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ABSTRACT

Data augmentation is a highly effective method for addressing the issue of data
scarcity in machine learning and computer vision tasks. It involves diversifying
the original data through a series of transformations to improve the robustness and
generalization ability of the model. However, due to the disorder and irregularity
of point clouds, existing methods struggle to enrich geometric diversity and main-
tain topological consistency, leading to imprecise point cloud understanding. In
this paper, we propose SinPoint, a novel method designed to preserve the topolog-
ical structure of the original point cloud through a homeomorphism. Additionally,
it utilizes the Sine function to generate smooth displacements. This simulates ob-
ject deformations, thereby producing a rich diversity of samples. Our extensive
experiments demonstrate that SinPoint consistently outperforms existing Mixup
and Deformation methods on various benchmark point cloud datasets, improving
performance for shape classification and part segmentation tasks. Specifically,
when used with PointNet++ and DGCNN, SinPoint achieves a state-of-the-art ac-
curacy of 90.2 on shape classification with the real-world ScanObjectNN dataset.
Furthermore, our method is highly versatile and scalable, and it can adapt to dif-
ferent scenarios and requirements for point cloud tasks.

1 INTRODUCTION

With the widespread application of deep learning in computer vision, the point cloud, as a cru-
cial representation of three-dimensional shapes, is gradually attracting attention from the industry
Qi et al. (2017a;b); Li et al. (2018); Thomas et al. (2019); Lin et al. (2020a); Qian et al. (2022).
Compared to traditional two-dimensional images, point clouds offer richer three-dimensional spatial
information, providing broader application prospects for areas such as autonomous driving Navarro-
Serment et al. (2010); Kidono et al. (2011); Chen et al. (2017), scene understanding Verdoja et al.
(2017); Chen et al. (2019a); Sugimura et al. (2020), and virtual reality Rusu et al. (2008); Qi et al.
(2018). However, due to the dual constraints of technology and cost, there are relatively small-scale
3D datasets with limited labels and diversity. This limitation can cause the problem of overfitting
and further affect the generalization ability of the network. Facing such challenges, effectively us-
ing limited point cloud data for better training deep learning models has been an urgent problem to
address. Recently, Data Augmentation (DA) has become a popular strategy in avoiding overfitting
and improving the generalizability of models by increasing the quantity and diversity of samples.

DA has shown significant success in handling image data. Various methods, such as Cutout De-
Vries & Taylor (2017); Zhong et al. (2020), Mixup Zhang et al. (2017), Cutmix Yun et al. (2019),
and other methods Verma et al. (2019); Yang et al. (2022), have been utilized to augment im-
ages and enhance the robustness and generalizability of models. However, unlike regular images,
point clouds are disordered and irregular, making it challenging to apply these DA methods di-
rectly to point cloud data. Some existing point cloud DA methods only focus on a single type
of operation, such as simple geometric transformations (rotation, scaling, and translation), data
perturbations (adding noise and deleting points), or hybrid operations (simulated mixtures of im-
ages Chen et al. (2020); Lee et al. (2022; 2021); Zhang et al. (2022); Ren et al. (2022); Wang
et al. (2024)). While these methods may improve data diversity to some extent, they often over-
look the point cloud’s intrinsic structure and semantic details, resulting in a loss of topological
consistency in the augmented point cloud. For instance, PointMixup Chen et al. (2020), Point-
CutMix Zhang et al. (2022), and SageMix Lee et al. (2022) all use different strategies to mix
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samples, but they do not consider the local structure of each sample. PointAugment Li et al.
(2020) relies on a learnable transformation matrix, making the outcome unpredictable. Simi-
larly, PointWOLF Kim et al. (2021) transforms local point clouds using a combination of strate-
gies, which can lead to data distortion and significant semantic deviation, as shown in Figure 1.

Figure 1: SinPoint ensures a smooth
and natural deformation process, avoid-
ing abrupt or unnatural changes. Point-
WOLF can lead to data distortion and
significant semantic deviation.

In point cloud processing, maintaining topological con-
sistency is crucial for ensuring the accuracy and perfor-
mance of the model. Studies have shown that frameworks
such as PointNet++ Qi et al. (2017b), DGCNN Wang
et al. (2019b), Point Cloud Transformer Guo et al. (2021),
and PointMLP Ma et al. (2022) can improve the embed-
ded representation of input data by using techniques like
farthest point sampling and k-nearest neighbor search.
These frameworks effectively capture the spatial structure
and contextual information of the point cloud by preserv-
ing the point cloud’s topological relationships. Further
investigation Lee et al. (2022) has revealed that when the
topology of the point cloud is destroyed, the model can-
not learn the correct representation, leading to decreased
performance. Therefore, in point cloud augmentation, it
is vital to maintain topological consistency while increas-
ing the geometric diversity of samples. However, unlike
topological consistency, which emphasizes keeping the
connections between points unchanged, geometric diver-
sity usually refers to the augmented point cloud having a wider range of shapes, sizes, and spatial
distributions than the original point cloud. In other words, geometric diversity is the representation,
while topological consistency is the essence. These two requirements can help ensure the validity
and reliability of the augmented point cloud.

This paper proposes a novel SinPoint transformation technique based on a homeomorphism Derrick
(1973) to address these issues mentioned above. SinPoint aims to preserve the topological structure
of the original point cloud by a homeomorphism Derrick (1973) and perturb the local structure
using a Sine function to simulate the deformation of objects, thereby expanding the diversity of
point clouds. We design two deformation strategies, as shown in Figure 2. One is to use a Single
Sine Function (SinPoint-SSF) with the initial phase as the origin to deform the point cloud. The
other is to use Multiple Sine Function (SinPoint-MSF), with different anchor points as the initial
phase. The sine transforms of different parameters are superimposed to obtain richer deformations.
We experimentally demonstrate that SinPoint outperforms the State-Of-The-Art (SOTA) point cloud
augmentation method on multiple datasets.

In summary, our contribution has three main aspects: 1) We propose a novel method for point cloud
DA from the viewpoint of topological consistency and geometric diversity. To the best of our knowl-
edge, this is the first work that incorporates a homeomorphism and Sine function in point cloud DA.
2) We prove that the proposed Sine-based mapping function is a homeomorphism. This can make the
local region of the point cloud produce deformed shapes without destroying the topology, thereby
enhancing the diversity of the point cloud. 3) We demonstrate the effectiveness of our framework
by showing consistent improvements over state-of-the-art augmentation methods on both synthetic
and real-world datasets in 3D shape classification and part segmentation tasks. Our extensive exper-
iments show that SinPoint improves the generalization and robustness of various models.

2 RELATED WORK

Deep learning on point cloud. PointNet Qi et al. (2017a) is a pioneering work that uses shared
MLPs to encode each point individually and aggregates all point features through global pooling.
Inspired by CNNs, PointNet++ Qi et al. (2017b) adopts a hierarchical multi-scale or weighted fea-
ture aggregation scheme to get local features. DGCNN Wang et al. (2019b) introduces EdgeConv,
which utilizes edge features from the dynamically updated graph. Additionally, various works have
focused on point-wise multi-layer perceptron Liu et al. (2020); Xu et al. (2021c); Shen et al. (2018);
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Figure 2: Some augmented samples produced by SinPoint-SSF (left) and SinPoint-MSF (right). The
color is close to pink, the deformation is more significant. The data generated by the SinPoint-SSF
object has only a single peak, while the samples from SinPoint-MSF have multiple distinct peaks.

Ma et al. (2022); Qian et al. (2022); Zhang et al. (2023), convolution Li et al. (2018); Wu et al.
(2019); Thomas et al. (2019); Lin et al. (2020a); Xu et al. (2021b); Liu et al. (2019) , and graph-
based Qi et al. (2017c); Simonovsky & Komodakis (2017); Wang et al. (2019a); Lin et al. (2020b;
2021) methods to process point clouds. These methods consistently use Conventional Data Aug-
mentation (CDA) Qi et al. (2017a;b); Wang et al. (2019b) to improve the model’s robust kernel gen-
eralization performance, but the improvement is relatively marginal. Parallel to these approaches,
other recent works Chen et al. (2020); Li et al. (2020); Lee et al. (2022; 2021); Zhang et al. (2022);
Kim et al. (2021); Ren et al. (2022); Hong et al. (2023) focus on data augmentation to improve the
generalization power of deep neural networks in point clouds.

Data augmentation on point cloud. Current point cloud augmentation methods can be divided
into two categories: self-augmentation and mix-augmentation. Self-augmentation through geomet-
ric transformation to augment the shape diversity of the point cloud. For instance, CDA Qi et al.
(2017a;b); Wang et al. (2019b) encompasses geometric transformations like rotation, scaling, trans-
lation, and jittering, alongside the addition of noise and point reduction to enhance sample diversity.
PointAugment Li et al. (2020) learn the transformation matrix with an augmentor network to pro-
duce augmentations. PointWOLF Kim et al. (2021) selects various anchor points to serve as central
points for the local point cloud’s weighted transformation, leading to smooth and varied non-rigid
deformations. Mix-augmentation uses different strategies to cut and combine two point clouds to
form a new point cloud that contains two local shapes. For example, PointMixup Chen et al. (2020)
recently used the shortest path linear interpolation between instances to augment data in the point
cloud. PointCutMix Zhang et al. (2022) benefits from CutMixup and PointMixup, and proposes cut-
ting and pasting of point cloud parts. SageMix Lee et al. (2022) proposes a saliency-guided Mixup
for point clouds to preserve salient local structures.

3 METHOD

3.1 PRELIMINARIES

Homeomorphism Derrick (1973) is an important mathematical tool used to describe the equivalence
relations between topological spaces. It keeps the proximity of points in space unchanged and makes
topological Spaces have the same topological properties. These properties make a homeomorphism
widely used in topology, geometry, physics, and other fields.

Definition 1. (Homeomorphism) Given two topological spaces X,Y , and given a mapping f :
X→Y . f is a homeomorphism of two spaces when it is satisfied that f is a bijection and f and f−1

are continuous, denoted as X ∼= Y .

Definition 2. (Local homeomorphism) Let f : X→Y is a mapping between two topological spaces
X and Y . If for every point x in X , exists a neighborhood U of x such that f(U) is an open set in
X and fU : U→f(U) is a homeomorphism, then f is a local homeomorphism.

They have similar mathematical properties, both of which require the mapping and its inverse map-
ping to be continuous and maintain the topological structure of the spaceArmstrong (2013).
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Proposition 1. (Topological consistency) If f is a homeomorphism from X to Y , then X and Y
have the same topological properties.

Proposition 2. (Reflexivity, symmetry, and transitivity) The homeomorphic relation is an equiva-
lence relation, and therefore it has reflexivity (any topological space is a homeomorphism to itself),
symmetry (if X∼=Y , then Y∼=X), and transitivity (if Y∼=Z, then X∼=Z).

Homeomorphism plays a vital role in ensuring topological consistency. First, a homeomorphism is
not only one-to-one (bijective) and continuous, but its inverse is also continuous. This guarantees the
preservation of the space topology. Second, when processing point clouds, using a homeomorphism
can ensure that the basic shape and structure of the point cloud remain unaltered after enhancement
or transformation, thus making the augmented data more consistent with the actual scene or object.

3.2 RESIDUAL FUNCTION

Inspired by the deep residual network He et al. (2016), we focus on obtaining continuous residual
coordinates and generating augmented coordinates by adding offsets to the original coordinates.
Specifically, for a given point cloud P = {p1, p2, ..., pn}, we only need to compute the residual
coordinates, represented by P

′ − P , thus the augmentation process becomes:

P
′
= P + g(P ). (1)

A homeomorphism can ensure that the original space and the deformed space have topological
consistency. Therefore, it is very important to select the appropriate residual function, which not
only gains diversity but also needs to guarantee that the whole mapping is homeomorphic.

3.3 SINPOINT

To simulate the distortion and deformation of an object, we have chosen to use the Sine function
as our residual function. The inherent periodic nature of the Sine function allows us to adjust the
number of regions that are deformed with precision. Additionally, by manipulating the amplitude
of the Sine function, we can precisely control the intensity of the deformation. This displacement
field, generated by the Sine function, effectively distorts and deforms specific local regions of the
point cloud data without altering the overall topology. As a result, the augmented point cloud data
contains more intricate and detailed local features. The standard Sine function is shown below:

g(x) = Asin(ωx+ φ), (2)

where A, ω, and φ represent the amplitude, the angular velocity (control period), and the initial
phase, respectively. The displacement field generated by Sine function is introduced into a homeo-
morphism, and a homeomorphism based on Sine function can be obtained.

Theorem 1. (Homeomorphism Based on Sine Function) Given two topological spaces X,Y , and
given a mapping f : X→Y = X + Asin(ωX + φ), if −1≤Aω≤1, then f is a homeomorphism,
else f is a local homeomorphism. (The proof is in the Appendix.)

Since f is a homeomorphism, we can use it to augment the point cloud and ensure its topological
consistency. Given a set of points P = {p1, p2, ..., pn}, where N represents the number of points
in the Euclidean space (x, y, z). SinPoint applies a homeomorphism and the resulting augmented
point cloud P

′
is given as follows:

P
′
= P +Asin(ωP + φ), (3)

where Asin(ωP + φ) is displacement field of P . We need to adjust A and ω to produce more
diverse point clouds. In this paper, we set A ∼ U(−a, a) and ω ∼ U(−w,w) to obey the uniform
distribution. In this way, more samples with smooth deformation can be generated, which makes the
distribution of samples more uniform.

As illustrated in Figure 3, the transformation of the circle by Equation (3) results in continuous local
indentations on the point cloud surface, attributable to the Sine function’s periodic nature. This
deformation technique enables the simulation of a concavity similar to that observed when an object
is indented while preserving the point cloud’s topology structure.
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Figure 3: SinPoint obtains different degrees of geometric deformation by controlling the amplitude
and angular velocity ω. In the above, only two peaks or troughs appear due to the fixed angular
velocity ω. In the following, multiple peaks or troughs occur due to the random angular velocity ω.
The darker the color, the larger the deformation.

We designed two transformation strategies for SinPoint, SinPoint-SSF based on a single sine func-
tion and SinPoint-MSF based on the superposition of multiple sine functions. Algorithm 1 is the
process of generating enhanced samples. Different strategies generate various deformation samples.
The two detailed strategies are as follows:

Algorithm 1 SinPoint
Input: Original point cloud P = {p1, p2, ..., pn}

Condition key for SinPoint-SSF or SinPoint-MSF
Anchor points number k, Amplitude a, Angular velocity ω

Output: P
′

1: if key == ”SSF”
2: Sample A ∼ U(−a, a)
3: Sample ω ∼ U(−w,w)
4: P

′ ← P +Asin(ωP )
5: else if key == ”MSF”
6: if using farthest point sampling
7: Pi ← FPS(P, k), #FPS() is farthest point sampling
8: else if using random point sampling
9: Pi ← RPS(P, k), #RPS() is random point sampling

10: end if
11: Sample Ai ∼ U(−a, a), i = 1 : k
12: Sample ωi ∼ U(−w,w), i = 1 : k

13: P
′ ← P + 1

k

∑k
i=1{Aisin(ωiP + Pi)}

14: end if
15: Return P

′

SinPoint-SSF uses a single sine function to perturb the coordinates of the point cloud. We normalize
the point cloud to the unit sphere space and take the sphere’s center as the initial phase, that is, φ = 0.
Then the SinPoint-SSF transformed point cloud can be expressed as follows:

P
′
= P +Asin(ωP ). (4)

SinPoint-MSF superposes multiple sine functions to perturb the point cloud. Multiple sinusoidal
complex waves exhibit rich waveform characteristics through diverse combinations of frequency,
amplitude and phase. SinPoint-MSF first selects k anchor points as the initial phase and samples
different amplitudes and angular velocities for additive perturbations. This provides more diversity
to the point cloud and generates realistic samples. The transformation of SinPoint-MSF as follows:

P
′
= P +

1

k

k∑
i=1

{Aisin(ωiP + φi)}, φi = Pi. (5)
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Figure 4: An overview of our SinPoint framework. We use SinPoint to get the augmented point cloud
and input it into the network with the original point cloud for training. SinPoint can be adapted for
a variety of tasks due to label consistency and topological consistency.

Our framework is shown in Figure 4. It maps the point cloud input to a feature space with topo-
logical consistency. By incorporating augmented inputs generated by SinPoint, the training process
optimizes the backbone’s parameters in a larger feature space than the baseline. During the train-
ing stage, by utilizing the same loss function as the baseline and optimizing in this new augmented
feature space, our method learns a more expressive representation that better fits the input data, lead-
ing to improved generalization. During inference, the model uses the original point cloud input to
preserve the data’s geometric structure, ensuring no disruption to geometric priors in practical ap-
plications. Our method maintains point cloud geometric and topological properties. It also extracts
more discriminative features, significantly enhancing overall model performance. Our method has
been validated on object point clouds.

4 EXPERIMENTS

In this section, we demonstrate the effectiveness of our proposed method, SinPoint, with various
benchmark datasets and baselines. First, for 3D shape classification, we evaluate the generalization
performance and robustness using SinPoint-SSF in Section 4.1. Next, we compare our SinPoint-
MSF with existing data augmentation methods in Section 4.2 for part segmentation. More ablation
studies and implementation details are provided in Appendix.

Datasets. For classification task, we use two synthetic datasets: ModelNet40 (MN40) Wu et al.
(2015) and Reduced MN40 (RMN40), and two real-world datasets from ScanObjectNN Uy et al.
(2019): OBJ ONLY and PB T50 RS. MN40 is a widely used synthetic benchmark dataset con-
taining 9840 CAD models in the training set and 2468 CAD models in the validation set, with a
total 40 classes of common object categories. RMN40 comes from PointMixup Chen et al. (2020)
and only contains 20% training samples to simulate data scarcity. ScanObjectNN is a real-world
dataset that is split into 80% for training and 20% for evaluation. Among the variants of ScanOb-
jectNN, we adopt the simplest version (OBJ ONLY) and the most challenging version (PB T50 RS).
OBJ ONLY, which has 2,309 and 581 scanned objects for the training and validation sets, respec-
tively, and PB T50 RS, which is a perturbed version with 11,416 and 2,882 scanned objects for the
training and validation sets, respectively. Both have 15 classes. We use only coordinates (x, y, z) of
1024 points for training models without additional information, such as the normal vector. For the
part segmentation task, we adopt a synthetic dataset, ShapeNetPart Yi et al. (2016), which contains
14,007 and 2,874 samples for training and validation sets. ShapeNetPart consists of 16 classes with
50 part labels. Each class has 2 to 6 parts.

Baselines. For comparison with previous studies, we use three backbone models: PointNet Qi et al.
(2017a), PointNet++ Qi et al. (2017b), and DGCNN Wang et al. (2019b). We compare SinPoint
with the model under default augmentation in Base Qi et al. (2017a;b); Wang et al. (2019b) and
eight SOTA methods. We report the performance in terms of overall accuracy. To further verify
the effectiveness of SinPoint, we add a variety of backbone networks, including RSCNN Liu et al.
(2019), PointConv Wu et al. (2019), PointCNN Li et al. (2018), GDANet Xu et al. (2021c), PCT
Guo et al. (2021) and PointMLP Ma et al. (2022).
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Table 1: 3D shape classification performance on ModelNet40 /ScanObjectNN

Model Method ModelNet40 ScanObjectNN
MN40 ReducedMN40 OBJ ONLY PB T50 RS

PointNet

Base 89.2 81.9 76.1 64.1
+PointMixup 89.9 83.4 - -
+RSMix 88.7 - - -
+SageMix 90.3 - 79.5 66.1
+PointCutMix 90.5 - - -
+PointAugment 90.9 84.1 74.4 57.0
+PatchAugment 90.9 - - -
+PointWOLF 91.1 85.7 78.7 67.1
+WOLFMix 90.7 - - -
+PCSalMix 90.5 - - -
+PointPatchMix 90.1 - - -
+SinPoint(Ours) 91.3 (↑ 2.1) 86.5 (↑ 4.6) 82.6 (↑ 6.5) 70.8 (↑ 6.7)

PointNet++

Base 90.7 85.9 84.3 79.4
+PointMixup 92.3 88.6 88.5 80.6
+RSMix 91.6 - - -
+SageMix 93.3 - 88.7 83.7
+PointCutMix 93.4 - - -
+PointAugment 92.9 87.0 85.4 77.9
+PatchAugment 92.4 - 87.1 81.0
+PointWOLF 93.2 88.7 89.7 84.1
+WOLFMix 93.1 - - -
+PCSalMix 93.1 - - -
+PointPatchMix 92.9 - - -
+SinPoint(Ours) 93.4 (↑ 2.7) 89.6 (↑ 3.7) 90.2 (↑ 5.9) 84.5 (↑ 5.1)

DGCNN

Base 92.2 87.5 86.2 77.3
+PointMixup 92.9 89.0 - -
+RSMix 93.5 - - -
+SageMix 93.6 - 88.0 83.6
+PointCutMix 93.2 - - -
+PointAugment 93.4 88.3 83.1 76.8
+PatchAugment 93.1 - 86.9 79.1
+PointWOLF 93.2 89.3 88.8 81.6
+WOLFMix 93.2 - - -
+PCSalMix 93.2 - - -
+SinPoint(Ours) 93.7 (↑ 1.5) 90.1 (↑ 2.6) 90.2 (↑ 4.0) 84.6 (↑ 7.3)

Table 2: 3D shape classification performance in various architectures on ModelNet40.
Model PointNet PointNet++ DGCNN RSCNN PointConv PointCNN GDANet PCT PointMLP
Param. - 1.4M 1.8M - 18.6M - - 2.8M 12.6M

Base 89.2 90.7 92.2 91.7 92.5 92.5 93.4 93.2 94.1
+SinPoint 91.3 (↑ 2.1) 93.4 (↑ 2.7) 93.7 (↑ 1.5) 92.9 (↑ 1.2) 92.8 (↑ 0.3) 93.2 (↑ 0.7) 93.6 (↑ 0.2) 93.5 (↑ 0.3) 94.3 (↑ 0.2)

4.1 3D SHAPE CLASSIFICATION

Comparisons with SOTA Methods. Experimental results of 3D shape classification are shown in
Table 1. We report the Overall Accuracy (OA) of each model on all four datasets. From the results,
we can clearly see that our SinPoint significantly outperforms all of the previous methods in every
dataset and model. Particularly, the average OA improvement on the synthetic datasets is 2.6%, and
the average OA improvement on the real-world datasets is even 5.9%, and the maximum improve-
ment was DGCNN reaching 7.3% in PB T50 RS. It proves that our SinPoint is more efficient on
real data sets. These consistent improvements demonstrate the effectiveness of our framework.

3D shape classification performance under Various Network Backbones. The effectiveness of
SinPoint is further validated across a variety of network architectures in ModelNet40 Wu et al.
(2015) and ScanObjectNN Uy et al. (2019), including PointNet Qi et al. (2017a), PointNet++ Qi

7
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et al. (2017b), DGCNN Wang et al. (2019b), RSCNN Liu et al. (2019), PointConv Wu et al. (2019),
PointCNN Li et al. (2018), GDANet Xu et al. (2021c), PCT Guo et al. (2021) and PointMLP Ma
et al. (2022), PointNeXt-S Qian et al. (2022), PointMetaBase-S Lin et al. (2023), SPoTr Park et al.
(2023). From Table 2, we observe that SinPoint has a consistent improvement of accuracy against
the baselines (+0.2∼2.7%). Notably, using the basic PointNet++ and DGCNN, we can surpass the
Transformer-based baseline PCT while reducing the parameters by half. This reduction compen-
sates for the parameter deficiency in the network through data augmentation alone. Surprisingly,
DGCNN+SinPoint is only 0.4% lower than PointMLP, but the parameters are 7 times lower. Table
3 compares some of the latest backbone networks.

Table 3: 3D shape classification performance in various architectures on PB T50 RS

Model PointMLP PointNeXt-S PointMetaBase-S SPoTr
ICLR 2022 NeurIPS 2022 CVPR 2023 CVPR 2023

Base 85.7 87.7 88.2 88.6
+SinPoint(Ours) 87.5(+1.8) 88.9(+1.2) 89.3(+1.1) 89.5(+0.9)

Table 4: Robustness with DGCNN Wang et al. (2019b) on OBJ ONLY Uy et al. (2019)

Method Gaussian noise Rotation 180o Scaling Dropout
σ:0.01 σ:0.05 X-axis Z-axis ×0.6 ×2.0 25% 50%

DGCNN 84.9 48.4 32.5 32.4 73.7 73.0 83.3 75.7
+ PointMixup 85.0 61.3 31.7 32.7 73.8 73.0 84.2 74.9
+ RSMix 84.2 49.1 32.7 32.6 75.0 74.5 84.0 73.6
+ SageMix 85.7 51.2 36.5 37.9 75.6 75.2 84.9 79.0
+ SinPoint 85.9 61.5 38.6 44.1 76.1 75.6 85.1 79.5

Robustness. Additional studies demonstrate our SinPoint improves the robustness of models against
previous methods Chen et al. (2020); Lee et al. (2021; 2022) on four types of corruption: (1) Gaus-
sian noise with (σ ∈ (0.01, 0.05), (2) Rotation 180o (X-axis,Z-axis), (3) Scaling with a factor in
0.6, 2.0, and (4) Dropout with a rate r ∈ {0.25, 0.50}. We adopt DGCNN and OBJ ONLY to
evaluate the robustness of models. As shown in Table 4, SinPoint consistently improves robust-
ness in various corruptions. DGCNN with SinPoint shows the best robustness with significant gains
compared to previous methods. Importantly, the gain over the baseline significantly increases as the
amount of corruption increases: 13.1% for Gaussian noise (σ : 0.05), 11.7% for Rotation 180° (Z-
axis), 2.6% for Scaling in 2.0, and 3.8% for Dropout (r = 0.5). We believe that the diverse samples
augmented by a homeomorphism in SinPoint help models to learn more robust features against both
‘local’ and ‘global’ corruptions.

Table 5: Ablation study of SinPoint on ModelNet40 Wu et al. (2015). Mix: mixed training samples.
DGCNN CDA Drop SinPoint(Ours) Mix(Ours) OA Inc.↑
A 91.7 -
B ✓ 92.2 0.5
C ✓ ✓ 92.7 1.0
D ✓ 92.9 1.2
E ✓ ✓ 93.2 1.5
F ✓ ✓ ✓ 93.4 1.7
G ✓ ✓ ✓ ✓ 93.7 2.0

Ablation study of modules. Table 5 summarizes the results of the ablation study on DGCNN.
Model A gives a baseline classification accuracy of 91.7%. On top of Model A, we use a combina-
tion of different augmentors. From the results shown in Table 5, we can see that each augmentation
function contributes to producing more effective augmented samples. It is worth noting that when
only SinPoint is used, the results already surpass A, B, and C, while using a mixture of original and
augmented samples can again improve the generalization performance of DGCNN. Moreover, when
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using more modules, the model’s generalization ability is further improved to 93.7%, an improve-
ment of 2.0% over the vanilla.

4.2 3D SHAPE PART SEGMENTATION

Figure 5: 3D part segmentation experiment
visualization results.

SinPoint can also be generalized to other 3D point
cloud tasks due to its geometric consistency and la-
bel consistency. We first construct SinPoint-SSF
and SinPoint-MSF following the optimal parame-
ter settings in the classification task. Next, we test
SinPoint for 3D shape part segmentation task on
the ShapeNetPart Yi et al. (2016) benchmark. We
follow the settings from PointNet, PointNet++ and
DGCNN that randomly select 2048 points as input
for a fair comparison. We compare our methods with
several recent methods, including PointMixup Chen
et al. (2020), RSMix Lee et al. (2021), SageMix Lee
et al. (2022) and PointWOLF Kim et al. (2021). Ta-
ble 7 shows that on ShapeNetPart, SinPoint-MSF
consistently improves mean IoU (mIoU) over base-
lines (0.9% over PointNet, 1.0% over PointNet++
and 0.7% over DGCNN), demonstrating the appli-
cability of SinPoint-MSF to point-wise tasks. Notably, SinPoint-MSF has optimal performance in
most shapes. It also proves that SinPoint-MSF with more local deformations is effective in part
segmentation. Furthermore, Table 6 presents comparative results with state-of-the-art methods, and
in the Appendix, we offer comparisons against a variety baseline models, where our SinPoint con-
sistently outperforms others. Finally, in Figure 5, we present the visualization results for Sinpoint
and baseline.

Table 6: Overall mean Inter-over-Union (mIoU) on ShapeNetPart Yi et al. (2016).
Method mIoU aero bag cap car chair aer guitar knife lamp laptop motor mug pistol rocket skate table

PointNet 83.5 81.8 74.7 80.2 71.9 89.6 71.5 90.3 84.9 79.5 95.2 65.2 91.1 81.1 55.1 72.8 82.2
+PointWOLF 83.8 82.5 73.3 78.8 73.2 89.6 72.2 91.2 86.2 79.7 95.2 64.6 92.5 80.2 56.6 73.1 82.2
+SinPoint-SSF 84.3 82.6 79.8 80.5 77.9 89.4 70.2 91.4 86.6 79.2 95.6 67.6 93.9 82.7 54.6 80.5 82.7
+SinPoint-MSF 84.4 82.4 81.0 84.1 77.3 89.6 70.1 91.4 86.9 79.4 95.6 67.6 93.6 82.9 54.5 81.5 82.8
PointNet++ 84.8 81.9 83.4 86.4 78.6 90.5 64.7 91.4 83.1 83.4 95.1 69.6 94.7 82.8 56.9 76.0 82.3
+PointWOLF 85.2 82.0 83.9 87.3 77.6 90.6 78.4 91.1 87.6 84.7 95.2 62.0 94.5 81.3 62.5 75.7 83.2
+SinPoint-SSF 85.7 83.2 82.3 89.0 79.2 91.0 81.1 91.2 88.4 84.2 95.9 70.2 95.6 82.3 62.8 75.5 83.1
+SinPoint-MSF 85.8 83.1 80.1 87.3 79.1 91.1 77.4 91.1 88.1 85.1 95.6 72.8 95.4 81.8 60.7 75.8 83.4
DGCNN 84.8 82.2 75.1 81.3 78.2 90.6 73.6 90.8 87.8 84.4 95.6 57.8 92.8 80.6 51.5 73.9 82.8
+PointWOLF 85.2 82.9 73.3 83.5 76.7 90.8 76.7 91.4 89.2 85.2 95.8 53.7 94.0 80.1 54.9 74.3 83.4
+SinPoint-SSF 85.3 82.5 84.7 86.3 77.5 90.5 76.8 91.0 88.5 85.2 95.0 61.0 94.8 83.1 62.6 74.9 83.2
+SinPoint-MSF 85.5 83.1 86.3 87.0 78.9 90.7 74.3 91.2 87.8 85.9 95.5 62.6 94.6 82.0 61.3 74.0 83.1

Table 7: Complete part segmentation results (mIoU) on ShapeNetPart Yi et al. (2016).
Model Base +CDA +PointMixup +RSMix +SageMix +PointWOLF +SinPoint(Ours)
PointNet++ 84.8 85.1 85.5 85.4 85.7 85.2 85.8 (↑ 1.0)
DGCNN 84.8 85.0 85.3 85.2 85.4 85.2 85.5 (↑ 0.7)

5 CONCLUSION

We propose SinPoint, a novel data augmentation based a homeomorphism for Point Clouds that
deforms point clouds by Sine functions while maintaining topological consistency. We only need to
adjust the amplitude and frequency of the Sine function to generate a diverse and realistic sample
with smoothly varying deformations, which brings significant improvements to point cloud tasks
across several datasets. In the end, we conducted extensive experiments and demonstrated how Sin-
Point improves the performance of three representative networks on multiple datasets. Our findings
show that the augmentations we produce are visually realistic and beneficial to the models, further
validating the importance of our approach to understanding the local structure of point clouds.

9
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A APPENDIX

In this Appendix, we provide detailed discussions and experimental results. They include: 1) Imple-
mentation details of SinPoint, 2) Proof of Theorem 1: a homeomorphism Based on Sine Function;
and 3) Additional ablation studies and analyses.

B A IMPLEMENTATION DETAIL

We conduct experiments using Python and PyTorch with two NVIDIA TITAN RTX for point clouds.
Following the original configuration in Qi et al. (2017a;b); Wang et al. (2019b), we use the SGD
optimizer with an initial learning rate of 10−1 and weight decay of 10−3 for PointNet Qi et al.
(2017a) and PointNet++ Qi et al. (2017b) and SGD with an initial learning rate of 10−2 and weight
decay of 10−4 for DGCNN Wang et al. (2019b). We train models with a batch size of 32 for 300
epochs. For a fair comparison with previous works Chen et al. (2020); Zhang et al. (2022), we also
adopt conventional data augmentations with our framework (i.e., scaling and shifting for MN40 Wu
et al. (2015) and rotation and jittering for ScanObjectNN Uy et al. (2019)). For hyperparameters of
SinPoint-SSF and SinPoint-MSF, we opt A = 0.6, w = 2.5, k = 4 in the entire experiment.

C PROOF

Theorem 1. (Homeomorphism Based on Sine Function) Given two topological spaces X,Y , and
given a mapping f : X→Y = X + Asin(ωX + φ), if −1≤Aω≤1, then f is a homeomorphism,
else f is a local homeomorphism.

1) Proof: if −1≤Aω≤1, then f is a homeomorphism

Step 1: Continuous

Let g(x) = x, h(x) = Asin(ωx + φ), x ∈ R. Since g(x) = x is a continuous function and
h(x) = Asin(ωx+φ) is also a continuous function, then f(x) = g(x)+h(x) = x+Asin(ωx+φ)
must be a continuous function.

Step 2: Bijective

Let f(x) = x+Asin(ωx+ φ), x ∈ R. Then f
′
(x) = 1 +Aωcos(ωx+ φ), x ∈ R.

Since Aωcos(ωx+ φ) ∈ [−Aω,Aω]. Next f
′
(x) ∈ [1−Aω, 1 +Aω].

Let f
′
(x) > 0 => 1 +Aωcos(ωx+ φ) > 0 => 1−Aω > 0 => Aω < 1.

Let f
′
(x) < 0 => 1 +Aωcos(ωx+ φ) < 0 => 1 +Aω < 0 => Aω > −1.

As −1 ≤ Aω ≤ 1, f is a monotone function. In this case, ∀Aω ∈ [−1, 1],∃f−1 is f

In this case, ∀Aω ∈ [−1, 1], f must be invertible, and the inverse function of f is f−1.

Thus, f is bijective if and only if −1 ≤ Aω ≤ 1.

Finally, when −1 ≤ Aω ≤ 1, then f : X→Y = X +Asin(ωX + φ) is a homeomorphism.

2) Proof: if Aω∈R, then f is a local homeomorphism

as we konw, h(x) = Asin(ωx+ φ), x ∈ R is a periodic function. where T = 2kπ
ω .

Let 2kπ − pi
2 ≤ ωx + φ ≤ 2kπ + pi

2 , k ∈ Z, then 2kπ− pi
2 −φ

ω ≤ x ≤ 2kπ+ pi
2 −φ

ω , now f is strictly
increasing.

Let 2kπ + pi
2 ≤ ωx+ φ ≤ 2kπ + 3pi

2 , k ∈ Z, then 2kπ+ pi
2 −φ

ω ≤ x ≤ 2kπ+ 3pi
2 −φ

ω , now f is strictly
decreasing.

Thus, when Aω∈R, ∀u ∈ R,∃U such that fU is monotone and f is a local homeomorphism.
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D ANALYSIS

D.1 DETAILED ANALYSIS OF HOW OUR METHOD AFFECTS PART BOUNDARIES

As Sard’s Theorem stated, when the mapping is smooth and under the condition of general position,
the set of points with zero Jacobian determinant will have the property of measure zero, but in
practice, the frequently changing sign of the determinant may still lead to the folding phenomenon.
Below we carefully analyze how our method affects part boundaries.

Given the mapping P ′ = P +Asin(ωP +ϕ), we can see it as a transformation from P to P ′, where
P = (x, y, z) and P ′ = (x′, y′, z′) denote points in 3D space.

Calculate the Jacobian.

Set:
g(P ) = Asin(ωP + ϕ). (6)

So the transformation can be written as follows:

P ′ = P + g(P ). (7)

To calculate the Jacobian JP ′(P ) of this transformation, we need to take the derivatives with respect
to the components of P ′ with respect to P separately.

1 Write the component forms of P ′ Suppose each component form is as follows:

x′ = x+Axsin(ωxx+ ϕx). (8)

y′ = y +Aysin(ωyy + ϕy). (9)

z′ = z +Azsin(ωzz + ϕz). (10)

Thus, P ′ = (x′, y′, z′) is obtained by adding P = (x, y, z) to the sine transform of the components.

2 Calculate the elements of the Jacobian matrix.

The Jacobian matrix JP ′(P ) is of the form:

JP ′(P ) =


∂x′
∂x

∂x′
∂y

∂x′
∂z

∂y′

∂x

∂y′

∂y

∂y′

∂z
∂z′
∂x

∂z′
∂y

∂z′
∂z

 (11)

Since x′ depends only on x, y′ depends only on y, and z′ depends only on z, the partial derivative
matrix is a diagonal matrix.

Diagonal elements are computed:

1) For ∂x′
∂x

:
∂x′

∂x
= 1 +Axωxcos(ωxx+ ϕx) (12)

2) For ∂y′

∂y
:

∂y′

∂y
= 1 +Ayωycos(ωyy + ϕy) (13)

3) For ∂z′
∂z

:
∂x′

∂z
= 1 +Azωzcos(ωzz + ϕz) (14)

So the Jacobian matrix is as follows:

JP ′(P ) =

[
1 +Axωxcos(ωxx+ ϕx) 0 0

0 1 +Ayωycos(ωyy + ϕy) 0
0 0 1 +Azωzcos(ωzz + ϕz)

]
(15)
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The determinant of this Jacobian is:

det(JP ′(P )) = (1 +Axωxcos(ωxx+ ϕx)) · (1 +Ayωycos(ωyy + ϕy)) · (1 +Azωzcos(ωzz + ϕz)). (16)

According to Sard’s Theorem:

If det(JP ′(P )) > 0, the map is orientation-preserving near that point, that is, no direction flip occurs
locally.

If det(JP ′(P )) < 0, the map is orientation-reversing near that point, that is, the local direction has
been flipped.

Thus:

When |Aw| < 1, det(JP ′(P )) > 0, not affect the part boundaries.

When |Aw| > 1, that is, |A| and |w| are large and in the same direction, the determinant may change
sign in different regions, which means that the mapping may alternately hold or flip directions in
different regions. At this time, the determinant of some regions approaches zero or becomes nega-
tive, which may cause the points in local regions to be compressed or collapsed, affecting the part
boundaries. In addition, the degree of specific influence on the boundary is also affected by the
parameter. When the parameter value does not change much, this influence can be ignored.

As shown in Figure 6, selecting too large a parameter can result in folding, which may affect part
boundaries. Therefore, in order to ensure topological consistency and no drastic folding occurs, we
choose an appropriate A and w. As in the ablation experiments in Tables 9 and 10, we finally choose
w = 2.5 and A = 0.6. The model achieves better performance at this time, which means that slight
folding is beneficial to the model. However, the above situation does not affect label consistency.

D.2 DETAILED ANALYSIS OF LABEL CONSISTENCY

1) One-to-one mapping between point clouds and labels.

Given point cloud P = (p1, p2, ..., pn). Each point pi has a corresponding label li. So you can get a
one-to-one correspondence:

p1 → l1, p2 → l2, ..., pn → ln. (17)

This means that for each point pi, it has a corresponding label li, which is associated with the
geometric position of the point.

2) Definition of homeomorphic mapping.

A homeomorphic map f(x) is a map that preserves topology and changes the positions of points but
not the relative relations between them.

If we deform the point cloud by the homeomorphic mapping f(P ), then the new point cloud P ′ is:

P ′ = P + f(P ). (18)

Therefore, each point position of the new point cloud P ′ is p′i = pi + f(pi), that is, each point pi
moves to the new position p′i by mapping f(x).

3) Label consistency.

Since the homeomorphic mapping one-to-one correspondence of points in the point cloud, the index
and label of each point are kept consistent after the point cloud is deformed. In other words, the
label li corresponding to the deformed position p′i does not change. We can obtain the following
relationship:

p′1 → p1 → l1, p
′
2 → p2 → l2, ..., p

′
n → pn → ln. (19)

Thus:
p′1 → l1, p

′
2 → l2, ..., p

′
n → ln. (20)

This means that in the deformed point cloud P ′, the label of each point p′i remains the same as the
label of pi in the original point cloud P .
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E ADDITIONAL EXPERIMENTS

E.1 MEAN AND STANDARD DEVIATION

Performance oscillation is an essential issue in point cloud benchmarks. However, for a fair com-
parison with the numbers reported in PointMixup Chen et al. (2020) RSMix Lee et al. (2021), and
SageMix Lee et al. (2022), we followed the prevalent evaluation metric in point clouds, which re-
ports the best validation accuracy. Apart from this, to make the experiment fair, like SageMix, we
provide the additional results with five runs on OBJ ONLY Uy et al. (2019) and report the mean and
variance of our method, and the experimental results are shown in Table 8.

Table 8: Mean and standard deviation measures on OBJ ONLY

Method Model
PointNet PointNet++ DGCNN

Base 78.56±0.51 86.14±0.39 85.72±0.44
+PointMixup 78.88±0.28 87.50±0.26 86.26±0.34
+RSMix 77.60±0.56 87.30±0.65 85.88±0.59
+SageMix 79.14±0.30 88.42±0.26 87.32±0.53
+SinPoint(Ours) 82.21±0.36 89.83±0.35 88.64±0.55

E.2 ABLATION STUDIES AND ANALYSES

Ablation study of angular velocity ω. We also share the quantitative analysis of the ω with DGCNN
and OBJ ONLY in Table 9. We observed that SinPoint, with a wide range of ω (2.5 to 4.5), consis-
tently outperforms PointWOLF 88.8%. At the same time, all cases exceeded the base 86.2%. This
shows that the network can learn more representative features after deformation.

Table 9: Ablation study of angular velocity ω.
w 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 7.5 10.0

Rnad 88.468 88.812 88.640 88.985 90.189 89.329 89.329 88.985 88.985 88.640 89.296 88.124
Fixed 87.673 86.403 86.747 85.714 85.714 86.747 86.403 86.231 86.919 87.091 86.059 86.059

Ablation study of amplitude A. The amplitude A of the Sine function controls the degree of de-
formation in SinPoint. As shown in Table 10, the larger the A, the larger the deformation. However,
as shown in Figure 6, too large deformation will lead to the loss of local geometric information.
Therefore, we need proper deformation.

Figure 6: Visualization of ablation results for different parameters of SinPoint.

Ablation study of anchor points k in SinPoint-MSF. As can be seen from Table 11, when anchor
points k = 4, the performance reaches 89.845%, but in SinPoint-SSF, the classification performance
can reach 90.189%. Although the SinPoint-MSF is effective, exceeding the baseline by 3.6%, the
SinPoint-SSF is the best in the classification task. We further verify the performance difference
between SinPoint-SSF and SinPoint-MSF in the classification experiment, as shown in Table 12,
and we find that SSF performs better.

Ablation study of amplitude (A) and angular velocity ω sampling. We explore the effectiveness
of amplitude A and angular velocity ω sampling. Table 13 shows the results with various sampling
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Table 10: Ablation study of amplitude A.
A 0.2 0.4 0.6 0.8 1.0

OA (%) 88.985 88.812 90.189 89.329 88.985
mAcc (%) 87.811 87.663 89.045 88.642 88.303

Table 11: Ablation study of anchor points k in SinPoint-MSF.
k 1 2 3 4 5 6

RPS 88.985 89.535 89.315 89.845 88.468 89.329
FPS 88.812 88.985 88.812 89.329 88.315 88.985

methods for amplitude A and angular velocity ω. Uniform and Gaussian sampling introduce +3.9%
and 2.8% gains over base DGCNN. The OA with Uniform sampling is 2.1% higher than Gaus-
sian sampling, which means that uniform sampling leads to greater diversity and maximizes model
performance.

3D part segmentation performance under Various Baselines. The effectiveness of SinPoint is
further validated across a variety of network architectures in ShapeNetPart Yi et al. (2016), including
PointNet Qi et al. (2017a), PointNet++ Qi et al. (2017b), DGCNN Wang et al. (2019b), CurveNet
Xiang et al. (2021), 3DGCN Lin et al. (2021), GDANet Xu et al. (2021c), PointMLP Ma et al.
(2022), SPoTr Park et al. (2023), PointMetaBase Lin et al. (2023) and DeLA Chen et al. (2023).
Table 14 shows that SinPoint has a consistent improvement of mean Inter-over-Union (mIoU) over
the baselines (+0.1∼1.0%).

Performance on scene segmentation. We added additional experiments to the S3DIS Armeni et al.
(2016) and SemanticKITTI Behley et al. (2019) datasets. As shown in Table 15, our SinPoint is still
able to improve MinkNet Choy et al. (2019) performance.

E.3 VISUALIZATION

Convergence analysis. As shown in Figure 7, our SinPoint demonstrates faster convergence during
the training phase and achieves higher accuracy than the baseline. Consistent performance improve-
ment is achieved under various parameter Settings.

Figure 7: Convergence curve during the model training phase. Our SinPoint has a faster convergence
speed and higher convergence accuracy than the baseline.

Training efficiency. As shown in Table 16, Our SinPoint achieves the best performance while
reducing the time per training epoch. Notably, the training time is reduced by 10 times compared to
PointAugment, 6 times compared to SageMix, and 2 times compared to PointWOLF.
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Table 12: Ablation study of SinPoint-SSF and SinPoint-MSF on ScanObjectNN.
Method SinPoint-SSF SinPoint-MSF

OA 89.845 90.189

Table 13: Ablation study on amplitude A and angular velocity ω sampling.
OA mAcc

base 85.829±0.296 83.375±0.395
Uniform 89.759±0.431 88.636±0.445
Gaussian 87.607±0.344 85.494±0.409

Qualitative results of SinPoint. In Figure 8, we give a visualization of more augmented samples.
In Figure 9, we present an augmented sample visualization comparison between SinPoint-SSF and
SinPoint-MSF.

Figure 8: Augmented point clouds using SinPoint. In each row, the left-most sample is the original,
and the remaining samples are its transformed results.

Qualitative results compare SinPoint with PointWOLF. We compare our SinPoint with Point-
WOLF in geometric diversity and topological consistency of point clouds. As can be seen from
Figure 10, our SinPoint is entirely superior to PointWOLF and does not require AugTune Kim et al.
(2021). The results generated by our SinPoint are more in line with the real world. On the contrary,
many of the results generated by PointWOLF are out of the reality.

E.4 DISCUSSION AND FUTURE WORK

In the future, we will apply SinPoint to more tasks, such as feature space augmentation, few-shot
learning Liu et al. (2019); Qi et al. (2017a), semantic segmentation Chen et al. (2019b); Xu et al.
(2021a); Wang et al. (2019a), object detection Taha et al. (2020); Zhao et al. (2021); Sugimura et al.
(2020), etc. It is worth noting, however, that different tasks require different considerations. For
example, in few-shot learning, SinPoint maximizes the diversity of training data when samples are
extremely scarce. For object detection, SinPoint can generate richer 3D transformations for various
object instances in a 3D scene, and so on. Therefore, SinPoint will be easily extended to other tasks.
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Table 14: Part segmentation performance in various architectures on ShapeNetPart Yi et al. (2016).
The proposed SinPoint shows consistent improvements over baselines.

Model PointNet PointNet++ DGCNN CurveNet 3DGCN GDANet PointMLP SPoTr PointMetaBase DeLA

Base 83.5 84.8 84.8 86.6 86.4 86.1 85.8 87.0 86.9 87.0
+SinPoint 84.4 (↑ 0.9) 85.8 (↑ 1.0) 85.5 (↑ 0.7) 86.8 (↑ 0.2) 86.6 (↑ 0.2) 86.2 (↑ 0.1) 86.1 (↑ 0.3) 87.2 (↑ 0.2) 87.3 (↑ 0.4) 87.4 (↑ 0.4)

Table 15: SinPoint on S3DIS and SemanticKITTI.
Method S3DIS (mIoU) SemanticKITTI (mIoU)

MinkNet 64.8 55.9
+SinPoint (Ours) 65.4(+0.6) 63.5(+7.6)

F COMPARE TO OTHER METHODS

F.1 CONVENTIONAL DATA AUGMENTATION

A Conventional Data Augmentation (CDA) Qi et al. (2017a;b); Wang et al. (2019b) for point clouds
applies a global similarity transformation (e.g., scaling, rotation, and translation) and point-wise
jittering. Given a set of points P = {pi|i = 1, 2, ..., N}, where N represents the number of points
in the Euclidean space (x, y, z). The augmented point cloud P

′
is given as follows:

P
′
= SRP +B. (21)

where S > 0 is a scaling factor, R is a 3D rotation matrix, and B ∈ RN×3 is a translation matrix
with global translation and point-wise jittering. Typically, R is an extrinsic rotation parameterized
by a uniformly drawn Euler angle for the up-axis orientation. Scaling and translation factors are
uniformly drawn from an interval, and point-wise jittering vectors are sampled from a truncated
Gaussian distribution.

Obviously, when B does not exist, CDA is a rigid transformation, and when B exists, CDA is simply
a similarity transformation with jitter. Thus, CDA cannot simulate diverse shapes and deformable
objects, and the enhanced sample has poor diversity.

F.2 MIX-AUGMENTATION

Several works Chen et al. (2020); Lee et al. (2021) tried to leverage the Mixup in point cloud.
PointMixup linearly interpolates two point clouds by

P
′
= {λpαi + (1− λ)pβϕ∗(i)}

n
i , y

′
= λyα + (1− λ)yβ . (22)

ϕ∗ = argmin
ϕ∈Φ

n∑
i=1

∥pαi + pβϕ(i)∥2 (23)

where P t = {pt1, ..., ptn} is the set of points with t ∈ {α, β}, n is the number of points, and
ϕ∗ : {1, ..., n} → {1, ..., n} is the optimal bijective assignment between two point clouds. In
RSMix Lee et al. (2021), they generate an augmented sample by merging the subsets of two objects,
defined as P

′
= (Pα − Sα)∪Sβ→α, where St⊂P t t is the rigid subset and Sβ→α denotes Sβ

translated to the center of Sα. SageMix sequentially selects the query point based on the saliency
scores to improve the above method.

Table 16: Comparisons of the training efficiency on ModelNet40 using PointNet.
Method PointAugment SageMix PointWOLF SinPoint (Ours)

OA (%) 74.4 79.5 78.7 82.6
Time (sec) 84 51 15 8
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Figure 9: Visualization comparison of our SinPoint. The left is SinPoint-SSF, right is SinPoint-MSF.
SinPoint-MSF can produce varying degrees of local deformation in different regions.

Figure 10: Visualization comparison of our SinPoint with PointWOLF. The top original point cloud,
each shape left is SinPoint, right is PointWOLF. The samples generated by our SinPoint are more
diverse and realistic.

Although these methods have shown that Mixup is effective for point clouds, some limitations have
remained unresolved: loss of original structures, discontinuity at the boundary, and loss of discrimi-
native regions. Therefore, although the method based on mixup can increase the diversity of samples
by mixup different samples, it destroys the point cloud structure.
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F.3 SELF-AUGMENTATION

A representative method is PointWOLF. PointWOLF generates deformation for point clouds by a
convex combination of multiple transformations with smoothly varying weights. PointWOLF first
selects several anchor points and locates random local transformations (e.g., similarity transforma-
tions) at the anchor points. Based on the distance from a point in the input to the anchor points,
PointWOLF differentially applies the local transformations. The smoothly varying weights based
on the distance to the anchor points allow spatially continuous augmentation and generate realistic
samples. Given an anchor point pAj ∈ PA. the local transformation for an input point pAj ∈ Pi can
be written as:

pji = SjRj(pi − pAj ) +Bj + pAj . (24)

where Rj , Sj and Bj are rotation matrix, scaling matrix and translation vector bj respectively
which specifically correspond to pAj . S is a diagonal matrix with three positive real values, i.e.,
S = diag(sx, sy, sz) to allow different scaling factors for different axes.

Due to the local rotation and translation, the local separation from the main body will cause the
topological structure of the point cloud to change, so PointWOLF is not a homeomorphism and
cannot guarantee the topological consistency.

Meanwhile, AugTune is also required due to the poor performance of the PointWOLF direct trans-
form. For N points and M anchor points, the time complexity of PointWOLF is O(MN) +O(N).
However, our SinPoint can produce realistic augmented data without interpolation, and our SinPoint
time complexity is only O(N)/O(MN), which can reduce the amount of computation.
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