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ABSTRACT

Existing video denoising methods typically assume noisy videos are degraded from
clean videos by adding Gaussian noise. However, deep models trained on such
a degradation assumption will inevitably give rise to poor performance for real
videos due to degradation mismatch. Although some studies attempt to train deep
models on noisy and noise-free video pairs captured by cameras, such models can
only work well for specific cameras and do not generalize well for other videos. In
this paper, we propose to lift this limitation and focus on the problem of general
real video denoising with the aim to generalize well on unseen real-world videos.
We tackle this problem by firstly investigating the common behaviors of video
noises and observing two important characteristics: 1) downscaling helps to reduce
the noise level in spatial space and 2) the information from the adjacent frames
help to remove the noise of current frame in temporal space. Motivated by theses
two observations, we propose a multi-scale recurrent architecture by making full
use of the above two characteristics. Secondly, we propose a synthetic real noise
degradation model by randomly shuffling different noise types to train the denoising
model. With a synthesized and enriched degradation space, our degradation model
can help to bridge the distribution gap between training data and real-world data.
Extensive experiments demonstrate that our proposed method achieves the state-of-
the-art performance and better generalization ability than existing methods on both
synthetic Gaussian denoising and practical real video denoising. The codes will be
made publicly available.

1 INTRODUCTION

Video denoising, with the aim of reducing the noise from a video to recover a clean video, has
drawn increasing attention in low-level computer vision community (Tassano et al., 2019; 2020;
Vaksman et al., 2021a; Davy et al., 2018; Chan et al., 2022c; Lee et al., 2021; Maggioni et al., 2021;
Huang et al., 2022). Compared with image denoising, video denoising remains large underexplored
domain. With the advance of deep learning (Ren et al., 2021; Zheng et al., 2021; Zamir et al., 2021),
deep neural networks (DNNs) (Vaksman et al., 2021a; Tassano et al., 2020; Sheth et al., 2021) have
become the dominant approach for video denoising. To push the envelope of video denoising, existing
DNNs-based methods mainly focus on two directions with the some assumptions.

Firstly, a line of studies (Tassano et al., 2019; 2020) assume noisy videos are the addition of white
Gaussian noises (AWGN) to clean videos. These methods perform well when tested on videos with
the same degradation setting. However, their performance would deteriorates significantly when
tested on videos corrupted by other types of noises (e.g., video compression noise and camera sensor
noise) due to the noise distribution mismatch (Zhang et al., 2022). To handle these noises, it is
impractical to train multiple models. Moreover, noises in real-world videos are even more complex.
Nevertheless, it is fair and necessary to train with AWGN and evaluate the effectiveness of different
denoising methods in this simplified setup as a start point.

Secondly, to relieve the degradation mismatch between synthetic training data and real videos, the
other line of work (Claus & van Gemert, 2019) proposed to capture noisy-clean video pairs for
training. However, the video capturing and alignment process is time-consuming and expensive,
which limits the potential size of such datasets. Another important limitation is that the training
data is often captured by one specific camera, the degradation distribution of which may differ far
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Figure 1: Two interesting properties of noisy videos. (a) Downscaling can remove part of noise in a
video. (b) The pixels in a video have different degrees of occlusion. The high-quality adjacent pixels
can help provide details to occluded pixels.

away from other cameras under other recording environments. Therefore, deep models (Claus &
van Gemert, 2019) trained on such clean-noisy paired videos can suffer from poor generalization
performance when tested on data collected from other cameras.

However, these two assumptions only consider limited types of degradations which rarely happen in
real noisy videos. Such degradation mismatch between training videos and real test videos would
inevitably give rise to poor generalization performance. To address this, we focus on a more general
video denoising setup with the goal to train a deep model to generalize well to unseen real-world
videos, different from existing studies illustrated in Figure 2. To tackle this problem, we first take a
closer look on the inherent properties of noisy videos in the spatial and temporal space. The statistics
of clean patches in noisy images have been explored in some studies (Zontak et al., 2013). However,
there are little work devoted to the analysis of noisy videos. In Figure 1, we observe that downscaling
can reduce part of noise for different levels. Motivated by this observation, we propose to integrate
multi-scale learnable downscaling into the denoising network. On the other hand, noise in a video
often has random patterns in temporal space. Some pixels in the current frame may have much more
noise, while pixels in the same position of adjacent frames can have less noise, as shown in Figure 1
(b). To restore clean videos, it is necessary to model temporal connections so as to utilize information
from adjacent frames to remove noise in the current frame.

Motivated by these two properties, we design a new architecture for general real video denoising,
which we refer to as ReViD. Our network consists of multiple scales, each of which has learnable
downscaling to remove spatial noise and recurrent modeling to separate temporal signal from a noisy
video. To handle the degradation mismatch between training data and real-world test videos, we
propose a new degradation model to generate diverse noisy videos and bridge the distribution gap by
using a randomized composition of a wide range of degradations.

The contributions of this paper can be summarized as follows:

• We design a simple but effective real video denoising network by exploiting the inherent properties
of a noisy video. Our method achieves the state-of-the-art performance on both additive white
Gaussian denoising tasks and real-world video denoising tasks. Moreover, our model has faster
runtime than Transformer-based methods.

• We make the first attempt for general real video denoising and propose a new noise degradation
model. Our degradation model is able to generalize well on unseen and complex real-world videos.
Moreover, we provide a theoretical analysis that training with our degradation model is equivalent
to regularized loss with strong penalty. Our degradation model can generate diverse noisy video
with large variance to better match the distribution of real-world videos.

• We conduct extensive experiments to demonstrate the effectiveness and superiority of our proposed
method on both synthetic Gaussian denoising and practical real video denoising. We propose a
new real-world video denoising test dataset consisting of different real-world noises. Our dataset
can serve as a real video denoising benchmark for further studies.
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Figure 2: Discussion on the difference of existing video denoising setups. (a) Non-blind denoising
methods take an AWGN video and its noise as input to synthesize a clean video. (b) Blind denoising
methods aim to map a noisy video to a clean video without inputting the noise level. When training a
model with noisy videos from a specific camera, it has poor performance (marked by the dotted line)
on another camera. (c) Our general real denoising method first synthesizes different kinds of noisy
videos with the degradation models, and then generalize well on different real-world videos.

2 RELATED WORK

Image denoising aims to reduce noise from a noisy image (Kim & Ye, 2021; Fu et al., 2021; Luo
et al., 2021; Bodrito et al., 2021). The well-known denoising algorithms BM3D (Dabov et al., 2007)
and NLB (Lebrun et al., 2013) depend on the specific forms of prior and hand-tuned parameters in
the optimization. They also lack flexibility as multiple models need to be trained for different levels
of noise. To address this, recent methods exploit the benefits of deep neural networks to improve the
image denoising. This includes convolution neural networks (CNNs) (e.g., DnCNNs (Zhang et al.,
2017), RBDN (Santhanam et al., 2017) and FFDNet (Zhang et al., 2018)) and Transformer (Liu et al.,
2021) (e.g., SwinIR (Liang et al., 2021) and SCUNet (Zhang et al., 2022)). In addition, many image
denoising models (Plotz & Roth, 2017; Brooks et al., 2019) train on real image pairs captured by
one cameras. However, these methods often have poor performance on other cameras. While image
based denoising methods can in theory construct a baseline for real-world blind video denoising by
treating each frame as a separate image, directly using them in our setup ignores the fruitful temporal
connections between different frames in a video and leads to relatively poor performance.

Video denoising aims at removing noise to synthesize clean video sequences. Based on BM3D
(Dabov et al., 2007), VBM4D (Maggioni et al., 2012) presents a video filtering algorithm to exploit
temporal and spatial redundancy of a video. Some existing methods use the Recurrent Neural Network
(RNN) to capture this sequential information. DRNNs (Chen et al., 2016) first applies deep RNN on
the grady-scale images. However, this method seems to have difficulty to be extended to RGB images
probably due to the difficulties of training RNN (Pascanu et al., 2013). Recently, BasicVSR++ (Chan
et al., 2022a) improves the second-order grid propagation and flow-guided deformable alignment
in RNN and extends video super-resolution to the video denoising (Chan et al., 2022c). In addition,
some denoising methods adopt an asymmetric loss function (Vogels et al., 2018) to optimize the
networks, or propose patch-based video denoising algorithm (Arias & Morel, 2018; Davy et al., 2018)
to exploit the correlations among patches. PaCNet (Vaksman et al., 2021b) combines a patch-based
framework with CNN by augmenting video sequences with patch-craft frames and inputting them
in a CNN. To further improve over patch-based methods, DVDnet (Tassano et al., 2019) proposes
spatial and temporal denoising blocks and trains them separately. To boost the efficiency, FastDVDnet
(Tassano et al., 2020) extends DVDnet (Tassano et al., 2019) by using two denoising steps in the
architecture which composed of a modified multi-scale U-Net (Ronneberger et al., 2015). VRT
(Liang et al., 2022) proposes a video restoration transformer with parallel frame prediction, and
achieves the state-of-the-art performance in video denoising. However, this transformer-based method
has a large model size and expensive computational cost. Moreover, the above methods cannot be
directly used in our real-world video denoising setup as they only consider synthesized Gaussian
noise. Recently, ViDeNN (Claus & van Gemert, 2019) proposes a blind video denoising method
trained either on AWGN noise or on collected real-world videos. However, this method may have
limited generalization ability as the training only considers the specific noise type presented in the
training dataset. This can lead to potential issues when tested on different real-wold videos captured
from different sensors under different conditions.
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Figure 3: Illustration of the degradation mismatch in different setups. The highlighted part indicates
the training distribution. The dotted area illustrates mismatched test distribution that were unseen
during training. (a) Real test distribution of videos captured from different cameras. (b) Training with
Gaussian distribution cannot generalize well to a large area of the real distributions. (c) The model
trained with collected dataset from one camera has poor performance on other cameras. (d) Our noise
degradation aims to synthesize realistic videos with diverse noises to match the real distribution.

3 PROPOSED METHOD

3.1 GENERAL REAL VIDEO DENOISING

In digital video processing, a noisy video can be corrupted by some random process. Formally, given a
clean video sequence x, a noisy video xσ can be obtained by additive noises, i.e., xσ = x+zσ , where
zσ is a variable sampled from some distribution with density p(σ). For traditional Gaussian denoising,
this distribution is a zero-mean Gaussian distribution with standard deviation σ, i.e., N (0, σI), where
σ represents the noise level in a video. In addition, the noise distribution can come from the specific
camera. However, real-world video noises are mostly unknown and can differ between different
videos due to differences in unknown cameras, imaging setups, environments, etc. To improve the
denoising performance on videos with unknown noises, we generalize the assumption on noises and
do not assume any pre-defined noise type. We call this new setup Practical Real Video Denoising.

Practical real video denoising. As shown in Figure 2, unlike previous blind video denoising
methods (Claus & van Gemert, 2019) which implicitly assume that the training and test data share
the same noises, our proposed setup is more generalizable and can be tested on videos with unknown
noises. Formally, our goal is to learn a video denoiser f to reduce noise and synthesize clean video
sequence by minimizing the following problem, i.e.,

f̂ = argminf L(f) := Eσ

[
Ex

[
∥f(xσ)− x∥2

]]
, (1)

where E[·] is an expectation w.r.t. the data or the noise distribution.

Degradation mismatching issue. Different real-world videos may come from different cameras and
are processed by different ISP pipelines Brooks et al. (2019). Most existing methods suffer from
degradation mismatching issue, i.e., the distribution of synthesized training dataset mismatches the
real videos, as shown in Figure 3. For traditional Gaussian denoising methods Tassano et al. (2019;
2020), Gaussian distribution and the real noise distribution rarely overlap, and thus methods have
poor performance on real videos. Some other denoising methods Plotz & Roth (2017); Brooks et al.
(2019); Claus & van Gemert (2019) train with degraded data from a specific camera, resulting in a
degraded mismatch with the real video distribution from other cameras. To relieve the degradation
mismatching issue, we first show how video noise properties can be exploited for network design to
facilitate the optimization. We then propose a video degradation model to make the distributions of
training data match better with real test videos.

3.2 MULTI-SCALE RECURRENT NETWORK FOR VIDEO DENOISING

In this section, we show how common properties of video noises can benefit network design in spatial
and temporal video denoising. The proposed architecture is provided in Figure 4.

Denoising in the spatial space. As shown in Figure 1 (a), simple downscaling (e.g., bicubic) can
suppress specific noises (e.g., Gaussian noise). However, simple downscaling is hard to handle more
complex noises (e.g., combination of different kinds of noises) in real-world videos and can also
induce the serious blur artifacts. Therefore, we introduce a learnable convolution to downscale
features to reduce different kinds of noise. Specifically, given an n-frame noisy video xσ, we first
deploy a convolutional layer to extract low-level features {ĝ1, . . . , ĝn}. Here, xσ is an input image
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Figure 4: The architecture of the proposed multi-scale recurrent network. Our network is motivated
by video noise properties. For non-blind video denoising, we take the noisy video and noise level map
as an input. For practical real video denoising, we feed the noisy video augmented by our degradation
models to train the network. At each scale, the network first removes spatial noise with learnable
ResNet downscaling blocks and then removes temporal noise using a recurrent structure.

which combines the noisy video and the level map of the additive white Gaussian noise (AWGN)
for traditional denoising problem. For real video denoising, xσ is augmented by our proposed noise
degradation model which is discussed in the next section. Then, we use a spatial encoder Espatial to
extract deep features and reduce the noise in space, i.e.,

gs
i = Espatial

(
gs−1
i

)
, (2)

where g0
i = ĝi, and the spatial encoder Espatial can be modelled by multi-layered residual blocks.

Denoising in the temporal space. Motivated by the temporal property and (Chan et al., 2022a),
given a denoised spatial feature gs

i , we use the optical-flow-guided deformable alignment as our
temporal encoder Etemporal to compute the features

f̂s
i,j =Etemporal

(
gs
i ,f

s
i−1,j ,f

s
i−2,j ,o

s
i→i−1,o

s
i→i−2

)
,

=Edcn([f
s
i−1;f

s
i−2], [õ

s
i→i−1; õ

s
i→i−2], [m

s
i→i−1;m

s
i→i−2]),

(3)

where fs
i,j is the feature at the i-th timestep in the j-th propagation branch at the s-th scale, and

os
i1→i2

is the optical flow from i1-th frame to the i2-th frame, Edcn is deformable convolution (DCN)
(Zhu et al., 2019), õs

i→i−p and ms
i→i−p are the offsets and masks which are formulated as

õs
i→i−p = os

i→i−p + c1([g
s
i ; f̄

s
i−1; f̄

s
i−2]), ms

i→i−p = τ(c2([g
s
i ; f̄

s
i−1; f̄

s
i−2])), (4)

where p = 1, 2, τ is the Sigmoid function, c1 and c2 are convolutional layers, and fs
i−1 is a warped

feature using the optical flow os
i→i−1, i.e., f̄s

i−1 = ω(fs
i−1,o

s
i→i−1) and f̄s

i−2 = ω(fs
i−2,o

s
i→i−2),

where ω(·) is a warp function according to the optical flow. After reducing the temporal noise, we
use another spatial encoder E′

spatial to further remove the noise in space, i.e.,
fs
i,j = f̂s

i,j + E′
spatial

([
fs
i,j−1; f̂

s
i,j

])
, (5)

where [·; ·] is a concatenation along the channel dimension and fs
i,0=gs

i . Let fs
i be the feature in the

last branch at the s-th scale, the spatial decoder Dspatial aggregates features with the skip connection,

hs
i = fs

i +Dspatial
(
hs+1
i

)
, (6)

where hS
i = fS

i at the last scale S and spatial decoder can be implemented by multi-layered residual
blocks (He et al., 2016) with PixelShuffle (Shi et al., 2016). Last, we use convolutional layers to
produce residual noise. In the training, we first train a denoiser using L1 loss, and then we further
train the model by minimizing a weighted combination of L1 loss, perceptual loss and GAN loss.
Difference from BasicVSR++. Our architecture design differs from BasicVSR++ in the following
aspects. First, our denoiser is built on the U-Net architecture with downscaling and upscaling, which
is effective to capture spatio-temporal information for video denoising. Specifically, in downscaling,
features are extracted at different scales by both spatial denoising and temporal propagation. Multi-
scale optical flows are used for guidance in alignment, so as to deal with different motion magnitudes.
In upscaling, we only do spatial modelling to save computation cost. In contrast, BasicVSR++ does
not use multiscale modelling which is important in video denosing as shown in Figure 1(a). Second,
BasicVSR++ directly downsamples the inputs using Bicubic interpolation. Such downsampling can
remove part of noise but also remove some useful texture information. In contrast, we propose to
train with learnable parameters to remove noise and preserve the useful texture information. Since
BasicVSR++ is designed for video super-resolution rather than video denoising, directly applying it
for video denoising would result in inferior performance.
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Figure 5: An illustration of the proposed noise degradation pipeline. For a high quality video, a
randomly shuffled degradation sequence is performed to produce a noisy video.

3.3 REAL NOISE DEGRADATIONS

Unlike Gaussian noises in traditional setups, real-world videos often contain unknown noises and
blur and they differ from video to video. To jointly remove noises and blur, we train our model with
general video degradations. To cover a large range of real video distribution, we randomly change
the order of different degradations, and augment the data with these degradations. Formally, given a
clean video x, we use composition function of N shuffled degradations to synthesize a noisy video:

xσ = g(x) = (gi1 ◦ gi2 ◦ · · · ◦ giN ) (x), where {i1, . . . , iN} = ϕ({1, . . . , N}), (7)
where ϕ is a shuffle function, ◦ is a function composition, and gin is a degradation model of the in-th
type. Motivated by (Bishop, 1995), we prove the following theorem to understand our degradation.
Theorem 1 (Effect of noise degradations) Let zσ=g(x)−x, and assume that the mean and vari-
ance of the noise distribution are 0 and η2(zσ), then the loss (1) , i.e.,

Eσ

[
Ex

[
∥f(xσ)−x∥2

]]
=Ex

[
∥f(x)−x∥2

]
+η2(zσ)Ex

[∥∥∥∥∂f∂x
∥∥∥∥2+1

2
(f(x)−x)

⊤ ∂2f

∂x2
1

]
. (8)

From this theorem, the loss (1) trained with our noise degradations is equivalent to a normal loss with
a regularization term. The parameter η2(zσ) is related to the amplitude or variance of the noise zσ
and controls how the regularization term influences the loss. Moreover, our degradation model make
η2(zσ) to be large (see Figure 11) to improve the generalization performance of our model.

Noise. Noises in real-world videos come from different sources. To simulate such noises, we propose
noise degradations, including Gaussian noise, Poisson noise, Speckle noise, Processed camera sensor
noise, JPEG compression noise and video compression noise.
• Gaussian noise. When there are no prior information of noise, one can add Gaussian noise into a

video sequence. Given a clean video x, we synthesize a noisy video g1(x) = x + z, where the
noise z can be additive white Gaussian noise (AWGN) and gray-scale AWGN.

• Poisson noise. In electronics, Poisson noise is a type of shot noise which occurs in photon
counting in optical devices. Such noise arises from the discrete nature of electric charge, and it
can be modeled by a Poisson process. Given a clean video x, we synthesize a noisy video by
g2(x) = x+ z, where z = z′ − x and z′ ∼ P(10α · x)/10α.

• Speckle noise. Speckle noise exists in the synthetic aperture radar (SAR), medical ultrasound and
optical coherence tomography images. We simulate such noise by multiplying the clean image x
and Gaussian noise z, i.e., x ∗ z. Then, we synthesize noisy video by g3(x) = x+ x ∗ z.

• Processed camera sensor noise. In modern digital cameras, the processed camera sensor noise
originates from the image signal processing (ISP). Inspired by (Zhang et al., 2022), the reverse ISP
pipeline first get the raw image from an RGB image, then the forward pipeline constructs noisy
raw image by adding noise to the raw image, which denoted by g4(x) = forward(reverse(x)).

• JPEG compression noise. It is widely used to reduce the storage for digital images with the fast
encoding and decoding (Zhang et al., 2021). We synthesize frames with JPEG compression noise
by g5(x) = Dec(Enc(x)). Such JPEG compression methods often cause 8× 8 blocking artifacts.

• Video compression noise. Videos sometimes have compression artifact and presents on videos
encoded in different format. We use the Pythonic operator av in FFmpeg, i.e., g6(x)=av(x).

Apart from noise, most real-world videos inherently suffer from bluriness. Thus, we additionally
consider two common blur degradations, including Gaussian blur and resizing blur. For Gaussian
blur, we synthesize a video as g7(x) = x ∗ κ, where ‘∗’ is the convolution operator and κ is the
Gaussian kernel. For resizing blur, we first downscale a video for s× and then upscale to the original
size, i.e., g8(x) = ups(down 1

s
(x)), where down 1

s
and ups are downscaling and upscaling function.
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Table 1: Quantitative comparison (average RGB channel PSNR) with state-of-the-art methods for
video denoising on the DAVIS and Set8 datasets. Best results are in bold.

Datasets σ VBM4D VNLB DVDnet FastDVDnet VNLNet PaCNet BasicVSR++ VRT ReViD (Ours)

DAVIS

10 37.58 38.85 38.13 38.71 39.56 39.97 40.13 40.82 41.03
20 33.88 35.68 35.70 35.77 36.53 36.82 37.41 38.15 38.50
30 31.65 33.73 34.08 34.04 - 34.79 35.74 36.52 36.97
40 30.05 32.32 32.86 32.82 33.32 33.34 34.49 35.32 35.83
50 28.80 31.13 31.85 31.86 - 32.20 33.45 34.36 34.90

Set8

10 36.05 37.26 36.08 36.44 37.28 37.06 36.83 37.88 38.07
20 32.18 33.72 33.49 33.43 34.08 33.94 34.15 35.02 35.35
30 30.00 31.74 31.79 31.68 - 32.05 32.57 33.35 33.78
40 28.48 30.39 30.55 30.46 30.72 30.70 31.42 32.15 32.66
50 27.33 29.24 29.56 29.53 - 29.66 30.49 31.22 31.77

Params. (M) - - 0.48 2.48 - 2.87 9.76 18.3 13.68
Runtime (s) 420.0 156.0 2.51 0.08 1.65 35.24 0.08 5.91 0.32

Table 2: Quantitative comparison in PSNR for
denoising clipped Gaussian noise on DAVIS.

Methods Noise levels Average
10 30 50

ViDeNN 37.13 32.24 29.77 33.05
FastDVDnet 38.65 33.59 31.28 34.51

PaCNet 39.96 34.66 32.00 35.54

ReViD-blind 40.94 36.79 34.65 37.46
ReViD 41.00 36.91 34.83 37.58

Table 3: Quantitative comparison in PSNR for
single image denoising on Set8 dataset.

Methods Noise levels Average
15 25 50

BM3D 29.00 28.64 26.50 28.05
Restormer 34.36 31.40 28.57 31.44

SwinIR 34.87 32.37 29.19 32.14
SCUNet 34.82 32.34 29.14 32.10

ReViD 36.47 34.49 31.77 34.24

00000019, tractor, DAVIS

Noisy frame (σ=50) VBM4D DVDnet fastDVDnet

BasicVSR++ VRT Ours GT

00000042, cats-car, DAVIS

Noisy frame (σ=50) VBM4D DVDnet fastDVDnet

BasicVSR++ VRT Ours GT

Figure 6: Visual comparison of different methods on DAVIS under the noise level of 50.

4 EXPERIMENTS
4.1 SYNTHETIC GAUSSIAN DENOISING

Datasets. We use DAVIS (Khoreva et al., 2018) and Set8 (Tassano et al., 2019) in synthetic Gaussian
denoising. Following the setting of (Liang et al., 2022), we synthesize the noisy video sequences by
adding AWGN with noise level σ∈[0, 50] on the DAVIS (Khoreva et al., 2018) training set. We then
train the model by using the synthesized data and test it on the DAVIS testing set and Set8 (Tassano
et al., 2019) with different Gaussian noise levels {10, 20, 30, 40, 50}.

0 2 4 6
Runtime (s)

31.5
32.0
32.5
33.0
33.5
34.0
34.5
35.0

PS
NR

 (d
B)

Ours

VRT

BasicVSR++

FastDVDnet DVDnet

#Params

20M10M5M

Figure 7: Runtime, PSNR,
and model size.

Quantitative comparison. Tables 1-3 show PSNR (Chan et al., 2022a)
between different methods on the test datasets DAVIS (Khoreva et al.,
2018) and Set8 (Tassano et al., 2019). Our method has best performance
on both DAVIS and Set8 with a large margin. Specifically, our model
outperforms BasicVSR++ (Chan et al., 2022c) by an average PSNR of
1.23db. Moreover, we also train a blind model for clipped AWGN to
obtain the best performance. In Figure 7, our model achieves the best
performance gains with similar model size and runtime. In particular,
for the largest noise level of 50, our model outperforms VRT (Liang
et al., 2022) with a smaller model size and faster inference time. Our
model yields a PSNR improvement of 0.54db.
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Table 4: Quantitative Comparison of different methods on VideoLQ and NoisyCity4 for the practical
video denoising task. For fair comparison, we train BasicVSR++ and RealBasicVSR on the same
proposed noise degradation pipeline, which is denoted by suffix ‘∗’.

Methods VideoLQ NoisyCity4

NIQE↓ BRISQUE↓ PIQE↓ NIQE↓ BRISQUE↓ PIQE↓
SCUNet 4.7797 39.6360 68.7677 5.1971 51.5672 85.2371

Restormer 4.3755 39.9023 69.6296 5.1884 52.7126 86.2248
ViDeNN 4.2722 33.8539 60.7876 4.7613 42.5865 78.9111

BasicVSR++ 4.0233 34.9458 51.4780 5.4899 52.1469 81.1234
BasicVSR++∗ 4.2879 29.1541 49.1658 4.4235 33.4198 47.5131

RealBasicVSR∗ 4.2167 29.2103 48.0369 4.0578 26.3504 51.5825

Ours-real 4.0205 29.0212 45.0768 3.8540 24.2025 48.2962

00000000, newyork, NoisyCity4

Noisy frame Restormer SCUNet ViDeNN

BasicVSR++ BasicVSR++∗ RealBasicVSR∗ Ours

00000000, amsterdam, NoisyCity4

Noisy frame Restormer SCUNet ViDeNN

BasicVSR++ BasicVSR++∗ RealBasicVSR∗ Ours

Figure 8: Visual comparison of different video denoising methods on NoisyCity4.

Qualitative comparison. In Figure 6, we compare different video denoising methods under the
high noise level of 50. Our proposed denoiser restores better structures and preserves clean edge than
previous state-of-the-art video denoising methods, even though the noise level is high. In particular,
our model is able to restore the letters ‘Gebr’ in the first example and piano texture in the second
example of Figure 6. In contrast, VBM4D (Maggioni et al., 2012), DVDnet (Tassano et al., 2019)
and FastDVDnet (Tassano et al., 2020) fail to remove severe noise from a video frame. BasicVSR++
(Chan et al., 2022a) and VRT (Liang et al., 2022) only restore part of the textures.

4.2 PRACTICAL REAL VIDEO DENOISING

Figure 9: Examples of the
NoisyCity4 dataset.

For real video denoising, we use REDS (Nah et al., 2019) as the
training set. According to the setting of (Wang et al., 2019), we use
266 regrouped training clips in REDS (Nah et al., 2019), where
each with 100 consecutive frames. Specifically, we synthesize
noisy video sequences on the REDS training set by using our pro-
posed noise degradation model. To evaluate the generalizability of
real-world video denoising methods, one can use VideoLQ (Chan
et al., 2022b) which is downloaded from Flickr and YouTube and
contains 50 video sequences, where each with up to 100 frames.
However, the VideoLQ dataset was mainly proposed for real-world
video super-resolution and it has low level of noise itself. To ad-
dress this, we additionally propose a new benchmark dataset for
real-world video denoising, called NoisyCity4 dataset. This dataset is collected from YouTube
and contains four city street videos from decades ago. The videos in the proposed dataset contain
real-world noises from different sources such as film grains, film scratches, flickers etc. Examples
of the NoisyCity4 videos are shown in Figure 9 and further provided in the supplementary material.
Each video in NoisyCity4 contains a sequence of 100 frames with different noises.
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Figure 10: Distributions of noise degradation without (Top) and with (Bottom) random shuffle.
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Figure 11: Variance of noise degradations.

Table 5: Ablation study of our model on DAVIS
and Set8 in PSNR under the noise level of 50.

Methods DAVIS Set8

w/o spatial module 34.45 31.12
w/o temporal module 31.90 29.59

downscaling three times 34.91 31.75
ReViD (ours) 34.90 31.77

Quantitative comparison. In Table 4, we compare different methods on VideoLQ (Chan et al.,
2022b) and NoisyCity4. Here, we use three non-reference metrics NIQE (Mittal et al., 2012),
BRISQUE (Mittal et al., 2011) and PIQE (Venkatanath et al., 2015) as evaluation metrics because
they are commonly used to measure the quality of images and ground-truth videos are not available.
Our model achieves better performance than all other methods under all metrics. In contrast, it is
difficult for ViDeNN to reduce noise in real video since the videos are captured by different cameras.
With the help of our noise degradation model, the denoisers are able to reduce the real-world noise.
Qualitative comparison. As shown in Figure 8, our model achieves the best visual quality among
different methods. By taking the spatial and temporal properties into account and using the proposed
noise degradation model, our denoiser improves visual quality and leads to cleaner details and edges
than other methods. For instance, our model is able to recover the windows in the building. In
contrast, it is hard for image based denoisers (Zamir et al., 2022; Zhang et al., 2022) and ViDeNN
(Claus & van Gemert, 2019) to remove the noise well in a real-world video. There results demonstrate
our degradation model is able to improve the generalization ability.

4.3 FURTHER EXPERIMENTS

Effect of our degradation model. To study the effect of our degradation model, we show the
distributions of the synthesized noise by our degradation model with and without the proposed
random shuffle in Figure 10. The random shuffle strategy can improve the diversity of the synthesized
distributions. In addition, this strategy can increase the noise variance in Figure 11. This shows that
the proposed method can generate more diverse distributions in the training.
Ablation study. We investigate the effectiveness of the spatial and temporal modules in Table 5.
Specifically, we conduct experiments by removing these modules. The model without these modules
has performance drop, which demonstrates the importance of them. In addition, we investigate the
performance by increasing the times of downscaling to 3. The model has comparable PSNR but with
larger model size. Thus, we downscale the videos twice in the experiment.

5 CONCLUSION

In this paper, we propose a practical and important setup in video denoising called practical real video
denoising. Motivated by properties of video noises, we first propose a real video denoising network,
called ReViD to achieve the state-of-the-art performance on synthetic Gaussian denoising and general
real video denoising. Moreover, we make the first attempt to design a new noise degradation model
for the real-world video denoising task which considers different kinds of noise with random shuffle.
In addition, we propose a new real video denoising dataset with different levels of noise. Extensive
experiments demonstrate the effectiveness and superiority of denoising and practicability of our
method. Besides, our model has good generalization performance on unseen real videos.
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