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Abstract

Deep generative models have shown impressive progress
in recent years, making it possible to produce high quality
images with a simple text prompt or a reference image. How-
ever, state of the art technology does not yet meet the quality
standards offered by traditional photographic methods. For
this reason, production pipelines that use generated images
often include a manual stage of image quality assessment
(IQA). This process is slow and expensive, especially because
of the low yield of automatically generated images that pass
the quality bar. The IQA workload can be reduced by intro-
ducing an automatic pre-filtering stage, that will increase
the overall quality of the images sent to review and, therefore,
reduce the average cost required to obtain a high quality
image. We present a formula that estimates the cost savings
depending on the precision and pass yield of a generic IQA
engine. This formula is applied in a use case of background
inpainting, showcasing a significant cost saving of 51.61%
obtained with a simple AutoML solution.

1. Motivation
The automatic production of images has experienced a rapid
progress thanks to the broad adoption of deep neural net-
works in generative models learning. The current solutions
based on diffusion [5, 21] and auto-regressive [30, 44] mod-
els can produce high quality images, sometimes indistin-
guishable to the naked eye from their photographic counter-
parts. This represents an opportunity for industry because
automatic image generation is orders of magnitude less ex-
pensive than a manual capture, which typically requires a
photography studio and trained professionals. Moreover,
the time necessary to generate an image is virtually zero
compared to a manual production, and the scale is basically
limited by the available computational resources. These
advantages make generative deep learning an attractive tech-
nology for reducing costs and increasing the scale.

However, current technology is not perfect, and may in-
troduce noticeable artifacts in a significant portion of the
generated images. The nature of these defects may be di-

Figure 1. Vertical pipeline for image generation and quality assess-
ment with sample images. NGen, NAQA and NMQA represent the
number of images output after each block. TP/FP/TN/FN refer to
true/false positive/negatives.

verse, whether directly visible on the generated images, or
failing to follow the provided guidelines, which typically
take the form of a textual prompt or a visual reference. For
example, in the inpainting study case that we explore in this
work, the goal is generating a realistic visual context for an
object depicted over a white background. This is a specially
challenging problem, because not only the background must
be perceptually realistic, but it must also be semantically
coherent with the provided reference object. Figure 2 shows
six different types of defects that are common in background
inpainting. The details of these defects are described in Ta-
ble 1. According to our studies with marketing professionals,
existing technology offers low QA pass yield for this task:
only 1.87% with the model considered in this work, based
on Stability AI SDXL [22].

Commercial applications require high quality images, so
an additional filtering is currently needed before delivering
automatically generated images. A first solution is relying
only on human annotators trained to detect the most com-
mon defects, an approach we refer to as ManualQA. This
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Figure 2. Types of visual defects in background inpainting. Top: Reference object. Bottom: Generated image.

approach is simple in terms of technology, because it only
requires a user interface to collect the annotations. However,
ManualQA also presents challenges in terms of calibrat-
ing the annotators with the product requirements and, more
importantly, scales very poorly in terms of time and costs.
Another approach is introducing a computer vision system
capable of detecting the anomalies in the generated images,
which we will refer as AutoQA. This is a scalable solution
whose speed is only limited by the allocated computational
resources. On the other hand, existing computer vision sys-
tems offer a lower precision than human annotators.

Type of defect Description

Main Object Distortion Black dots on the pan cover.
Main Object Extension Straps added to the back-

pack.
Misplaced Object The firepit is an outdoor ob-

ject but is placed in an in-
door environment.

Scale Mismatch Chair is much smaller than
table.

Bg. Objects Distortion Unrealistic chair backs.
Bg. Structural Distortion Misaligned wall behind the

table.

Table 1. Detailed descriptions of the defects in Figure 2.

In this work, we consider the hybrid pipeline depicted in
Figure 1, where ManualQA will only process those images
that pass AutoQA. This scheme aims at increasing the pass
yield of ManualQA by pre-filtering the generated images
with AutoQA. As a result, the final cost of generating a given
amount of images is lower thanks to the reduced amount of
reviews needed.

Our contributions are three-fold: (a) a novel IQA task

for images generated by background inpainting, focused
on the popular application of placing objects in generated
contexts (b) a closed formula that determines the cost savings
of introducing an AutoQA block in an image generation
system, and a (c) a case study based on a zero-shot VLM
and AutoML which, in their best set up, obtain financial cost
savings of 51.61%.

2. Related work

Image evaluation methodologies in the literature can be
broadly categorized by (1) the rating of individual im-
ages [32] or comparative ranking across image sets [28]
(2) by the availability of reference images that are used for
comparison (full-reference methods [45], reduced-reference
methods [24], or no-reference methods [20], or (3) by the
main features used including traditional image features [4,
32] or deep features (such as representations extracted from
pre-trained models) [13, 15, 39, 47]. Our work concentrates
on individual image quality assessment in a reference-free
manner. Image Quality Evaluation can span multiple dimen-
sions, including image realism [3, 14, 26, 47], text-image
alignment [13, 39, 41], image aesthetics [27, 40, 42] and
human preferences [17, 37, 38, 48]. Our work considers the
evaluation of realism in generated imagery.
Automated Image Quality Assessment (IQA). Automatic
Image Quality Assessment has become a critical block when
generating images, and multiple benchmarks and metrics
have been proposed [11, 32]. When comparing an distorted
image with its reference, PSNR and MSE perform pixel-level
comparisons, while SSIM [32] captures perceptual changes
through structural information by comparing luminance, con-
trast, and structure. [6] proposed an Image Quality Trans-
former (IQT) to measure the perceptual quality between an
input image pair of distorted and reference images. Given the
fact that reference images are not always available, [8, 43]



explore the performance of transformer-based no-Reference
image quality assessment (NR-IQA). Along the NR-IQA
research line, [31] proposed an algorithm based on the Swin
Transformer [19] with fused features from multiple stages
to better predict image quality.
Image Quality Assessment with VLMs The surprising
understanding capabilities of large Vision-Language Mod-
els (VLMs) have been explored for image quality assess-
ment. CLIPScore [13] uses CLIP embeddings for eval-
uating text-image alignment. Building upon this founda-
tion, ImageReward [39] introduced a reward model fine-
tuned on human preferences to better capture image qual-
ity aspects. PickScore and HPS [17, 38] align better with
subjective human judgement in the evaluation. Similar to
GenomeBench [9] which proposes a benchmark to evaluate
the quality and text alignment of generated images through
a series of questions and human annotations, recent works
have leveraged large Vision-Language Models (VLMs) for
nuanced assessment of image realism through visual ques-
tion answering (VQA) [2]. Foundational models can en-
gage in detailed dialogues about image artifacts and real-
ism. InstructBLIP [10] demonstrates how instruction-tuning
of VLMs can enable more targeted assessment of specific
quality aspects. TIFA [15] leverages VQA to provide inter-
pretable assessment of text-image alignment. Cho [7] built
the set of questions using Davidsonian graphs. Gecko [34]
proposed a fine-grained classification of defects in prompt
alignment, named skills. VQAScore [18] showed better per-
formance of a VLM than the CLIPScore for IQA.

3. Cost Estimation

We present a formula that estimates the cost savings from
introducing AutoQA for automatic image generation, follow-
ing the pipeline in Figure 1. The QA classification systems
operate with binary classes: Clean (denoted with ✓) and De-
fect (denoted with ✗). An image generation engine (GenAI)
produces NGenimages that are first evaluated by the AutoQA
block. Only the NAQAsamples that pass AutoQA are re-
viewed in ManualQA. The result are NMQAhigh quality
images that passed both QA controls.

We relate the volume of images after each block (NGen,
NAQA, NMQA) through the two metrics that characterize
the blocks in Figure 1: the yield of images that pass AutoQA
(yAQA) and ManualQA (yMQA), and the precision of the
image generator (PGen) and AutoQA engine (PAQA). The
two metrics are interpretable and facilitate the estimation of
financial costs in industrial scenarios.

3.1. Volume of Images

As introduced in Figure 1, we develop a formulation that
considers Clean (✓) as the positive class of our task, and
uses the standard notation of TP/FP/TN/FP for referring to

true/false positives/negatives. Based on these definitions, we
can relate NMQAwith NAQAas

NMQA = TP =
TP + FP

TP + FP
· TP
TP

· TP =

= (TP + FP ) · TP

TP + FP
· TP
TP

=

= NAQA · PAQA(✓) = NAQA · yMQA,

(1)

where PAQA(✓) is the precision of the AutoQA module
for the Clean class. Notice that PAQA(✓) can also be inter-
preted as the ManualQA yield, yMQA, because we consider
ManualQA as the source of true predictions.

Similarly, we can relate NMQA with NGen as

NMQA = TP =
TP + FP + TN + FN

TP + FP + TN + FN
· TP + FP

TP + FP
· TP =

= (TP + FP + TN + FN)
TP + FP

TP + FP + TN + FN

TP

TP + FP
=

= NGen · yAQA · PAQA(✓) = NGen · y,
(2)

where yAQAis the AutoQA yield. We also define the
overall yield y = yAQA · PAQA(✓) = TP

TP+FP+TN+FN to
simplify the formulation in future equations.

3.2. Total Cost
The total cost of a pipeline with AutoQA can be derived
by weighting the unitary cost (ci) of processing the images
in each of the three stages i ∈ {Gen,AQA,MQA}, and
summing their results as

CTotal = NGen · cGen +NGen · cAQA +NAQA · cMQA =

=
NMQA

y
cGen +

NMQA

y
cAQA +

NMQA

PAQA(✓)
cMQA =

= NMQA ·
(
cGen

y
+

cAQA

y
+

cMQA

PAQA(✓)

)
.

(3)

3.3. Cost Savings
The cost savings are estimated by comparing CTOTAL with
the costs of obtaining the same amount of images without
AutoQA, which is

CBaseline = NGen · cGen +NGen · cMQA =

= NGen (cGen + cMQA) =

=
NMQA

PGen(✓)
· (cGen + cMQA) =

= NMQA ·
(

cGen

PGen(✓)
+

cMQA

PGen(✓)

)
,

(4)

where PGen(✓) is the precision of the GenAI technology
that produces the images, that is, the ManualQA yield.

The final cost savings ∆C can be calculated by substract-
ing the total costs defined in Equation 3 from the baseline
costs in Equation 4, as



Figure 3. Distribution of defect severity across the six types of coarse defects. Each of the 8,304 generated images was manually labeled by
a human annotator according to a scale of three levels: No defect, Some defect, or Significant defect. This figure does not consider agreement
among annotators

∆C = CBaseline − CTotal =

= NMQA ·
(

cGen

PGen(✓)
+

cMQA

PGen(✓)
−

− cGen

rPAQA(✓)
− cAQA

y
− cMQA

PAQA(✓)

)
=

= NMQA

(
rPAQA(✓)− PGen(✓)

y · PGen(✓)
cGen−

−1

y
cAQA +

PAQA(✓)− PGen(✓)

PAQA(✓) · PGen(✓)
cMQA

)
(5)

4. Experiments

We apply the cost savings formula from Equation 5 in a
realistic case for e-commerce: the generation of a virtual
context from images that depict products over a white back-
ground. This problem is technically referred as background
inpainting, and the resulting imagery lifestyle images. We
adopt state of the art technical solutions for both generating
and evaluating the quality of the generated images.

4.1. Dataset

Our experiments were conducted with a dataset of 8,304
images of 195 different product types. The images were
generated with a latent diffusion-based model open-sourced
by Stability AI (SDXL) [22], which was adapted with Con-
trolNet [46] to solve the inpainting task. We worked with a
team of photography experts to define six categories of the
possible defects, depicted in Figure 2.

Professional annotators from an external vendor were
trained to provide a numerical rating on a scale from 1 (No
defect) to 3 (Significant defect). Each image was labeled
by 3 different annotators from a pool of 21. The average
amount of annotations per worker was 1256.38, with a maxi-
mum of 1782 and a minimum of 815. The label distribution
of the collected labels is presented in Figure 3. The plots
show how the low-level distortions on the background are
the most common defects (Bg. Objects Distortion and Bg.
Structural Distortion), while the mismatch of scale between

the provided reference object and the rest of the scene is the
most rare defect (Scale Mismatch).

The following sections report experiments based on dif-
ferent subsets of these annotated data. In each experiment,
we only used samples where all annotators agreed in the
labels under study. This way, metrics are more reliable and
avoid the problem of low inter-annotator agreement, which is
depicted in Table 3. Notice how obtaining alignment among
humans for IQA task is very challenging, despite providing
detailed instructions to annotators. In addition, the very few
images where all annotators agreed on a rating of 2 (some
issue), were also discarded.

4.2. AutoQA

Two technologies were considered to serve as AutoQA: a
classic AutoML solution, and an off-the-shelf large visual
language model (VLM).
AutoML solutions consider different machine learning tech-
niques to solve a task defined by an annotated dataset. Au-
toML allows a quick development and provides solid base-
lines. In our work, we adopt AutoGluon [29], which lever-
ages the timm model zoo of deep learning architectures for
image analysis [33]. Under the hood, AutoGluon trains a
variety of different models, uses bagging (bootstrap aggre-
gation) to train them, and considers different architecture
through stack-ensembling these models. In our use case,
AutoGluon automatically opted for a solution based on an
ensemble of fine-tuned vision transformers.
Large Visual Language Models (VLMs) are generative
models pretrained with a very large dataset, typically, of
Internet scale. They have shown promising results in a di-
versity of multimodal tasks, among them, visual-question
answering (VQA). We initially considered two VLMs for
image quality assessment formulated as VQA, Amazon Lite
and Pro 1.0 [1]. After an initial comparison between them,
we opted for Nova Pro only, given the poorer performance
of Amazon Lite for IQA. The VLMs were conditioned with
a prompt specific for each defect type, requesting an answer



Defect type # img Oracle Autogluon 1.2 Nova Pro 1.0 Random 0.5

yAQA yAQA PAQA(✗)↑ yAQA PAQA(✗)↑ yAQA PAQA(✗) ↑
Main Object Distortion 199 0.96 1.00 0.000 0.98 0.000 0.46 0.037
Main Object extension 231 0.73 0.82 0.561 0.97 0.500 0.52 0.312
Product Placement 212 0.83 0.97 0.571 0.87 0.382 0.44 0.144
Scale Mismatch 199 0.97 0.98 0.667 0.80 0.022 0.52 0.021
Bg. Objects Distortion 254 0.68 0.77 0.508 0.82 0.370 0.56 0.312
Bg. Structural distortion 225 0.74 0.80 0.444 0.98 0.105 0.48 0.284

Table 2. Comparison of yield, yAQA, and precision for the Defect class, PAQA(✗), for the two considered AutoQA technologies. Column #
img indicates the amount of test images considered when assessing each defect. Column Oracle represents the defect rate of images that a
perfect AutoQA system would detect. Values in bold highlight which of the two technologies perform better to detect each defect type,
by considering: (a) a yAQA similar to the Oracle’s, and (b) a PAQA≈ 0.5. Values in red indicate failure cases, due to PAQA similar to the
Random case, and/or yAQA very different from the Oracle’s.

Defect Type Agreement Rate ↑
Main Object Distortion 0.6525
Main Object Extension 0.5425
Product Placement 0.6653
Scale Mismatch 0.8582
Bg. Objects Distortion 0.3868
Bg. Structural Distortion 0.2982
Any Defect 0.4579

Table 3. Annotator Agreement Rates by type of defect, and also
in the Any Defect case. This later case reflects the final IQA task,
where a binary decision must be made between Clean(✓) or De-
fect(✗).

in the same scale as the human annotators: 1 for No defect,
2 for Some defect, and 3 for Significant defect.

The VLMs were queried with the question prompts de-
scribed in Table 4. These prompts were manually designed
to detect each type of defect, and some of the defects were
further divided in more fine-grained categories. The VLM
was modulated with the role prompt presented in Table 5.

4.2.1. Independent defects
Our first experiment explores which machine learning mod-
els can detect the considered defect types, so we focus our
metrics on the Defect(✗) class. For this experiment, we built
a dataset of images that present none or a single a single
defect only, that is, we discarded images with multiple types
of defects.

We compared AutoGluon 1.2 (AG) only with Amazon
Nova Pro 1.0 (NP). Similarly how Nova Pro used a specific
prompt for each type of defect, an independent AutoGluon
binary classifier was trained for each defect type. A different
data subset was created for each defect, providing 90% of the
available images to AutoGluon for finetuning, and keeping
the remaining 10% for our tests with AutoGluon and Nova
Pro. By default, AutoGluon uses the a partition 90% of
the provided data for training, and the remaining 10% for

internal validation. The AutoGluon models were left to
train as much time as needed, which was in the order of
minutes for each binary classifier. Models were trained with
a p3.2xlarge cloud desktop in Amazon Web Services (AWS)
equipped with a single Tesla V100-SXM2 GPU with 16 GB
of memory.

Table 2 shows that, in four out of the six considered defect
types, AutoGluon performs better than Nova Pro. Only
for the product placement defect Nova Pro competes with
Autogluon with a better yAQA(✗). The main object distortion
defects are not captured by any of the two configurations.

4.2.2. All defects
Based on the results of detecting defects independently, we
explore the performance of a full AutoQA system that would
detect all defects but main object distortion.

The dataset in this section no longer satisfies the restric-
tion of presenting a single defect. In this case, the full dataset
contains 3,802 images, and its test partition 380 samples with
unbalanced binary labels. Only 18.7 % of the test images
are Clean, and the rest contain one or more defects. The
test partition covers 192 different object categories, so most
categories only have two samples. On the other hand, the
training partition used for AutoGluon only covers 140 of
these 192 categories, and it is highly unbalanced, where 12
categories account for 50% of the training samples. We
adopted this design to have a high coverage of object cate-
gories and avoid any bias towards any class. With this set up,
most of the test samples can be considered as out-of-domain
from the perspective of the object category. Figure 4 details
how the train partition is unbalanced, but the test partition is
very balanced.

By default, AutoGluon uses the a partition 90% of the
provided data for training, and the remaining 10% for in-
ternal validation. The AutoGluon models were left to train
as much time as needed, which was in the order of min-
utes for each binary classifier. Models were trained with a
p3.2xlarge cloud desktop in Amazon Web Services (AWS)



Coarse defect Detailed defect Prompt

Main Object
Distortion

Surface texture Focus on the surface of the {object_class}. Is
there any distortion on its texture?

Color blending Can you see weird color blending at its contours?
Structural distortion Is there any structural distortion in the

{object_class}?

Main Object
Extension

Product extension Does the {object_class} present a realistic shape?
Compare the shape of the {object_class} in the
first generated image to the reference image and
its segmentation mask. Make sure that the
{object_class} did not grow in extension when the
background was generated

Product attached Is there any other object attached to the
{object_class}? If so, is this attachment common
and natural?

Misplaced Object

Objects layout What objects appear in the scene? Are their
relative positions natural?

Floating objects Look at the {object_class}. It must be standing on
a surface. Otherwise, consider that it is floating,
which is a severe issue.

Matching location In which locations is the normally found? Does
the context in the image represent one of these
probable locations?

Functional location Where is the {object_class} located? Does it
appear in a proper functional location?

Rich background How is the background around the {object_class}?
The background must contain rich semantic and
be aesthetically appealing. A solid or uniform
background is not acceptable.

Scale Mismatch Scale mismatch There is an anomaly in the size of the
{object_class} compared to the rest of objects in
the scene. True or false?

Background Objects
Distortion

Objects distortion What objects appear in the image? Is there any
distortion in any of them?

Background
Structural Distortion

General Is there any structural distortion in the scene?
Because occlusion Is the background behind the {object_class}

realistic? Make sure that there are no
discontinuities in the generated background
because of the occlusion of the {product_type}

Table 4. Question prompts organised in a hierarchy of coarse and detailed defects.

equipped with a single Tesla V100-SXM2 GPU with 16 GB
of memory.

Based on the results reported in Section 4.2.1, we con-
sider three possible configurations: 1) a cascade of Auto-
gluon binary classifiers (Cascade AG), 2) a similar cascade
where AutoGluon is replaced by Nova Pro for the product
placement defect (Cascade (AG & NP)), and 3) a single Au-
togluon binary classifier that does not distinguish between

defect types (Single (AG only)). The performance of each
configuration is reported in Table 6, together with the metrics
of two set ups that facilitate the interpretation of results: (1)
Random (0.5) represents a lower bound baseline where the
binary classifier would simply flip a coin, and (2) the Oracle
is the upper bound set by perfect predictions.

The AutoQA results presented in Table 6 must be referred
to the Random baseline. A Random AutoQA would have no



Knowledge You are a vision-language assistant responsible for assessing the quality of synthetically
generated images. You have expertise in professional photography for e-commerce and
design. You will receive a question and your task is to answer with the most appropriate
score.

Objective You are assessing the quality of a synthetically generated image depicting a {prod-
uct_type}. This image is generated by adding a background to an image of a {prod-
uct_type}. The main {product_type} is the primary object of the image. The back-
ground is generated by a text-to-image model.

Table 5. Text prompts for System knowledge and objective.

Defect(✗) Clean(✓)

Configuration yAQA PAQA↑ RAQA↑ yAQA PAQA↑ RAQA↑
Random (0.5) 0.521 0.809 0.521 0.500 0.184 0.465
Cascade (AG) 0.761 0.848 0.793 0.239 0.297 0.380
Cascade (AG NP) 0.847 0.823 0.858 0.153 0.241 0.197
Single (AG) 0.882 0.835 0.916 0.118 0.400 0.211
Oracle 0.813 1.000 1.000 0.187 1.000 1.000

Table 6. Performance metrics on 380 test images for three AutoQA configurations.

Figure 4. Histogram by object category of the train and test partition used to in the All Defects experiment.

effect on the quality of the generated images of the pipeline
in Figure 1. Mathematically, this is equivalent to achieving a
precision PAQA identical to the generator’s one, PGen=PAQA.
In our use case, the quality of the generator is depicted in
Table 4 as the yield of a perfect Oracle AutoQA is yAQA=
0.187, . This value matches the precision PAQA= 0.184 of
the Random AutoQA. The small difference is due to PGen
being computed over the full 380 test images, but PAQAover

half (yAQA= 0.5) the samples passed the Random AutoQA.

Table 6 shows that the three AutoQA configurations sig-
nificantly improve over the PAQA(✓) of the random baseline.
Similarly, their PAQA(✗) may look high, but they are actually
close to the random baseline because of the 81.3% of Defect
cases in the data.

As proved in Equation 3, the total cost depends from both
yAQA(✓) and PAQA(✓), so we will focus on these two met-



rics. When we do, we observe that using Nova Pro in the
cascade does not offer gains over the AutoGluon only cas-
cade. Similarly to [12, 36] we conclude that the considered
off-the-shelf VLM does not provide reliable judgments for
IQA, and that some additional adaptations would be needed,
as proposed in [35, 50]. Between the two AutoGluon only
configurations, there is no clear winner when looking at Ta-
ble 6. For this reason, we compare these two configurations
in the next section.

Figure 5. Volume of images needed after each block to obtain 100
high quality images.

Figure 6. Cost composition over image generation (CGen),
AutoQA (CAQA), and ManualQA (CMQA).

4.3. Cost savings
The characterization of AutoQA configurations in terms of
their yAQA(✓) and PAQA(✓) allows estimating the cost sav-
ings, as presented in Equation 5. We use the measurements
in Table 6 to compare the three AutoQA configurations in
our use case.

As a first step, we calculate the number of images needed
at the output of each block in the pipeline, as developed in
Section 3.1. For simplicity, we consider a hypothetical case
were the requirement is obtaining NMQA = 100 high quality
images. We first leverage Equation 1 and PAQA(✓) to obtain
NAQA, and afterwards Equation 2 and yAQA(✓) to estimate
NGen .

Figure 5 depicts the amount of NGen images that must be
generated, and the amount of NAQA images that must pass
AutoQA, respectively.

The second step is weighting and aggregating the unitary
cost of each stage with the volume of generated images,
as presented in Equation 5. This requires establishing the
unitary costs ci, for i ∈ {Gen,AQA,MQA}:
Image generation cost (cGen): The unitary cost per gener-
ated lifestyle image is of $0.00400 per image approximately,
empirically estimated based on our experience of producing
images on a cloud server.
AutoQA cost (cAQA): The cost of running inference with
AutoGluon is negligible compared to the rest of the costs.
However, the cost is not negligible if we consider one API
call to Nova Pro on AWS Bedrock, which we approximate
by $0.00041 / image, assuming 3,000 input tokens and 300
output tokens.
ManualQA cost (cMQA): We follow the current sugges-
tion in Amazon SageMaker Ground Truth pricing 1 of 0.012
for image classification tasks. We consider each of the 13
detailed defects defined as an image classification task, an
we also multiply by 3, as we deal with three annotations
per image. This makes $0.468, which we round up to
cMQA = $0.5. The reader is referred to [23] for discus-
sion over the challenges of manual annotations.

The individual costs allow estimating the aggregated costs
for the four considered set ups, as plotted in Figure 6. The
height of the bars show how the simple Single (AG) is the
cheapest configuration, offering a significant reduction of
51.61% with respect to the ManualQA only baseline. Keep in
mind that these high savings are estimated on a test set whose
label distribution does not follow the training one. If both
train and test partitions followed the same label distribution,
we would expect to obtain a higher AutoQA precision, that
would translate in even higher cost savings. The composition
of the plot bars show how the aggregated cost is clearly
dominated by ManualQA, which represents 99.5% of the
total.

Finally, we focus on the impact of PAQA(✓), plotting how
cost savings would evolve for other values beyond the 0.4
of our use case. The plot in Figure 7 shows how a very
low PAQA(✓) would make the AutoQA system harmful to
a baseline without AutoQA, mostly because more images
would need to be manually reviewed. This effect is mostly
represented by the last term of Equation 5, where the cost

1
https://aws.amazon.com/sagemaker-ai/groundtruth/pricing/

https://aws.amazon.com/sagemaker-ai/groundtruth/pricing/


savings coming from ManualQA will become negative when
PAQA(✓) < PGen(✓). Additionally, higher generation and
AutoQA costs would also result from a low PAQA(✓).

Figure 7. Cost savings as a function of AutoQA precision PAQA(✓)
with PGen(✓) set at 0.187, and rAQA(✓) at 0.118. The red dot
shows the experimental result from our Single (AG only) solution.

4.4. Qualitative Results
includes The full predictions in the test set are provided in
Figures 8-11. A visual inspection of the data does not show
evidences of biases towards certain objects or backgrounds.

In the early stages of our research, we did observe that the
VLM-based AutoQA was biased to only allow images with
very simple backgrounds, which were less valuable for our
target e-commerce application. For this reason, we extended
the prompt to include the detailed defect Rich background
shown in Table 4. When we experimented with AutoGluon
we no longer observed this issue.

5. Conclusions
We have shown how introducing AutoQA to an image gener-
ation pipeline can bring significant cost savings. The formula
derived estimates these savings based on the AutoQA yield
and precision. While we have applied this formula to the use
case of image generation, it is valid for any GenAI task.

Our study case for background inpainting has shown sig-
nificant cost savings of 51.61% even with a modest AutoQA
precision of 0.4. This is because the cost of ManualQA
clearly dominates over the costs of the automatic blocks of
the pipeline. AutoQA comes almost for free, and it increases
the quality of the images sent for AutoQA. In our best con-
figuration, AutoQA only approved 11.8% of the generated
images but, at the same time, the ManualQA yield increased
from 18.7% to 40.0%. As a consequence, annotators need to
review less images to reach a certain goal, and the total cost
decreases.

The proposed technical solution is simple and based in

Figure 8. Full set of True Defect (✗) predictions.

AutoML, which allows grounds for improvement based on
the existing literature on IQA. In our set up, the zero-shot



Figure 9. Full set of False Defect (✗) predictions.

Figure 10. Full set of True Clean (✓) predictions.

Figure 11. Full set of False Clean (✓) predictions.

VLMs mostly could not detect the defects in the images,
a limitation aligned with existing works that question the
effectiveness of this set up for VQA problems [25] and im-
age quality assessment [12, 16, 49]. A fine-tuning of these
models should be explored to improve their performance.

The significant cost saving achieved in our work moti-
vates further scientific research. This research can be ori-
ented in two directions: improving the image generator
or the AutoQA engine. In any case, the ultimate goal is
completely removing the need of a manual review in the
pipeline.
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