well-separated clusters of the data, and has comparable performance to multi-view clustering algorithms
that exist in the literature.

2 Material and Methods

In this section, the proposed approaches for multi-view manifold learning are described. This section starts
with an introduction of the notation used throughout this manuscript. The proposed multi-SNE, multi-
LLE and multi-ISOMAP are described in Sections 2.2, 2.3 and 2.4, respectively. The section ends with a
description of the process for tuning the parameters of the algorithms.

2.1 Notation

Throughout this paper, the following notation is used:

• N : The number of samples.

• X ∈ RN×p: A single-view data matrix, representing the original high-dimensional data used as
input; xi ∈ Rp is the ith data point of X.

• M : The number of data-views in a given data set; m ∈ {1, · · · , M} represents an arbitrary data-view.

• X(m) ∈ RN×pm : The mth data-view of multi-view data; xm
i ∈ Rpm is the ith data point of X(m).

• Y ∈ RN×d: A low-dimensional embedding of the original data. yi ∈ Rd represents the ith data point
of Y . In this manuscript, d = 2, as the focus of the manuscript is on data visualisation.

2.2 Multi-SNE

SNE, proposed by Hinton & Roweis (2003), measures the probability distribution, P of each data point xi

by looking at the similarities among its neighbours. For every sample i in the data, j is taken as its potential
neighbour with probability pij , given by

pij =
exp (−d2

ij)∑
k ̸=i exp (−d2

ik) , (1)
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where dij = ||xi−xj ||2

2σ2
i

represents the dissimilarity between points xi and xj . The value of σi is either set
by hand or found by binary search (van der Maaten & Hinton, 2008). Based on this value, a probability
distribution of sample i, Pi =

∑
j pij , with fixed perplexity is produced. Perplexity refers to the effective

number of local neighbours and it is defined as Perp(Pi) = 2H(Pi), where H(Pi) = −
∑

j pij log2 pij is the
Shannon entropy of Pi. It increases monotonically with the variance σi and typically takes values between
5 and 50.

In the same way, a probability distribution in the low-dimensional space, Y , is computed as follows:

qij =
exp (−||yi − yj ||2)∑

k ̸=i exp (−||yi − yk||2) , (2)

which represents the probability of point i selecting point j as its neighbour.

The induced embedding output, yi, represented by probability distribution, Q, is obtained by minimising the
Kullback-Leibler divergence (KL-divergence) KL(P ||Q) between the two distributions P and Q (Kullback
& Leibler, 1951). The aim is to minimise the cost function:

CSNE =
∑

i

KL(Pi||Qi) =
∑

i

∑
j

pij log pij

qij
(3)

Hinton & Roweis (2003) assumed a Gaussian distribution in computing the similarity between two points
in both high and low dimensional spaces. van der Maaten & Hinton (2008) proposed a variant of SNE,
called t-SNE, which uses a symmetric version of SNE and a Student t-distribution to compute the similarity
between two points in the low-dimensional space Q, given by

qij =
(1 + ||yi − yj ||2)−1∑
k ̸=l(1 + ||yk − yl||2)−1 (4)

T-SNE is often preferred, because it reduces the effect of crowding problem (limited area to accommodate
all data points and differentiate clusters) and it is easier to optimise, as it provides simpler gradients than
SNE (van der Maaten & Hinton, 2008).

We propose multi-SNE, a multi-view manifold learning algorithm based on t-SNE. Our proposal computes
the KL-divergence between the distribution of a single low-dimensional embedding and each data-view of
the data separately, and minimises their weighted sum. An iterative algorithm is proposed, in which at each
iteration the induced embedding is updated by minimising the cost function:

Cmulti−SNE =
∑
m

∑
i

∑
j

wmpm
ij log

pm
ij

qij
, (5)

where wm is the combination coefficient of the mth data-view. The vector w = (w1, · · · , wM ) acts as a
weight vector that satisfies

∑
m wm = 1. In this study, equal weights on all data-views were considered, i.e.

wm = 1
M , ∀m = 1, · · · , M . The algorithm of the proposed multi-SNE approach is presented in Appendix

A.

An alternative multi-view extension of t-SNE, called m-SNE was proposed by Xie et al. (2011). M-SNE
applies t-SNE on a single distribution in the high-dimensional space, which is computed by combining the
probability distributions of the data-views, given by pij =

∑M
m=1 βmpm

ij . The coefficients (or weights) βm

share the same role as wm in multi-SNE and similarly β = (β1, · · · , βM ) satisfies
∑

m βm = 1. This leads
to a different cost function than the one in equation (5).

Kanaan Izquierdo (2017) proposed a similar cost function for multi-view t-SNE, given as follows:

CMV-tSNE1 =
∑
m

∑
i

∑
j

pm
i|j log

pm
i|j

qi|j
(6)
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Their proposal is a special case of multi-SNE, with wm = 1
M . Kanaan Izquierdo (2017) did not pursue MV-

tSNE1 any further, but instead, they proceeded with an alternative solution, MV-tSNE2, which combines
the probability distributions (similar to m-SNE) through expert opinion pooling. A comparison between
multi-SNE and MV-tSNE2 is presented in Appendix D.1. Based on two real data sets, multi-SNE and
m-SNE outperformed MV-tSNE2, with the solution by multi-SNE producing the best separation among the
clusters in both examples.

Multi-SNE avoids combining the probability distributions of all data-views together. Instead, the induced
embeddings are updated by minimising the KL-divergence between every data-view’s probability distribution
and that of the low-dimensional representation we seek to obtain. In other words, this is achieved by
computing and summing together the gradient descent for each data-view. The induced embedding is then
updated by minimising the summed gradient descent.

Throughout this paper, for all variations of t-SNE we have applied the PCA pre-training step proposed
by van der Maaten & Hinton (2008). van der Maaten & Hinton (2008) discussed that by reducing the
dimensions of the input data through PCA the computational time of t-SNE is reduced. In this paper, the
principal components taken retained at least 80% of the total variation (variance explained) in the original
data. In addition, as the multi-SNE algorithm is an iterative algorithm we opted for running the algorithm
for 1,000 iterations for all analyses conducted. Alternatively, a stopping rule could have been implemented
with the iterative algorithm to stop after no significant changes were observed to the cost-function. Both
these options are available at the implementation of the multi-SNE algorithm.

The original t-SNE implementation was applied in the presented work. All t-SNE results presented in this
manuscript were based on the original R implementation (https://cran.r-project.org/web/packages/tsne/)
and verified by the original Python implementation (https://lvdmaaten.github.io/tsne/).

2.3 Multi-LLE

LLE attempts to discover a non-linear structure of high-dimensional data, X, by computing low-dimensional
and neighbourhood-preserving embeddings, Y (Saul & Roweis, 2001). The main three steps of the algorithm
are:

1. The set, denoted by Γi, contains the K nearest neighbours of each data point xi, i = 1, · · · , N .
The most common distance measure between the data points is the Euclidean distance. Other local
metrics can also be used in identifying the nearest neighbours (Roweis & Saul, 2000).

2. A weight matrix, W , is computed, which acts as a bridge between the high-dimensional space in X
and the low-dimensional space in Y . Initially, W reconstructs X, by minimising the cost function:

EX =
∑

i

|xi −
∑

j

Wijxj |2 (7)

where the weights Wij describe the contribution of the jth data point to the ith reconstruction. The
optimal weights Wij are found by solving the least squares problem given in equation (7) subject to
the constraints:

(a) Wij = 0, if j /∈ Γi, and
(b)

∑
j Wij = 1

3. Once W is computed, the low-dimensional embedding yi of each data point i = 1, · · · , N , is obtained
by minimising:

EY =
∑

i

|yi −
∑

j

Wijyj |2 (8)

The solution to equation (8), is obtained by taking the bottom d non-zero eigenvectors of the sparse
N ×N matrix, M = (I −W )T (I −W ) (Roweis & Saul, 2000).
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We propose multi-LLE, a multi-view extension of LLE, that computes the low-dimensional embeddings by
using the consensus weight matrix:

Ŵ =
∑
m

αmW m (9)

where
∑

m αm = 1, and W m is the weight matrix for each data-view m = 1, · · ·M . Thus, Ŷ is obtained by
solving:

EŶ =
∑

i

|ŷi −
∑

j

Ŵijŷj |2

The multi-LLE algorithm is presented in Appendix A.

Shen et al. (2013) proposed m-LLE, an alternative multi-view extension of LLE. The LLE embeddings of
each data-view are combined and LLE is applied to each data-view separately. The weighted average of
those embeddings is taken as the unified low-dimensional embedding. In other words, computing the weight
matrices W m and solving EY m =

∑
i |ym

i −
∑

j W m
ij ym

j |2, for each m = 1, · · ·M separately. Thus, the
low-dimensional embedding Ŷ is computed by Ŷ =

∑
m βmY m, where

∑
m βm = 1.

An alternative multi-view LLE solution was proposed by Zong et al. (2017) to find a consensus manifold,
which is then used for multi-view clustering via Non-negative Matrix Factorization; we refer to this approach
as MV-LLE. This solution minimises the cost function by assuming a consensus weight matrix across all
data-views, as given in equation (9). The optimisation is then solved by using the Entropic Mirror Descent
Algorithm (EMDA) (Beck & Teboulle, 2003). In contrast to m-LLE and MV-LLE, multi-LLE combines
the weight matrices obtained from each data-view, instead of the LLE embeddings. No comparisons were
conducted with MV-LLE and the proposed multi-LLE, as the code of the MV-LLE algorithm is not publicly
available.

2.4 Multi-ISOMAP

ISOMAP aims to discover a low-dimensional embedding of high-dimensional data by maintaining the geodesic
distances between all points (Tenenbaum et al., 2000); it is often regarded as an extension of Multi-
dimensional Scaling (MDS) (Kruskal, 1964). The ISOMAP algorithm comprises of the following three
steps:

Step 1. A graph is defined. Let G ∼ (V, E) define a neighbourhood graph, with vertices V representing
all data points. The edge length between any two vertices i, j ∈ V is defined by the distance
metric dX(i, j), measured by the Euclidean distance. If a vertex j does not belong to the K nearest
neighbours of i, then dX(i, j) = ∞. The parameter K is given as input, and it represents the
connectedness of the graph G; as K increases, more vertices are connected.

Step 2. The shortest paths between all pairs of points in G are computed. The shortest path
between vertices i, j ∈ V is defined by dG(i, j). Let DG ∈ R|V |×|V | be a matrix containing the
shortest paths between any vertices i, j ∈ V , defined by (DG)ij = dG(i, j).
The most efficient known algorithm to perform this task is Dijkstra’s Algorithm (Dijkstra, 1959). In
large graphs, an alternative approach to Dijkstra’s Algorithm would be to initialize dG(i, j) = dX(i, j)
and replace all entries by dG(i, j) = min {dG(i, k), dG(k, j)}.

Step 3. The low-dimensional embeddings are constructed. The ith component of the low-dimensional
embedding is given by yi =

√
λpui

p, where ui
p the ith component of pth eigenvector and λp is the

pth eigenvalue in decreasing order of the the matrix τ(DG) (?). The operator, τ is defined by
τ(D) = −HSH

2 , where S is the matrix of squared distances defined by Sij = D2
ij , and H is defined

by Hij = δij − 1
N . This is equivalent to applying classical MDS to DG, leading to a low-dimensional

embedding that best preserves the manifold’s estimated intrinsic geometry.

Multi-ISOMAP is our proposal for adapting ISOMAP on multi-view data. Let Gm ∼ (V, Em) be a neigh-
bourhood graph obtained from data-view X(m) as defined in the first step of ISOMAP. All neighbourhood
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graphs are then combined into a single graph, G̃; the combination is achieved by computing the edge length
as the averaged distance of each data-view, i.e. dG̃(i, j) = wm

∑
m dGm(i, j). Once a combined neighbour-

hood graph is computed, multi-ISOMAP follows steps 2 and 3 of ISOMAP described above. For simplicity,
the weights throughout this paper were set as wm = 1

M ,∀m. The multi-ISOMAP algorithm is presented in
Appendix A.

For completion, we have in addition adapted ISOMAP for multi-view visualisation following the framework of
both m-SNE and m-LLE. Following the same logic, m-ISOMAP combines the ISOMAP embeddings of each
data-view by taking the weighted average of those embeddings as the unified low-dimensional embedding. In
other words, the low-dimensional embedding Ŷ is obtained by computing Ŷ =

∑
m βmY m, where

∑
m βm =

1.

2.5 Parameter Tuning

The multi-view manifold learning algorithms were tested on real and synthetic data sets for which the
samples can be separated into several clusters. The true clusters are known and they were used to tune the
parameters of the methods. To quantify the clustering performance, we used the following four extrinsic
measures: (i) Accuracy (ACC), (ii) Normalised Mutual Information (NMI) (Vinh et al., 2010), (iii) Rand
Index (RI) (Rand, 1971) and (iv) Adjusted Rand Index (ARI) (Hubert & Arabie, 1985). All measures take
values in the range [0, 1], with 0 expressing complete randomness, and 1 perfect separation between clusters.
The mathematical formulas of the four measures are presented in Appendix B.

SNE, LLE and ISOMAP depend on parameters of which their proper tuning ensues to optimal results.
LLE and ISOMAP depend on the number of nearest neighbours (NN). SNE depends on the Perplexity
(Perp) parameter, which is directly related to the number of nearest neighbours. Similarly, the multi-view
extensions of the three methods depend on the same parameters. The choice of the parameter can influence
the visualisations and in some cases present the data into separate maps (van der Maaten & Hinton, 2012).

By assuming that the data samples belong to a number of clusters that we seek to identify, the performance
of the algorithms was measured for a range of tuning parameter values, S = {2, 10, 20, 50, 80, 100, 200}. Note
that for all algorithms, the parameter value cannot exceed the total number of samples in the data.

For all manifold learning approaches, the following procedure was implemented to tune the optimal param-
eters of each method per data set:

1. The method was applied for all different parameter values in S.

2. The K-means algorithm was applied to the low-dimensional embeddings produced for each parameter
value

3. The performance of the chosen method was evaluated quantitatively by computing ACC, NMI, RI
and ARI for all tested parameter values.

The optimal parameter value was finally selected based on the evaluation measures. Section 4.3 explores how
the different approaches are affected by their parameter values. For the other subsections of Section 4, the
optimal parameter choice per approach was used for the comparison of the multi-view approaches. Section
4.3 presents the process of parameter tuning on the synthetic data analysed, and measured the performance
of single-view and multi-view manifold learning algorithms. The same process was repeated for the real data
analysed (see Appendix D.3 for more information).

3 Data

Data sets with different characteristics were analysed to explore and compare the proposed multi-view
manifold learning algorithms under different scenarios (Table 1). The methods were evaluated on data
sets that have a different number of data-views, clusters and sample sizes. The real data sets analysed
are classified as heterogeneous, due to the nature of their data, while the synthetic data sets are classified
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as non-heterogeneous, since they were generated under the same conditions and distributions. Both high-
dimensional (p≫ N) and low-dimensional data sets were analysed. Through these comparisons, we wanted
to investigate how the multi-view methods perform and how they compare with single-view methods.

In this section, we describe the synthetic and real data sets analysed in the manuscript. Some of the real
data sets analysed have previously been used in the literature for examining different multi-view algorithms,
for example, data integration (Wang et al., 2014) and clustering (Ou et al., 2018).

3.1 Synthetic Data

A motivational multi-view example was constructed to qualitatively evaluate the performance of multi-view
manifold learning algorithms against their corresponding single-view algorithms. Its framework was designed
specifically to produce distinct projections of the samples from each data-view. Additional synthetic data
sets were generated to explore how the algorithms behave when the separation between the clusters exists,
but it is not as explicit as in the motivational example.

All synthetic data were generated using the following process. For the same set of samples, a specified
number of data-views were generated, with each data-view capturing different information of the samples.
Each data-view, m follows a multivariate normal distribution with mean vector µm = (µ1, · · · , µpm

)T and
covariance matrix Σm = Ipm , where pm is the number of features in the mth data-view. The matrix Ipm

represents a pm × pm identity matrix. For each data-view, different µm values were chosen to distinguish
the clusters. Noise, ϵ, following a multivariate normal distribution with mean µϵ = 0 and covariance matrix
Σϵ = Ipm

was added to increase randomness within each data-view. Noise, ϵ, increases the variability within
a given data-view. The purpose of this additional variability is to assess whether the algorithms are able to
equally capture information from all data-views and are not biased towards the data-view(s) with a higher
variability. Thus, noise, ϵ, was only included in selected data-views and not in the rest. Although this
strategy is equivalent to sampling once using a larger variance, the extra noise explicitly distinguishes the
data-view with the higher variability from the rest.

In other words, X ∼MV N(µm, Σm)+ϵ, where MV N represents multivariate normal distribution. Distinct
polynomial functions (e.g. h(x) = x4 + 3x2 + 5) were randomly generated for each data-view and applied
on the samples to express non-linearity. The last step was performed to ensure that linear dimensionality
reduction methods (e.g. PCA) would not successfully cluster the data.

The three synthetic data sets with their characteristics are described next.

3.1.1 Motivational Multi-view Data Scenario (MMDS)

Assume that the truth underlying structure of the data separates the samples into three true clusters as
presented in Figure 1. Each synthetic data-view describes the samples differently, which results in three
distinct clusterings, none of which reflects the global underlying truth. In particular, the first view separates
only cluster C from the others (View 1 in Figure 1), the second view separates only cluster B (View 2) and
the third view separates only cluster A (View 3). In this scenario, only the third data-view contained an
extra noise parameter, ϵ, resulting in a data-view with a higher variability than the other two data-views.

3.1.2 Noisy data-view scenario (NDS)

A synthetic data set which consists of 4 data-views and 3 true underlying clusters was generated. The first
three data-views follow the same structure as MMDS, while the 4th data-view represents a completely noisy
data-view, i.e. with all data points lying in a single cluster. The rationale for creating such a data set
is to examine the effect of the noisy data views in the multi-view visualisation and clustering. This data
set was used to show that the multi-view approaches can identify not useful data-views and discard them.
For n = 300 equally balanced data samples, the data-views contain pm = 100,∀m = 1, 2, 3, 4, features. To
summarise, NDS adds a noisy data-view to the MMDS data set.
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Figure 1: Motivational Multi-view Data Scenario (MMDS). Each data-view captures different char-
acteristics of the three clusters, and thus produces different clusterings.

Figure 2: More Clusters than data-views Scenario (MCS). In this example, there are 3 data views
but 5 true underlying clusters. Each data-view captures different characteristics of the five clusters, and thus
produces different clusterings.

3.1.3 More clusters than data-views scenario (MCS)

A synthetic data set that was generated similarly to MMDS but with 5 true underlying clusters instead of
3. The true underlying structure of the each data-view is shown in Figure 2. In this data set, pv = 100,∀v
features were generated on n = 500, equally balanced data samples. In comparison with MMDS, MCS
contains more clusters, but the same number of data-views. Similarly to MMDS and NDS, in this scenario,
only the third data-view contained an extra noise parameter, ϵ, resulting in a data-view with a higher
variability than the other two data-views.

3.2 Real Data

The three real data sets analysed in the study are described below.

3.2.1 Cancer Types 2

This data set includes 65 patients with breast cancer, 82 with kidney cancer and 106 with lung cancer.
For each patient the three data-views are available: (a) genomics (p1 = 10299 genes), (b) epigenomics
(p2 = 22503 methylation sites) and (c) transcriptomics (p3 = 302 mi-RNA sequences). The aim is to cluster
patients by their cancer type (Wang et al., 2014).

2http://compbio.cs.toronto.edu/SNF/SNF/Software.html
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3.2.2 Caltech7 3

Caltech-101 contains pictures of objects belonging to 101 categories. This publicly available subset of Caltech-
101 contains 7 classes. It consists of 1474 objects on six data-views: (a) Gabor (p1 = 48 ), (b) wavelet
moments (p2 = 40 ), (c) CENTRIST (p3 = 254 ), (d) histogram of oriented gradients (p4 = 1984 ), (e) GIST
(p5 = 512 ), and (f) local binary patterns (p6 = 928 ) (Fei-Fei et al., 2006).

3.2.3 Handwritten Digits 4

This data set consists of features on handwritten numerals (0 − 9) extracted from a collection of Dutch
utility maps. Per class 200 patterns have been digitised in binary images (in total there are 2000 patterns).
These digits are represented in terms of six data-views: (a) Fourier coefficients of the character shapes
(p1 = 76 ), (b) profile correlations (p2 = 216 ), (c) Karhunen-Love coefficients (p3 = 64 ), (d) pixel averages
in 2 x 3 windows (p4 = 240 ), (e) Zernike moments (p5 = 47 ) and (f) morphological features (p6 = 6 ) (Dua
& Graff, 2017).

The handwritten digits data set is characterised by having perfectly balanced data samples; each of the ten
clusters contains exactly 200 numerals. On the other hand, caltech7 is an imbalanced data set with the first
two clusters containing many more samples than the other clusters. The number of samples in each cluster
is {A: 435, B: 798, C: 52, D: 34, E: 35, F: 64, G: 56}. The performance of the methods was explored on both
the imbalanced caltech7 data set and a balanced version of the data, for which 50 samples from clusters A
and B were randomly selected.

4 Results

In this section, we illustrate the application and evaluation of the proposed multi-view extensions of t-SNE,
LLE and ISOMAP on real and synthetic data. Comparisons between the multi-view solutions, along with
their respective single-view solutions are implemented. A trivial solution is to concatenate the features of all
data-views into a large single data matrix and apply on this dataset a single-view manifold learning algorithm.
Since it is likely that each data-view has different variability, each data-view was firstly normalised before
concatenation to ensure the same variability across all data-views. Normalisation was achieved by removing
the mean and dividing by the standard deviation of the features in all data-views.

In the following subsections we have addressed the following:

1. Can multi-view manifold learning approaches obtain better visualisations than single-
view approaches? The performance of the multi-view approaches in visualising the underlying
structure of the data is illustrated. It is shown how the underlying structure is misrepresented when
individual data sets or the concatenated data set are visualised.

2. The visualisations of multi-view approaches are quantitatively evaluated using K-means.
By extracting the low dimensional embeddings of the multi-view approaches and inputting them as
features in the clustering algorithm K-means, we have quantitatively evaluated the performance of
the approaches for identifying underlying clusters and patterns within the data.

3. The effect of the parameter values on the multi-view manifold learning approaches was
explored. As discussed the proposed multi-view manifold approaches depend on a parameter that
requires tuning. In a series of experiments, we investigated the effect that the parameter value has
on each approach. This was done by exploring both the visualisations produced and by evaluating
the clustering of the approaches for different parameter values.

4. Should we use all available data-views? If some data-views contain more noise than
signal, should we discard them? These are two crucial questions that concern every researcher

3https://github.com/yeqinglee/mvdata
4https://archive.ics.uci.edu/ml/datasets/Multiple+Features
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Data Description
Views Clusters Features Samples Hetero- High

Data Set (M) (k) (plargest) (N) geneous dimensional

Real
Cancer Types 3 3 22503 253 ✓ ✓

Caltech7 6 7 1984 1474 ✓ ✓
Handwritten Digits 6 10 240 2000 ✓ ✗

Synthetic
MMDS 3 3 300 300 ✗ ✗

NDS 4 3 400 300 ✗ ✓
MCS 3 5 300 500 ✗ ✗

Table 1: The characteristics of the data sets analysed. The number of views, number of clusters,
the largest number of features amongst the data views, and the number of samples for both the real and
synthetic data sets analysed are presented. Real data are taken as heterogeneous, whereas the synthetic data
are regarded as homogeneous. High-dimensional data contain more features than samples (p≫ N).

working with multi-view data; are all data-views necessary and beneficial to the final outcome? We
have addressed these questions by analysing data sets that contain noisy data. By investigating
both the produced visualisations and evaluating the clusterings obtained with and without the noisy
data, we discuss why it is not always beneficial to include all available data views.

The section ends by proposing alternative variations for the best-performing approach, multi-SNE. Firstly,
a proposal for automatically computing the weights assigned to each data-view. In addition, we explore
an alternative pre-training step for multi-SNE, where instead of conducting PCA on each data-view, multi-
CCA is applied on the multiple data-views for reducing their dimensions into a latent space of uncorrelated
embeddings (Rodosthenous et al., 2020).

4.1 Comparison Between Single-view and Multi-view Visualisations

Visualising multi-view data can be trivially achieved either by looking at the visualisations produced by
each data-view, or by concatenating all features into a long vector. T-SNE, LLE and ISOMAP applied on
every single data-view of the MMDS data set separately capture the correct local underlying structure of the
respective data-view (Figure 3). However, by design, they cannot capture the global structure of the data.
SNEconcat, LLEconcat and ISOMAPconcat represent the trivial solutions of concatenating the features of all
data-views before applying t-SNE, LLE and ISOMAP, respectively. These trivial solutions capture mostly
the structure of the third data-view, because that data-view has a higher variability between the clusters
than the other two.

Multi-SNE, multi-LLE and multi-ISOMAP produced the best visualisations out of all SNE-based, LLE-based
and ISOMAP-based approaches, respectively. These solutions were able to separate clearly the three true
clusters, with multi-SNE showing the clearest separation between them. Even though m-SNE separates the
samples according to their corresponding clusters, this separation would not be recognisable if the true labels
were unknown, as the clusters are not sufficiently separated. The visualisation by m-LLE was similar to the
ones produced by single-view solutions on concatenated features, while m-ISOMAP bundles all samples into
a single cluster.

By visualising the MMDS data set via both single-view and multi-view clustering approaches, multi-SNE
has shown the most promising results (Figure 3). We have shown that single-view analyses may lead to
conflicting results, while multi-view approaches are able to capture the true underlying structure of the
synthetic MMDS.

4.2 Multi-view Manifold Learning for Clustering

It is very common in studies to utilise the visualisation of data to identify any underlying patterns or
clusters within the data samples. Here, it is illustrated how the multi-view approaches can be used to
identify such clusters. To quantify the visualisation of the data, we applied the K-means algorithm on the
low-dimensional embeddings produced by multi-view manifold learning algorithms. If the two-dimensional
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Figure 3: Visualisations of MMDS. Projections produced by the SNE, LLE, ISOMAP based algorithms.
The projections within the red frame present our proposed methods: multi-SNE, multi-LLE and multi-
ISOMAP. The parameters Perp and NN refer to the optimised perplexity and number of nearest neighbours,
respectively.

Figure 4: Multi-SNE visualisations of handwritten digits. Projections produced by multi-SNE with
perplexity Perp = 10 . Colours present the clustering on the data points by (a) K-means, and (b) Ground
truth.

embeddings can separate the data points to their respective clusters quantitatively with high accuracy via a
clustering algorithm, then those clusters are expected to be qualitatively separated and visually shown in two
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dimensions. For all examined data sets (synthetic and real), the number of clusters (ground truth) within
the samples is known, which attracts the implementation of K-means over alternative clustering algorithms.
The number of clusters was used as the input parameter, K, of the K-means algorithm and by computing
the clustering measures we evaluated whether the correct sample allocations were made.

The proposed multi-SNE, multi-LLE, and multi-ISOMAP approaches were found to outperform their
competitive multi-view extensions (m-SNE, m-LLE, m-ISOMAP) as well as their concatenated versions
(SNEconcat, LLEconcat, ISOMAPconcat) (Tables 2 and 3). For the majority of the data sets the multi-SNE
approach was found to overall outperform all other approaches.

Figure 4 shows a comparison between the true clusters of the handwritten digits data set and the clusters
identified by K-means. The clusters reflecting the digits 6 and 9 are clustered together, but all remaining
clusters are well separated and agree with the truth.

Multi-SNE applied on caltech7 produces a good visualisation, with clusters A and B being clearly separated
from the rest (Figure 5b). Clusters C and G are also well-separated, but the remaining three clusters are
bundled together. Applying K-means to that low-dimensional embedding does not capture the true structure
of the data (Table 2). It provides a solution with all clusters being equally sized (Figure 5a) and thus its
quantitative evaluation is misleading. Motivated by this result, we have further explored the performance of
proposed approaches on a balanced version of the caltech7 data set (generated as described in Section 3.2).

Similarly to the visualisation of the original data set, the visualisation of the balanced caltech7 data set
shows clusters A, B, C and G to be well-separated, while the remaining are still bundled together (Figures
5c and 5d).

Through the conducted work, it was shown that the multi-view approaches proposed in the manuscript
generate low-dimensional embeddings that can be used as input features in a clustering algorithm (as for
example the K-means algorithm) for identifying clusters that exist within the data set. We have illustrated
that the proposed approaches outperform existing multi-view approaches and the visualisations produced by
multi-SNE are very close to the ground truth of the data sets.

Alternative clustering algorithms, that do not require the number of clusters as input, can be considered
as well. For example, Density-based spatial clustering of applications with noise (DBSCAN) measures the
density around each data point and does not require the true number of clusters as input (Ester et al., 1996).
In situations, where the true number of clusters is unknown, DBSCAN would be preferable over K-means.
For completeness of our work, DBSCAN was applied on two of the real data sets explored, with similar
results observed as the ones with K-means. The proposed multi-SNE approach was the best-performing
method of partitioning the data samples. The analysis using DBSCAN can be found in Appendix D.8.

An important observation made was that caution needs to be taken when data sets with imbalanced clusters
are analysed as the quantitative performance of the approaches on such data sets is not very robust.

4.3 Optimal Parameter Selection

SNE, LLE and ISOMAP depend on a parameter that requires tuning. Even though the parameter is defined
differently in each algorithm, it is always related to the nearest number of global neighbours. As described
earlier, the optimal parameter was found by comparing the performance of the methods on a range of
parameter values, S = {2, 10, 20, 50, 80, 100, 200}. In this section, the synthetic data sets, NDS and MCS,
were analysed, because both data sets separate the samples into known clusters by design and evaluation
via clustering measures would be appropriate.

To find the optimal parameter value, the performance of the algorithms was evaluated by applying K-means
on the low-dimensional embeddings and comparing the resulting clusterings against the truth. Once the
optimal parameter was found, we confirmed that the clusters were visually separated by manually looking at
the two-dimensional embeddings. Since the data in NDS and MCS are perfectly balanced and were generated
for clustering, this approach can effectively evaluate the data visualisations.

On NDS, single-view SNE, LLE and ISOMAP algorithms produced a misclustering error of 0.3, meaning
that a third of the samples was incorrectly clustered (Figure 6b). This observation shows that single-view

13



Under review as submission to TMLR

Figure 5: Multi-SNE visualisations of caltech7 and its balanced subset. Projections produced by
multi-SNE with perplexity Perp = 80 and Perp = 10 for the original and balanced caltech7 data set,
respectively. Colours present the clustering on the data points by (a), (c) K-means, and (b), (d) Ground
truth. (a) (b) present the data points on the original caltech7 data set, while (c), (d) are on its balanced
subset.

methods capture the true local underlying structure of each synthetic data-view. The only exception for
NDS is the fourth data-view, for which the error is closer to 0.6, i.e. randomly assigns the clusters (which
follows the simulation design, as it was designed to be a random data-view). After concatenating the features
of all data-views, the performance of single-view approaches remains poor (Figure 6a). The variance of the
misclustering error on this solution is much greater, suggesting that single-view manifold learning algorithms
on concatenated data are not robust and thus not reliable. Increasing the noise level (either by incorporating
additional noisy data-views, or by increasing the dimensions of the noisy data-view) in this synthetic data
set had little effect on the overall performance of the multi-view approaches (see Appendix D.4 for more
information).

On both NDS and MCS, multi-LLE and multi-SNE were found to be sensitive to choice of their corresponding
parameter value (Figures 6a and 7). While multi-LLE performed the best when the number of nearest
neighbours was low, multi-SNE provided better results as perplexity was increasing. On the other hand,
multi-ISOMAP had the highest NMI value when the parameter was high.

Overall, ISOMAP-based multi-view algorithms showed higher variability than the other multi-view methods,
which makes them less favourable solutions. The performance of ISOMAP-based methods improved as the

14



Under review as submission to TMLR

Data Set Algorithm Accuracy NMI RI ARI

Handwritten Digits

SNEconcat [Perp=10] 0.717 (0.032) 0.663 (0.013) 0.838 (0.005) 0.568 (0.026)
m-SNE [Perp=10] 0.776 (0.019) 0.763 (0.009) 0.938 (0.004) 0.669 (0.019)

multi-SNE [Perp=10] 0.882 (0.008) 0.900 (0.005) 0.969 (0.002) 0.823 (0.008)
LLEconcat [NN=10] 0.562 0.560 0.871 0.441

m-LLE [NN=10] 0.632 0.612 0.896 0.503
multi-LLE [NN=5] 0.614 0.645 0.897 0.524

ISOMAPconcat [NN=20] 0.634 0.619 0.905 0.502
m-ISOMAP [NN=20] 0.636 0.628 0.898 0.477

multi-ISOMAP [NN=5] 0.658 0.631 0.909 0.518

Caltech7

SNEconcat [Perp=50] 0.470 (0.065) 0.323 (0.011) 0.698 (0.013) 0.290 (0.034)
m-SNE [Perp=10] 0.542 (0.013) 0.504 (0.029) 0.757 (0.010) 0.426 (0.023)

multi-SNE [Perp=80] 0.506 (0.035) 0.506 (0.006) 0.754 (0.009) 0.428 (0.022)
LLEconcat [NN=100] 0.425 0.372 0.707 0.305

m-LLE [NN=5] 0.561 0.348 0.718 0.356
multi-LLE [NN=80] 0.638 0.490 0.732 0.419

ISOMAPconcat [NN=20] 0.408 0.167 0.634 0.151
m-ISOMAP [NN=5] 0.416 0.306 0.686 0.261

multi-ISOMAP [NN=10] 0.519 0.355 0.728 0.369

Caltech7 (balanced)

SNEconcat [Perp=80] 0.492 (0.024) 0.326 (0.018) 0.687 (0.023) 0.325 (0.015)
m-SNE [Perp=10] 0.581 (0.011) 0.444 (0.013) 0.838 (0.022) 0.342 (0.016)

multi-SNE [Perp=20] 0.749 (0.008) 0.686 (0.016) 0.905 (0.004) 0.619 (0.009)
LLEconcat [NN=20] 0.567 0.348 0.725 0.380

m-LLE [NN=10] 0.403 0.169 0.617 0.139
multi-LLE [NN=5] 0.622 0.454 0.710 0.391

ISOMAPconcat [NN=5] 0.434 0.320 0.791 0.208
m-ISOMAP [NN=5] 0.455 0.299 0.797 0.224

multi-ISOMAP [NN=5] 0.548 0.368 0.810 0.267

Cancer types

SNEconcat [Perp=10] 0.625 (0.143) 0.363 (0.184) 0.301 (0.113) 0.687 (0.169)
m-SNE [Perp=10] 0.923 (0.010) 0.839 (0.018) 0.876 (0.011) 0.922 (0.014)

multi-SNE [Perp=20] 0.964 (0.007) 0.866 (0.023) 0.902 (0.005) 0.956 (0.008)
LLEconcat [NN=10] 0.502 0.122 0.091 0.576

m-LLE [NN=20] 0.637 0.253 0.235 0.647
multi-LLE [NN=10] 0.850 0.567 0.614 0.826

ISOMAPconcat [NN=5] 0.384 0.015 0.009 0.556
m-ISOMAP [NN=10] 0.390 0.020 0.013 0.558

multi-ISOMAP [NN=50] 0.514 0.116 0.093 0.592

Table 2: Clustering performance. For each data set, red highlights the method with the best performance
on each measure between each group of algorithms (SNE, LLE or ISOMAP based). The overall superior
method for each data set is depicted with bold. The parameters Perp and NN refer to the selected perplexity
and number of nearest neighbours, respectively. They were optimised for the corresponding methods. Due
to the non-convexity of SNE-based approaches, the mean (and standard deviation) of 100 separate runs on
the same data is reported.

parameter value increased (Figure 7). However, they were outperformed by multi-LLE and multi-SNE for
both synthetic data sets.

Out of the three manifold learning foundations, LLE-based approaches mostly depend on their parameter
value to produce the optimal outcome. Specifically, their performance dropped when the parameter value
lay between 20 and 100 (Figure 6a). When the number of nearest neighbours was set to be greater than
100 their performance started to improve. Out of all LLE-based algorithms, the highest NMI and lowest
misclustering error was obtained by multi-LLE (Figures 6 and 7). Our observations on the tuning parameters
of LLE-based approaches are in agreement with earlier studies (Karbauskaitė et al., 2007; Valencia-Aguirre
et al., 2009). Both Karbauskaitė et al. (2007) and Valencia-Aguirre et al. (2009) found that LLE performs
best with low nearest number of neighbours and their conclusions reflect the performance of multi-LLE; best
performed on low values of the tuning parameter. Even though m-SNE performed better than single-view
methods in terms of both clustering and error variability, multi-SNE produced the best results (Figures 6
and 7). In particular, multi-SNE outperformed all algorithms presented in this paper on both NDS and
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Data Set Algorithm Accuracy NMI RI ARI

NDS

SNEconcat [Perp=80] 0.747 (0.210) 0.628 (0.309) 0.817 (0.324) 0.598 (0.145)
m-SNE [Perp=50] 0.650 (0.014) 0.748 (0.069) 0.766 (0.022 0.629 (0.020)

multi-SNE [Perp=80] 0.989 (0.006) 0.951 (0.029) 0.969 (0.019) 0.987 (0.009)
LLEconcat [NN=5] 0.606 (0.276) 0.477 (0.357) 0.684 (0.359) 0.446 (0.218)

m-LLE [NN=20] 0.685 (0.115) 0.555 (0.134) 0.768 (0.151) 0.528 (0.072))
multi-LLE [NN=20] 0.937 (0.044) 0.768 (0.042) 0.922 (0.028) 0.823 (0.047)

ISOMAPconcat [NN=100] 0.649 (0.212) 0.528 (0.265) 0.750 (0.286) 0.475 (0.133)
m-ISOMAP [NN=5] 0.610 (0.234) 0.453 (0.221) 0.760 (0.280) 0.386 (0.138)

multi-ISOMAP [NN=300] 0.778 (0.112) 0.788 (0.234) 0.867 (0.194) 0.730 (0.094)

MCS

SNEconcat [Perp=200] 0.421 (0.200) 0.215 (0.185) 0.711 (0.219) 0.173 (0.089)
m-SNE [Perp=2] 0.641 (0.069) 0.670 (0.034) 0.854 (0.080) 0.575 (0.055)

multi-SNE [Perp=50] 0.919 (0.046) 0.862 (0.037) 0.942 (0.052) 0.819 (0.018)
LLEconcat [NN=50] 0.569 (0.117) 0.533 (0.117) 0.796 (0.123) 0.432 (0.051)

m-LLE [NN=20] 0.540 (0.079) 0.627 (0.051) 0.819 (0.077) 0.487 (0.026)
multi-LLE [NN=20] 0.798 (0.059) 0.647 (0.048) 0.872 (0.064) 0.607 (0.022)

ISOMAPconcat [NN=150] 0.628 (0.149) 0.636 (0.139) 0.834 (0.167) 0.526 (0.071)
m-ISOMAP [NN=5] 0.686 (0.113) 0.660 (0.106) 0.841 (0.119) 0.565 (0.051)

multi-ISOMAP [NN=300] 0.717 (0.094) 0.630 (0.101) 0.852 (0.118) 0.570 (0.044)

Table 3: Clustering performance. For each data set, red highlights the method with the best performance
on each measure between each group of algorithms (SNE, LLE or ISOMAP based). The overall superior
method for each data set is depicted with bold. The parameters Perp and NN refer to the selected perplexity
and number of nearest neighbours, respectively. They were optimised for the corresponding methods.

Figure 6: NDS evaluation measures. (a) NMI values along different parameter values on all manifold
learning algorithms and (b) Misclustering error on the optimal parameter values.

MCS. Even though it performed poorly for low perplexity values, its performance improved for Perp ≥ 20.
Multi-SNE was the algorithm with the lowest error variance, making it a robust and preferable solution.
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Figure 7: MCS evaluation measures. The clustering evaluation measures are plotted against different
parameter values on the all SNE, LLE and ISOMAP based algorithms.
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The four implemented measures (Accuracy, NMI, RI and ARI) use the true clusters of the samples to
evaluate the clustering performance. In situations where cluster allocation is unknown, alternative clustering
evaluation measures can be used, such as the Silhouette score (Rousseeuw, 1987). The Silhouette score in
contrast to the other measures does not require as input the cluster allocation and is a widely used approach
for identifying the best number of clusters and clustering allocation in an unsupervised setting.

Evaluating the clustering performance of the methods via the Silhouette score agrees with the other four
evaluation measures, with multi-SNE producing the highest value out of all multi-view manifold learning
solutions. The Silhouette score of all methods applied on the MCS data set can be found in Appendix D.7.

The same process of parameter tuning was implemented for the real data sets and their performance is
presented in the Appendix D.3. In contrast to the synthetic data, multi-SNE on cancer types data performed
the best at low perplexity values. For the remaining data sets, its performance was stable for all parameter
values. With the exception of cancer types data, the performance of LLE-based solutions follows their
behaviour on synthetic data.

4.4 Optimal Number of Data-views

It is common to think that more information would lead to better results, and in theory that should be the
case. However, in practice that is not always true (Kumar et al., 2011). Using the cancer types data set,
we explored whether the visualisations and clusterings are improved if all or a subset of the data-views are
used. With three available data-views, we implemented a multi-view visualisation on three combinations of
two data-views and a single combination of three data-views.

The genomics data-view provides a reasonably good separation of the three cancer types, whereas miRNA
data-view fails in this task, as it provides a visualisation that reflects random noise (first column of plots in
Figure 8). This observation is validated quantitatively by evaluating the produced t-SNE embeddings (Table
8 in Appendix D.5). Concatenating features from the different data-views before implementing t-SNE does
not improve the final outcome of the algorithm, regardless of the data-view combination.

Overall, multi-view manifold learning algorithms have improved the data visualisation to a great extent.
When all three data-views are considered, both multi-SNE and m-SNE provide a good separation of the
clusters (Figure 8). However, the true cancer types can be identified perfectly when the miRNA data-view
is discarded. In other words, the optimal solution in this data set is obtained when only genomics and
epigenomics data-views are used. That is because miRNA data-view contains little information about the
cancer types and adds random noise, which makes the task of separating the data points more difficult.

This observation was also noted between the visualisations of MMDS and NDS (Figure 9). The only difference
between the two synthetic data sets is the additional noisy data-view in NDS. Even though NDS separates
the samples to their corresponding clusters, the separation is not as clear as it is in the projection of MMDS
via multi-SNE. In agreement with the exploration of the cancer types data set, it is favourable to discard
any noisy data-views in the implementation of multi-view manifold learning approaches.

It is not always a good idea to include all available data-views in multi-view manifold learning algorithms;
some data-views may provide noise which would result in a worse visualisation than discarding those data-
views entirely. The noise of a data-view with unknown labels may be viewed in a single-view t-SNE plot (all
data-points in a single cluster), or identified, if possible, via quantification measures such as signal-to-noise
ratio.

4.5 Multi-SNE variations

This section presents two alternative variations of multi-SNE, including automatic weight adjustments and
multi-CCA as a pre-training step for reducing the dimensions of the input data-views.
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Figure 8: Visualisations of cancer types. Projections produced by all SNE-based manifold learning
algorithms on all possible combinations between the three data-views in the cancer types data set.The
parameter Perp refers to the selected perplexity, which was optimised for the corresponding methods.

4.5.1 Automated weight adjustments

A simple weight-updating approach is proposed based on the KL-divergence measure from each data-view.
This simple weight-updating approach guarantees that more weight is given to the data-views producing
lower KL-divergence measures and that no data-view is being completely discarded from the algorithm.

Recall that KL(P ||Q) ∈ [0,∞), with KL(P ||Q) = 0, if the two distributions, P and Q, are perfectly
matched. Let k = (k(1), · · · , k(M)) be a vector, where k(m) = KL(P (m)||Q),∀m = {1, · · · , M} and initialise
the weight vector w = (w(1), · · · , w(M)) by w(m) = 1

M ,∀m. To adjust the weights of each data-view, the
following steps are performed at each iteration:

1. Normalise KL-divergence by k(m) = k(m)∑M

i
k(i)

. This step ensures that k(m) ∈ [0, 1],∀m and that∑
m k(m) = 1.

2. Measure the weights for each data-view by w(m) = 1 − k(m). This step ensures that the data-view
with the lowest KL-divergence value receives the highest weight.

Based on the analysis in Section 4.4, we know that cancer types and NDS data sets contain noisy data-views
and thus multi-SNE performs better when they are entirely discarded. Here, we assume that this information
is unknown and the proposed weight-updating approach is implemented on those two data sets to test if the
weights are being adjusted correctly according to the noise level of each data-view.

The proposed weight-adjustment process, which looks at the produced KL-divergence between each data-
view and the low-dimensional embeddings, distinguishes which data-views contain the most noise and the
weight values are updated accordingly (Figure 10b). In cancer types, transcriptomics (miRNA) receives
the lowest weight, while genomics (Genes) was given the highest value. This weight adjustment comes in
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Figure 9: Multi-SNE visualisations of MMDS and NDS. Projections produced by multi-SNE with
perplexity Perp = 100 for both MMDS and NDS.

Figure 10: Cancer types and NDS with automated weight adjustments. The first row presents the
produced visualisations of multi-SNE with the automated weight adjustment procedure implemented. The
second row of figures presents the weights assigned to each data-view at each step of the iteration. For both
data the iterations ran for a maximum of 1,000 steps.

agreement with the qualitative (t-SNE plots) and quantitative (clustering) evaluations performed in Section
4.4. In NDS, X(4) which represents the noisy data-view received the lowest weight, and the other data-views
had around the same weight value, as they all impact the final outcome equally.

The proposed weight-adjustment process updates the weights at each iteration. For the first 100 iterations,
the weights are not changing, as the algorithm adjusts to the produced low-dimensional embeddings (Figure
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10b). In NDS, the weights converge after 250 iterations, while in cancer types, they are still being updated
even after 1000 iterations. The changes recorded are small and the weights can be said to have stabilised.

The low-dimensional embeddings produced in NDS with weight adjustments separate clearly the three clus-
ters, an observation missed without the implementation of the weight-updating approach (Figure 10a); it
resembles the MMDS (i.e. without noisy data-view) multi-SNE plot (Figure 9). The automatic weight-
adjustment process identifies the informative data-views, by allocating them a higher weight value than to
the noisy data-views. This observation was found to be true even when a dataset contains more noise than
informative data-views (see Appendix D.4 for further details).

The produced embeddings in cancer types do not separate the three clusters as clearly as multi-SNE without
the noisy data-view, but it projects a more clear separation than multi-SNE on the complete data set without
weight adjustments.

The weights produced by this weight adjustment approach can indicate the importance of each data-view
in the final lower-dimensional embedding. For example, data-views with very low weights may be assumed
futile and a better visualisation may be produced if those data-views are discarded. The actual weights
assigned to each data-view do not have any further meaning.

4.5.2 Multi-CCA as pre-training

As mentioned earlier, van der Maaten & Hinton (2008) proposed the implementation of PCA as a pre-
training step for t-SNE to reduce the computational costs, provided that the fraction of variance explained
by the principal components is high. In this paper, pre-training via PCA was implemented in all variations
of SNE. Alternative linear dimensionality reduction methods may be considered, especially for multi-view
data. In addition to reducing the dimensions of the original data, such methods can capture information
between the data-views. For example, Canonical Correlation Analysis (CCA) captures relationships between
the features of two data-views by producing two latent low-dimensional embeddings (canonical vectors) that
are maximally correlated between them (Hotelling, 1936; Rodosthenous et al., 2020). Rodosthenous et al.
(2020) demonstrated that multi-CCA, an extension of CCA that analyses multiple (more than two) data-
views, would be preferable as it reduces over-fitting.

This section demonstrates the application of multi-CCA as pre-training in replacement of PCA. This al-
teration of the multi-SNE algorithm was implemented on the handwritten digits data set. Multi-CCA was
applied on all data-views, with 6 canonical vectors produced for each data-view (in this particular data set
min (p1, p2, p3, p4, p5, p6) = 6). The variation of multi-CCA proposed by Witten & Tibshirani (2009) was
used for the production of the canonical vectors, as it is computationally cheaper compared to others (Rodos-
thenous et al., 2020). By using these vectors as input features, multi-SNE produced a qualitatively better
visualisation than using the principal components as input features (Figure 11). By using an integrative
algorithm as pre-training, all 10 clusters are clearly separated, including 6 and 9. Quantitatively, clustering
via K-Means was evaluated with ACC = 0.914, NMI = 0.838, RI = 0.968, ARI = 0.824. This evaluation
suggests that quantitatively, it performed better than the 10-dimensional embeddings produced multi-SNE
with PCA as pre-training.

4.5.3 Comparison of multi-SNE variations

Section 2.2 introduced multi-SNE, a multi-view extension of t-SNE. In Sections 4.5.1 and 4.5.2, two variations
of multi-SNE are presented. The former implements a weight-adjustment process which at each iteration
updates the weights allocated for each data-view, and the latter uses multi-CCA instead of PCA as a pre-
training step. In this section, multi-SNE and its two variations are compared to assess whether the variations
introduced to the algorithm perform better than the initial proposal.

The implementation of the weight-adjustment process improved the performance of multi-SNE on all real
data sets analysed (Table 4). The influence of multi-CCA as a pre-training step produced inconsistent results;
in some data sets this step boosted the clustering performance of multi-SNE (e.g. handwritten digits), while
for the other data sets, it did not (e.g. cancer types). From this analysis, we conclude that adjusting the
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Figure 11: Multi-SNE on handwritten digits, with multi-CCA as pre-training. Projections of
handwritten digits data sets, produced by multi-SNE. Multi-CCA was implemented on all data-views with
their respective canonical vectors acting as input features for multi-SNE.

Variation Handwritten Cancer Caltech7 Caltech7 NDS MCS
digits types original balanced

Multi-SNE 0.822 0.964 0.506 0.733 0.989 (0.006) 0.919 (0.046)
without weight-adjustment

Multi-SNE 0.883 0.994 0.543 0.742 0.999 (0.002) 0.922 (0.019)
with weight-adjustment
Multi-CCA multi-SNE 0.901 0.526 0.453 0.713 0.996(0.002) 0.993 (0.005)

without weight-adjustment
Multi-CCA multi-SNE 0.914 0.562 0.463 0.754 0.996 (0.002) 0.993 (0.005)
with weight-adjustment

Table 4: Clustering performance of multi-SNE variations. For each data set, bold highlights the
multi-SNE variation with the best performance - highest accuracy (ACC). Perplexity was optimised for all
variations. The mean performance (and its standard deviation) is depicted for the synthetic data sets NDS
and MCS.)

weights of each data-view always improves the performance of multi-SNE. On the other hand, the choice of
pre-training, either via PCA or multi-CCA, is not clear, and it depends on the data at hand.

5 Discussion

In this manuscript, we propose extensions of the well-known manifold learning approaches t-SNE, LLE,
and ISOMAP for the visualisation of multi-view data sets. These three approaches are widely used for the
visualisation of high-dimensional and complex data sets on performing non-linear dimensionality reduction.
The increasing number of multiple data sets produced for the same samples in different fields, emphasises the
need for approaches that produce expressive presentations of the data. We have illustrated that visualising
each data set separately from the rest is not ideal as it does not reveal the underlying patterns within the
samples. In contrast, the proposed multi-view approaches can produce a single visualisation of the samples
by integrating all available information from the multiple data-views. Python and R (only for multi-SNE)
code of the proposed solutions can be found in the links provided in Appendix E.
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Multi-view visualisation has been explored in the literature with a number of approaches proposed in recent
years. In this work, we propose multi-view visualisation approaches that extend the well-known manifold
approaches: t-SNE, LLE, and ISOMAP. Through a comparative study of real and synthetic data, we have
illustrated that the proposed approach, multi-SNE, provides a better and more robust solution compared to
the other tested approaches proposed in the manuscript (multi-LLE and multi-ISOMAP) and the approaches
proposed in the literature including m-LLE, m-SNE, MV-tSNE2, j-SNE, j-UMAP (additional results in
Appendices D.1, D.2). Although multi-SNE was computationally the most expensive multi-view manifold
learning algorithm (Table 9 in Appendix F), it was found to be the solution with the superior performance,
both qualitatively and quantitatively.

We have utilised the low-dimensional embeddings of the proposed algorithms as features in the K-means
clustering algorithm, which we have used (1) to quantify the visualisations produced, and (2) to select
the optimal tuning parameters for the manifold learning approaches. By investigating synthetic and real
multi-view data sets, each with different data characteristics, we concluded that multi-SNE provides a more
accurate and robust solution than any other single-view and multi-view manifold learning algorithms we
have considered. Specifically, multi-SNE was able to produce the best data visualisations of all data sets
analysed in this paper. Multi-LLE provides the second-best solution, while multi-view ISOMAP algorithms
have not produced competitive visualisations. By exploring several data sets, we concluded that multi-view
manifold learning approaches can be effectively applied to heterogeneous and high-dimensional data (i.e.
p≫ n).

Through the conducted experiments, we have illustrated the effect of the parameters on the performance of
the methods. We have shown that SNE-based methods perform the best when perplexity is in the range
[20, 100], LLE-based algorithms should take a small number of nearest neighbours, in the range [10, 50], while
the parameter of ISOMAP-based should be in the range [100, N ], where N is the number of samples.

We believe that the best approach to selecting the tuning parameters of the methods is to explore a wide
range of different parameter values and assess the performance of the methods both qualitatively and quan-
titatively. If the produced visualisations vary a lot between a range of parameter values, then the data
might be too noisy, and the projections misleading. In this case, it might be beneficial to look at the weights
obtained for each data-view and explore removing the noisiest data-views (depending on the number of data-
views used and/or existing knowledge of noise in the data). Otherwise (if the produced visualisations vary
slightly between various parameter values), the parameter value with the best qualitative and quantitative
performance can be selected. Since t-SNE (and its extensions) are robust to perplexity (van der Maaten &
Hinton, 2008), a strict optimal parameter value would not be necessary to produce meaningful visualisations
and clusterings, i.e. identical performance qualitatively and quantitatively can be observed for a range of
values.

Cao & Wang (2017) proposed an automatic approach for selecting the perplexity parameter of t-SNE.
According to the authors the trade between the final KL divergence and perplexity value can lead to good
embeddings, and they proposed the following criterion:

S(Perp) = 2KL(P ||Q) + log(n)Perp

n
(10)

This solution can be extended to automatically select the multi-SNE perplexity, by modifying the criterion
to:

S(Perp) = 2
∑
m

KL(P (m)||Q) + log(n)Perp

n
(11)

Our conclusions about the superiority of multi-SNE have been further supported by implementing the Sil-
houette score as an alternative approach for evaluating the clustering and tuning the parameters of the
methods. In contrast to the measures used throughout the paper, the Silhouette score does not take into
account the number of clusters that exist in the data set, illustrating the applicability of multi-SNE approach
in unsupervised learning problems where the underlying clusters of the samples are not known (Appendix
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Multi-view Clustering on handwritten digits data set
Kumar et al. Liu et al. Sun et al. Ou et al. Ou et al. multi-SNE with PCA/multi-CCA

(2011) (2013) (2015) (2016) (2018) 2D 3D 5D 10D

NMI 0.768 0.804 0.876 0.785 0.804 0.863/0.838 0.894/0.841 0.897/0.848 0.899/0.850
ACC – 0.881 – 0.876 0.880 0.822/0.914 0.848/0.915 0.854/0.922 0.849/0.924

Table 5: Multi-view clustering performance on handwritten digits. The NMI and accuracy (ACC)
values of multi-view clustering approaches, as they were presented by the authors in their corresponding
papers, are depicted along the clustering performance of multi-SNE on a range of dimensions for the embed-
dings (d = 2, 3, 5, 10). The performance of multi-SNE with PCA and multi-CCA are depicted in the table,
with weight adjustments in both variations.

D.7). Similarly, we have illustrated that alternative clustering algorithms can be implemented for cluster-
ing the samples. By inputting the produced multi-SNE embeddings in the DBSCAN algorithm we further
illustrated how the clusters of the samples can be identified (Appendix D.8).

Multi-view clustering is a topic that has gathered a lot of interest in recent years with a number of approaches
published in the literature. Such approaches include the ones proposed by Kumar et al. (2011), Liu et al.
(2013), Sun et al. (2015), Ou et al. (2016) and Ou et al. (2018). The handwritten data set presented in
the manuscript has been analysed by the aforementioned studies for multi-view clustering. Table 5 shows
the NMI and accuracy values of the clusterings performed by the multi-view clustering algorithms (these
values are as given in the corresponding articles). In addition, the NMI and accuracy values of the K-means
clustering applied on the multi-SNE low-dimensional embeddings (from 2 to 10 dimensions) are presented
in the table. On handwritten digits, the multi-SNE variation with multi-CCA as pre-training and weight
adjustments had the best performance (Table 4). This variation of multi-SNE with K-means was compared
against the multi-view clustering algorithms and it was found to be the most accurate, while pre-training
with PCA produced the highest NMI (Table 5). By applying K-means to the low-dimensional embeddings
of multi-SNE can successfully cluster the observations of the data (see Appendix D.6 for a 3-dimensional
visualisation via multi-SNE).

An important area of active current research, where manifold learning approaches, such as t-SNE, as visu-
alisation tools are commonly used is single-cell sequencing (scRNA-seq) and genomics. Last few years, have
seen fast developments of multi-omics single-cell methods, where for example for the same cells multiple
omics measurements are being obtained such as transcripts by scRNA-seq and chromatin accessibility by a
method known as scATAC-seq (Stuart et al., 2019). As recently discussed the integration of this kind of
multi-view single-cell data poses unique and novel statistical challenges (Argelaguet et al., 2021). We, there-
fore, believe our proposed multi-view methods will be very useful in producing an integrated visualisation of
cellular heterogeneity and cell types studied by multi-omics single-cell methods in different tissues, in health
and disease.

To illustrate the capability of multi-SNE for multi-omics single-cell data, we applied multi-SNE on a rep-
resentative data set of scRNA-seq and ATAC-seq for human peripheral blood mononuclear cells (PBMC) 5

(Figure 7). Multi-SNE produced more intelligible projections of the cells compared to m-SNE and achieved
higher evaluation scores (Appendix C). To test the quality of the obtained multi-view visualisation, we
compared its performance against the multi-view clustering approach proposed by Liu et al. (2013) on this
single-cell data. A balanced subset of this data set was used, which consists of two data-views on 9105 cells
(scRNA-seq and ATAC-seq with 36000 and 108000 features, respectively). A detailed description of this
data set, the pre-processing steps performed, and the projections of t-SNE and multi-SNE on the original
data are provided in the Appendix C (Figure 13). We found Multi-SNE to have the highest accuracy (and a
close NMI to the approach by Liu et al. (2013)) as seen in Figure 7. Qualitatively, the projections by t-SNE
on scRNA-seq and multi-SNE are similar, but multi-SNE separates the clusters better (especially between
CD4 and CD8 cell types (Figure 12, Figure 13 in Appendix C). While it is known that ATAC-seq data is
noisier and has less information by itself, we see that integration of the data-views results in better overall
separation of the different cell types in this data set. These results indicate the promise of multi-SNE as a
unified multi-view and clustering approach for multi-omics single-cell data.

5 https://support.10xgenomics.com/single-cell-multiome-atac-gex/datasets/1.0.0/pbmc_granulocyte_sorted_10k
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Figure 12: Visualisations and clustering performance on single-cell multi-omics data. Projections
produced by t-SNE on RNA, ATAC and multi-SNE on both data-views with perplexity Perp = 80 for the
two t-SNE projections and Perp = 20 for multi-SNE. The clustering performance of the data by Liu et al.
(2013), t-SNE and multi-SNE are presented.

The increasing number of multi-view, high-dimensional and heterogeneous data requires novel visualisation
techniques that integrate this data into expressive and revealing representations. In this manuscript, new
multi-view manifold learning approaches are presented and their performance across real and synthetic data
sets with different characteristics was explored. The multi-SNE approach is proposed to provide a unified
solution for robust visualisation and subsequent clustering of multi-view data.
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A Algorithms

Data:M data sets, X(m) ∈ RN×pm , ∀m ∈ {1, · · · , M}
Parameters:Perp [Perplexity]; T [Number of iterations]; η [Learning rate]; α(t) [Momentum]
Result:Induced embedding, Y ∈ Rn×d. Often, d = 2
begin

Optional step of implementing PCA, or multi-CCA on X(m) ∀m ∈ {1, · · · , M}
Compute pairwise affinities pm

i|j with perplexity Perp, ∀m ∈ {1, · · · , M}

Set pm
ij = pm

i|j+pm
j|i

2n , ∀m ∈ {1, · · · , M}
Initialise solution Y (0) ∼ N (0, 0.1)
for t=1 to T do

Compute induced affinities qi|j and set sum of gradients, G = 0
for m=1 to M do

Compute gradient δCm

δY

G← G + δCm

δY

end
Set Y (t) = Y (t−1) + ηG + α(t)(Y (t−1) − Y (t−2))

end
end

Algorithm 1: Multi-SNE

Data: M data sets, X(m) ∈ RN×pm , ∀m ∈ {1, · · · , M}
Parameters: k [Number of neighbours]
Result: Induced embedding, Ŷ ∈ Rn×d. Often, d = 2
begin

for m=1 to M do
Find k nearest neighbours of X(m).
Compute W m by minimising equation (7).

end
Let Ŵ =

∑
m αmW m, where

∑
m αm = 1.

Compute the d-dimensional embeddings Ŷ by minimising equation (8) under Ŵ .
end

Algorithm 2: multi-LLE
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Data: M data sets, X(m) ∈ RN×pm , ∀m ∈ {1, · · · , M}
Parameters: k [Number of neighbours]
Result: Induced embedding, Ŷ ∈ Rn×d. Often, d = 2
begin

for m=1 to M do
Construct a N ×N neighborouhood graph, Gm ∼ (V, Em) with samples represented by nodes.
The edge length between k nearest neighbours of each node is measured by Euclidean distance.

end
Measure the average edge length between all nodes.
Combine all neighborouhood graphs into a single graph, G̃.
In DG ∈ R|V |×|V |, the computed shortest path distances between nodes in G̃ are stored.
Compute the d-dimensional embeddings Y by computing yi =

√
λpui

p, where λp is the pth

eigenvalue in decreasing order of the the matrix τ(DG) and ui
p the ith component of pth

eigenvector. The operator, τ is defined by τ(D) = −HSH
2 , where S is the matrix of squared

distances defined by Sij = D2
ij , and H is defined by Hij = δij − 1

N .
end

Algorithm 3: multi-ISOMAP
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B Data Clustering Evaluation Measures

Let X = {X1, · · · , Xr} be the true classes of the data and Y = {Y1, · · · , Ys} the clusterings found on N
objects. In this study, we assume to know the number of clusters and thus set r = s. Let nij be the number
of objects in Xi and Yj . A contingency table is defined as shown in Table 6.

Y1 Y2 · · · Ys

∑s
j Yj

X1 n11 n12 · · · n1s

∑r
i n1i = a1

X2 n21 n22 · · · n2s a2
...

...
. . .

...
...

...
Xr nr1 nr2 · · · nrs ar∑r

i ni1 = b1 b2 · · · bs S =
∑r

i

∑s
j nij

Table 6: A contingency table for data clustering. Xi refers to the ith class (truth) and Yj refers to the jth

cluster. nij are the number of samples found in class i and cluster j. In this study, r = s was taken, as
K-means with the true number of classes known was performed.

The formulas of the four measures used to evaluate data clustering are given below, with the terms defined
in Table 6.

Accuracy (ACC)

(Acc) =
∑

i

∑
j 1 {i = j}nij

S (12)

Normalised Mutual Information (NMI)

(NMI) = 2I(X, Y)
H(X) + H(Y) (13)

where I(X, Y) is the mutual information between X and Y, and H(X) is the entropy of X.

Rand Index (RI)

(RI) =

(
N
2
)
−

[
1
2

∑
i(

∑
j nij)2 +

∑
j(

∑
i nij)2 −

∑
i

∑
j n2

ij

]
(

N
2
)

= α + β(
N
2
) (14)

where α refers to the number of elements that are in the same subset in X and in the same subset in Y ,
while β is the number of elements that are in different subsets in X and in different subsets in Y .

Adjusted Rand Index (ARI)

(ARI) =

∑
i

∑
j

(
nij

2
)
−

∑
i
(ai

2 )
∑

j
(bj

2 )
(n

2)
1
2

[∑
i

(
ai

2
)

+
∑

j

(
bj

2
)]
−

∑
i
(ai

2 )
∑

j
(bj

2 )
(n

2)

(15)
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C Single-cell data

In the multi-omics single-cell data analysis, we used the publicly available data set provided by 10x Genomics
for human peripheral blood mononuclear cells (PBMC) 6. This data set can be downloaded and installed via
the R package SeuratData, by running the command InstallData("pbmcMultiome"). In their vignette 7,
Hoffman et al. (2021) explored this data set to demonstrate how to jointly integrate and analyse such data.

In this data set, scRNA-seq and scATAC-seq profiles were simultaneously collected in the same cells by
10x Genomics. Data on 11909 single cells are available on 36601 genes and 108377 peaks in scRNA-seq
and scATAC-seq, respectively. Cells with zero summed expression, along all genes were removed, leaving
us with 10412 cells. Pre-processing was employed via the Seurat package, following the steps performed
by Hoffman et al. (2021). Firstly, we log-normalised both data-views and then selected features for each
individual data-view. In feature selection, we aim to identify a subset of features with high variability across
cells (using the functions FindVariableFeatures and FindTopFeatures) (Stuart et al., 2019).

The multi-omics single-cell data set consists of 19 imbalanced clusters that correspond to their corresponding
cell types; we assume the annotations provided by Seurat to be accurate (Figure 13). To evaluate the
clustering performance of multi-SNE, we took a balanced subset of the data. Cell-type clusters with less
than 200 cells were removed entirely and we combined cells with cell types under the same hierarchy. For
example, Intermediate B, Naive B and Memory B were combined to create a single cluster, B cells. Similarly,
CD4 Naive, CD4 TCM and CD4 TEM were combined as CD4 cells. After this process, we ended up with
a subset of 9105 single cells separated in 6 cell-type clusters (B cell, CD14 Mono, CD4, CD8 Naive, CD8
TEM and NK ).

Figure 13: Visualisations of single-cell data. Projections of the full data set with unbalanced clusters
produced by t-SNE on RNA, ATAC, m-SNE and multi-SNE on both data-views with perplexity Perp = 80
for the two t-SNE projections, Perp = 100 for m-SNE and Perp = 20 for multi-SNE.

M-SNE and multi-SNE combined the scRNA-seq and scATAC-seq to produce a more intelligible projection
of the cells than t-SNE applied on either data-view. Qualitatively the superiority of the multi-view manifold
learning algorithms may not be obvious at first, but subtle differences can be observed. Quantitatively,

6 https://support.10xgenomics.com/single-cell-multiome-atac-gex/datasets/1.0.0/pbmc_granulocyte_sorted_10k
7 https://satijalab.org/seurat/articles/atacseq_integration_vignette.html
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multi-SNE received the best evaluation scores, with NMI = 0.807, while m-SNE received NMI = 0.760.
Single-view t-SNE scored NMI = 0.620 and NMI = 0.572 for scRNA-seq and scATAC-seq, respectively.
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D Additional comparisons

D.1 Multi-SNE, m-SNE and MV-tSNE2

This section justifies the exclusion of MV-tSNE2 from the comparisons against multi-SNE. Due to its superior
performance, m-SNE was selected as an existing competitor of multi-SNE.

Multi-SNE and m-SNE outperformed MV-tSNE2 on all data sets presented in this manuscript (Figure
14). By comparing the produced visualisations on two data sets, Figure 14 evaluates the three algorithms
qualitatively. Multi-SNE produced the best separation among clusters on both data sets. In MV-tSNE2,
a lot of the samples are projected bundled together, making it difficult to distinguish the true clusters.
Quantitative evaluation of the methods agree with the conclusions reached by assessing the visualisations
qualitatively.

Figure 14: Visualisations by multi-SNE, m-SNE and MV-tSNE2. The three multi-view SNE-based
projections of cancer types and handwritten digits data sets.
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D.2 Multi-SNE, j-SNE and j-UMAP

At the same time as multi-SNE was developed, Hoan Do & Canzar (2021) proposed generalisations of t-SNE
(named j-SNE) and UMAP (named j-UMAP) based on a similar objective function as multi-SNE. Hoan Do
& Canzar (2021) introduced a regularisation term that reduces the bias towards specific data-views; the
proposed objective function is given by:

Cj−SNE =
∑
m

∑
i

∑
j

αmpm
ij log

pm
ij

qij
+ λ

∑
m

αm log αm, (16)

where αm represents the weight provided for the mth data-view and λ is a regularisation parameter. The
weights and low-dimensional embeddings are updated iteratively. The adjustments on the weights of each
data-view are performed in accordance to the regularisation parameter, which requires tuning for optimal
results.

Figure 15: j-UMAP, j-SNE and multi-SNE visualisations. Projections of cancer types and handwritten
digits data sets, produced by j-UMAP, j-SNE and multi-SNE.

Figure 15 compares qualitatively multi-SNE with j-SNE and j-UMAP (with their respective tuning parame-
ters optimised) on the cancer types and handwritten digits data. As expected, the projections by j-SNE and
multi-SNE are very much alike for both data sets. The increasing complexity imposed by the regularisation
term in j-SNE does not seem to benefit the visualisation of the samples. j-UMAP does not separate the three
cancer types, but it manages to separate the 10 digits, even samples that represent the 6 and 9 numerals;
j-SNE failed to do that. This was achieved by multi-SNE at the 3-dimensional visualisation, or alternatively
by using multi-CCA as a pre-training step. All three algorithms allocated similar weight values to each
data-view on both data sets. In particular, transcriptomics on cancer types and morphological features on
handwritten digits received the lowest weight.
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D.3 Tuning parameters on real data

In this section, we have explored how the parameter values affect the multi-view approaches when analysing
real data sets. Figure 16 depicts the NMI evaluation measure on each real data set for parameter values in
the range S.

Figure 16: Real data sets evaluation via NMI. The NMI values are plotted against different parameter
values on all multi-view manifold learning algorithms investigated in this manuscript.

Similar conclusions to the ones made in Section 4.3 were reached (Figure 16). SNE-based solutions had
a more consistent performance than LLE and ISOMAP based approaches. In contrast to the conclusions
reached by testing the tuning parameters on synthetic data, SNE-based approaches applied to the cancer
types data set, performed the best when the perplexity was low. This observation highlights the importance
of the tuning parameters (perplexity and the number of neighbours) in these algorithms, as discussed by their
respective authors. For the remaining data sets, its performance was stable on different parameter values.
With the exception of cancer types data, the performance of LLE-based solutions form similar behaviour
with the synthetic data (i.e. their performance is reduced around NN = 50 and then it is regained.
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D.4 Increased randomness in data

We have further explored how additional noise affects the performance of the multi-view learning approaches.

As discussed, the NDS data set contains three informative data-views and one noisy data-view. In Section
4.4, we concluded that the inclusion of the noisy data-view reduces the performance both qualitatively and
quantitatively. This complication was targeted and solved through an automatic weight-updating approach
in Section 4.5.1. The purpose of this section is to test the performance of multi-view manifold learning
solutions on data sets with higher levels of randomness. To increase the noise in the synthetic data, additional
noisy data-views were generated. In particular, this section compares the performance of manifold learning
algorithms on three synthetic data sets: (a) NDS, (b) NDS with one additional noisy data-view, and (c) NDS
with two additional noisy data-views. Each simulation was performed for 200 runs and with equal weights
for a fair comparison.

Multi-SNE was the superior algorithm in all simulations (Table 7). With each additional noisy data-view,
all multi-view manifold learning algorithms saw a reduction in their performance. Although all evaluation
measures reflect this observation, the change in their performance is best observed on the NMI values (Table
7). Further, with more noisy data-views, the variance of the evaluation measures increased. This observation
suggests that all algorithms clustered the samples with higher uncertainty.

The proposed automatic weight-adjusting process ensures that all data-views receive a weight value, which
suggests that noisy data-views do not receive zero weight. For example, in the NDS with two additional
noisy data-views scenario, this process returned higher weights for the informative data-views (X1, X2,
X3), than the noisy ones (X4, X5, X6) (Figure 17). Although the weights between informative and noisy
data-views are close in value, the proposed automatic weight-adjusting process can successfully distinguish
informative from noisy data-views (Figures 17). To further assess if this process allocates substantial weight
to noisy data-views, a scenario in which the data set contains more noisy data-views than informative ones
was investigated.

In particular, a simulation was performed in which 1 data-view is informative and 2 are noisy. The in-
formative data-view contains information to split the samples into 3 clusters, while the 2 noisy data-views
assign all samples on the same cluster. Multi-SNE separates the samples by their respective cluster, despite
having more noisy data-views than informative ones (Figure 18). In accordance with the other simula-
tions, multi-SNE assigns a higher weight value on the informative data-view than on the noisy data-views.
The informative data-view received a weight of 0.4 and each of the two noisy data-view 0.3 (Figure 18).
This difference in the weights between the data-views acts as an incentive for the user to investigate the
implementation of the algorithm by excluding the data-view(s) that received the lowest weight(s).
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Data Set Algorithm Accuracy NMI RI ARI

NDS

SNEconcat [Perp=80] 0.747 0.628 0.817 0.598
m-SNE [Perp=50] 0.650 0.748 0.766 0.629

multi-SNE [Perp=80] 0.989 0.951 0.969 0.987
LLEconcat [NN=5] 0.606 0.477 0.684 0.446

m-LLE [NN=20] 0.685 0.555 0.768 0.528
multi-LLE [NN=20] 0.937 0.768 0.922 0.823

ISOMAPconcat [NN=100] 0.649 0.528 0.750 0.475
m-ISOMAP [NN=5] 0.610 0.453 0.760 0.386

multi-ISOMAP [NN=300] 0.778 0.788 0.867 0.730

Higher dimension

SNEconcat [Perp=80] 0.723 0.648 0.787 0.585
m-SNE [Perp=50] 0.623 0.705 0.734 0.605

multi-SNE [Perp=80] 0.983 0.937 0.951 0.966
LLEconcat [NN=5] 0.575 0.427 0.628 0.402

m-LLE [NN=20] 0.671 0.534 0.755 0.513
multi-LLE [NN=20] 0.903 0.788 0.898 0.802

ISOMAPconcat [NN=100] 0.622 0.510 0.705 0.453
m-ISOMAP [NN=5] 0.589 0.439 0.734 0.344

multi-ISOMAP [NN=300] 0.765 0.767 0.859 0.711

One additional noisy

SNEconcat [Perp=10] 0.650 0.522 0.724 0.489
m-SNE [Perp=100] 0.689 0.584 0.786 0.530

multi-SNE [Perp=50] 0.965 0.854 0.956 0.901
LLEconcat [NN=10] 0.604 0.445 0.723 0.413

m-LLE [NN=10] 0.667 0.522 0.765 0.490
multi-LLE [NN=5] 0.912 0.692 0.891 0.756

ISOMAPconcat [NN=20] 0.543 0.375 0.733 0.481
m-ISOMAP [NN=20] 0.552 0.482 0.703 0.444

multi-ISOMAP [NN=5] 0.584 0.501 0.739 0.493

Two additional noisy

SNEconcat [Perp=10] 0.581 0.310 0.688 0.309
m-SNE [Perp=10] 0.603 0.388 0.712 0.359

multi-SNE [Perp=10] 0.936 0.781 0.926 0.832
LLEconcat [NN=10] 0.523 0.251 0.641 0.222

m-LLE [NN=10] 0.570 0.344 0.682 0.317
multi-LLE [NN=5] 0.858 0.557 0.832 0.622

ISOMAPconcat [NN=20] 0.470 0.389 0.565 0.409
m-ISOMAP [NN=20] 0.489 0.406 0.611 0.453

multi-ISOMAP [NN=5] 0.524 0.467 0.782 0.517

Table 7: Clustering performance of NDS and with additional noisy data-views. For each data set,
red highlights the method with the best performance on each measure between each group of algorithms
(SNE, LLE or ISOMAP based). The overall superior method for each data set is depicted with bold. The
parameters Perp and NN refer to the selected perplexity and number of nearest neighbours, respectively.
They were optimised for the corresponding methods.
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Figure 17: Visualisations on NDS with 2 additional noisy data-views. (A) Scatter-plot of the
simulated samples obtained by multi-SNE with perplexity Perp = 200 and (B) Weights received by the
algorithm on the 6 data-views. The first 4 follow the structure of NDS simulation; three informative data-
views and a noisy one. Each informative data-view separates the samples differently, but taken together
they are split equally into three clusters. X5 and X6 represent the 2 additional noisy data-views.

Figure 18: Visualisations on new simulation with 1 informative and 2 noisy data-views. (A)
Scatter-plot of the simulated samples obtained by multi-SNE with perplexity Perp = 100 and (B) Weights
received by the algorithm on the 3 data-views. The informative data-view contains information to split the
samples into 3 clusters, while the 2 noisy data-views assign all samples to lie on the same cluster.
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D.5 t-SNE on single-view cancer types

Table 8 presents the clustering performance of t-SNE applied on the three views in the cancer types data
set, separately. Genomics was the favoured view on all evaluation measures.

ACC NMI RI ARI
Genomics 0.595 (0.044) 0.299 (0.041) 0.667 (0.017) 0.253 (0.039)

Epigenomics 0.500 (0.036) 0.116 (0.033) 0.598 (0.018) 0.107 (0.035)
Transcriptomics 0.456 (0.023) 0.042 (0.011) 0.572 (0.006) 0.049 (0.013)

Table 8: Clustering performance on the induced embedding of a single view obtained by implementing t-SNE
on Cancer Types data. Standard deviation is reported in parentheses.
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D.6 Handwritten digits projection in 3 dimensions (3D)

Figure 19: 3D multi-SNE visualisation of handwritten digits. Projections produced by weight ad-
justing multi-SNE with multi-CCA as pre-training and perplexity Perp = 80. Colours present the true
clustering of the data points.
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D.7 Alternative quantitative evaluation measures for clustering

Accuracy (ACC), Normalised Mutual Information (NMI), Rand Index (RI) and Adjusted Rand Index (ARI)
are the evaluation measures chosen to quantitatively evaluate the clustering performance of the proposed
multi-view approaches. These measures were chosen because the true annotations of the data sets are known
and together they provide a wide assessment range. Practically, clustering is often applied to data with
unknown annotations (labelling), therefore for completeness, we have further explored the implementation
of the Silhouette score for identifying the optimal tuning parameter of the manifold visualisation approaches.
The Silhouette score is a widely used measure for quantifying the clustering produced by the clustering
algorithms, or for selecting the optimal number of clusters.

Figure 20: Silhouette score on MCS. The clustering evaluation via Silhouette score is plotted against
different parameter values on all SNE, LLE and ISOMAP based algorithms.

Figure 20 presents the evaluation performance of the methods with respect to their tuning parameter when
the Silhouette score is evaluated instead of the other four measures. This figure complements Figure 7.
The Silhouette score is not always in agreement with the other evaluation measures. For example, in SNE-
based solutions, according to the Silhouette score, multi-SNE is favoured over the other methods only when
perplexity is 100. Another difference between the silhouette score and other measures is that as the perplexity
increases, multi-SNE remains stable for the other measures (for Perp ≥ 50), while its silhouette score keeps
increasing. Silhouette score measures how well the clusters are separated between them. This is conceptually
different from what the other measures quantify which is how well the proposed clusters agree with the known
clusters. It is therefore of no surprise that the findings are not always in agreement.
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D.8 Alternative clustering algorithms

For the clustering task of the samples, any clustering algorithm could have potentially been applied to the
low-dimensional embeddings produced by the multi-view visualisation approaches proposed.

Figure 21: K-means and DBSCAN on SNE-based solutions applied on handwritten digits data
set. The clustering evaluation measures are plotted against different perplexity values on multi-SNE, m-
SNE and SNEconcat. The performance of K-means and DBSCAN applied on the produced embeddings is
depicted in the first and second row of this figure, respectively

In the main body of this manuscript, the K-means algorithm was chosen due to its popularity, its strong
robust performance and because the true number of clusters is known for all data sets. In practice, the latter
is not always true, and clustering algorithms that do not require the number of clusters as a parameter input
are preferable. Density-based spatial clustering of applications with noise (DBSCAN) is an example of such
an algorithm (Ester et al., 1996). DBSCAN instead requires two other tuning parameters: the minimum
number of samples required to form a dense cluster and a threshold in determining the neighbourhood of a
sample, named ϵ.

The implementation of DBSCAN on handwritten digits, smooths the performance of SNE-based solutions
across different perplexity values (Figure 21). For all parameter values, DBSCAN performs equally well,
while the performance of K-means slightly oscillates.

A greater disagreement between the two unsupervised learning algorithms is observed in their application
to caltech7 data set (Figure 22). While the accuracy of multi-SNE by implementing K-means reduces
with higher perplexity, the opposite behaviour is observed when DBSCAN is implemented. In addition,
DBSCAN finds multi-SNE to be superior over m-SNE, while K-means concludes the opposite.

This appendix demonstrates that the implementation of clustering on the produced embeddings is not
restricted only to K-means, but alternative clustering solutions may be used. In particular, DBSCAN is a
good choice, especially when the true number of clusters is unknown.
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Figure 22: K-means and DBSCAN on SNE-based solutions applied on caltech7 data set. The
clustering evaluation measures are plotted against different perplexity values on multi-SNE, m-SNE and
SNEconcat. The performance of K-means and DBSCAN applied on the produced embeddings is depicted
in the first and second row of this figure, respectively
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E Reproducibility

The code of multi-SNE was based on the publicly available software, written by the author of t-SNE, found
in the following link:
https://lvdmaaten.github.io/tsne/

In this manuscript, all t-SNE results were obtained by running the original R implementation (https://cran.r-
project.org/web/packages/tsne/) and verified by the original Python implementation (https://lvdmaaten.
github.io/tsne/).

We refer the readers to follow the code and functions provided in the link below to reproduce the findings
of this paper. The software for m-SNE and m-LLE were not found publicly available and thus we used our
own implementation of the method that can be found in the same link below:
https://github.com/theorod93/multiView_manifoldLearning

An R package that contains the code for multi-SNE can be installed via devtools and it can be found in
https://github.com/theorod93/multiSNE

We refer the readers to follow the links provided in the main body of the paper for the public multi-view
data used in this paper.
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F Computation time

In terms of computation time, none of the multi-view manifold learning algorithms was consistently faster
than the rest (Table 9). However, multi-SNE was often the slowest algorithm, while m-SNE and multi-
ISOMAP had the fastest computation time. The SNE-based solutions are based on the original t-SNE
algorithm, as described in Appendix E.

Running time
MMDS NDS MCS Caltech7 Handwritten Digits Cancer Types

m-SNE 0.43 (0.019) 0.29 (0.07) 0.42 (0.01) 4.29 (0.54) 13.34 (3.43) 251.71 (15.68)
multi-SNE 1.07 (0.100) 0.78 (0.14) 1.02 (0.01) 15.95 (0.71) 45.76 (8.44) 252.00 (11.23)
m-LLE 0.25 (0.071) 0.40 (0.12) 0.42 (0.34) 37.5 (2.21) 26.28 (8.82) 159.52 (17.49)
multi-LLE 0.28 (0.099) 0.41 (0.15) 0.30 (0.14) 37.9 (2.57) 27.94 (5.29) 157.73 (18.19)
m-ISOMAP 0.22 (0.015) 0.57 (0.06) 0.37 (0.01) 38.07 (3.09) 29.52 (5.37) 154.83 (18.04)
multi-ISOMAP 0.24 (0.032) 0.54 (0.13) 0.33 (0.05) 21.23 (2.24) 16.77 (4.65) 85.47 (14.57)

Table 9: Averaged running time recorded in minutes. Taken for each manifold learning algorithm
on all data sets seen in this paper; standard deviation is given in parentheses. All algorithms ran on High
Performance Computing with 4 nodes.
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