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ABSTRACT

Neural network pruning remains a very important yet challenging problem to
solve. Many pruning solutions have been proposed over the years with high de-
grees of algorithmic complexity. In this work, we shed light on a very simple prun-
ing technique that achieves state-of-the-art (SOTA) performance. We showcase
that magnitude based pruning, specifically, global magnitude pruning (GP) is suf-
ficient to achieve SOTA performance on a range of neural network architectures.
In certain architectures, the last few layers of a network may get over-pruned. For
these cases, we introduce a straightforward method to mitigate this. We preserve
a certain fixed number of weights in each layer of the network to ensure no layer
is over-pruned. We call this the Minimum Threshold (MT). We find that GP com-
bined with MT when needed, achieves SOTA parameter-accuracy trade-off on all
datasets and architectures tested including ResNet-50 and MobileNet-V1 on Im-
ageNet. Code is available at https://github.com/GPMT-Authors/Global-Pruning-
With-Minimum-Threshold.

1 INTRODUCTION

Neural network pruning remains an important area from both practical perspective (deployment in
real world applications) and academic perspective (understanding how to create an efficient archi-
tecture). It is a long standing area of exploration (LeCun et al., 1990a; Hassibi & Stork, 1993a),
and was reinvigorated by Han et al. (2015a). Since then, much work has been done on trying to
find different ways of pruning neural networks, such as magnitude-based, gradient or second order
based, and regularization-based methods amongst many others. In this work, we shed light on an
often overlooked method that has been seen as a mediocre baseline by the community — global
magnitude pruning (GP), and show that it can achieve SOTA pruning performance.

We demonstrate that GP by itself is a strong pruning algorithm and outperforms SOTA pruning
algorithms on benchmarks like ResNet-50 and MobileNet-V1 on ImageNet. We also investigate the
pruning behavior of GP and find that a simple addition to GP can raise its performance even more.
In contrast to the idea of sparsifying each layer of a neural network to the maximum possible level,
we find that preserving a certain amount of weights in each layer actually leads to a better pruning
scheme, achieving higher accuracy at the same sparsity level. We call this the Minimum Threshold
(MT). When combined with GP, this technique enhances the pruning performance in most cases.

We conduct a range of experiments to showcase the above and also study detailed ablations to isolate
the effects of GP and MT. We obtain SOTA accuracies on all four sparsity targets on ResNet-50 on
ImageNet. We obtain SOTA accuracies on other architectures and datasets tested as well. Finally, GP
with MT (GPMT) is very simple conceptually and very easy to implement. It is a one-shot pruning
method in which the weights to be pruned are decided in one-go without needing any iterative or
gradual phases.

2 RELATED WORK

Compression of neural networks has become an important research area due to the rapid increase
in size of neural networks (Brown et al., 2020), the need for fast inference on edge devices, e.g.,
a quadrotor’s onboard computer (Camci et al., 2020), and concerns about the carbon footprint of
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training large neural networks (Strubell et al., 2019). Over the years, several compression techniques
have emerged in the literature (Cheng et al., 2017), such as quantisation, factorisation, attention,
knowledge distillation, architecture search and pruning (Almahairi et al., 2016; Ashok et al., 2017;
Iandola et al., 2016; Pham et al., 2018b).

Quantisation techniques which restrict the bitwidth of parameters (Rastegari et al., 2016; Cour-
bariaux et al., 2016) and tensor factorisation and decomposition which aim to break large kernels
into smaller components (Mathieu et al., 2013; Gong et al., 2014; Lebedev et al., 2014; Masana
et al., 2017) are popular methods. However, they need to be optimised for specific architectures.
Attention networks (Almahairi et al., 2016) have two separate networks to focus on only a small
patch of the input image. Training smaller student networks in a process called knowledge distilla-
tion (Ashok et al., 2017) has also proved effective, although it can potentially require a large training
budget. Architecture search techniques, such as new kernel design (Iandola et al., 2016) or whole
architecture design (Pham et al., 2018a; Tan et al., 2019) have also become popular. Nevertheless,
the large search space size requires ample computational resources to do the architecture search.
Different from all these approaches, we focus on pruning deep neural networks in this work. As
compared to other categories, pruning is more general in nature and has shown strong performance
(Gale et al., 2019).

Many pruning techniques have been developed over the years, which use first or second order deriva-
tives (LeCun et al., 1990b; Hassibi & Stork, 1993b), gradient based methods (Lee et al., 2018; Wang
et al., 2020), sensitivity to or feedback from some objective function (Molchanov et al., 2017; Liu
et al., 2020; Lin et al., 2020; de Jorge et al., 2021), distance or similarity measures (Srinivas &
Babu, 2015), regularization-based techniques (Kusupati et al., 2020; Savarese et al., 2020; Wang
et al., 2021), and magnitude-based criterion (Ström, 1997; Zhu & Gupta, 2018; Park et al., 2020;
Evci et al., 2020; Lee et al., 2021). Han et al. (2015b) discovered a key trick to iteratively prune and
retrain the network, thereby preserving high accuracy. Gale et al. (2019) adopt simple, magnitude-
based pruning but employ gradual pruning that requires high computational budget and preset sparsi-
fication schedules. Runtime Neural Pruning (Lin et al., 2017) attempts to use reinforcement learning
(RL) for compression by training an RL agent to select smaller sub-networks during inference. He
et al. (2018) design the first approach using RL for pruning. However, RL training approaches typ-
ically require additional RL training budgets (Gupta et al. (2020)) or iterative pruning to achieve
good accuracy (He et al. (2018)).

In this work, we focus on a simple, effective, yet quite overlooked pruning method — global mag-
nitude pruning (GP). Although first proposed in 1990s (Hoefler et al. (2021)), it has largely been
ignored in recent years, generally being relegated to the position of a baseline for comparison (Zhu
& Gupta, 2018; Blalock et al., 2020; Lee et al., 2021) rather than a strong pruning technique. A
few recent works use it as one in a possible pool of pruning techniques (See et al., 2016; Frankle &
Carbin, 2018; Gohil et al., 2020) but never study it in detail or adopt it as the main pruning method.
We delve deep into GP and showcase that it can achieve SOTA results with the addition of the
MT technique. We present SOTA results on various architectures and datasets including ResNet-50
and MobileNet-V1 on ImageNet, and include comprehensive ablation studies and insights on the
workings of GP with MT (GPMT).

An advantage of GPMT is that it is a very simple and reliable approach. There are a few levels of
simplicities and robustness to GPMT. Firstly, it is conceptually very simple and easy to implement. It
does not require any complex pruning frameworks like RL (He et al., 2018) or sparsification sched-
ules (Zhu & Gupta, 2018). Secondly, it is one-shot and does not require any iterative procedure.
Thirdly, it is easily generalizable across architectures and datasets, as shown in the experiments.
Lastly, it is data-independent and does not access the dataset for determining the pruning mask.

3 METHOD

We conduct unstructured weight pruning using magnitude pruning. Below we describe the key
components of our algorithm in more detail.
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3.1 GLOBAL MAGNITUDE PRUNING (GP)

GP is a magnitude based pruning approach whereby weights bigger than a given threshold are kept
and weights smaller than the threshold are pruned.

Formally, for a given threshold t and each individual weight w in any layer, the new weight wnew is
defined as follows:

wnew =

{
0 |w| < t,

w otherwise.
(1)

In contrast to layer-wise pruning, the threshold is not set on a per layer basis but rather a single
threshold is set for the entire network. In this aspect, GP is much more efficient than layer-wise
pruning because the threshold does not need to be searched for every layer. On the other hand,
uniform pruning refers to setting the same sparsity target for each layer. Thus, every layer is pruned
by the same percentage.

3.2 MINIMUM THRESHOLD (MT)

The Minimum Threshold (MT) refers to a fixed number of weights that are preserved in every layer
of the neural network post pruning. The MT is a scalar value that is fixed before the start of the
pruning cycle. The weights in a layer are sorted by their magnitude and the top MT number of
weights are preserved. For instance, an MT of 500 implies that 500 of the largest weights in every
layer need to be preserved post pruning. If a layer is smaller than the MT number, then it implies
that all the weights of that layer must be preserved. Therefore, the MT is a very simple concept to
apply and also computationally inexpensive. This corresponds to-

min ‖Wl‖0 =

{
σ if m ≥ σ,
m otherwise

(2)

where Wl ∈ Rm denotes the weight vector for layer l, σ is the MT value in terms of the number of
weights and min ‖Wl‖0 indicates the number of non-zero elements in Wl. We explain in the below
section how the actual pruning using MT is implemented.

3.3 THE PRUNING WORKFLOW

The pruning pipeline for GP and GP with MT (GPMT) is straightforward. It consists of pruning
the original model followed by fine-tuning for a few epochs. It is one-shot, therefore, the pruning
& fine-tuning cycle does not need to be repeated multiple times. In terms of the pruning procedure
itself, for GP, it consists of doing one pass over the network and pruning the weights according to
their magnitude to reach the specified sparsity target. For GPMT, it consists of two steps. Firstly,
the model is pruned using GP. Secondly, the pruned model is evaluated to check if the MT condition
is met by all layers or not. If the condition is not met by a layer, then its sparsity ratio is reduced
to meet the MT. The slack arising from the decrease in sparsity is then redistributed amongst the
other layers which do not violate the MT condition. The redistribution is done in proportion to their
existing sparsities so as to preserve their relative sparsities. This finishes the pruning cycle and the
network is then fine-tuned. Fig. 1 explains this procedure, while Algorithm 1 gives the pseudocode.
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Figure 1: An example workflow over a three-layer network with 60 weights. Thicker lines represent
the weights with high magnitude. The network is first pruned to 60% sparsity globally, then MT of
10% (6 weights) is activated per layer. Since the last layer is completely pruned by GP, MT recovers
the minimum number of connections there. It distributes the slack arising from the drop in sparsity
to the other layers in proportion to their existing sparsities, i.e., 2 weights for Layer 1 (sparsity 20%)
and 4 weights for Layer 2 (sparsity 52%). Red color indicates changes in weights due to GP and
yellow indicates changes due to MT.

Method WRN-22-8 on CIFAR-10

Sparsity Starting Acc. Pruned Acc.

Uniform Pruning 95% 94.07%± 0.05% 94.16%± 0.10%
GP 95% 94.07%± 0.05% 94.43%± 0.02%
GP + MT 95% 94.07%± 0.05% 94.64% ± 0.14%

Table 1: GP improves performance on Uniform Pruning and adding MT improves performance even
further.

Method MobileNet-V2 on CIFAR-10

Sparsity Starting Acc. Pruned Acc.

Uniform Pruning 40% 94.15%± 0.23% 93.76%± 0.18%
GP 40% 94.15%± 0.23% 94.07%± 0.14%
GP + MT 40% 94.15%± 0.23% 94.21% ± 0.12%

Table 2: Same trend is seen for MobileNet as well where GP outperforms Uniform Pruning and
adding MT improves performance even further.

4 EXPERIMENTS

Below we describe experiments related to ablations on global magnitude pruning (GP) and Mini-
mum Threshold (MT), comparison with state-of-the-art algorithms and experiments on non-vision
domains. We report hyper-parameters and training related information for all the experiments in the
appendix (section A.4).

4.1 ISOLATING AND UNDERSTANDING IMPACT OF GP AND MT OVER DIFFERENT
ARCHITECTURES

We conduct detailed ablations to isolate and measure the impact of standalone GP and GP with
MT (GPMT) as compared to a uniform pruning baseline. We ablate on multiple architectures and
sparsity targets. In addition, we report results averaged over multiple runs where each run uses
a different pre-trained model to provide more robustness. We first prune a WRN-22-8 model on
CIFAR-10 at 95% sparsity. We then fine-tune the model for a few epochs and report the final
accuracy. We experiment with different pruning schemes, i.e., uniform pruning, GP and GPMT
(see Section 3 for details). We find that GP outperforms uniform pruning. Furthermore, adding MT
improves the performance even more, see Table 1. Next, we do an experiment on the highly efficient
MobileNet-V2 architecture to see if the above conclusion holds on it too. We find that indeed GP
beats uniform pruning in this situation as well, and adding MT improves performance even further
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(Table 2). This shows that GP by itself is superior to uniform pruning and adding MT aids GP even
more.

Method WRN-22-8 on CIFAR-10

Sparsity Starting Acc. Pruned Acc.

GP 99.9% 94.07%± 0.05% 67.68%± 0.78%
GP + MT 99.9% 94.07%± 0.05% 68.42% ± 0.58%

Table 3: MT improves performance on WideResNet-22-8 even in the high sparsity regime at 99.9%
sparsity.

Method MobileNet-V2 on CIFAR-10

Sparsity Starting Acc. Pruned Acc.

GP 98.0% 94.15%± 0.23% 10% (Unable to learn)
GP + MT 98.0% 94.15%± 0.23% 82.97%± 0.57%
Gradual GP 98.0% NA 87.36% ± 0.18%

Table 4: Adding MT or conducting GP gradually enables the MobileNet model to learn and achieve
good classification performance in the high sparsity regime.

We then conduct experiments under much tougher conditions, increasing the sparsity rates on both
the above-mentioned models to see how the algorithm performs. We find that at 99.9% sparsity,
the WRN is able to get decent accuracy and adding MT improves performance even at this sparsity
rate (Table 3). For MobileNet however, using GP only, accuracy drops to 10% and the model is not
able to learn. We discuss this in detail in Section 5.1. However, on adding the MT, the model is
able to learn and the accuracy jumps back to 83% (Table 4). Alternatively, conducting GP gradu-
ally (Zhu & Gupta, 2018) also enables the model to learn well and achieves 87.36% accuracy. We
provide layer-wise weight snapshot for both the models before and after applying MT, to illustrate
what MT does (Fig. 2 and Fig. 3). Thus, in cases of high sparsity, MT is desirable to have.
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Figure 2: Weights remaining in WRN-22-8 model after pruning at 99.9% sparsity. MT helps retain
weights in layers that have low magnitude weights and are heavily pruned, e.g., Layers 20, 21, and
22.

4.2 STATE-OF-THE-ART COMPARISON ON CIFAR-10

We also conduct experiments to compare GP and MT to SOTA pruning algorithms on the CIFAR-10
dataset. We compare with various algorithms including SNIP (Lee et al., 2018), SM (Dettmers &
Zettlemoyer, 2019), DSR (Mostafa & Wang, 2019) and DPF (Lin et al., 2020). We start off with the
original model having the same initial accuracy as the other algorithms. For the WRN-28-8 model
we find that GP alone beats all the SOTA pruning algorithms at two out of the three sparsity levels
(Table 5). If we incorporate MT, then the accuracy increases further, and the algorithm is able to
beat all the SOTA algorithms at all the sparsity levels. For ResNet-32 as well (Table 6), both GP and
GPMT outperform all the other algorithms at 90% sparsity.
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Figure 3: For MobileNet-V2 at 98% sparsity as well, MT is essential to retain some weights in the
heavily pruned layers (Layers 55, 56, and 57) and allow the model to learn successfully.

4.3 STATE-OF-THE-ART COMPARISON ON IMAGENET

We apply GP and MT on ResNet-50 on the ImageNet dataset as well and compare to the SOTA
pruning algorithms. We compare with SOTA algorithms like GMP (Zhu & Gupta, 2018), DSR
(Mostafa & Wang, 2019), DNW (Wortsman et al., 2019), SM (Dettmers & Zettlemoyer, 2019),
RigL (Evci et al., 2020), DPF (Lin et al., 2020) and STR (Kusupati et al., 2020). We start with
the same original accuracy as the other models. We find that GP alone gets good performance and
surpasses all the other algorithms at all the sparsity levels (see Table 7) keeping the numbers of
parameters constant. Adding MT leads to roughly the same performance as GP (slightly higher and
slightly lower in certain cases) and this is explained by the fact that all layers in ResNet-50 always
maintain enough weights (i.e., ≥ 1,000) at all sparsity levels. GP incurs higher FLOPs compared to
some baselines as it prunes the last layers more vs. the initial layers (which have a higher FLOPs to
parameters ratio) compared to some baselines. Optimization for parameters vs. FLOPs is usually a
trade-off against each other and joint optimization of parameters and FLOPs can be implemented as
future work to reduce the FLOPs of GP. GP still outperforms other baselines like DSR, SM, SM +
ERK and RigL + ERK on both accuracy and FLOPs.

We also test another architecture on ImageNet, MobileNet-V1, which is a much smaller and more
efficient architecture than ResNet-50. We start with the same original accuracy as the other models.
For MobileNet-V1, GP alone gets good results at 75% sparsity and outperforms SOTA algorithms
by 2.44% on a constant parameter budget basis (Table 8). On combining with MT, GPMT also
surpasses the SOTA algorithms at 90% sparsity by 2.43%. Since MobileNet-V1 is a very efficient
architecture (having only 4.2 million parameters compared to 25.6 million for ResNet-50), MT
especially helps at higher sparsities when the layers are pruned very aggressively.

4.4 GENERALIZING TO OTHER DOMAINS AND RNN ARCHITECTURES

We experiment with the GP rule on other domains and non-convolutional networks as well to mea-
sure the generalizability of the algorithm on different domains and network types. We experiment
on a FastGRNN model (Kusupati et al. (2018)) on the HAR-2 Human Activity Recognition dataset
(Anguita et al. (2013)). More details on the dataset and the experimental setup can be found in
Section A.3. We test the GP rule under different network configurations. We find that GP surpasses
other pruning algorithms on all the configurations (Table 9) and successfully prunes the model on a
very different architecture and domain.

5 INSIGHTS ON GP AND MT

5.1 NETWORK ARCHITECTURES CAN AFFECT PRUNING PERFORMANCE

We find that network architectures can affect the results of how the pruning algorithm performs
quite a lot, especially in the high sparsity domain. We take the case of the high sparsity experiments
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between MobileNet-V2 and WRN-22-8, as mentioned in Section 4.1. In the case of just using GP,
we find that WRN-22-8 is still able to learn, however, accuracy crashes for MobileNet-V2 and the
model is unable to learn anything, getting a chance accuracy rate of 10%. The reason for this wide
discrepancy in learning behavior lies in the shortcut connections (He et al., 2015). Both WRN-22-8
and MobileNet-V2 use shortcut connections, however, their placement is different. Referring to Fig.
4, WRN uses identity shortcut connections from Layer 20 to Layer 23. Identity shortcut connections
are simple identity mappings and do not require any extra parameters, and hence, they do not count
towards the weights. However, MobileNet-V2 uses a convolutional shortcut mapping from Layer
52 to Layer 57 and hence, it does add to the model’s weights, and thus, it is pruned by the pruning
algorithm. Both the models have the preceding two layers before the last layer, completely pruned.
However, because WRN uses identity mappings, it is still able to relay information to the last layer,
and the model is still able to learn.

Method Top-1 Acc Params. Sparsity

WRN-28-
8

96.06% 23.3M 0.0%

SNIP 95.49± 0.21% 2.33M 90%
SM 95.67± 0.14% 2.33M 90%
DSR 95.81± 0.10% 2.33M 90%
DPF 96.08± 0.15% 2.33M 90%
GP 96.30 ± 0.03% 2.33M 90%
GP + MT 96.44 ± 0.09% 2.33M 90%

SNIP 94.93± 0.13% 1.17M 95%
SM 95.64± 0.07% 1.17M 95%
DSR 95.55± 0.12% 1.17M 95%
DPF 95.98± 0.10% 1.17M 95%
GP 96.16 ± 0.02% 1.17M 95%
GP + MT 96.27 ± 0.06% 1.17M 95%

SNIP 94.11± 0.19% 0.58M 97.5%
SM 95.31± 0.20% 0.58M 97.5%
DSR 95.11± 0.07% 0.58M 97.5%
DPF 95.84± 0.04% 0.58M 97.5%
GP 95.68± 0.08% 0.58M 97.5%
GP + MT 95.89 ± 0.02% 0.58M 97.5%

Table 5: Results of SOTA pruning algorithms
on WideResNet-28-8 on CIFAR-10. GP + MT
(GPMT) outperforms all the other algorithms.

Method Top-1 Acc Params. Sparsity

ResNet-
32

93.83 ± 0.12 % 0.46M 0.00%

SNIP 90.40 ± 0.26% 0.046M 90%
SM 91.54 ± 0.18% 0.046M 90%
DSR 91.41 ± 0.23% 0.046M 90%
DPF 92.42 ± 0.18% 0.046M 90%
GP 92.67 ± 0.03% 0.046M 90%
GP + MT 92.74 ± 0.06% 0.046M 90%

SNIP 87.23 ± 0.29% 0.023M 95%
SM 88.68 ± 0.22% 0.023M 95%
DSR 84.12 ± 0.32% 0.023M 95%
DPF 90.94 ± 0.35% 0.023M 95%
GP 90.65 ± 0.13% 0.023M 95%
GP + MT 90.58 ± 0.24% 0.023M 95%

Table 6: Results of pruning algorithms on
ResNet-32 on CIFAR-10. GPMT outperforms all
the other algorithms at 90% sparsity.

Method Top-1
Acc

Params. Sparsity FLOPs

MobileNet-V1 71.95% 4.21M 0.00% 569M

GMP 67.70% 1.09M 74.11% 163M
STR 68.35% 1.04M 75.28% 101M
GP 70.74% 1.04M 75.28% 177M
GP + MT 70.79% 1.04M 75.28% 204M

GMP 61.80% 0.46M 89.03% 82M
STR 61.51% 0.44M 89.62% 40M
GP 59.49% 0.42M 90.00% 93M
GP + MT 63.94% 0.42M 90.00% 154M

Table 8: Results of pruning algorithms on
MobileNet-V1 on ImageNet. GPMT surpasses
the SOTA algorithms by 2.4% accuracy.

Method Top-1
Acc

rW rU

FastGRNN 96.10% 9 80

Vanilla Training 94.06% 9 8
STR 95.76% 9 8
GP 95.89% 9 8

Vanilla Training 93.15% 9 7
STR 95.62% 9 7
GP 95.72% 9 7

Vanilla Training 94.88% 8 7
STR 95.59% 8 7
GP 95.62% 8 7

Table 9: Results of pruning algorithms
on FastGRNN on HAR-2 dataset. GP
outperforms other pruning algorithms in
all the different network configurations.
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Method Top-1
Acc

Params. Sparsity FLOPs

ResNet-50 77.0% 25.6M 0.00% 4.09G

GMP 75.60% 5.12M 80.00% 818M
DSR*# 71.60% 5.12M 80.00% 1.23G
DNW 76.00% 5.12M 80.00% 818M
SM 74.90% 5.12M 80.00% -
SM + ERK 75.20% 5.12M 80.00% 1.68G
RigL* 74.60% 5.12M 80.00% 920M
RigL + ERK 75.10% 5.12M 80.00% 1.68G
DPF 75.13% 5.12M 80.00% 818M
STR 76.19% 5.22M 79.55% 766M
GP 76.84% 5.12M 80.00% 1.13G
GP + MT 76.75% 5.12M 80.00% 1.28G

GMP 73.91% 2.56M 90.00% 409M
DNW 74.00% 2.56M 90.00% 409M
SM 72.90% 2.56M 90.00% 1.63G
SM + ERK 72.90% 2.56M 90.00% 960M
RigL* 72.00% 2.56M 90.00% 515M
RigL + ERK 73.00% 2.56M 90.00% 960M
DPF# 74.55% 4.45M 82.60% 411M
STR 74.73% 3.14M 87.70% 402M
GP 75.28% 2.56M 90.00% 704M
GP + MT 75.21% 2.56M 90.00% 926M

Method Top-1
Acc

Params. Sparsity FLOPs

ResNet-50 77.0% 25.6M 0.00% 4.09G

GMP 70.59% 1.28M 95.00% 204M
DNW 68.30% 1.28M 95.00% 204M
RigL* 67.50% 1.28M 95.00% 317M
RigL + ERK 70.00% 1.28M 95.00% 600M
STR 70.97% 1.33M 94.80% 182M
STR 70.40% 1.27M 95.03% 159M
STR 70.23% 1.24M 95.15% 162M
GP 71.56% 1.20M 95.30% 437M
GP + MT 71.57% 1.20M 95.30% 438M

GMP 57.90% 0.51M 98.00% 82M
DNW 58.20% 0.51M 98.00% 82M
STR 61.46% 0.50M 98.05% 73M
GP 61.80% 0.50M 98.05% 257M
GP + MT 61.90% 0.50M 98.05% 257M

Table 7: Results on ResNet-50 on ImageNet. GP and GPMT outperform SOTA pruning algorithms
by upto 1.3% accuracy. * and # imply that the first and last layer are dense respectively.

1x1 conv, in:160, out:960

3x3 conv, in:960, out:960

1x1 conv, in:960, out:160

1x1 conv, in:160, out:960

3x3 conv, in:960, out:960

1x1 conv, in:960, out:320

1x1 conv, in:320, out:1280

Fully connected, in:1280, out:10

1x1 conv, in:160, out:320

[50]

[51]

[52]

[53]

[54]

[55]

[57]

[58]

[56]

3x3 conv, in:512, out:512

3x3 conv, in:512, out:512

Fully connected, in:512, out:10

[19]

[20]

[21]

[22]

[23]

3x3 conv, in:512, out:512

3x3 conv, in:512, out:512

WideResNet-22-8 MobileNet-V2

Shortcut layer

Downsampling
layer

Figure 4: Difference in architectures be-
tween WRN and MobileNet. WRN does
not have any prunable residual connections
in the last layers (dotted lines) while Mo-
bileNet does. This leads to different pruning
behaviors on the two architectures.
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Figure 5: The frobenius output distortion is lower for
GP compared to uniform pruning on a layer by layer
basis. Thus, GP preserves outputs closer to the original
unpruned model compared to uniform pruning. Results
on WRN-22-8 on CIFAR-10 dataset.

Pruning algorithms can be susceptible to such catastrophic network disconnection issues especially
in the high sparsity domain. Fortunately, the MT can easily overcome this issue. Retaining a small
MT of 0.02% was sufficient for the MobileNet-V2 model to avoid disconnection and learn success-
fully. Hence, retaining a small MT can help in the learning dynamics of models in high sparsity
settings.

5.2 GP PRESERVES OUTPUTS BETTER THAN UNIFORM PRUNING

To understand why GP performs better than uniform pruning, especially at the layer-by-layer level,
we measure the Frobenius output distortion between the original model and the pruned model (Park
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et al., 2020). We compare the difference in the layer-wise outputs between the original model and
the pruned model, and then compute the norm of this difference. Thus, a smaller norm indicates
that the output of the pruned model is closer to the original model and a larger norm indicates that
the output is further away. We compute and plot this layer-wise output distortion on the WRN-22-8
model on CIFAR-10 for the GP and uniform pruning models as compared to the original model
(Fig. 5). As can be seen from the figure, the distortion is much higher for the uniform pruning
model. Layers 1 and 2 are especially impacted, with the distortion being around 3x that of GP in
layer 1. Thus, GP is able to preserve outputs much closer to the original model as compared to
uniform pruning. This points towards a new direction for empirically understanding the underlying
differences between pruning algorithms.

5.3 WHEN IS MT REQUIRED AND HOW TO DETERMINE THE OPTIMAL VALUE

We find that whether MT is required or not depends on the neural network architecture family. For
instance, in our experiments on multiple architectures, we found generally that ResNet architectures
did not require MT (tested on ResNet-32 and ResNet-50). Conversely, MobileNet and WideRes-
Net architectures did require MT (tested on MobileNet-V1, MobileNet-V2, WideResNet-22-8 and
WideResNet-28-8). Hence, we hypothesize that the requirement for MT depends upon the base
family architecture used. We also found that in architectures that require MT, a decent rule of thumb
value for MT is 0.05% of the total weights. Increments of 0.05% may be tried, i.e., 0.1%, 0.15%
or 0.2%, if need be. We never had to go beyond 0.2%. In cases of high sparsity, where there is not
enough capacity in the network to support 0.05% MT, lower values of MT can be tried, e.g., 0.02%,
0.01%, 0.005% or 0.002%. We found that the above-stated values were sufficient to get good perfor-
mance across models and we never had to undertake a more exhaustive MT search. In most cases,
we only tried two to three MT values and achieved good results.

6 LIMITATIONS AND FUTURE WORK

A limitation of the GP method is that it can incur higher FLOPs compared to some layer-wise base-
lines (Table 7). This is because it prunes the last layers more with respect to the initial layers (that
have a higher FLOPs to parameter ratio) compared to some baselines. In applications where FLOPs
reduction is equally important as parameter reduction, a way to mitigate this would be to add con-
straints on the FLOPs as well along with the parameters, and thus jointly optimize for both FLOPs
and parameters. We will look at this in future work. Another exciting extension to GP is to do GP
gradually instead of one-shot. As demonstrated in Table 4, doing GP gradually enhances the accu-
racy performance of GP. We believe this increase in performance is transferable to other datasets
and architectures as well, and is another topic that we will look at in the future.

7 CONCLUSION

Many methods have been proposed for neural network pruning over the years. In this paper, we
focus on an often overlooked pruning method — global magnitude pruning (GP). We show that GP
by itself is a strong pruning method and achieves SOTA performance on ResNet-50 and MobileNet-
V1 on ImageNet. Furthermore, we investigate the pruning behavior of GP in depth and find that in
certain cases, e.g., at high sparsities, a few layers in the network may be over-pruned. To rectify
this, we propose a novel yet very simple mitigation mechanism called Minimum Threshold (MT).
MT preserves a certain fixed amount of weights in every layer post pruning and ensures no layer
is over-pruned. We find that adding MT on top of GP leads to higher performance across many
architectures and datasets. We achieve SOTA results on CIFAR-10 and ImageNet using the above
pruning technique. GP with MT (GPMT) is also easy to implement, is one-shot and is easily portable
across architectures and datasets. GP can be further extended to be done gradually instead of one-
shot and can lead to more performance gains. A limitation of GPMT is that it can incur higher
FLOPs compared to some layerwise methods and a possible mitigation for this is to add a FLOPs
constraint on top of the parameter constraint when doing pruning. Overall, we find that GPMT can
be used as a useful baseline for future pruning works given it’s simplicity and performance.
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8 REPRODUCIBILITY

To help with reproducibility, we have released our codebase. It can be found at
https://github.com/GPMT-Authors/Global-Pruning-With-Minimum-Threshold. Furthermore, we
report in detail the experimental setup including all the hyper-parameters for all our experiments
in the appendix (Section A.4). The above two items ensure that all our experiments are repro-
ducible. Furthermore, our method is conceptually very simple and hence, very easy to implement. It
does not require additional algorithm-specific hyper-parameters or any architecture-specific tweak-
ing. We use standard PyTorch libraries (Paszke et al. (2019)) without any modification to the model
layers. These make the GPMT method straightforward to implement, and hence, easy to replicate.
Lastly, we show that GPMT gets stable results across multiple runs and pre-trained models (Figs. 6
and 7) and hence, aids in reproducibility.
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Figure 6: Layer-wise pruning results produced by GP on MobileNet-V2 model on CIFAR-10. Prun-
ing is done on three different pre-trained models and the pruning results across the three runs are
very stable.
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Figure 7: A similar trend is observed for the case of GPMT on MobileNet-V2 model on CIFAR-10
as well. Pruning results on the three different pre-trained models are very stable.

Algorithm 1 Pseudo-code for GPMT

Load a pre-trained DNN with weight vectors Wl for each layer l
Set a target sparsity, κ
Set an MT value, σ
Concatenate and sort all Wl into a vector W= {w0, w1, ..., wn} where wi ≤ wi+1

k = κ
100 · n

Zero-mask all elements from w0 to wk in W across all Wl

Slack pruning budget, Σ = 0
for l in layers do

if min ‖Wl‖0 < σ then
Restore the (σ −min ‖Wl‖0) # of highest magnitude weights in Wl

Σ = Σ + σ −min ‖Wl‖0
end if

end for
Distribute Σ into each layer where min ‖Wl‖0 > σ, proportionally to their sparsities κl
Fine-tune the pruned model

A.3 SPARSIFYING FASTGRNN ON HAR-2 DATASET

HAR-2 dataset that is used in the FastGRNN pruning experiment is a binarized version of the 6-
class Human Activity Recognition dataset. From the full-rank model with rW = 9 and rU = 80
as suggested on the STR paper (Kusupati et al., 2020), we apply GP on the matrices W1 and W2.
To do this, we find the weight mask by ranking the columns of W1 and W2 based on their absolute
sum, then we prune the 9− rnewW lowest columns and 80− rnewU lowest columns from W1 and W2
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respectively. In the end, we fine-tuned this pruned model by retraining it with FastGRNN’s trainer
and applying the weight mask on every epoch.

A.4 HYPER-PARAMETERS AND EXPERIMENTAL SETUP

No data augmentation is done apart from standard data pre-processing. Difference in batch size for
training and testing in some experiments is due to GPU RAM availability. Averages reported over
three runs.

MT values

Experiment Sparsity MT value

Table 1 95% 0.05%

Table 2 40% 0.05%

Table 3 99.9% 0.002%

Table 4 98% 0.02%

Table 5
90% 0.05%
95% 0.10%
97.5% 0.05%

Table 6 90% 0.05%
95% 0.05%

Table 7

80% 0.05%
90% 0.05%
95.3% 0.005%
98.05% 0.005%

Table 8 75% 0.05%
90% 0.2%

Setup for Table 1

Stage Epochs Batch-
size

Mom-
entum

Weight
Decay

Initial
LR

LR Scheduler Nes-
terov

Training 30 256 0.9 5e-4 0.1 Step decay (Step size 25, gamma 0.1) Yes
Finetuning 80 1800 0.9 5e-4 0.1 Step decay (Step size 40, gamma 0.1) Yes

Setup for Table 2

Stage Epochs Batch-
size

Mom-
entum

Weight
Decay

Initial
LR

LR Scheduler Nes-
terov

Training 200 450 0.9 5e-4 0.1 Step decay (Step size 25, gamma 0.56) Yes
Finetuning 200 325 0.9 5e-4 0.031 Step decay (Step size 25, gamma 0.56) Yes
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Setup for Table 3

Stage Epochs Batch-
size

Mom-
entum

Weight
Decay

Initial
LR

LR Scheduler Nes-
terov

Training 30 256 0.9 5e-4 0.1 Step decay (Step size 25, gamma 0.1) Yes
Finetuning 80 64 0.9 5e-4 0.1 Step decay (Step size 40, gamma 0.1) Yes

Setup for Table 4

Stage Epochs Batch-
size

Mom-
entum

Weight
Decay

Initial
LR

LR Scheduler Nes-
terov

Training 200 450 0.9 5e-4 0.1 Step decay (Step size 25, gamma 0.56) Yes
Finetuning 200 64 0.9 5e-4 0.1 Step decay (Step size 25, gamma 0.56) Yes

Setup for Table 5

Stage Epochs Batch-
size

Mom-
entum

Weight
Decay

Initial
LR

LR Scheduler Nes-
terov

Training 200 128 0.875 5e-4 0.1 Cosine LR Yes
Finetuning (GP 90%) 200 128 0.9 0 0.0512 Cosine LR Yes
Finetuning (GP + MT 90%) 200 128 0.9 5e-4 0.0064 Cosine LR Yes
Finetuning (GP 95%) 200 128 0.9 2e-5 0.0256 Cosine LR Yes
Finetuning (GP + MT 95%) 200 128 0.9 5e-4 0.0064 Cosine LR Yes
Finetuning (GP 97.5%) 200 128 0.9 0 0.0128 Cosine LR Yes
Finetuning (GP + MT 97.5%) 200 128 0.9 6e-5 0.0256 Cosine LR Yes

Setup for Table 6

Stage Epochs Batch-
size

Mom-
entum

Weight
Decay

Initial
LR

LR Scheduler Nes-
terov

Training 300 128 0.9 0.001 0.05 Cosine LR No
Finetuning (GP 90%) 300 128 0.9 0.001 0.01 Cosine LR No
Finetuning (GP + MT 90%) 300 128 0.9 0.001 0.01 Cosine LR Yes
Finetuning (GP 95%) 300 128 0.9 1e-5 0.01 Cosine LR No
Finetuning (GP + MT 95%) 300 128 0.875 0.0005 0.005 Linear LR No

Setup for Table 7

Stage Epochs Batch-
size

Mom-
entum

Weight
Decay

Initial
LR

LR Scheduler Label
Smooth-
ing

Training 100 256 0.875 0.000031 0.256 Cosine LR
(warmup=5)

0.1

Finetuning (GP 80%) 100 256 0.875 0.000023 0.0256 Cosine LR
(warmup=5)

0.1

Finetuning (GP + MT 80%) 100 256 0.875 0.000023 0.0256 Cosine LR
(warmup=5)

0.1

Finetuning (GP 90%) 100 256 0.875 0.000007 0.1024 Cosine LR 0.1
Finetuning (GP + MT 90%) 100 256 0.875 0.000007 0.0512 Cosine LR 0.1
Finetuning (GP 95.3%) 100 256 0.95 0.0 0.0512 Cosine LR 0.05
Finetuning (GP + MT 95.3%) 100 256 0.95 0.0 0.0512 Cosine LR 0.05
Finetuning (GP 98.05%) 100 256 0.95 0.0 0.0512 Cosine LR 0.05
Finetuning (GP + MT 98.05%) 100 256 0.95 0.0 0.0512 Cosine LR 0.05
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Setup for Table 8

Stage Epochs Batch-
size

Mom-
entum

Weight
Decay

Initial
LR

LR Scheduler Label
Smooth-
ing

Training 100 256 0.875 3.1e-5 0.256 Cosine LR
(warmup=5)

0.1

Finetuning (GP 75%) 120 256 0.875 1e-5 0.0512 Cosine LR 0.1
Finetuning (GP + MT 75%) 120 256 0.875 1e-5 0.0512 Cosine LR 0.1
Finetuning (GP 90%) 120 256 0.875 1e-5 0.0256 Cosine LR 0.1
Finetuning (GP + MT 90%) 120 256 0.875 0 0.0512 Cosine LR 0.1

Setup for Table 9

Stage Epochs Batch-
size

Initial
LR

hd Optimizer

Training 300 100 0.0064 80 Adam
Finetuning (9,8) 300 64 0.5 80 Adam
Finetuning (9,7) 300 100 0.5 80 Adam
Finetuning (8,7) 300 100 0.55 80 Adam
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