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ABSTRACT

Neural network training can be accelerated when a learnable update rule is used
in lieu of classic adaptive optimizers (e.g. Adam). However, learnable update
rules can be costly and unstable to train and use. Recently, Jang et al. (2023)
proposed a simpler approach to accelerate training based on weight nowcaster
networks (WNNs). In their approach, Adam is used for most of the optimization
steps and periodically, only every few steps, a WNN nowcasts (predicts near future)
parameters. We improve WNNs by proposing neuron interaction and nowcasting
(NiNo) networks. In contrast to WNNs, NiNo leverages neuron connectivity
and graph neural networks to more accurately nowcast parameters. We further
show that in some networks, such as Transformers, modeling neuron connectivity
accurately is challenging. We address this and other limitations, which allows
NiNo to accelerate Adam training by up to 50% in vision and language tasks.

1 INTRODUCTION
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Figure 1: Adam without and with nowcasting
using our NiNo vs WNN (Jang et al., 2023) on
a language task that NiNo and WNN have not
seen during their training.

Modern deep learning models, such as large language
models (Touvron et al., 2023), are trained using clas-
sic adaptive optimizers, such as Adam1 (Kingma & Ba,
2015; Loshchilov & Hutter, 2017). These optimizers up-
date neural network parameters θ P Rn using gradient
descent at step t as θi

t`1 “ θi
t´∆θi

t, @i P r1, ns, where
∆θi

t is the update computed analytically based on the
history of parameter values, gradients and the learning
rate. Recently, Jang et al. (2023); Sinha et al. (2017)
showed that parameters θ follow a predictable trend so
that optimization can be accelerated by nowcasting (pre-
dicting near future) parameters using a learnable func-
tion fϕ: θ̂

i

t`k “ θi
t ` fϕpθi

t,θ
i
t´1,θ

i
t´2, ...q, where

k " 1 is the future horizon. More popular learnable
approaches to speed up optimization, such as “learning to optimize” (L2O), are recurrently applied
at every step t (Andrychowicz et al., 2016; Metz et al., 2022). Compared to L2O, the parameter
nowcaster fϕ is applied very rarely reducing its overhead, e.g. a base optimizer such as Adam is run
for 1k steps followed by the prediction step (Fig. 1). Moreover, training such fϕ is simpler than L2O,
since a supervised loss can be used instead of a more challenging meta-learning loss with recurrent
inner steps. However, akin to Adam, fϕ from prior works does not directly leverage the structural
information of θ, such as connectivity between neurons and layers. This structure has been shown to
be critical for many parameter representation tasks, such as property prediction (Navon et al., 2023;
Zhou et al., 2024b; Kofinas et al., 2024).

In this work, we propose neuron interaction and nowcasting (NiNo) networks making better
predictions of future parameters to accelerate training with a base optimizer such as Adam and
make the following contributions:

1We use Adam throughout the paper, but our discussion and methods are in principle applicable to any opti-
mizers that produce a trajectory of parameters, including SGD with/without momentum, AdamW, Adagrad, etc.
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1. We introduce NiNo, which directly uses the structure of neural network parameters by leveraging
recently proposed neural graphs (graphs of neurons) (Kofinas et al., 2024; Lim et al., 2024).

2. We improve Transformer’s neural graphs of Kofinas et al.; Lim et al. by more accurately model-
ing the neuron permutation symmetry of multi-head self-attention. Our neural graphs combined
with graph neural networks create a strong inductive bias to make rare but accurate predictions.

3. NiNo is conditioned on the future horizon k to allow for prediction in the near and far future
without retraining it, facilitating its usage in diverse tasks and at different optimization stages.

4. We demonstrate that NiNo accelerates training with Adam for ConvNets and Transformers
reducing the number of steps to achieve the target performance of Adam by up to 50%. We
release our source code and models at the Supplementary Material.

2 RELATED WORK

Learning to optimize (L2O). The L2O literature has offered many approaches to learn a neural
network (optimizer) that optimizes the parameters of other neural nets (optimizees) (Andrychowicz
et al., 2016; Chen et al., 2022b;a; Amos, 2022). Among them, Safeguarded L2O (Heaton et al., 2023;
Prémont-Schwarz et al., 2022) is most related to ours as it switches between an L2O optimizer and
SGD/Adam. While Safeguarded L2O alleviates the meta-generalization challenge (Thérien et al.,
2024), training an L2O optimizer remains costly and unstable due to the use of meta learning methods
and its long inner loop unrolls required at each meta-training iteration (Metz et al., 2019; 2022).
Moreover, overheads of L2O add up at each iteration making it more computationally intensive than
Adam. In contrast, our approach follows weight nowcaster networks (WNNs) (Jang et al., 2023),
where the nowcaster model is applied very rarely (e.g. once per 1k steps of Adam) making the total
overhead negligible, yet still speeding up training significantly.
Parameter prediction and generation. This area has been active recently, primarily aiming at reduc-
ing computational costs of training neural nets (Peebles et al., 2022; Ashkenazi et al., 2023; Schürholt
et al., 2022; 2024; Knyazev et al., 2021b; 2023; Zhou et al., 2024d; Soro et al., 2024; Wang et al.,
2024). Most related to our work are IntrospectionMLP (Sinha et al., 2017) and WNNs (Jang et al.,
2023) serving the basis of our approach. These methods train simple MLPs to periodically (e.g. every
few epochs of Adam) predict future parameter values of a neural net given its past parameters (Sec-
tion 3.1). However, their MLPs predict parameter coordinate-wise (for each parameter independently)
similar to optimization methods without leveraging the structure of neural networks. Moreover, their
MLPs predict parameters only for a predefined future horizon k, whereas different tasks and different
optimization stages can have different parameter evolution trends (Morchdi et al., 2022; Guille-Escuret
et al., 2024; Lange et al., 2023). We address these shortcomings by conditioning the prediction on k.
Representation learning of neural network parameters. This area has also developed fast re-
cently (Navon et al., 2023; Schürholt et al., 2021; 2024; Ashkenazi et al., 2023; Andreis et al., 2023;
Zhou et al., 2024b;c;a). One of the main goals in these works is to model neuron permutation
symmetry – the property of neural networks that if the neurons in one layer are permuted in the same
way as the neurons in the next layer, the neural network preserves its function (Hecht-Nielsen, 1990).
Accurate modeling of this symmetry allows for better estimation of network properties or encoding
implicit neural representations. To model neuron permutation symmetry, Kofinas et al. (2024); Lim
et al. (2024) proposed neural graphs (graphs of neurons) enabling the usage of graph neural networks
(GNNs) (Kipf & Welling, 2017; Corso et al., 2020). Remarkably, as GNNs can digest graphs of any
size and connectivity, the synergy of neural graphs and GNNs enables processing diverse parameters
from different architectures and tasks using a single GNN. We leverage both the neural graphs and
GNNs to learn a single NiNo model that can accelerate optimization in diverse tasks. However, the neu-
ral graphs of Kofinas et al. (2024); Lim et al. (2024) do not accurately model neuron permutation sym-
metry of Transformers (Section 4.1). We address that shortcoming to make better predictions by NiNo.
Dynamic models. Our approach of learning from the interaction of nodes in a neural graph to make
future predictions is also related to dynamic interactive models, where message passing networks
and GNNs are used to learn the interaction within relational temporal networks (Trivedi et al., 2019;
Knyazev et al., 2021a) and physical systems (Kipf et al., 2018; Sanchez-Gonzalez et al., 2018; 2020;
Zambaldi et al., 2019). However, developing a strong parameter prediction model requires many
specific design choices and careful modeling of neuron permutation symmetry, motivating our work.
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3 BACKGROUND

We consider a neural network parameterized by θt P Rn trained for t steps with Adam (or another opti-
mizer). Our goal is to accelerate optimization by predicting future parameters k " 1 steps ahead given
its past values using a meta-network fϕk , parameterized by ϕ: θ̂t`k “ θt ` fϕk pθt,θt´1,θt´2, ...q.

3.1 WEIGHT NOWCASTER NETWORKS (WNNS)

WNNs (Jang et al., 2023) model fϕk as an MLP predicting the delta (update difference) of the i-th

parameter: ∆θ̂
i

τ`k “ fϕk pθ̃
i

τ , θ̃
i

τ´1, ..., θ̃
i

τcq, where τc “ τ ´ c ` 1 and c is the context length.

Here, τ, τ ´ 1, ... are epoch indices and θ̃
i

are the parameters scaled based on the range of values in
θi
τ , ...,θ

i
τc (see details in Section A.1). The predicted parameter value is obtained by unscaling the pre-

dicted delta: θ̂
i

τ`k “ θi
τ ` unscalep∆θ̂

i

τ`kq. WNNs are trained in a supervised way by collecting a
training dataset of parameter trajectories trθ1,θ2, ...su

C
1 obtained with Adam and applying the l1-loss:

argminϕ||∆θ̃τ`k ´ ∆θ̂τ`k||1, (1)

where ∆θ̃τ`k are the scaled target parameter deltas. Sinha et al. (2017) proposed the approach of
future parameter prediction originally, but without scaling the parameters and without a simple way
to choose at which optimization steps to make the prediction. In contrast, WNNs scale the parameters
and are always applied periodically, once per every c epochs of a base optimizer (Adam) with k “ c,
which better accelerates optimization. For example, to use a trained WNN fϕk on a new task, first
Adam is run for c epochs (c “ 5 by default) after which fϕk is applied to predict future (10-th epoch)
parameters, after which the procedure repeats (the base optimizer is continued for another 5 epochs
followed by parameter prediction) until convergence. So the WNN is applied very rarely, e.g. in
the case of 200 Adam steps per epoch, the WNN is applied only once per 1,000 steps (Fig. 1).

3.2 (NAIVE) NEURAL GRAPH OF TRANSFORMERS

WNNs apply an MLP for parameter θi given only its past values. Such an MLP is inherently
limited, since future parameter values depend on many factors, including connectivity of neurons.
Modeling neuron connectivity in a way that generalizes to arbitrary network structures to make
parameter prediction as general as possible is challenging. Simple parameter representations, e.g.
flattening of parameters into a vector (Schürholt et al., 2021), are not general and do not model
neuron permutation symmetry (the neurons can be permuted without changing the network output).
Recently, Kofinas et al. (2024); Lim et al. (2024) proposed to represent θ using a neural graph
Gpθq “ pV,Eq with node features V P R|V|ˆdV and edge features E P R|V|ˆ|V|ˆdE , where
dV, dE are the node and edge feature dimensionalities, respectively. For example, Equation 2
shows E for the dE “ 1 dimensional edge features of an L-layer MLP (we ignore biases for
simplicity): θ “

␣

Wp1q, . . . ,WpLqq
(

, where Wplq P Rdl´1ˆdl are the weights for l P r1, Ls.

E “
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(2)

Neural graphs can theoretically represent the parameters
of any neural network taking into account neuron permuta-
tion symmetry as the rows and columns of weight matrices
correspond to the nodes in the neural graph. This way, neu-
ral graphs impose a strong inductive bias similarly to using
convolution for images. So a model operating on neural
graphs, such as a graph neural network (GNN) and our
NiNo model, can be used in diverse tasks and should be
able to learn parameter prediction rules that generalize bet-
ter with fewer samples than, for example, MLPs. However,
to fully leverage the neural graphs in practice, we need to accurately construct them, which is not
trivial for such networks as Transformers, motivating our approach in this work.

Transformers. For input x P RNˆd, where N is a sequence length, a multi-head self-attention
(MSA) layer (Vaswani et al., 2017) for each head h P r1, Hs projects x using Wq

h,W
k
h,W

v
h followed

3
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Figure 2: (a) MSA weights with d “ 6 and H “ 2 heads; (b) its naive (Kofinas et al., 2024) and (c) our
neural graph with color-coded edge/parameter types. (d-e) Neural graph embeddings obtained using a GNN and
projected to 2d using tSNE for 1k good and bad permutations of the MSA weights: (d) naive graph, (e) our
graph. Accuracy is computed by fitting logistic regression for neural graph embeddings with labels being if the
MSA output changes or not as described in Section A.6.

by self-attention and projection using another weight matrix Wo
h (see Section A.4 for details):

Ah “
pxWq

hqpxWk
hqT

?
d

and yh “ softmaxpAhqpxWv
hq and MSApxq “

H
ÿ

h“1

yhW
o
h. (3)

To construct neural graphs of MSA, Kofinas et al. (2024); Lim et al. (2024) use dE “ 3 dimensional
edge features eij “

´

pWqqij ,
`

Wk
˘

ij
, pWvqqij

¯

, assuming that the multi-head case is automati-
cally handled by the neural graph. However, as shown in Section 4.1, this neural graph does not model
the neuron permutation symmetry correctly, therefore we refer to it as a naive neural graph (Fig. 2a,b).

4 METHODS

In this section, we describe the details of our neural graphs for an MSA layer of Transformers and
the neuron interaction and nowcasting (NiNo) networks operating on such graphs (Fig. 4). Our
neural graphs can be constructed for different Transformer architectures, including GPT2 (Radford
et al., 2019), Llama (Dubey et al., 2024) (see graph examples in Fig. 9) and others (see our
implementation). Following WNNs, NiNo is also applied very rarely during the optimization process
(Section 3.1). However, NiNo leverages the representation power of neural graphs and GNNs to
speed up optimization more significantly than WNNs, as we show in Section 5.

4.1 NEURAL GRAPH OF TRANSFORMERS

To construct neural graphs that accurately model neuron permutation symmetry in MSA, we (1) re-
strict neuron permutations across heads and (2) relax permutations of weights Wq,Wk (Fig. 2).

(1) Restricting permutations across heads. We first observe that splitting computations into H
parallel heads (Equation 3) breaks neuron permutation symmetry across the heads, so shuffling
neurons across the heads may change the overall output of MSApxq. Consider, for example, an MSA
layer with d “ 6 andH “ 2 (Fig. 2a) and the dot product between outputs xq

1 and pxk
1qT obtained after

projecting x using the weights of the first head Wq
1 and Wk

1 : xq
1pxk

1qT “ rxq
1,x

q
2,x

q
3srxk

1 ,x
k
2 ,x

k
3sT .

The result of this dot product does not change when permuting neurons in both Wq
1 and Wk

1 using
the same π, since it results in permuting the outputs: πpxq

1qπpxk
1qT “ xq

1pxk
1qT . However, consider

shuffling neurons across head 1 and 2 in Wq and Wk, e.g. neurons 3 and 4 (highlighted in different
colors in Fig. 2a) resulting in: rxq

1,x
q
2,x

q
4srxk

1 ,x
k
2 ,x

k
4sT . Now the dot product no longer equals

xq
1pxk

1qT unless xq
4x

k
4 “ xq

3x
k
3 . So self-attention matrix A1 for head 1 and MSApxq can change.

To take into account this restriction, we allow for neuron permutations only within a head by adding
a separate node for each head that connects the appropriate neurons so that permuting neurons 3 and
4 from our example changes the graph while permuting withing a head does not change it (Fig. 2c).
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Figure 3: Laplacian Positional Encoding (LPE) of our neural graph’s nodes color-coded by the layer type (left),
layer index (middle) and neuron index (right) for a Transformer with 6 layers and 384 hidden units. We show
tSNE projections from the 8-dimensional LPE to 2d.

(2) Relaxing permutations for Wq,Wk. We also observe that neurons in Wq
h and Wk

h can be
permuted in a different way (π1) from Wv

h and Wo
h without changing the MSA output:

pxWq
hqpxWk

hqT “ pxπ1
cpWq

hqqpxπ1
cpWk

hqqT and pxWv
hqWo

h “ pxπcpWv
hqqπrpWo

hq, (4)

where πc and πr denote permutation π of the columns and rows in the matrix respectively. In the naive
graph the neurons in Wq

h,W
k
h,W

v
h,W

o
h are always permuted in the same way (πc “ π1

c) making
the neural graph unnecessary restrictive (Fig. 2b). To address this issue, we keep Wq

h,W
k
h,W

v
h as

separate 1-dimensional edge features in a neural graph instead of stacking them as 3-dimensional
edge features (Fig. 2c). Since Wq

h and Wk
h share the input and output neurons while Wk

h is
transposed in Equation 3, it is important to preserve the edge direction, so that for example e3,4
corresponds to the weights of Wq

h while e4,3 corresponds to the weights of Wk
h.

Edge features. In our neural graph, all the model parameters θ and auxiliary connections θ1, such
as residual and head connections introduced in Section 4.1, are represented using the edge features
E P Z|V|ˆ|V|ˆdE so that ||E||0 “ |θ|`|θ1

| (Fig. 2c). To differentiate between θ and θ1, we associate
an integer edge type with each edge: Etype P Z|V|ˆ|V|ˆ1, so our neural graph Gpθq “ pV,Etype,Eq.

Node features. For the node features we use the Laplacian Positional Encoding (LPE) (Belkin &
Niyogi, 2003; Dwivedi et al., 2023) that allow graph neural networks to capture structural information
more easily. For example the LPE implicitly embeds nodes of the same layer and same type close to
each other even though this information is not explicitly provided (Fig. 3). To compute the LPE, we
use unweighted edges, transform the graph to an undirected one and extract 8 smallest non-trivial
eigenvectors, so our node features are Vlpe P R|V|ˆ8. In addition, for Transformer’s word embedding
layers, we found it beneficial to leverage a positional feature Vw P Z|V|ˆ1, since these layers often
have the same size with ordered neurons. For other layers, this feature is set to zero.

Sequence of parameters as a neural graph. We consider a history of c past parameter vectors
following WNNs (Section 3.1): Θτ :τc “ rθτ ,θτ´1, ...,θτcs P Rnˆc, where τc “ τ ´ c ` 1 as in
Section 3.1. Since each parameter vector in Θτ :τc represents the same neural network structure, we
transform the entire Θτ :τc into a single neural graph GpΘτ :τcq “ pVlpe,Vw,Etype,Eτ :τcq, where
Eτ :τc is obtained by stacking edge features: Eτ :τc “ rEτ ,Eτ´1, ...,Eτcs P R|V|ˆ|V|ˆdEˆc, whereas
node features Vlpe,Vw and edge types Etype do not change over time.

4.2 NEURON INTERACTION AND NOWCASTING NETWORKS (NINO)

Given an input neural graph GpΘτ :τcq, our NiNo model processes it using layerwise scaling layer,
node and edge embedding layers and GNN layers with a hidden size D. NiNo then predicts
edge features for multiple steps in the future Ê1:K that are mapped back to the parameter space
r∆θ̂τ`1, ...,∆θ̂τ`Ks using the inverse neural graph construction ∆θ̂τ`k “ G´1pÊkq (Fig. 4).

Layerwise scaling. Since parameter values can vary in scale significantly across architectures and
tasks, it is important to scale them appropriately. Compared to WNNs (Jang et al., 2023) scaling each
parameter independently using min-max, we extend a layerwise scaling (Schürholt et al., 2022) to a
sequence of parameters. Specifically, given weights Wplq

τ :τc P Rdl´1ˆdlˆc of the l-th layer of the input
Eτ :τc , we obtain scaled weights as W̃

plq
τ :τc “ pW

plq
τ :τc ´ µ

plq
τ q{σ

plq
τ , where µplq

τ , σ
plq
τ are the scalar

mean and standard deviation of Wplq
τ :τc . After repeating this step @l P r1, Ls, we obtain scaled Ẽτ :τc .
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Figure 4: Our neuron interaction and nowcasting (NiNo) model. We feed c past parameter states as input and
predict future K states leveraging our improved neural graph structure (Section 4.1) using a graph neural network.
For a new optimization task, NiNo is applied rarely over time: only once per 1k steps of Adam (Section 5).

Embedding layers and GNN. We use linear ϕlpe, ϕe and embedding ϕw, ϕtype layers to project node
and edge features to the D-dimensional space followed by M GNN layers and the output layer ϕDMS:

V0 “ ϕlpepVlpeq ` ϕwpVwq, V0 P R|V|ˆD, (5)

E0
“ ϕepẼq ` ϕtypepEtypeq, E0

P R|V|ˆ|V|ˆD, (6)

Vm,Em
“ GNNϕm

pVm´1,Em´1
q, m “ 1...M, (7)

Ê “ ϕDMSpEM
q, Ê P R|V|ˆ|V|ˆK . (8)

Our GNN layers are based on Kofinas et al. (2024), but to enable better efficiency and generalization
when working with large models, we use a simple mean aggregation (see Section A.5).

Direct multi-step forecasting (DMS). The final layer ϕDMS outputs K values for each edge corre-
sponding to future steps from τ ` 1 to τ ` K. This is motivated by direct multi-step forecasting
performing well in time series forecasting by avoiding error accumulation effects of autoregressive
forecasting (Chevillon, 2007; Zeng et al., 2023). To train the model given a training dataset of
parameters trained with Adam, we use Equation 1, but applied for k “ r1, ...,Ks instead of fixing k:

argminϕ

1

K

ÿK

k“1
p||∆θ̃τ`k ´ ∆θ̂τ`k||1q, (9)

where ∆θ̂τ`k “ G´1pÊkq and θ̃τ`k are the target parameters scaled using µτ , στ . The predicted pa-
rameters are obtained by unscaling the predicted delta using µτ , στ : θ̂τ`k “ θτ ` unscalep∆θ̂τ`kq.

Inference with k-decay. Once our model is trained, it can predict future parameters for k P r1,Ks.
While k can be treated as a hyperparameter and kept fixed during optimization of the target task,
we found that in the initial optimization stage using very large k is beneficial, whereas in the later
optimization stages k should decrease fast, since the parameter values do not change significantly.
Therefore, we propose to decay k during optimization as k « KppT ´ tq{T qp, where T is the
maximum number of optimization steps and p controls the decay speed (Fig. 12). Although p can be
tuned, we found that p “ 2 works well in our experiments.

5 EXPERIMENTS

We experiment with nine tasks, each defined by a dataset and a neural network architecture in the
vision or language domains (Table 1). Four of the tasks, the in-distribution tasks, are of a relatively
smaller scale and used to train our meta-models (NiNo, WNN and their variants). The other five tasks,
the out-of-distribution tasks, differ from the in-distribution tasks in the architecture and/or dataset.
We also experiment with larger GPT2-based and Llama-based architectures at the end of Section 5.2.

Indexing parameters. Since the notion of epoch used for τ in WNNs (Section 3.1) can be ill-defined
in some tasks (e.g. in language tasks the models are often trained only for 1 epoch), in our experiments
we found τ and τ`1 indexing parameters at step t and t`200 to be a well performing strategy in all the
tasks, so for our default context length c“ 5 we apply the meta-models every 5 ˆ 200“ 1, 000 steps.
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Table 1: In-distribution and out-of-distribution tasks.

IN-DISTRIBUTION TASKS OUT-OF-DISTRIBUTION TASKS
FM/16 C10/16 LM1B/3-24 LM1B/2-32 FM/32 C10/32 C100/32 LM1B/3-64 WIKI/3-64

Final training loss 0.25˘0.06 0.91˘0.1 5.94˘0.03 5.85˘0.04 ´ ´ ´ ´ ´

#models 300 300 200 200 ´ ´ ´ ´ ´

#params 14K 15K 1.2M 1.6M 56K 57K 63K 3.4M 3.4M

Target (validation) metric Acc Acc Perplexity Perplexity Acc Acc Acc Perplexity Perplexity
Target value 89.5% 66.0% 352 319 90.5% 72.5% 39% 181 147
Adam #steps 8606 8732 23000 23500 8269 8607 8341 23500 13500
NiNo #steps 4582 3775 11500 12000 4395 4323 4646 12000 7000
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Figure 5: Scaling (a,b) and generalization (c) trends for NiNo vs WNN+.

Training and evaluation pipeline:
1. Meta-training: Train the meta-models with the supervised parameter prediction loss (Equation 1

for WNN and Equation 9 for NiNo) using training checkpoints from the four in-distribution tasks.
2. Usage: Train task-specific neural networks in all the tasks using the Adam (vision) and AdamW

(language) optimizers with the meta-model applied every 1k steps given c“ 5 past parameters.
3. Evaluation: Define a target validation performance level for each task based on running

the baseline Adam optimization (without the meta-model applied) and reporting the relative
reduction of the number steps to achieve that performance by other methods.

5.1 SETUP

Vision tasks. We use the FashionMNIST (FM), CIFAR-10 (C10) and CIFAR-100 (C100) datasets
and two convolutional architectures with three layers: with 16, 32 and 32 channels per layer (e.g. task
FM/16) or 32, 64 and 64 channels per layer (e.g. task FM/32). The convolutional architectures are the
same as in the L2O experiments of Kofinas et al. (2024) to enable fair comparison. In all cases, these
tasks are optimized using Adam (Kingma & Ba, 2015) without weight decay, with a constant learning
rate of 6e-3 (for FashionMNIST) or 3e-3 (for CIFAR) with a batch size of 128 for T=10k steps.

Language tasks. We use the LM1B (Chelba et al., 2013) and WikiText103 (WIKI) (Merity et al., 2016)
datasets and train GPT2 style Transformers (Radford et al., 2019) with 3 layers, 24 hidden units and
3 attention heads (denoted as 3-24); 2 layers, 32 units and 2 heads (2-32) or 3 layers, 64 units and 4
heads (3-64). These tasks are optimized for the next token prediction loss with AdamW (Loshchilov
& Hutter, 2017), weight decay 1e-2, learning rate 2e-4, batch size of 32, sequence length of 1024
for either 1 epoch (for LM1B) or 4 epochs (for WIKI) corresponding to around 24k or 14k steps
respectively. We use a predefined GPT2 tokenizer in all the cases with a fixed vocabulary.

Meta-training dataset. We use FM/16, C10/16, LM1B/3-24 and LM1B/2-32 as the in-distribution
tasks training 300, 300, 200 and 200 models in each task respectively (C “ 1000 models in total).
We save the checkpoints of intermediate steps, having in total around 1.6 ˆ 106 checkpoints. Our
dataset is large and diverse (Fig. 10), yet it is relatively cheap to be collected as the tasks are small.

Baselines. As a reference optimization method we use Adam for vision and AdamW for language
tasks with a constant learning rate that we tune independently on each task based on the validation
metric. Following WNNs (Jang et al., 2023) we use Linefit as another baseline (Section A.2). We
further improve it with a simple scaling term to promote more recent parameters denoted as Linefit+
(see Section A.3). As the strongest baseline, we use WNN with our layerwise scaling and k-decay
which we denote as WNN+. Finally, we use the learning to optimize (L2O) model from Kofinas
et al. (2024), which showed strong results on similar vision tasks. We use their L2O (NG-GNN)
pretrained on FM/16 (denoted as L2O/FM16) as retraining their model on all our in-distribution tasks
is expensive. For a fair comparison with L2O/FM16, we also trained NiNo on FM/16 only (denoted
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Table 2: Reduction (%) of the number of steps until a target performance w.r.t. Adam. We
observe that on both in-distribution and out-of-distribution tasks our models improve over the base
optimizer and other acceleration methods.

IN-DISTRIBUTION TASKS OUT-OF-DISTRIBUTION TASKS AVG SPEED UP

FM/16 C10/16 LM1B/3-24 LM1B/2-32 FM/32 C10/32 C100/32 LM1B/3-64 WIKI/3-64

Linefit 27.0 26.8 32.6 31.9 16.6 26.5 20.7 29.8 33.3 27.3
WNN 29.3 31.4 26.1 23.4 22.2 27.9 25.0 27.7 25.9 26.5
Linefit+ 27.3 28.3 32.6 29.8 23.3 27.0 25.0 25.5 33.3 28.0
WNN+ 33.8 45.1 45.7 44.7 31.6 44.0 37.8 38.3 37.0 39.8

NiNo (naive graph) 48.7 53.1 33.7 12.8 42.1 49.3 37.8 23.4 33.3 37.1
NiNo 46.8 56.8 50.0 48.9 46.8 49.8 44.3 48.9 48.1 48.9

Table 3: Ablations and analysis of hyperparameters. Average speed up (%) is reported.
(a) Varying scaling

layerwise (µ, σ per layer) 48.9
µ, σ per param 41.5
min-max per param 38.8
no scaling 32.1

(b) Varying p in k-decay

p “ 1 45.8
p “ 2 48.9
p “ 10 47.7
p “ 0 (no k-decay) 40.8

(c) Ablating embeddings (Equation 5)

LPE + word pos enc (Vw) 48.9
no LPE 47.5
no word pos enc (Vw) 45.4
no edge type 45.7

(d) Varying context length

c “ 3 29.8
c “ 5 48.9
c “ 7 44.0
c “ 10 34.0

(e) Varying NiNo size

M “ 3, D “ 128 48.9
M “ 3, D “ 32 42.6
M “ 1, D “ 128 39.7
M “ 2, D “ 128 44.7

(f) Other hyperparameters (b, γ are the batch size
and learning rate used to meta-train NiNo)

C “ 103, b “ 4, γ “ 3e-3 48.9
C “ 102, b “ 4, γ “ 3e-3 45.1
C “ 103, b “ 4, γ “ 1e-3 41.5
C “ 103, b “ 2, γ “ 3e-3 43.8

as NiNo/FM16). We train WNN+ and NiNo with M P r1, 2, 3s layers and D P r16, 32, 64, 128, 256s,
where M “ 3, D“ 128 are used unless otherwise stated (see training details in Section A.7).

Evaluation. We follow Dahl et al. (2023) when choosing the approach to compare training methods
and set our target based on the validation set performance using tuned Adam, which we consider as
the main baseline (Table 1). To reduce evaluation uncertainty we train all the tasks multiple times (10
for vision and 3 for language) and use the median number of steps. We report a relative reduction
of the number of steps in %, e.g. for task WIKI/3-64 if the method achieves perplexity 147 in 7000
steps (as our NiNo does), the reduction is 48.1% based on Table 1. For language tasks due to more
expensive evaluation we only evaluate every 500 steps, whereas for vision we evaluate every step.

5.2 RESULTS

Main results. Our NiNo model shows consistently better performance than Linefit and WNN and
their improved variants on all the nine tasks (Table 2). On average we speed up Adam optimization
by 48.9% reducing the number of steps to achieve the target performance roughly by half. NiNo is
followed by WNN+ and NiNo with a naive graph (Section 4.1). While the latter achieves slightly
better performance on the FM/16 in-distribution task, in the out-of-distribution tasks this model
significantly underperforms to NiNo, especially in the language tasks. This performance gap is
expected since NiNo represents neural graphs for Transformers more accurately as we further
validated qualitatively (Fig. 2d,e) and quantitatively (Section A.6). Other baselines perform poorly,
but we highlight that both Linefit baselines compare favorably to WNN indicating that the latter could
have learned a very simple rule despite training on a lot of data.

Comparison with L2O. L2O/FM16 performs the best in-distribution on the same task (Fig. 6a), how-
ever when applied to an unseen task it overfits to the training set (Fig. 6b). In contrast, our NiNo/FM16
trained on the same task as L2O/FM16 performs well on the validation set of unseen tasks, presumably
because Adam is used for most of the steps and for the input NiNo uses the trajectory of parameters of
the target task to make the prediction. In addition, L2O/FM16 and L2O in general have an overhead at
every optimization step making the total computation cost noticeable (Table 6 in Section A.7). It is also
more computationally challenging to meta-train it on multiple tasks, therefore we only use a pretrained
L2O/FM16 from Kofinas et al. (2024). Since L2O/FM16 does not reach the target validation scores in
most tasks, we compare it only using the curves in Fig. 6a,b and only on the FM/16 and C10/32 tasks.

Ablations. We ablate NiNo components and hyperparameters and found that our layerwise parameter
scaling and k-decay are the most important components (Table 3a,b). Among the hyperparameters,
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Figure 6: Training loss and validation performance on FashionMNIST, CIFAR-10 and WIKI.

we found that context length c“ 5 is a sweet spot (Table 3d), because small c may not have enough
information to capture the parameter trend, while larger c leads to the NiNo applied too rarely (for
c“ 10 it is applied every 10ˆ200“ 2, 000 steps). Using deeper (Table 3e) and wider (Fig. 5a) GNNs
is also important. However we found that depth M ą 3 or width Dą 128 make it more challenging
to train a performant model. Increasing the number of models (C) helps NiNo achieve better speed
ups (Table 3f, Fig. 5b). In contrast, WNN+ saturates fast when D or C is increased.

Table 4: WIKI validation perplexity (Ó) on
a Llama3-style architecture (reported as the
mean and standard deviation for 3 runs).

Method 10000 steps 14000 steps

AdamW 26.29˘0.05 24.44˘0.01
AdamW+NiNo 24.36˘0.11 22.37˘0.13

Evaluating on larger models and Llama3-style archi-
tectures. We evaluated the ability of NiNo to speed up
training of much larger models than it was trained on.
Specifically, we trained 4 and 6 layer GPT2-style Trans-
formers on WIKI with 128 and 384 hidden units having
around 7M and 29M parameters respectively (Fig. 5c).
The latter is around 18 times larger than the largest in-
distribution architecture. Moreover, the WIKI dataset is
different from LM1B used in meta-training. Despite these challenges, NiNo was able to speed up
training by around 40% and 15% for the 7M and 29M models respectively, outperforming WNN+.
We also trained a Llama3-style Transformer with 6 layers and 384 hidden units (111M parameters)
with AdamW and AdamW+NiNo, which is an even more challenging setup than in the previous
experiments because NiNo did not observe Llama models during its meta-training (Table 1). In this ex-
periment, we use the Llama 3 tokenizer (Dubey et al., 2024) having a larger vocabulary than in GPT2,
so we use an ablated NiNo without Vw. Besides the vocabulary, Llama models may pose additional
challenges for NiNo, e.g. they differ from GPT2 in parameter initialization, MLP structure, layer
normalization, positional embeddings, using biases, grouped query attention, etc. (see Fig. 9 for GPT2
and Llama neural graph examples). Nevertheless, even in this setup our NiNo accelerates training
reaching the validation perplexity of the AdamW baseline (24.4) in around 30% less steps (Table 4).

5.3 ANALYSIS
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Figure 7: Comparison of optimization methods on the C10/32 task
by projecting parameters to 2d using PCA at every training step.

Parameter space (θÑR2). We
show how the parameters evolve dur-
ing training on C10/32 by projecting
them to 2d using PCA (Fig. 7). The
PCA projection matrix is computed
using the entire Adam trajectory, so
the same projection is applied to
all the methods. We show the first
8,000 steps for Adam/AdamW and
4,000 steps for other methods with
200 steps between points. In the
beginning of training, both WNN and
NiNo make big steps (dashed lines
in Fig. 7) along the Adam/AdamW
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Figure 8: Comparing the embedding quality of WNN+ (a) and NiNo (b) during optimization by projecting
neural graph embeddings to 2d using PCA every 1,000 steps. We show the training trajectories of three
GPT2-style Transformers with 3, 4 and 6 layers respectively.

trajectory when predicting the parameters, while L2O diverges early. At later optimization stages,
NiNo makes better predictions than WNN as the latter leads to significant loss spikes. Interestingly,
NiNo’s trajectory closely corresponds to a 2ˆ faster AdamW, even though NiNo’s base optimizer
is Adam in this task. This indicates that NiNo may implicitly regularize optimization.

Graph embedding space (EM
ÑR2). The parameter space analysis used above can be effective on

a single task. However, for several tasks with different model sizes (|θ|), finding a common PCA
projection matrix (θÑR2), required for the parameter space analysis, becomes challenging. Using
neural graphs and NiNo enables such an analysis. Specifically, we can first represent the parameters in
the graph embedding space using NiNo and then project the embeddings to 2d. We use this approach
to see how the graph embeddings evolve when training three different GPT2-style Transformers
on the language task (Fig. 8). We construct D-dimensional graph embeddings by computing the
average edge features (1{|EM

|
ř

ij E
M
ij ) after the last NiNo (or WNN+) layer by feeding the 5 past

parameter states every 1,000 steps as in our other experiments. Despite having different Transformer
architectures, the graph embedding space is the same, which allows us to project the embeddings to 2d
using PCA. The PCA projection matrix is computed for each method (NiNo or WNN+) based on the
entire trajectory for all the three architectures to allow for visualization on the same plot. Surprisingly,
even WNN+ can encode parameter in a meaningful way – in general the parameters of different
architectures and at different optimization stages are visually distinct (Fig. 8a). However, WNN+’s
embeddings virtually collapse at later training stages for lower loss values (e.g. for 6-384), while
NiNo’s embeddings are visually more distinct for lower loss values (Fig. 8b). The ability of NiNo to
distinguish parameters at later optimization stages can be useful in practice for multiple reasons. For
example, despite similar training losses, model parameters can be quite different resulting in different
behaviors on downstream tasks (Liu et al., 2023; Dahl et al., 2023).

Computational costs. NiNo is applied only every 1,000 steps of the base optimizer, so the wallclock
time overhead of using our default NiNo is small, e.g. ă0.5% for a 7M Transformer compared to
around 5% by L2O (Table 6). As for the memory required for a prediction with NiNo, in our implemen-
tation NiNo’s peak memory usage is similar to the peak memory usage of a training step of the Trans-
former with a batch size of 16-32. We expect that in future work, NiNo’s inference efficiency can be
improved in multiple ways. For example, we can potentially parallelize NiNo’s inference on large neu-
ral graphs using approaches similar to large scale model inference in image generation (Li et al., 2024).

6 CONCLUSION AND FUTURE WORK

We proposed NiNo, a novel approach to accelerate training of neural networks, including Transform-
ers. Our work makes a step in the relatively underexplored area of periodic parameter prediction,
where our experiments show that there is a lot of potential for reducing training time. Our experiments
also reveal potentially useful byproducts of NiNo, such as low-dimensional encoding of network
parameters during training, which can be used to analyze diverse models and their training dynamics.
An interesting direction of future work is to investigate the scaling up of our approach, in particular
as the scaling trends that we have observed in our experiments indicate better speed ups with more
data and larger models.
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A APPENDIX

A.1 WNN PARAMETER SCALING DETAILS

In WNNs (Jang et al., 2023), parameter scaling is performed by first computing the minimum and
maximum values in the input parameter values: siτ “maxpθi

τ , ...,θ
i
τcq´minpθi

τ , ...,θ
i
τcq,@i P r1, ns.

Each i-th parameters scaling factor siτ is then used to scale both the inputs: θ̃
i

τ “θi
τ {psiτ ` ϵq, and,

only for training WNNs, the targets: θ̃
i

τ`k “θi
τ`k{psiτ ` ϵq. Jang et al. (2023) also subtract the

last element from the sequence, however we found this to be redundant. Unscaling is performed
by multiplying the prediction by siτ . Scaling and unscaling are performed per parameter (for each
parameter independently).

A.2 LINEFIT

Sinha et al. (2017); Jang et al. (2023) introduced a “linefit” baseline to predict future parameter values
by extrapolating the line to a future point:

@i P r1, ns :

θ̂
i

τ`k “ 2aic` bi, (10)

where ai, bi are obtained by optimizing the following objective:

argminai,bi ||a
ix ` bi ´ Θi

τ :τc ||2, (11)

where x“ r1, 2, ..., cs and Θi
τ :τc “ rθi

τ ,θ
i
τ´1, ...,θ

i
τcs PRc. This baseline fits a line (ai, bi) for each

parameter i given only the past values of the same parameter without collecting a training dataset.
Despite its simplicity, this baseline was shown to improve on using Adam/SGD only.

A.3 LINEFIT+

Linefit outlined in Section A.2 can be viewed as a form of momentum that promotes the parameters to
be consistent with their global trend. However, Linefit weighs all past values uniformly when fitting
the line, while in the momentum more recent values have more effect on the weight update (Sutskever
et al., 2013). Motivated by this observation, we introduce the Linefit+ baseline that penalizes more
the errors for later parameter values in the trajectory:

argminai,bi ||µpaix ` bi ´ Θi
τ :τcq||2, (12)

where µ“ r1{c, 2{c, ..., 1s.

A.4 NAIVE NEURAL GRAPH OF TRANSFORMERS

A multi-head self-attention (MSA) layer of Transformers (Vaswani et al., 2017) consists of three
weight matrices Wq,Wk,Wv applied to the input x PRNˆd and another weight matrix Wo re-
turning the output, where N is a sequence length and all the four weight matrices are dˆ d. To
compute MSA with H heads, the weight matrices are typically split into H groups across columns for
Wq,Wk,Wv and rows for Wo (Fig. 2a). The heads are processing the input in parallel, @h P r1, Hs

using Equation 3.

Neural graphs defined by Kofinas et al. (2024) and Lim et al. (2024) are conceptually similar, however
Lim et al. (2024) model biases bplq and normalization layers as extra nodes connected to the neurons
in the l-th layer (Fig. 2c). Normalization layers are similarly added as separate nodes, hence the
node features of Lim et al. (2024) do not include any parameters. We build on this variant, since
it is more easily to implement it for the layers with complicated neuron permutation symmetry,
such as multi-head self-attention. Compared to Kofinas et al. (2024), Lim et al. (2024) also provide
a slightly different description for the MSA neural graph , however the Wq,Wk,Wv edges are
also stacked. Given the lack of detailed description for the multi-head case and no implementation
currently available publicly, it makes it challenging to use their neural graphs directly. Therefore, we
use (Kofinas et al., 2024) as the base (naive) neural graph when constructing MSA layers.
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A.5 GRAPH NEURAL NETWORK

A Graph Neural Network (GNN) layer with edge features can be formulated using the mean aggrega-
tion as follows (Corso et al., 2020): vi “ϕa

´

1
|N piq|

ř

jPN piq mij

¯

, where mij is computed using
message passing ϕm given node and edge features vi,vj , eij ; ϕa is an MLP; N piq are the neighbors
of node i. Kofinas et al. (2024) modify how mij is computed to better incorporate edge features and
introduce an edge update step to make better per edge predictions (Table 5). Stacking such layers
form a GNN that (1) does not change the size of the input graph and (2) is permutation equivariant.
(1) means that for the neural graphs there are |θ|1 ˆ dE input edge features and |θ|1 ˆ 1 predictions,
where |θ|1 is the number of trainable parameters in the input model plus auxiliary non-trainable
parameters (e.g. residual and head connections). (2) means that any permutation of input nodes
results in the same permutation of the output nodes and corresponding edges. These properties make
GNNs a suitable model to predict future parameters and to work with neural graphs where nodes
(neurons) can be permuted in the ways described in Section A.6.

Table 5: GNN layer comparison.

Step Typical GNN (Corso et al., 2020) Neural Graph GNN (Kofinas et al., 2024)

1. Message passing mij “ϕm prvi,vj , eijsq mij “ϕscale peijq d ϕm prvi,vjsq ` ϕshift peijq

2. Aggregation vi “ϕa

´

1{|N piq|
ř

jPN piq
mij

¯

3. Edge update e
pk`1q

ij “ e
pkq

ij e
pk`1q

ij “ϕ
pk`1q
e

´”

v
pkq

i , e
pkq

ij ,v
pkq

j

ı¯

A.6 NEURON PERMUTATION SYMMETRY

Permutation symmetry in neural graphs. Let πgoodpθq be a permutation of neurons in θ that does
not change the network function: fpx,θq “ fpx, πgoodpθqq. Likewise, let πbadpθq be a permutation
that changes the function: fpx,θq ‰ fpx, πbadpθqq. Denoting – and fl as “isomorphic” and “non-
isomorphic” operators on graphs respectively, for neural graphs G the following equations are satisfied
under some assumptions (Kofinas et al., 2024): Gpθq –Gpπgoodpθqq and Gpθq flGpπbadpθqq. Here,
by definition, the neural graphs are assumed to be constructed correctly, however, achieving or
validating that in practice is not trivial for such networks as Transformers.

Neuron permutation symmetry experiment. To validate how well our neural graphs correspond to
true neuron permutations in Transformers, we run a simple neuron permutation experiment. We use
a single Transformer layer with d“ 12 and H “ 4, permute rows and columns in its MSA weight
matrices θ using a uniformly sampled permutation π, and label each permutation as yπ “ 1 for πgood

or yπ “ 0 for πbad depending if the Transformer output fpx,θq changes or not:

yπ “

"

1, iffpx,θq “ fpx, πpθqq

0, otherwise.
(13)

We generate 1,000 such permutations with about 500 of good and bad permutations. Then we
extract a neural graph embedding for each permutation. For correctly constructed neural graphs the
embeddings corresponding to yπ “ 1 should be close to the non-permuted θ. To extract embeddings
we use a randomly initialized graph neural network with 3 layers and 32 hidden units based on
Section A.5. We then visualize the embeddings in 2d (Fig. 2d,e) and color-code each embedding with
yπ . We also train a logistic regression model ψ that takes a graph embedding h as input and predicts
if it is a good or bad permutation: ŷπ “ψphq, and we compute classification accuracy between ŷπ
and yπ . We use all 1,000 samples for training and evaluation ψ to estimate how easily can the graph
embeddings be separated based on yπ (random guess accuracy is around 50%). We repeated the
above experiment for the naive and our neural graphs (Fig. 2, d,e). The visualization and classification
results indicate that our neural graph construction respects good and bad permutations well, while
naive neural graphs confuse them.
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Figure 9: Graph and adjacency matrix with head restrictions and separate q, k, v edge features introduced in
Section 4.1, color-coded by edge type. (top) A 2 layer GPT2-based Transformer with d“ 6 and H “ 2. (bottom)
A 2 layer Llama3-based Transformer with d“ 12, intermediate hidden size equal 24, H “ 6 and number of key
value heads equal 2 for GQA. The number of word embeddings is reduced for visualization purposes.
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Figure 10: Histogram of final training losses in the in-distribution (meta-training) tasks. See Table 1 for more
details.
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Figure 12: Different k-decay schedules.

Table 6: Computational cost estimates. Measured on NVIDIA A100-80GB after running for 1k steps with
batch size b“ 32, sequence length“ 1024. Note that these numbers are rough estimates as the time/memory
vary depending on the GPU/CPU load and internal logic in different PyTorch versions. Also note that time and
memory can be traded off by processing only a fraction of parameters at a time. For Adam and L2O, we report per
step measurements, since these methods are used at every step. For WNN+ and NiNo, we report per prediction
measurements after 1k steps of Adam. “Overhead” denotes wall clock time increase vs Adam. *The message
passing step of NiNo is computed on CPU to avoid OOM on GPU, resulting in much longer prediction time.

METHOD HID SIZE D 3-64 (3.4M, GPT2-BASED) 4-128 (7.4M, GPT2-BASED) 6-384 (111.5M, LLAMA3-BASED)
PEAK MEM TIME OVERHEAD PEAK MEM TIME OVERHEAD PEAK MEM TIME OVERHEAD

Adam ´ 27GB/step 130ms/step 0% 28GB/step 180ms/step 0% 76GB/step 909ms/step 0%

WNN+ 32 1GB/predict 172ms/predict 0.13% 3GB/predict 222ms/predict 0.12% 42GB/predict 2.01sec/predict 0.22%
WNN+ 128 4GB/predict 245ms/predict 0.19% 9GB/predict 294ms/predict 0.16% 71GB/predict 3.44sec/predict 0.38%
NiNo 32 3GB/predict 323ms/predict 0.25% 5GB/predict 498ms/predict 0.28% 57GB/predict 5.52sec/predict 0.61%
NiNo 128 9GB/predict 483ms/predict 0.37% 16GB/predict 864ms/predict 0.48% 71GB/predict* 510sec/predict* 56.11%*

L2O (mlp) 32 27GB/step 134ms/step 3.08% 28GB/step 190ms/step 5.56% 76GB/step 917ms/step 0.88%

A.7 NINO TRAINING DETAILS

For representing convolutional networks with neural graphs, dE “hˆw (Kofinas et al., 2024), where
h,w are convolution kernel size, so edge features representing c states are |θ|1 ˆ chw, where |θ|1

is the number of trainable and auxiliary non-trainable (residual, head connections) parameters in a
model. To make the feature dimensionality the same for different architectures during meta-training,
we use zero-padding. We train meta-models for 20k training iterations using AdamW, learning
rate 3e-3 with cosine decay and weight decay 0.01. We sample a batch of 4 checkpoints in each
training iteration and use automatic mixed precision. Training of the NiNo and WNN+ meta-models
completes in under 7 and 6 hours respectively on a single NVIDIA RTX8000 with 48GB of memory.

Meta-training behavior can give important highlights about the model and data. Therefore we explore
meta-training for different hidden sizes (128 vs 32) and numbers of dataset samples (checkpoints
sampled either from all 1000 or just 4 models). We found that NiNo achieves a lower meta-training
loss than WNN+ despite having a comparable number of parameters indicating the important of
leveraging neural graphs (Fig. 11). However our NiNo model is still in a severe underfitting regime
when trained on all the training checkpoints, since when the number of checkpoint models is reduced
to just 4 the loss is much lower for NiNo (with 128 hidden units). This result suggests that further
scaling up NiNo could help fit all the training data better and potentially achieve stronger results.
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