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Abstract
We study the complexity of learning k-mixtures
of Gaussians (k-GMMs) on Rd. This task is
known to have complexity dΩ(k) in full generality.
To circumvent this exponential lower bound on
the number of components, research has focused
on learning families of GMMs satisfying addi-
tional structural properties. A natural assumption
posits that the component weights are not expo-
nentially small and that the components have the
same unknown covariance. Recent work gave a
dO(log(1/wmin))-time algorithm for this class of
GMMs, where wmin is the minimum weight. Our
first main result is a Statistical Query (SQ) lower
bound showing that this quasi-polynomial upper
bound is essentially best possible, even for the
special case of uniform weights. Specifically, we
show that it is SQ-hard to distinguish between
such a mixture and the standard Gaussian. We
further explore how the distribution of weights
affects the complexity of this task. Our second
main result is a quasi-polynomial upper bound for
the aforementioned testing task when most of the
weights are uniform while a small fraction of the
weights are potentially arbitrary.

1. Introduction
Learning mixture models in high dimensions is a classic and
fundamental task with applications in a plethora of domains,
such as bioinformatics, astrophysics, and marketing (Lind-
say, 1995; Garcı́a-Escudero et al., 2010); see Titterington
et al. (1985) for an extensive list of applications. The pro-
totypical case is that of Gaussian Mixture Models (GMMs)
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which is one of the most studied problems in statistics and
machine learning, with a large body of research over the past
few decades, e.g., Vempala & Wang (2002); Kannan et al.
(2005); Achlioptas & McSherry (2005) — see Appendix A
for a detailed literature review.

The setup is as follows: the learning algorithm observes
i.i.d. samples from a k-component GMM model (k-GMM)
in Rd, P =

∑k
i=1 wiN (µi,Σi), and the goal is to either

learn the mixture in total variation distance, learn its param-
eters, or cluster samples from the GMM correctly. The first
task is known to be information-theoretically feasible with
poly(d, k) samples, as are the second and third, provided
the components are sufficiently well-separated, however
known algorithms often require more. While the particular
case of spherical mixtures (i.e., Σi = I) can be learned in
poly(d, k) time and samples, (Liu & Li, 2022; Diakonikolas
& Kane, 2024), the best-known algorithms for learning arbi-
trary GMMs (i.e. with arbitrary weights, and arbitrary and
different component covariances) have sample complexity
that scales with dO(k) (Bakshi et al., 2022). In this paper,
we are concerned with an intermediate regime between the
two extremes, where the components share an unknown but
common covariance matrix.

Diakonikolas et al. (2017) showed that for such mixtures,
any sub-exponential time algorithm in the Statistical Query
(SQ) model requires a sample complexity of dΩ(k). The
SQ model consists of algorithms that, instead of drawing
samples from the data distribution, make queries to approxi-
mate expectations of bounded functions (formally defined
in Definition 1.2).

The hard instances they proposed are “parallel pancakes”
GMMs—mixtures of pairwise-separated Gaussians whose
component means are collinear along an unknown direction
v, with arbitrary variance in the v-direction and identity
covariance in the orthogonal subspace. This will be
formally defined in Problem 1.1. Bruna et al. (2021);
Gupte et al. (2022) further extended the hardness result to
general algorithms but under cryptographic assumptions;
similar hardness results were also shown for sum-of-squares
algorithms (Diakonikolas et al., 2024).

While these results together might suggest that k-GMM
learning is fully understood algorithmically, the current
theory remains unsatisfactory, in the following sense: the
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hard instances developed in Diakonikolas et al. (2017) have
rather ill-conditioned mixing weights—some of the mixing
weights are 1/ poly(k), but others can be as small as 2−k.
A natural question then is: is it possible to improve the com-
plexity of learning algorithms when all weights are more
naturally conditioned, i.e., wi ≥ 1/poly(k) for all i?

This question was considered in Buhai & Steurer (2023);
Anderson et al. (2024), which study GMMs that have a
minimum mixing weight wmin ≥ 1/ poly(k) and unknown
but common covariance across components. Under the
assumption that the mixture components are separated in
total variation distance, they provide an algorithm that can
correctly cluster 99% of the points, using time and sample
complexity dlog(1/wmin) ≤ dO(log k). In particular, their
results apply to parallel pancake instances, showing that it
is possible to circumvent the dΩ(k) (SQ) lower bound under
mixing weight assumptions.

These prior results on learning mixtures with restricted mix-
ing weights serve as motivation and the starting point of the
present work. In particular, the first question we study is:

Is it possible to substantially improve the algorithm of
Anderson et al. (2024) to a poly(d, k) time algorithm for

parallel pancakes when each wi ≥ 1/ poly(k)?

Our first main result rules out this possibility for SQ
algorithms. Specifically, we show in Theorem 1.3 that even
when the mixing weights are uniform, any SQ algorithm
for such instances requires dΩ(log k) complexity. In fact, the
lower bound holds even for the more basic task of distin-
guishing between a k-GMM from that family and N (0, I).

Our second question stems from the fact that the algo-
rithm in Anderson et al. (2024) has complexity dlog(1/wmin),
meaning that a single point with arbitrarily small weight
(e.g., 2−k) can result in dk complexity.

What is the correct complexity dependence on wmin for
learning k-component parallel pancakes?

Specifically, we consider again the testing problem of
distinguishing between a k-parallel-pancake GMM and
N (0, I), but where k′ ≤ k components can have arbitrary
weights while the remaining k − k′ points must have uni-
form weights. We show that this mixing weight restriction
implies that the testing problem can be solved with time and
sample (kd)O(k′+log k)+(log k)/wmin — an inverse-linear
dependence on wmin instead of quasi-polynomial as
suggested by the Anderson et al. (2024) result. While
this testing upper bound does not imply a general learning
algorithm k-GMM, it serves as a first step in understanding
the nuances of the computational landscape of GMMs with
respect to the assumptions on the mixing weights.

The technical core for both our main results is to deter-

mine the maximum number m of moments that k-parallel-
pancake GMMs can match with N (0, I). Our SQ lower
bound (Theorem 1.3) comes from showing that m =
Ω(log k), by employing a result from design theory. Our
second, algorithmic result (Theorem 1.4) critically builds on
an impossibility-of-moment-matching argument (Proposi-
tion 4.1), showing that if there are k′ ≤ k arbitrary weights
in the k-GMM, then m must be O(log(k) + k′). We show
this through a novel proof strategy that bounds the ratio of
expectations of appropriately chosen non-negative polyno-
mials that vanish on the points with arbitrary weights.

1.1. Our Results

We first formally state the hypothesis testing problem which
requires the algorithm to distinguish between a k-parallel
pancake and the standard Gaussian N (0, I).
Problem 1.1 (Parallel Pancakes Testing Problem). One has
(i.i.d. sample or SQ) access to a distribution D where either:

• (Null Hypothesis) D = N (0, I).

• (Alternative Hypothesis) D is a Gaussian mixture of the
form

∑
i∈[k] wiN (vµi, I − δvv⊤), for some unit vector

v ∈ Sd−1, centers µi ∈ R, and weights wi ≥ 0 for i ∈
[k], with

∑
i∈[k] wi = 1. That is, D is a k-GMM with

collinear centers and variance 1− δ along the direction
of the centers and 1 in every orthogonal direction.

The goal is to distinguish between the two cases.

Before presenting our first main result, we recall the
definition of SQ algorithms. These algorithms, instead of
directly accessing samples, query expectations of bounded
functions of the distribution. The SQ model, introduced
in (Kearns, 1998), has since been extensively studied in var-
ious contexts (Feldman, 2016). Many supervised learning
algorithms, and several known machine learning techniques
are implementable using SQs (Feldman et al., 2017a;b).
Definition 1.2 (STAT Oracle). Let D be a distribu-
tion on Rd. A statistical query is a bounded function
f : Rd→[−1, 1]. Given f and an accuracy parameter τ > 0,
STAT(τ) returns a v ∈ R such that |v−Ex∼D[f(x)]| ≤ τ .

Since a call to STAT(τ) can be simulated in the standard
PAC model by averaging 1/τ2 samples, τ serves as the
SQ model’s analog to sample complexity. An information-
computation tradeoff in the SQ model states that any SQ
algorithm for a given problem must either make a large
number of queries or at least one query with very fine accu-
racy (which informally implies a tradeoff between sample
complexity and runtime in the standard PAC model). We
are now ready to state our first main result.
Theorem 1.3 (SQ Lower Bound for Uniform Weights). Let
C be a sufficiently large absolute constant, k > C and
d ≥ (log k log d)2 be integers. If we further restrict the
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alternative hypothesis in Problem 1.1 to have wi = 1/k for
all i ∈ [k], any SQ algorithm requires either 2d

Ω(1)

queries
or at least one query of accuracy d−Ω(log k).

Remarks Buhai & Steurer (2023); Anderson et al. (2024)
presented an algorithm for solving Problem 1.1 using
dO(log k) time and samples (e.g., Theorem 1.1 in the first
paper, which was the first to achieve this). Our Theorem 1.3
shows that this complexity is best possible. Notably their
work requires the components to be statistically separated,
but this is something that we can also ensure by taking δ
sufficiently small (since δ does not affect the complexity
lower bound).

We now move to our second main result.

Theorem 1.4 (Testing Algorithm for Parallel Pancakes).
Consider the version of the parallel pancakes hypothesis
testing problem (Problem 1.1), where k′ ≤ k of the weights
wi in the Gaussian mixture are unconstrained and the re-
maining k − k′ are assumed to be equal to each other.
There is an algorithm for that problem which draws n =

O
(
(kd/δ)O(k′+log(k)) + log(k)/wmin

)
samples (where δ

is as in Problem 1.1 and wmin = mini∈[k] wi is the smallest
weight), has runtime polynomial in n, d, and it outputs the
correct hypothesis with probability at least 0.99.

The algorithm is based on estimating the first O(k′ + log k)
moment tensors through the empirical tensors, and thus it is
also naturally expressible in the SQ model.

Remarks A single component with arbitrarily small
weight can make the complexity in (Buhai & Steurer, 2023;
Anderson et al., 2024) blow up quasipolynomially. By con-
trast, our algorithm can handle any number of such points,
and the complexity interpolates smoothly between the all-
uniform and the fully general weights cases.

1.2. Overview of Techniques

For Theorem 1.3, it suffices to show existence of a one-
dimensional distribution (corresponding to the projection
along the hidden direction v in the parallel pancakes
mixture in Problem 1.1) that matches a lot of moments with
N (0, 1) and is thus hard to distinguish. Concretely, the
goal is to show the existence of a set S ⊂ R of size k such
that Ex∼S [x

i] = Ex∼N (0,1)[x
i] for all i = 1, . . . , t, where

t = Ω(log k) and x ∼ S denotes the uniform distribution
on S. Once established, the theorem follows from standard
SQ theory: convolving this discrete distribution with a
narrow Gaussian yields a k-GMM B that still matches
the first t moments with N (0, 1). A standard result from
(Diakonikolas et al., 2023) then shows that hiding B along
an unknown direction is hard to distinguish from N (0, I).

Fortunately, the desired moment-matching construction,

known as a t-design, has been well-studied. Kane (2015)
shows that designs of small size to match the moments
of a distribution Q exist when the support of Q is “path-
connected”. The design’s size is upper bounded by the
number K, which is defined to be the supremum of the
ratio supx∈X p(x)

| infx∈X p(x)| taken over all degree-t zero-mean poly-

nomials p. Thus, it suffices to show K = 2O(t) to prove
Theorem 1.3. However, since the Gaussian distribution has
unbounded support, there are (many) polynomials p where
supx∈R p(x) is infinite while the infimum is clearly finite.

To address this, we can instead consider another distribution
Q supported on an interval I of length O(

√
t), which also

matches the first t moments with N (0, 1) (Lemma 3.3
from Diakonikolas et al. (2017)). Thus, by creating a
design to match Q we only need to bound K with X = I ,
which is now possible (Lemma 3.5). Specifically, by
expressing p in the Hermite basis, we can show that
supx∈I p(x) ≤ Ex∼N (0,1)[|p(x)|]2O(t). Additionally,
by Gaussian anti-concentration, we can show that any
zero-mean polynomial p of degree t has a 2−O(t) probability
of being less than −2−O(t) Ex∼N (0,1)[|p(x)|]. This shows
that |infx∈I p(x)| ≥ Ex∼N (0,1)[|p(x)|]2−O(t).

We can also show that this bound is tight: if A is the
uniform distribution on k points, it cannot match more
than O(log k) moments with N (0, 1). The argument is
that for any non-negative function f , Ex∼A[f2(x)]

Ex∼A[f(x)]2 ≤ k.
If A matches the first 4t moments with N (0, 1), setting
f(x) = x2t makes the ratio 2Ω(t), implying t = O(log k).

In fact, we can extend the result to non-uniform distributions
where all but k′ points in the support have equal weight,
showing that such distributions cannot match more than
O(log(k)+k′) moments withN (0, 1) (Proposition 4.1). As
we will explain later, this will lead to the testing algorithm
in Theorem 1.4.

The first step towards Proposition 4.1 is to show that, if all
but k′ points have weight at least w0, then it is impossible to
match more than O(log(1/w0)+k′) moments withN (0, 1)
(Proposition 4.2). The proof relies on extending the idea
of the previous paragraph that any non-negative function
f which vanishes (i.e. gives value zero) on the k′ points in
question satisfies Ex∼A[f2(x)]

Ex∼A[f(x)]2 ≤ 1/w2
0 . We specifically use

f(x) = xtp(x), where p(x) = (x − µ1)
2 . . . (x − µk′)2

and µ1, . . . , µk′ are the points in the support of A with
unrestricted weights. The goal then is to show that the
ratio r := Ex∼A[f2(x)]

Ex∼A[f(x)]2 is at least 2Ω(t−k′) — combin-
ing this with our earlier lower bound r ≤ 1/w2

0 implies
t = O(log(1/w0)+k′)). To bound r, we assume A matches
Θ(t + k′) moments, allowing us to replace Ex∼A[·] with
Ex∼N (0,1)[·] in the definition of r. Since p(x) has de-
gree 2k′, we show p(x) ≥ 2−O(k′) Ex∼N (0,1)[p

2(x)]1/2
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near x =
√
2t (Corollary 4.5). The contribution to

Ex∼N (0,1)[f
2(x)] from x ∈ [0.9

√
2t, 1.1

√
2t] will then

be at least (3.6t)t Ex∼N (0,1)[p
2(x)]2−O(k′) (see Equa-

tions (7) and (8) for the full calculations). Mean-
while, by Hölder’s inequality, Ex∼N (0,1)[f(x)] ≤
Ex∼N (0,1)[x

3t/2]2/3 Ex∼N (0,1)[p
3(x)]1/3, which by hyper-

contractivity is at most ( 3t2e )
t/2 Ex∼N (0,1)[p(x)

2]1/22O(k′).
Combining these bounds establishes r ≥ 2Ω(t−k′) and
proves Proposition 4.2.

We can also argue that the previous paragraph’s result can
always be used with w0 ≥ 2−O(k′)/k (Proposition 4.1).
By considering the same polynomial p which vanishes at
the points with unconstrained weights, we can combine the
hypercontractivity of p with the Cauchy-Schwarz inequality
to derive a lower bound on the total weight of the equal-
weight points:

∑
i≥k′+1 wi ≥ 2−O(k′). This immediately

implies w0 ≥ 2−O(k′)/k.

We have shown that any discrete distribution with k′

arbitrary weights and k − k′ equal weights cannot
match more than O(log(k) + k′) moments with N (0, 1).
This result extends to approximate moment matching
within error 2−O(t), and holds even after convolving the
distribution with a Gaussian (cf. Lemma D.3). For the
parallel pancakes testing problem, this implies that for some
i ≤ O(log(k) + k′) the i-th order tensor of the GMM in
the alternative hypothesis differs significantly from that of
N (0, I). This gap can be detected by estimating the tensor
via averaging samples (an operation that has complexity
dΘ(m)), leading to the testing algorithm of Theorem 1.4.

2. Preliminaries
We present only the essential preliminaries here; see
Appendix B for a full version.

Notation We use Z+ for positive integers, R+
0 for non-

negative reals, and [n]
def
= {1, . . . , n}. We use x ⊗ y for

the tensor product of two vectors. For a random variable
x following distribution D, we write x ∼ D and E[x] for
its expectation. The Gaussian distribution with mean µ
and covariance Σ is N (µ,Σ), and Pr(E) denotes the prob-
ability of event E . The indicator function of E is 1(E).
The Lp norm of an R-valued random variable x is ∥x∥p =
E[|x|p]1/p, and for a function f : Rd → R, it is ∥f∥p =
Ex∼N (0,I)[|f(x)|p]1/p. We use a ≲ b to indicate a ≤ Cb
for an absolute constant C > 0 independent of a and b.

Hermite Analysis In this paper, we use the normalized prob-
abilist’s Hermite polynomials, which form an orthonormal
basis of L2 := {f : Ex∼N (0,1)[f

2(x)] <∞} with respect
to the Gaussian measure, i.e.,

∫
R hk(x)hm(x)e−x2/2 dx =√

2π1(k = m). Every function f ∈ L2 can be uniquely

expressed as f(x) =
∑∞

i=0 aihi(x).

Probability Facts The first fact below follows from
direct calculations, the second from the Carbery-Wright
inequality, and the last from Hölder’s inequality combined
with Fact 2.3.

Fact 2.1 (Gaussian Moments). E
x∼N (0,1)

[xt] ≲ (t/e)t/2 ∀t≥0.

Fact 2.2. For every polynomial of degree r and every ϵ > 0,
Prx∼N (0,1) (|p(x)| ≤ ϵ∥p∥1) ≤ O(rϵ1/r).

Fact 2.3 (Gaussian Hypercontractivity). If p is a degree r
polynomial and k > 2, then ∥p∥k ≤ (k − 1)r/2∥p∥2.

Fact 2.4. For any polynomial p of degree r, ∥p∥1

∥p∥2
≥ 3−r.

Arithmetic Mean-Geometric Mean Inequality We record
the following continuous analog of the Arithmetic Mean-
Geometric Mean (AM-GM) inequality. We refer to Ap-
pendix B for a more detailed discussion.

Fact 2.5 (Continuous AM-GM Inequality). Let f : R →
R+

0 be a function, and let I ⊆ R be a finite interval. If f(x)
and ln f(x) are integrable on I , then the following holds:
1
|I|
∫
I
f(x)dx ≥ exp

(
1
|I|
∫
I
ln f(x)dx

)
.

Non-Gaussian Component Analysis The parallel pancakes
Problem 1.1 is a special case of the following problem.

Problem 2.6 (Non-Gaussian Component Analysis
(NGCA)). Let B be a distribution on R. For a
unit vector v, we denote by PB,v the distribution
with the density PB,v(x) := B(v⊤x)ϕ⊥v(x), where
ϕ⊥v(x) = exp

(
−∥x− (v⊤x)v∥22/2

)
/(2π)(d−1)/2, i.e.,

the distribution that coincides with B on the direction v
and is standard Gaussian in every orthogonal direction. We
define the following hypothesis testing problem:

• H0: The data distribution is N (0, Id).

• H1: The data distribution is PB,v, for some vector v ∈
Sd−1 in the unit sphere.

It is known that solving Problem 2.6 when B matches the
first m moments with N (0, 1) requires at least dΩ(m) com-
plexity in the statistical query model (Proposition B.8).

3. The Uniform Weights Case
In this section we prove the following proposition, which
is sufficient for showing our first result, Theorem 1.3.

Proposition 3.1. For each k that is larger than a sufficiently
large absolute constant, there exists a set S of k points in R
such that the uniform distribution over S matches the first
Ω(log k) moments with N (0, 1).

Given the above, Theorem 1.3 follows directly from stan-
dard SQ theory. The details are provided in Appendices B.5
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and C, but the steps are summarized as follows: Let A be the
uniform distribution on the set S from Proposition 3.1. We
can define the distribution B to be what one obtains by first
drawing a sample from A, rescaling it by 1/

√
δ and adding

Gaussian noise N (0, 1 − δ). This operation preserves
moment matching and makes B a GMM. The NGCA Prob-
lem 2.6 with that B then becomes equivalent to the parallel
pancakes Problem 1.1. Since B matches m = Ω(log k)
moments with N (0, 1), its standard SQ hardness state that
its complexity is dΩ(m) = dΩ(log k) (Proposition B.8). We
refer to Appendix C for the details of this paragraph.

In the remainder, we focus on proving Proposition 3.1 by
leveraging a result on designs theory from Kane (2015). The
original result in Kane (2015) is highly general and applies
to a wide range of topological, path-connected design prob-
lems. However, as we will only use the theorem for intervals,
we present here a specialized version tailored to this case.

Fact 3.2 (see Theorem 4 in Kane (2015)). Let t ∈ Z+ be
an integer, I ⊂ R be an interval and Q be a distribution
on I . Let Wt be the vector space of all polynomials of
degree at most t, and Vt be the vector space of polynomials
p of degree at most t with Ex∼Q[p(x)] = 0. Define
Kt = supp∈V \{0}

supx∈I p(x)

| infx∈I p(x)| . Then for every integer
n > (t − 1)(Kt + 1) there exists a set S ⊂ I of n points
such that 1

|S|
∑

x∈S p(x) = Ex∼Q[p(x)] for all p ∈Wt.

Our goal is to show that Kt = 2O(t) for Q = N (0, 1),
which would directly imply Theorem 1.3. However, as noted
in Section 1.2, Kt may be infinite when I = R. To address
this, we use a distribution Q supported on a bounded interval
of R that matches the first t moments of N (0, 1). Applying
Fact 3.2 with this Q also suffices for establish Theorem 1.3.

Lemma 3.3 (Gaussian Quadrature (Lemma 4.3 in Di-
akonikolas et al. (2017))). There is a discrete distribution
Q on the real line, supported on t points, that agrees with
N (0, 1) on the first 2t − 1 moments. All points x in the
support of Q have |x| = O(

√
t).

We start with an anti-concentration property of Gaussian
polynomials that will be useful for bounding the numerator
in the definition of Kt.

Lemma 3.4. Let C be a sufficiently large constant. For
every polynomial p : R → R of degree at most t with
Ex∼N (0,1)[p(x)] = 0 and for every ϵ > 0 it holds

Pr
x∼N (0,1)

(p(x) > ϵ∥p∥1) ≥
(
1

2

∥p∥1
∥p∥2

(1− Ctϵ1+1/t)

)2

.

Proof. Denote by ϕ(x) the pdf of N (0, 1). We have the
following (each step is explained below):

∥p∥1=
∫
p(x)>0

p(x)ϕ(x)dx−
∫
p(x)≤0

p(x)ϕ(x)dx = 2

∫
p(x)>0

p(x)ϕ(x)dx

= 2

(∫
p(x)≥ϵ∥p∥1

p(x)ϕ(x) dx+

∫
0≤p(x)<ϵ∥p∥1

p(x)ϕ(x)dx

)
≤ 2∥p∥2 Pr

x∼N (0,1)
(p(x) ≥ ϵ∥p∥1)1/2

+ 2ϵ∥p∥1 Pr
x∼N (0,1)

(|p(x)| ≤ ϵ∥p∥1)

≤ 2∥p∥2 Pr
x∼N (0,1)

(p(x) ≥ ϵ∥p∥1)1/2 + 2ϵ∥p∥1Ctϵ1/t,

where the first line used that Ex∼N (0,1)[p(x)] = 0, the
penultimate inequality used the Cauchy–Schwarz inequal-
ity for the first term and the bound p(x) ≤ ϵ∥p∥1 for
the second term, and the last line used the Carbery-
Wright inequality (Fact 2.2). Rearranging, we obtain√

Prx∼N (0,1)(p(x) > ϵ∥p∥1) ≥ 1
2
∥p∥1

∥p∥2
(1 − 2Ctϵ1+1/t).

We rename the constant 2C to C.

We now bound Kt from Fact 3.2 with I=[−C
√
t,C
√
t].

Lemma 3.5. Let t > C be an integer, where C is a suf-
ficiently large constant, and define I = [−C

√
t,+C

√
t].

For every polynomial p of degree at most t with
Ex∼N (0,1)[p(x)] = 0 it holds supx∈I p(x)

| infx∈I p(x)| ≤ 2O(t).

Proof. It suffices to upper bound the numerator by
2O(t)∥p∥1 and lower bound the denominator by 2−O(t)∥p∥1.

Upper bound on numerator We require the following:

Fact 3.6 (Krasikov (2004)). For the k-th normal-
ized probabilist’s Hermite polynomial hk, we have
supx∈R h2

k(x)e
−x2/2 = O(k−1/6).

Consider a polynomial p which has degree at most t and
satisfies Ex∼N (0,1)[p(x)] = 0. We first expand the poly-
nomial in the Hermite basis: p(x) =

∑t
k=1 akhk(x),

where the summation starts from k = 1 because a0 =
Ex∼N (0,1)[p(x)] = 0. For any x ∈ I we have (the first step
uses Cauchy–Schwarz inequality):

|p(x)| =

∣∣∣∣∣
t∑

k=1

akhk(x)

∣∣∣∣∣ ≤
√√√√ t∑

k=1

a2k

√√√√ t∑
k=1

h2
k(x)

≲ ∥p∥2

√√√√ t∑
k=1

ex2/2k−1/6 (by Fact 3.6)

≤ ∥p∥2 2O(t)

√√√√ t∑
k=1

k−1/6 (using |x| = O(
√
k))

≤ ∥p∥2 2O(t)tO(1) (using
∑t

k=1 k
−1/6 = tO(1))

≤ ∥p∥2 2O(t) ≤ ∥p∥12O(t) . (using Fact 2.4)

Lower bound on the denominator From Lemma 3.4 with
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−p in place of p and ϵ = 2−t, and Fact 2.4 we get that

Pr
x∼N (0,1)

(p(x) < −2−t∥p∥1) ≥
(
1

2

∥p∥1
∥p∥2

(1−Ct2−t−1)

)2

≥
(
1

2
3−t(1− Ct2−t−1)

)2

> 2−4t .

where we used that t is big enough so that C t
2t<0.5. Then,

Pr
x∼N (0,1)

(p(x) < −2−t∥p∥1, x ∈ I)

≥ Pr
x∼N (0,1)

(p(x) < −2−t∥p∥1)− Pr
x∼N (0,1)

(x ̸∈ I)

≥ 2−4t − 2−100t > 0 ,

where in the last line we used that I = [−C
√
t,+C

√
t] for

a large constant C. We have thus shown that infx∈I p(x) ≤
−2−t∥p∥1 and therefore | infx∈I p(x)| > 2−t∥p∥1.

4. The Mostly Equal Weights Case
This section focuses on Theorem 1.4 and is organized as fol-
lows. The key structural result is the following impossibility
of moment matching: if A is a distribution on k points, with
k′ points having unconstrained weights and the remaining
k− k′ equal, then A cannot match more than O(log k+ k′)
moments with the standard Gaussian.

Proposition 4.1. Let k′ < k be positive integers, and let A
be a discrete distribution on k points in R. Suppose k−k′ of
the points have equal probability masses, while the remain-
ing k′ points have unrestricted probability masses. Denote
by m the highest degree for which every degree-m′ ≤ m
polynomial g satisfies

∣∣Ex∼A[g(x)]−Ex∼N (0,1)[g(x)]
∣∣ ≤

2−C·m∥g∥2, then m must satisfy m ≤ O(log k) +O(k′).

Section 4.1 explains how Proposition 4.1 leads to a
testing algorithm (the full proof appears in Appendix D.1).
Section 4.2 provides the proof of Proposition 4.1.

4.1. Proof Sketch of Theorem 1.4

Consider the parallel pancakes problem from Theo-
rem 1.4, which is equivalent to the NGCA problem (Prob-
lem 2.6) with the 1-d GMM B =

∑
i∈[k] wiN (µi, 1−δ).

If B approximately matches m moments of N (0, 1),
we aim to show that m≤O(log k+k′), enabling a
testing algorithm that detects significant deviations
in moment tensors. Specifically, suppose every
polynomial p of degree m′≤m with ∥p∥2=1 satis-
fies

∣∣Ex∼B [p(x)]−Ex∼N (0,1)[p(x)]
∣∣≤(δ/2)Cm for some

large constant C ≫ 1. Now, consider the discrete distribu-
tion A, which assigns weight wi to each center µi/

√
δ. By

Lemma D.3, A also approximately matches the moments of
N (0, 1), but with an error of 2−O(m) instead of (δ/2)O(m).
Then Proposition 4.1 yields m ≤ O(log k+k′), as desired.

We just showed that there is a polynomial p of de-
gree at most m = O(log(k) + k′), where the expec-
tations under B and N (0, 1) differ significantly: λ :=∣∣Ex∼B [p(x)]−Ex∼N (0,1)[p(x)]

∣∣ > (δ/2)Cm. An averag-
ing argument further implies that a gap holds even for some
monomial xi. Lifting this to the d-dimensional parallel
pancakes, we have the moment tensor gap Ex∼PB,v

[x⊗i]−
Ex∼N (0,I)[x

⊗i] = ±λv⊗i.

The Frobenius norm of the gap is λ > (δ/2)Cm, implying
that between the (expected) moment tensors, at least one en-
try differs by at least ϵ := λ/dm = (d/δ)(C−1)m. We will
test by searching for such an entry in the empirical tensor.

Algorithm 1 Testing Algorithm (simplified)

1: Input: k, n. Output: Ĥ ∈ {H0, H1}.

2: For i = 1, 2, 3, . . . , C · (log(k) + k′) do
3: Draw x1, . . . , xn ∼ D.
4: Define M ← 1

n

∑n
i=1 x

⊗i.
5: Define M ′ := Ex∼N (0,I)[x

⊗i].
6: If ∃a=(i1, . . . , ji) such that |Ma−M ′

a|>d−Cmλm

7: then Output H1 and terminate.
8: Return H0.

The tester above is a simplified version. However, it is
not fully correct, as we must ensure the concentration of
the empirical tensor to bound the sample complexity. The
Gaussian N (0, I)’s empirical tensor is well-concentrated.
While the parallel pancake’s tensor might not concentrate
well, this happens only when there is a Gaussian component
much farther than

√
d from the origin — otherwise every

sample from the parallel pancake is within O(
√
d) in norm

in high probability, and the empirical tensor is entrywise
well-concentrated (e.g. by Hoeffding). This is also a testable
condition: with≫ log(k)/wmin samples, we will be able
to check if every component is centered at most O(

√
d)

from the origin. The full version of the algorithm with
this additional preliminary check, along with its correctness
proof, are provided in Appendix D.1.

4.2. Proof of Proposition 4.1

We now show Proposition 4.1. We will actually show a
slightly different version below, where k′ of the points have
arbitrary weights and the rest have weight at least w0.

Proposition 4.2. Let C be a sufficiently large constant, and
let k′ < k be positive integers. Let A be a discrete distribu-
tion on k points in R with probability masses w1, . . . , wk,
where wi ≥ w0 for i = k′ + 1, . . . , k (i.e., the last k − k′

weights are lower bounded by w0, while the first k′ weights
are unrestricted). Let m be the largest degree such that
every polynomial g of degree m′ ≤ m satisfies∣∣∣∣ Ex∼A

[g(x)]− E
x∼N (0,1)

[g(x)]

∣∣∣∣ ≤ w0 2
−C·m∥g∥2 . (1)

6
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Then m ≤ O(log(1/w0)) +O(k′).

Proposition 4.1 can be derived from this via the fol-
lowing observation (shown in Appendix D.2): in the
setting of Proposition 4.2, let p(x) =

∏k′

i=1(x − µi),
where µ1, . . . , µk′ are the points in the support of A
with the unconstrained weights. Then, the weights
of the k − k′ points with uniform weights is always∑k

i=k′+1 wi ≥ Ex∼A[p(x)]2

Ex∼A[p2(x)] ≳ ∥p∥2
1

∥p∥2
2
≥ 3−2k′

, where the
first step uses Cauchy-Schwarz inequality, the second uses
the (approximate) moment matching, and the third is a
consequence of Gaussian hypercontractivity (Fact 2.4).
This means that every such weight is wi ≥ 3−2k′

/k, which
when plugged into Proposition 4.2 gives Proposition 4.1.

We now focus on showing Proposition 4.2. We will follow
a top-down presentation, starting with the proof strategy
and concluding with a derivation of the necessary bounds.

We will use a reparameterization m = 2t+ 4k′ with t even.
The goal is to show that if A is assumed to approximately
match the first m = 2t + 4k′ moments with N (0, 1)
(in the sense of Equation (1)), then t must be at most
O(log(1/w0) + k′). Let µ1, . . . , µk be the points on which
A is supported, where the first k′ points are the ones with the
unrestricted weights, and consider the polynomial f(x) =
xtp(x), where p(x) = (x − µ1)

2(x − µ2)
2 · · · (x − µk′)2.

The proof strategy is the following: if the expectation of
f under A approximately matches that of N (0, 1), then the
value of f on every point µi cannot be too large, which will
cause the expectations of f2 to deviate.

Because of Equation (1) with g(x) = f2(x), we have:

k∑
i=k′+1

wi µ
t
i p(µi) = E

x∼A

[
xtp(x)

]
(2)

≤ E
x∼N (0,1)

[
xtp(x)

]
+ w0

∥xtp(x)∥2
2C(2t+4k′)

. (3)

This, together with the lower bound wi ≥ w0 for the points
i = k′ + 1, . . . , k and the fact that t is even, implies that for
all i = k′ + 1, . . . , k it holds

µt
i p(µi) ≤

1

w0
E

x∼N (0,1)

[
xtp(x)

]
+
∥xtp(x)∥2
2C(2t+4k′)

. (4)

We now examine the expectations of the square of f(x).
Because of Equation (1) with g(x) = f2(x), we have

E
x∼N (0,1)

[
x2tp2(x)

]
≤ E

x∼A

[
x2tp2(x)

]
+
∥x2tp2(x)∥2
2C(2t+4k′)

=

k∑
i=k′+1

wi

(
µt
i p(µi)

)2
+
∥x2tp2(x)∥2
2C(2t+4k′)

.

Next, we can combine this with Equation (4), divide both
sides by Ex∼N (0,1) [x

tp(x)]
2 (and use

∑k
i=k′+1 wi ≤ 1) to

obtain the following, where λ := 2−C(2t+4k′):

Ex∼N (0,1)

[
x2tp2(x)

]
Ex∼N (0,1) [xtp(x)]

2 ≤
(

1

w0

)2

+ λ2Ex∼N (0,1)

[
x2tp2(x)

]
Ex∼N (0,1) [xtp(x)]

2 + λ
Ex∼N (0,1)

[
x4tp4(x)

] 1
2

Ex∼N (0,1) [xtp(x)]
2 .

Let us simplify this inequality. Let r be the ratio on the
LHS. The second term on the RHS is λ2 · r. The third
term is at most 3t+2k′

λr, by applying Gaussian hypercon-
tractivity (Fact 2.3) to the polynomial xtp(x). Thus, the
inequality becomes r(1 − λ2 − λ3t+2k′

) ≲ 1/w2
0 . Since

λ = 2−C(2t+4k′) for large constant C, the expression inside
the parentheses is greater than 0.5. Therefore, the inequality
implies that r ≲ 1/w2

0 .

The next step is to establish a lower bound for r, specifi-
cally to show that r ≥ 2Ω(t)/2O(k′). If this can be done,
combining the two bounds 2Ω(t)/2O(k′) ≤ 1/w2

0 and taking
logarithms yields t = O(log(1/w0)) +O(k′), completing
the proof of Proposition 4.2.

4.2.1. LOWER BOUNDING THE RATIO r

We want to establish the following, which was the missing
piece in the proof of Proposition 4.2 above.

Lemma 4.3. Let p : R→ R+
0 be a polynomial of the form

p(x) = (x− µ1)
2(x− µ2)

2 · · · (x− µk′)2. Then

Ex∼N (0,1)

[
x2tp2(x)

]
Ex∼N (0,1) [xtp(x)]

2 ≳
2Ω(t)

2O(k′)
.

The most difficult part involves lower bounding the numera-
tor. To this end, we will show the following bound:

Lemma 4.4. Let p : R → R be a polynomial of the form
p(x) = (x−µ1)(x−µ2) · · · (x−µk′) where µ1, . . . , µk′ ∈
R, and define I := [0.9

√
2t, 1.1

√
2t]. For every t > 0 and

for every µ1, . . . , µk′ ∈ R, the following holds:

exp

(
1

|I|

∫
x∈I

ln |p(x)|dx
)
≥ max

y∈R:|y|≤
√
t

|p(y)|
2O(k′)

. (5)

We will actually apply Lemma 4.4 after taking expectations
of both sides. This version is presented below, and its proof
follows by taking expectations and performing some manip-
ulations (see Appendix D.3 for a detailed proof).

Corollary 4.5. Let p : R→ R be a polynomial of the form
p(x) = (x−µ1)(x−µ2) · · · (x−µk′) where µ1, . . . , µk′ ∈
R are arbitrary parameters. Define I = [0.9

√
2t, 1.1

√
2t].

For all t ≥ 1 we have exp
(

1
|I|
∫
x∈I

ln |p(x)|dx
)
≥ ∥p∥2

2O(k′) .
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To see why the above bound is needed to prove Lemma 4.3,
we will first prove Lemma 4.3 assuming Corollary 4.5. Then,
we will prove Lemma 4.4.

Proof of Lemma 4.3. First, for the denominator, we have
the following:

E
x∼N (0,1)

[xtp(x)] ≤ E
x∼N (0,1)

[p3(x)]1/3 E
x∼N (0,1)

[x3t/2]2/3

≲ ∥p∥3
(
3t

2e

)t/2

≲ 2k
′
∥p∥2

(
3t

2e

)t/2

, (6)

where the first step uses Hölder’s inequality, the second step
uses the Gaussian moments bound (Fact 2.1), and the final
step uses Gaussian hypercontractivity (Fact 2.3).

We now lower bound the numerator. Define I :=
[0.9
√
2t, 1.1

√
2t]. We have the following (see below for

explanations of each step):

E
x∼N (0,1)

[
x2tp2(x)

]
≳
∫ +∞

−∞
x2te−x2/2p2(x) dx

≥
∫
x∈I

x2te−x2/2p2(x) dx

≥ (1.62t)te−0.81t

∫
x∈I

p2(x) dx

= (1.62t)te−0.81t|I|
(

1

|I|

∫
x∈I

p2(x) dx

)
≳ (1.62t)te−0.81t

(
1

|I|

∫
x∈I

p2(x) dx

)
, (7)

where the third inequality uses that minx∈I x
2te−x2/2 ≥

(1.62t)te−0.81t, and the final inequality uses that |I| =
0.2
√
2t = Ω(1). We now focus on the root mean square

term 1
|I|
∫
x∈I

p2(x) dx, which we will bound using the AM-
GM inequality (Fact 2.5) and the geometric mean bound
from Lemma 4.4. The first step below applies Fact 2.5 with
f(x) := p2(x), and the next step uses Corollary 4.5.

1

|I|

∫
x∈I

p2(x) dx ≥ exp

(
1

|I|

∫
x∈I

ln |p(x)|dx
)2

≥ ∥p∥
2
2

2O(k′)
.

Combining with Equation (7), we obtain the following
bound for the numerator:

E
x∼N (0,1)

[
x2tp2(x)

]
≳ (1.62t)te−0.81t ∥p∥22

2O(k′)
. (8)

Combining Equation (6) and Equation (8), we conclude

Ex∼N (0,1)

[
x2tp2(x)

]
Ex∼N (0,1) [xtp(x)]

2 ≳
(1.62)t

( 1.5e )t e0.81t 2O(k′)
≥ (1.3)t

2O(k′)
.

We conclude this section by proving Lemma 4.4.

Proof of Lemma 4.4. Fix an arbitrary y ∈ R with |y| ≤
√
t.

First, note that by the property of logarithms and sums, we
can write the left hand side as

exp

 k′∑
i=1

1

|I|

∫
x∈I

ln |x− µi|dx

 .

In order to show Equation (5), it suffices to work with each
term and show the following for each i ∈ [k′]:

1

|I|

∫
x∈I

ln |x− µi| ≥ ln |y − µi| −O(1) .

Equivalently, it suffices to show that Equation (5) holds
for every linear polynomial of the form p(x) = x − a.
Therefore, the goal for the rest of this proof is to show that

exp

(
1

|I|

∫
x∈I

ln |x− a|dx
)
≥ |y − a|/O(1) , (9)

holds for every a ∈ R and y ∈ R with |y| ≤
√
t. We will

examine two cases.

Case 1 The first case is when the root a of the polynomial
is outside the interval I . In this case, we can show that
|x− a|/|y− a| = Θ(1), which implies ln |x− a| ≥ ln |y−
a|−O(1), and the desired conclusion (Equation (9)) follows
by integrating both sides and applying the exp(·) function.

To show the earlier claim that |x− a|/|y − a| = Θ(1), we
can consider the following sub-cases:

1. Case a ≥ 1.1
√
2t (i.e., a is to the right of I): Suppose

a = 1.1
√
2t+u for some non-negative u. Then, a−x =

(1.1
√
2t−x)+u = Θ(

√
t)+u and a−y = (1.1

√
2t−

y)+u = Θ(
√
t)+u. Therefore, for any u ≥ 0, the ratio

|x− a|/|y − a| = (Θ(
√
t) + u)/(Θ(

√
t) + u) = Θ(1).

2. The cases a < −
√
t and a ∈ [

√
t, 0.9

√
2t] can be shown

in a similar manner.

Case 2 Suppose that the root a of the polynomial p lies
within the interval I . In that case, we can show via derivative
analysis that f(a) := 1

|I|
∫
x∈I

ln |x−a|dx for a ∈ I is min-

imized at the midpoint of I , i.e., at a =
√
2t, and confirm

that f(
√
2t) ≥

√
t/20 = Ω(|y − a|). These calculations

are provided in Appendix D.3.

Conclusions and Future Work
Our work makes progress in understanding the complexity
of learning parallel pancake GMMs, in terms of both lower
and upper bounds. We establish the tightness of existing
algorithms for uniform weights and provide an improved
testing algorithm for uneven weights. A number of interest-
ing open problems remain:

8
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• Can we extend our testing algorithm to learning the un-
known direction of the parallel pancakes? More broadly,
can we characterize the complexity of learning GMMs
with common covariance and not necessarily collinear
means as a function of the weights distribution?

• Can we obtain an algorithm with quasi-polynomial (i.e.,
dO(log(1/wmin)) complexity for GMMs whose components
have unknown (and potentially different) covariances?

Impact Statement
This work is theoretical in nature and focuses on advanc-
ing fundamental knowledge. As such, it does not directly
raise any societal or ethical concerns that warrant special
consideration.
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Supplementary Material
Organization Appendix A discusses additional related work on Gaussian mixture models, Appendix B provides the full
version of the preliminaries needed for the technical proofs, Appendix C provides the missing details from the proof of our
first main result, Theorem 1.3, and Appendix D provides the missing details from our second main result, Theorem 1.4.

A. Additional Related Work
Learning Gaussian Mixture Models (GMMs) is one of the most studied problems in statistics, dating back to Pearson (1894).
Over the years, a plethora of works has explored this area (Dasgupta, 1999; Arora & Kannan, 2001; Vempala & Wang,
2002; Achlioptas & McSherry, 2005; Kannan et al., 2005; Brubaker & Vempala, 2008; Moitra & Valiant, 2010; Belkin &
Sinha, 2015; Suresh et al., 2014; Daskalakis & Kamath, 2014; Hardt & Price, 2015; Diakonikolas et al., 2020; Bakshi et al.,
2020; Diakonikolas et al., 2022; Liu & Moitra, 2021; Bakshi et al., 2022). Here, we provide a brief exposition of part of this
literature, though this is not a comprehensive survey.

A key starting point was Dasgupta (1999), which studied learning GMMs with well-separated, spherical covariance
components. Subsequent work by Vempala & Wang (2002); Achlioptas & McSherry (2005); Kannan et al. (2005) improved
the separation condition to be dimension-independent. Hopkins & Li (2018) and Kothari et al. (2018) later refined the
separation assumption to the information-theoretic limit, achieving this with quasi-polynomial-time algorithms. Notably,
most of the aforementioned works extend beyond spherical Gaussians; however, they measure the pairwise mean separation
between components relative to the largest eigenvalue of the components’ covariance matrices. More recently, Liu & Li
(2022) improved the runtime to polynomial for spherical Gaussians.

The case of arbitrary Gaussians with unknown component covariances has also been extensively studied (Belkin & Sinha,
2015; Moitra & Valiant, 2010; Bakshi & Kothari, 2020; Diakonikolas et al., 2020; Liu & Moitra, 2022; Bakshi et al., 2022).
While the first works in this list had complexities doubly exponential in k, the number of components, the most recent have
reduced this to dO(k). As noted in Section 1, hardness results from Diakonikolas et al. (2017); Bruna et al. (2021); Gupte
et al. (2022) showed this complexity is necessary. However, certain special cases of GMMs can circumvent these lower
bounds. This was the focus of Buhai & Steurer (2023) and Anderson et al. (2024), who studied GMMs with a minimum
mixing weight wmin ≥ 1/ poly(k) and unknown but shared covariance across components. These papers motivated us to
study whether further improvements are possible for this family of GMMs.

B. Additional Preliminaries
B.1. Notation

We use Z+ to denote positive integers. For n ∈ Z+ we denote [n]
def
= {1, . . . , n}. We denote by R+

0 the set of all
non-negative positive real numbers. We denote by exp(x) = ex the exponential function, and by ln(x) the natural logarithm
(the logarithm with base e). We write x⊗ y to denote the tensor product between two vectors x, y. The tensor product of two
vectors u ∈ Rm and v ∈ Rn is a matrix u⊗ v ∈ Rm×n defined such that (u⊗ v)ij = uivj , where each entry is the product
of the corresponding components of u and v. This can be extended to product between more than two vectors. We denote
x⊗k the k-fold tensor product of the vector x with itself. If A is a tensor, ∥A∥F denotes its Frobenius norm, which is the
Euclidean norm of the vector obtained by stacking all entries of the tensor into a single vector. We write x ∼ D for a random
variable x following the distribution D and use E[x] for its expectation. We useN (µ,Σ) to denote the Gaussian distribution
with mean µ and covariance matrix Σ. We write Pr(E) for the probability of an event E . We denote by 1(E) the indicator
function of the event E . The Lp norm of a (R-valued) random variable x is defined to be ∥x∥p = E[|x|p]1/p. The Lp norm
of a function f : Rd → R is defined to be the Lp norm of the random variable f(x), i.e., ∥f∥p = Ex∼N (0,I)[|f(x)|p]1/p.

We use a ≲ b to denote that there exists an absolute universal constant C > 0 (independent of the variables or parameters
on which a and b depend) such that a ≤ Cb. Sometimes, we will also use the O(·),Ω(·),Θ(·) notation with the standard
meaning.

B.2. Hermite Analysis

Hermite polynomials form a complete orthogonal basis of the vector space L2(R,N (0, 1)) of all functions f : R → R
such that Ex∼N (0,1)[f

2(x)] <∞. We will use the normalized probabilist’s Hermite polynomials, which have unit norm
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and are pairwise orthogonal with respect to the Gaussian measure, i.e.,
∫
R hk(x)hm(x)e−x2/2dx =

√
2π1(k = m). These

polynomials are the ones obtained by Gram-Schmidt orthonormalization of the basis {1, x, x2, . . .} with respect to the
inner product ⟨f, g⟩N (0,1) := Ex∼N (0,1)[f(x)g(x)]. Every function f ∈ L2(R,N (0, 1)) can be uniquely written as
f(x) =

∑∞
i=0 aihi(x) and we have limn→∞ Ex∼N (0,1)[(f(x) −

∑n
i=0 aihi(x))

2] = 0 (see Andrews et al. (1999) for a
more detailed exposition of Hermite polynomial’s properties). We have the following closed form formula (see, e.g., Szegö
(1989)):

hn(x) =
√
n!

⌊n/2⌋∑
j=0

(−1)j

j!(n− 2j)!2j
xn−2j . (10)

We will use the following fact, stating that the largest coefficient in the above expansion cannot be too large.

Fact B.1 (Upper Bound on Hermite Polynomial Coefficients). Let hn(x) denote the normalized probabilist’s Hermite
polynomial of order n. In the monomial expansion hn(x) =

∑n
j=1 ajx

j , it holds |aj | ≤ 2O(n) for all j ∈ [n].

Proof. This follows by Equation (10). The j-th coefficient is
∣∣∣√n!(−1)j/(j!(n− 2j)!2j)

∣∣∣ ≤ √n!/(j!(n− 2j)!2j). Then

one can use the elementary inequalities e(k/e)k ≤ k! ≤ ek(k/e)k to bound the factorials that appear in the numerator and
denominator and optimize the resulting function. The derivative analysis of the resulting function gives two points of zero
derivative: j = 1

4 (1 + 2n−
√
1 + 4n) and j = 1

4 (1 + 2n+
√
1 + 4n). For each point, it can be checked that the function

is smaller than 2n in the limit n→∞.

Definition B.2 (Ornstein-Uhlenbeck Operator). For a ρ ∈ [−1, 1], we define the Ornstein-Uhlenbeck (or Gaussian noise)
operator Uρ as the operator that maps a distribution F on R to the distribution of the random variable ρX +

√
1− ρ2Z,

where X ∼ F and Z ∼ N (0, 1) independently of X .

A well-known property of Ornstein–Uhlenbeck operator is that it operates diagonally with respect to Hermite polynomials.

Fact B.3 (see, e.g., O’Donnell (2014)). For any normalized Hermite polynomial hi, any distribution F on R, and δ ∈ [−1, 1],
it holds that EX∼UρF [hi(X)] = ρi EX∼F [hi(X)].

B.3. Properties of Polynomials Under the Gaussian Measure

Fact 2.1 (Gaussian Moments). E
x∼N (0,1)

[xt] ≲ (t/e)t/2 ∀t≥0.

Fact B.4 (Carbery-Wright Inequality (Carbery & Wright, 2001)). There is an absolute constant C such that the following
holds. Let q, γ ∈ R+

0 , µ ∈ Rd,Σ ∈ Rd×d such that Σ is symmetric PSD and p : Rd → R be a multivariate polynomial of
degree at most r. Then

Pr
x∼N (µ,Σ)

(|p(x)| ≤ γ) ≤ Cqγ1/r(
Ez∼N (µ,Σ)

[
|p(z)|q/r

])1/q .

The way that we will apply this is with the following choice of parameters: d = 1, µ = 0,Σ = 1, q = r and γ = ϵ∥p∥1,
where ϵ is a new parameter. This gives:

Fact 2.2. For every polynomial of degree r and every ϵ > 0, Prx∼N (0,1) (|p(x)| ≤ ϵ∥p∥1) ≤ O(rϵ1/r).

The following inequality can be easily derived using Hölder’s inequality.

Fact B.5. ∥x∥2 ≤ ∥x∥1/31 ∥x∥
2/3
4 for any random variable.

The following inequality is the Gaussian Hypercontractivity property (see, e.g., Bogachev (1998); Nelson (1973))

Fact 2.3 (Gaussian Hypercontractivity). If p is a degree r polynomial and k > 2, then ∥p∥k ≤ (k − 1)r/2∥p∥2.

In particular we will use the above in the following way:

Fact 2.4. For any polynomial p of degree r, ∥p∥1

∥p∥2
≥ 3−r.
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Proof. ∥p∥1 ≥ ∥p∥3
2

∥p∥2
4
= ∥p∥2

(
∥p∥2

∥p∥4

)2
≥ 3−t∥p∥2, where the first step used Fact B.5 and the last step used Gaussian

Hypercontractivtiy (Fact 2.3) with k = 4. Rearranging completes the proof.

Fact B.6 (Gaussian Norm Concentration). If x ∼ N (µ, I), with probability 1− τ we have that

∣∣∣∥x∥2 − (∥µ∥2 + d
)∣∣∣ ≲ log

1

τ
+
(√

d+ ∥µ∥
)√

log
1

τ
.

B.4. Arithmetic Mean-Geometric Mean Inequality

In this paper, we will use a continuous analog of the Arithmetic Mean-Geometric Mean (AM-GM) inequality. The continuous
analog for the arithmetic mean of a sequence 1

n

∑n
i=1 xi is what one obtains by replacing the summation with its continuous

counterpart. Specifically, the arithmetic mean of a function f : R→ R over an interval I is defined as: (1/|I|)
∫
I
f(x)dx.

The geometric mean of a discrete sequence is
∏n

i=1 x
1/n
i . Its generalization relies on the property that ln

∏n
i=1 x

1/n
i =

1
n

∑n
i=1 lnxi (assuming xi > 0). By replacing the summation with an integral, the generalization of the geometric mean

of a function f over an interval I is: exp
(

1
|I|
∫
I
ln f(x)dx

)
. The continuous analog of the AM-GM inequality thus is the

following statement. The proof follows directly from Jensen’s inequality:

Fact 2.5 (Continuous AM-GM Inequality). Let f : R→ R+
0 be a function, and let I ⊆ R be a finite interval. If f(x) and

ln f(x) are integrable on I , then the following holds: 1
|I|
∫
I
f(x)dx ≥ exp

(
1
|I|
∫
I
ln f(x)dx

)
.

B.5. Statistical Query Lower Bounds Background

We first restate the definition of the non-Gaussian component analysis (NGCA) hypothesis testing problem.

Problem 2.6 (Non-Gaussian Component Analysis (NGCA)). Let B be a distribution on R. For a unit vec-
tor v, we denote by PB,v the distribution with the density PB,v(x) := B(v⊤x)ϕ⊥v(x), where ϕ⊥v(x) =
exp

(
−∥x− (v⊤x)v∥22/2

)
/(2π)(d−1)/2, i.e., the distribution that coincides with B on the direction v and is standard

Gaussian in every orthogonal direction. We define the following hypothesis testing problem:

• H0: The data distribution is N (0, Id).

• H1: The data distribution is PB,v, for some vector v ∈ Sd−1 in the unit sphere.

Condition B.7 (Approximate moment matching). Let m ∈ Z+. The distribution B on R is such that Ex∼B [x
i] −

Ex∼N (0,1)[x
i]| ≤ ν for all i ∈ [m].

A known result is that the NGCA problem of Problem 2.6 is hard in the SQ model if B matches a lot of moments with the
standard Gaussian. This was shown in (Diakonikolas et al., 2017) and was later strengthened in Diakonikolas et al. (2023).
The following is Theorem 1.5 in Diakonikolas et al. (2023) using λ = 1/2 and c = (1− λ)/8 = 1/16.

Proposition B.8 (Theorem 1.5 in Diakonikolas et al. (2023)). Let d,m be positive integers with d ≥ (m log d)2. Any SQ
algorithm that solves Problem 2.6 for a distribution B satisfying Condition B.7 requires either 2d

Ω(1)

many queries or at
least one query with accuracy d−m/16 + (1 + o(1))ν.

C. Omitted Details from Section 3
We restate and prove Theorem 1.3.

Theorem 1.3 (SQ Lower Bound for Uniform Weights). Let C be a sufficiently large absolute constant, k > C and
d ≥ (log k log d)2 be integers. If we further restrict the alternative hypothesis in Problem 1.1 to have wi = 1/k for all
i ∈ [k], any SQ algorithm requires either 2d

Ω(1)

queries or at least one query of accuracy d−Ω(log k).

Proof. Let S be the set from Proposition 4.2 and A be the uniform distribution on S. That is, A is a discrete distribution
supported on k points and is guaranteed to match the first m = Ω(log k) moments with N (0, 1). Let B = UρA be the
distribution which is obtained by applying the Ornstein-Uhlenbeck operator (Definition B.2) with ρ =

√
δ. Then B is a
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k-GMM with uniform weights and variance 1− δ for each component. Moreover, for every t = 0, 1, . . . ,m we have the
following for the i-th Hermite polynomial

E
x∼B

[hi(x)] = E
x∼UρA

[hi(x)] = ρi E
x∼A

[hi(x)] = ρi E
x∼N (0,1)

[hi(x)] , (11)

where the above uses Fact B.3 and the moment matching property of A. Since Ex∼N (0,1)[hi(x)] = 1 for i = 0 and
Ex∼N (0,1)[hi(x)] = 0 for all i > 0, Equation (11) means that Ex∼B [hi(x)] = Ex∼N (0,1)[hi(x)], i.e., B matches the first
m moments with N (0, 1).

An application of Proposition B.8 with ν = 0 shows that the NGCA Problem 2.6 that uses the distribution B from above has
SQ complexity dΩ(log k). Noting that this problem is equivalent to Problem 1.1 completes the proof of Theorem 1.3.

We conclude by addressing an edge case. The proof above implicitly assumes that the set S contains distinct points (as
otherwise, the weights in the corresponding GMM might not all be exactly 1/k). Here, we argue that Theorem 1.3 still
holds even if S contains duplicates. Specifically, one can perturb each point in S by a at most an arbitrarily small amount ∆,
ensuring that the points become distinct and that the moments in the resulting GMM distribution B are being matched up to
an error of ν rather than exactly (note that for any ν we can find a perturbation so that the moment gap is no more than
ν). The SQ lower bound from Proposition B.8 then implies that we either require 2d

Ω(1)

queries or at least one query with
accuracy d−m/16 + (1 + o(1))ν. By choosing ∆ appropriately small, we can ensure that ν < d−m/16.

D. Omitted Details from Section 4
D.1. Omitted Details from Section 4.1

The lemma below shows that if the approximate momement matching condition is violated, then it has to be violated by a
monomial (up to a small deterioration of parameters).

Lemma D.1. Let C be a sufficiently large absolute constant. If there exists a polynomial g : R→ R of degree r and unit
norm (Ex∼N (0,1)[g

2(x)] = 1) such that ∣∣∣∣ Ex∼A
[g(x)]− E

x∼N (0,1)
[g(x)]

∣∣∣∣ > γ ,

then there exists a monomial xi with i ≤ r for which∣∣∣∣ Ex∼A
[xi]− E

x∼N (0,1)
[xi]

∣∣∣∣ > 2−C·rγ .

Proof. We will show this by contradiction. Suppose that every monomial of degree i ≤ r satisfies∣∣Ex∼A[x
i]−Ex∼N (0,1)[x

i]
∣∣ ≤ 2−Crγ. Then, if we expand g(x) in the hermite basis, i.e., g(x) =

∑r
i=1 aihi(x), we have∣∣∣∣ Ex∼A

[g(x)]− E
x∼N (0,1)

[g(x)]

∣∣∣∣ ≤ r∑
i=1

|ai|
∣∣∣∣ Ex∼A

[hi(x)]− E
x∼N (0,1)

[hi(x)]

∣∣∣∣
≤

√√√√ r∑
i=1

|ai|2

√√√√ r∑
i=1

∣∣∣∣ Ex∼A
[hi(x)]− E

x∼N (0,1)
[hi(x)]

∣∣∣∣2 , (12)

where the second step uses Cauchy-Schwarz inequality. To further upper bound this, first note that
√∑r

i=1 |ai|2 = ∥g∥2 = 1,
by Parseval’s identity and our assumption of unit norm. For the other factor above, we can write hi(x) =

∑i
j=1 bijx

j and
use the fact that |bij | ≤ 2O(i) (Fact B.1). Then,∣∣∣∣ Ex∼A

[hi(x)]− E
N (0,1)

[hi(x)]

∣∣∣∣ ≤ i∑
j=1

|bij |
∣∣∣∣ Ex∼A

[xi]− E
N (0,1)

[xi]

∣∣∣∣
≤ 2O(r)

i∑
j=1

∣∣∣∣ Ex∼A
[xi]− E

N (0,1)
[xi]

∣∣∣∣ ≤ 2O(r)r2−Crγ < 2−Cr/2γ ,
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Plugging that in Equation (12), we obtain |Ex∼A[g(x)] − EN (0,1)[g(x)]| ≤
√
r2−Cr/2γ < γ, which gives the desired

contradiction.

The lemma below provides a testing algorithm for the NGCA problem (Problem 2.6) in the special case where the distribution
B is k-GMM for which a moment of order at most m̃ is guaranteed to be significantly different than the corresponding
moment of N (0, 1).

Lemma D.2 (Testing Algorithm for Parallel Pancakes when the m-th Moment Deviates). Let B be a Gaussian mixture on
R of the form B =

∑k
i=1 wiN (µi, σ

2), where σ ∈ (0, 1) and wi ≥ wmin for all i ∈ [k]. For a decreasing sequence λm,
denote by m the biggest integer such that every degree-m′ ≤ m polynomial g satisfies∣∣∣∣ Ex∼B

[g(x)]− E
x∼N (0,1)

[g(x)]

∣∣∣∣ ≤ λm

√
E

x∼N (0,1)
[g2(x)] , (13)

Consider the non-Gaussian component analysis hypothesis testing Problem 2.6. Let m̃ be any upper bound for m i.e.,
m ≤ m̃. There is an algorithm that takes as input m̃ and wmin, draws n =

(
(m̃d)O(m̃)λ

−O(1)
m̃ + log(k)w−1

min

)
log(1/τ)

samples, and distinguishes correctly between H0 and H1 with probability 1− τ . Moreover, the runtime of the algorithm is
polynomial in n and d.

Proof. We will do the proof for m̃ = m. The proof trivially extends to any m̃ bigger than m. For degree m+ 1, there exists
a polynomial g that violates the condition in Equation (13). By Lemma D.1, there exists a monomial xi with i ≤ m+ 1
such that

λ̃ =

∣∣∣∣ Ex∼B
[xi]− E

N (0,1)
[xi]

∣∣∣∣ > 2−C·mλm .

For the corresponding d-dimensional distributions PB,v (defined in Problem 2.6) and N (0, I), we have

E
x∼PB,v

[x⊗i]− E
x∼N (0,I)

[x⊗i] = ±λ̃v⊗i .

Thus, the Frobenius norm is ∥∥∥∥ E
x∼PB,v

[x⊗i]− E
x∼N (0,I)

[x⊗i]

∥∥∥∥
F
= λ̃ > 2−C·mλm .

This means that at least one entry in the difference of the two tensors has gap at least ϵ := d−(m+1)2−C·mλm. The idea for
the testing algorithm is to approximate every entry of Ex∼PB,v

[x⊗i]−Ex∼N (0,I)[x
⊗i] up to absolute error ϵ/100, and test

whether some entry is bigger than ϵ/2. This is done in Algorithm 2 and Algorithm 3.

Algorithm 2 Testing Algorithm
1: Input: k, m̃ ∈ Z+, wmin ∈ (0, 1].
2: Output: Ĥ ∈ {H0, H1}.

3: for i = 1, 2, 3, . . . , m̃+ 1 do
4: Run Algorithm 3 with input k, i, m̃, wmin repetitively log((m̃+ 1)/τ) times and let Ĥ be the most frequent output.
5: if Ĥ = H1 then
6: Return H1

7: Return H0.

We start with the correctness of the sub-routine, Algorithm 3. We say that that the output of Algorithm 3 is “successful”
if it always agrees with the true hypothesis, with the exception of the following case, where mistakes are permitted: this
case is when the true hypothesis is H1, the data distribution satisfies maxi∈[k] ∥µi∥2 ≤ C

√
d (recall that µi’s are the centers

of the k-GMM distribution B) and
∥∥Ex∼PB,v

[x⊗i]−Ex∼N (0,I)[x
⊗i]
∥∥

F ≤ 2−Cmλm. We will show that the output of
Algorithm 3 is indeed “successful” in this sense with constant probability.
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Algorithm 3 Checking the i-th order tensor mismatch
1: Input: k, m̃ ∈ Z+, i ∈ Z+, wmin ∈ (0, 1].
2: Output: Ĥ ∈ {H0, H1}.

3: Define n = (m̃d)Cm̃λ−C
m̃ + log(k)w−1

min for sufficiently large C.
4: Draw x1, . . . , xn i.i.d. from the data distribution.
5: if there exists i ∈ [n] with ∥xi∥2 > C

√
d then

6: Output H1 and terminate.
7: else
8: Form the empirical tensor M = Ex∼S [x

⊗i].
9: Let M ′ denote the Gaussian tensor Ex∼N (0,I)[x

⊗i].
10: if there is an entry in Mi1,...,ji with |Mi1,...,ji −M ′

i1,...,ji
| > d−Cm̃λm̃ then

11: Output H1 and terminate.
12: Return H0.

Having that claim established, Lemma D.2 follows straightforwardly: First, note that the probability of success can be
amplified to 1− τ by repeating the subroutine log(1/τ) times and taking the majority vote. Second, if the true hypothesis is
H1, there exists an i such that

∥∥Ex∼PB,v
[x⊗i]−Ex∼N (0,I)[x

⊗i]
∥∥

F > 2−Cmλm. Combined with the claim of the previous
paragraph about Algorithm 3, this ensures that running Algorithm 3 for that i will be H1, as desired. Similarly, under H0,
the output is always H0, which guarantees that the output of Algorithm 2 matches the true hypothesis.

We now move to showing the claim that Algorithm 3 is “successful” with constant probability. We examine the following
cases:

Case 1 The true hypothesis is H0. In this case, the data distribution is D = N (0, I). By Gaussian norm concentration
(Fact B.6) we have Prx1,...,xn∼N (0,I)[maxi ∥xi∥ > C

√
d log n] < 0.01. This means that Algorithm 3 will enter line 7.

Then, by standard entry-wise concentration of Gaussian tensors (see e.g., Fact 5.6 and Equation (5.4) in (Kothari & Steurer,
2017)) we have that if n > dC

′m/λ2
m for C ′ ≫ C, we will have ∥Ex∼N (0,I)[x

⊗i]−Ex∼S [x
⊗i]∥∞ < d−Cmλm and thus

the condition in 10 will be false, resulting in the algorithm to output H0.

Case 2 The hypothesis under effect is H1 and maxi∈[k] ∥µi∥2 > C
√
d log n. The claim is that for log(k)/wmin samples,

with high constant probability, one sample from every component will be observed, and the sample that comes from the
component with ∥µi∥2 > C

√
d log n will satisfy ∥x∥ > C

√
d log n by Fact B.6. To see the first part of the claim, fix

an i ∈ [k]. With 10/wmin samples, one sample from i will be observed with at least 0.9 probability. We can boost that
probability to 1− 1/k by repeating log(k) times. Then, by union bound, this means that one sample from each component
is observed with constant probability.

Case 3 The hypothesis under effect is H1 and maxi∈[k] ∥µi∥2 ≤ C
√
d log n. In this case the data distribution is a

k-GMM where the center of every Gaussian component is bounded in norm by most R = C
√
d log n. By Gaussian

norm concentration, if x1, . . . , xn are points drawn from that GMM, then with constant probability we will have ∥xi∥2 ≤
2C
√
d log n. Therefore the algorithm will enter 7, and because of the bound ∥xi∥2 ≤ 2C

√
d log n, we can treat the

distribution as bounded and use Hoeffding bound for the tensor concentration. That application of Hoeffding’s inequality
shows that if n > RC′mdC

′m/λC′

m then the estimation error is at most d−Cmλm. Thus, in this case, the algorithm will
output H1 if and only if

∥∥Ex∼A[x
⊗i]−Ex∼N (0,1)[x

⊗i]
∥∥

F ≤ 2−Cmλm.

This completes the proof of the claim.

Our main result, Theorem 1.4 will be based on Lemma D.2 and our impossibility of matching result, Proposition 4.2 that
will allow us to use m̃ = O(log(k) + k′) in Lemma D.2. However, Proposition 4.2 concerns only discrete distributions,
while the parallel pancakes uses a Gaussian mixture. In order to bridge this difference, we show the following lemma, which
states that the impossibility of moment matching can be indeed extended to Gaussian mixtures.

Lemma D.3. Let P be a Gaussian mixture distribution on R of the form B =
∑k

i=1 wiN (µi, 1 − δ), where wi > 0

with
∑k

i=1 wi = 1 are the weights of each component, µ1, . . . , µk ∈ R are the centers and δ ∈ (0, 1] is the parameter
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associated with the common variance of the components. Suppose that for every polynomial of degree at most m′ and
Ex∼N (0,1)[p

2(x)] = 1 the following holds ∣∣∣∣ Ex∼B
[p(x)]− E

x∼N (0,1)
[p(x)]

∣∣∣∣ ≤ λ . (14)

Then, if A denotes the discrete distribution on {µ1/
√
δ, . . . , µi/

√
δ} that assigns mass wi to the point µi/

√
δ for i ∈ [k],

the following is true: For every polynomial with degree at most m′ and Ex∼N (0,1)[p
2(x)] = 1 it holds∣∣∣∣ Ex∼A

[p(x)]− E
x∼N (0,1)

[p(x)]

∣∣∣∣ ≤ √m′ λ δ−m′/2 . (15)

Proof. We can write the distribution B as the result of applying the Ornstein-Uhlenbeck (Definition B.2) operator to A, i.e.,
B = UρA with ρ =

√
δ. By Fact B.3, we have the following for every i = 1, 2, . . .:

E
x∼A

[hi(x)] = δ−i/2 E
x∼B

[hi(x)] . (16)

Fix i ∈ [m′]. Using the above and the fact that B matches approximately the m first moments with N (0, 1) (in the sense
of Equation (14)) we have the following for the gap between the expectations of the Hermite polynomial hi under A and
N (0, 1): ∣∣∣∣ Ex∼A

[hi(x)]− E
x∼N (0,1)

[hi(x)]

∣∣∣∣ = ∣∣∣∣δ−i/2 E
x∼B

[hi(x)]− E
x∼N (0,1)

[hi(x)]

∣∣∣∣ (using Equation (16))

=
∣∣∣δ−i/2 E

x∼B
[hi(x)]

∣∣∣ (using Ex∼N (0,1)[hi(x)] = 0 for i ≥ 1)

≤ δ−i/2

(∣∣∣∣ E
x∼N (0,1)

[hi(x)]

∣∣∣∣+ λ

)
(using Equation (14))

= δ−i/2λ (using Ex∼N (0,1)[hi(x)] = 0 for i ≥ 1)

For the special case i = 0, we have exact matching, Ex∼A[h0(x)] = Ex∼N (0,1)[h0(x)] since h0(x) = 1.

Now, in order to show Equation (15), consider a general polynomial p(x) with Ex∼N (0,1)[p
2(x)] = 1. Expanding in the

Hermite basis, we can write p(x) =
∑

i∈[m′] aihi(x) with
∑

i∈[m′] a
2
i = 1 (which means that Ex∼N (0,1)[p

2(x)] = 1 by
Parseval’s identity). We have

∣∣∣∣ Ex∼A
[p(x)]− E

x∼N (0,1)
[p(x)]

∣∣∣∣ ≤
√√√√ m′∑

i=1

a2i

√√√√ m′∑
i=1

∣∣∣∣ Ex∼A
[hi(x)]− E

x∼N (0,1)
[hi(x)]

∣∣∣∣2
≤
√
m′ max

i∈[m′]

∣∣∣∣ Ex∼A
[hi(x)]− E

x∼N (0,1)
[hi(x)]

∣∣∣∣
≤
√
m′ δ−m′/2 λ .

We now combine the previous statements to show our main theorem.

Theorem 1.4 (Testing Algorithm for Parallel Pancakes). Consider the version of the parallel pancakes hypothesis
testing problem (Problem 1.1), where k′ ≤ k of the weights wi in the Gaussian mixture are unconstrained and
the remaining k − k′ are assumed to be equal to each other. There is an algorithm for that problem which draws
n = O

(
(kd/δ)O(k′+log(k)) + log(k)/wmin

)
samples (where δ is as in Problem 1.1 and wmin = mini∈[k] wi is the

smallest weight), has runtime polynomial in n, d, and it outputs the correct hypothesis with probability at least 0.99.

17
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Proof. First, we note that the parallel pancakes testing problem of interest is a special case of the non-Gaussian component
analysis Problem 2.6 where B =

∑
i∈[k] wiN (µi, 1− δ), where wi, µi and δ the ones from Problem 1.1, in particular k′ of

the wi’s are unconstrained and the rest are assumed to be uniform.

The proof consists of two parts: The first part argues that this one-dimensional distribution B cannot match approximately
more than the first m = O(log k+k′) moments withN (0, I) (the approximate moment matching will be quantified shortly).
Then, for the second part, we can show that since the m+ 1 moment deviates significantly from that of N (0, I), estimating
the empirical moment tensor of order m+ 1 and comparing with the one from N (0, I) yields a successful test.

We now proceed with the quantification. Let C be a sufficiently large constant, and define m to be the largest integer such
that for every polynomial p of degree m′ ≤ m and ∥p∥2 = 1 we have∣∣∣∣ Ex∼A

[p(x)]− E
x∼N (0,1)

[p(x)]

∣∣∣∣ ≤ λm . (17)

To prove our claim by contradiction, suppose that m > C(k′ + log k). For each degree m′ ≤ m We will use Lemma D.3
with λ = (δ/2)Cm. The application of Lemma D.3 yields that the discrete distribution A supported on a scaled version of
the centers µi and using the same weights wi approximately matches the same m first moments with N (0, 1), i.e., for every
polynomial p of degree m′ ≤ m and ∥p∥2 = 1 we have∣∣∣∣ E

x∼D
[p(x)]− E

x∼N (0,1)
[p(x)]

∣∣∣∣ ≤ √mλmδ−m/2 ≤ 2−Cm/2 . (18)

where the last step uses that λ = (2δ)−Cm.

The conclusion of Equation (18) contradicts Proposition 4.1. This is because the discrete distribution D from above, is of
the form that Proposition 4.1 considers: supported on k points, with k′ of the points having arbitrary mass and the remaining
k − k′ having equal masses.

Thus far, we have shown that if m is the largest degree for which all moments m′ ≤ m of the distribution A match with
N (0, 1) in the sense of Equation (17), then m = O(log(k) + k′).

The result then follows by Lemma D.2 with m̃ = C(log(k) + k′) for a sufficiently large constant C, σ2 = 1 − δ, and
λm̃ = (δ/2)Cm̃.

D.2. Omitted Details from Section 4.2

We restate and prove a version of Proposition 4.2 which does not involve minimum weight w0 of points with equal weights.

Proposition 4.1. Let k′ < k be positive integers, and let A be a discrete distribution on k points in R. Suppose k − k′ of
the points have equal probability masses, while the remaining k′ points have unrestricted probability masses. Denote by m
the highest degree for which every degree-m′ ≤ m polynomial g satisfies

∣∣Ex∼A[g(x)]−Ex∼N (0,1)[g(x)]
∣∣ ≤ 2−C·m∥g∥2,

then m must satisfy m ≤ O(log k) +O(k′).

Proof. Suppose that the order m is bigger than C log k + Ck′. If C is sufficiently large, we will show that this moment
matching is impossible.

Let µ1, . . . , µk be the points on which A is supported, and by w1, . . . , wk the probability masses of the points. Without loss
of generality, assume that the first k′ points are the ones which do not have any restriction on their probability mass, and
the remaining k − k′ are the points with equal probability masses (wi = wj for all i, j ∈ {k′ + 1, . . . , k} with i ̸= j). Let
p(x) = (x− µ1) · · · (x− µk′) be the polynomial whose roots are the first k′ points.

We will show the following series of inequalities (we use the notation ∥p∥r = Ex∼N (0,1)[|p(x)|r]1/r):

k∑
i=k′+1

wi ≥
(

Ex∼A[p(x)]

Ex∼A[p2(x)]1/2

)2

≳

(
∥p∥1
∥p∥2

)2

≥ 3−2k′
. (19)
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The third step is Fact 2.4. To see how the first step is derived, let E be the event that i ∈ {k′ + 1, . . . , k}. Then

∥p∥1 = E
µi∼A

[p(µi)] = E
µi∼A

[p(µi)1(E)] ≤
√

E
µi∼A

[p2(µi)]
√

Pr[E ] = ∥p∥2
√

Pr[E ] = ∥p∥2

√√√√ k∑
i=k′+1

wi ,

where the first step above uses the fact that µ1, . . . , µk′ are roots of p. Rearranging gives
∑k

i=k′ wi ≥ (∥p∥1/∥p∥2)2.

It remains to show the second step in Equation (19), which is due to the approximate moment matching property: Let
λm := 2−Cm to save space. For the numerator, we have Ex∼A[p(x)] ≥ ∥p∥1 − λm∥p∥2 ≥ ∥p∥1(1− λm3k

′
) ≥ ∥p∥1/2,

where the first step uses the approximate moment matching, the second step uses Fact 2.4 and the last part uses that
λm := w02

−Cm with C being sufficiently large constant and m > k′. We can work similarly for the denominator to get
Ex∼A[p

2(x)] ≤ ∥p∥22+λm∥p∥24 ≤ ∥p∥22(1+λm3k
′
) ≤ 2∥p∥22, where we used Fact 2.3 in the penultimate step. Combining

the bounds for numerator and denominator conclude the proof of the second step in Equation (19).

We can now conclude the proof of Theorem 1.4. Since we have assumed that the weights for the last k − k′ points are
equal to each other, Equation (19) implies that mini=k′+1,...,k wi ≥ 3−2k′

/k. Using Proposition 4.2 with w0 = 3−2k′
/k

concludes the proof.

D.3. Omitted Details from Section 4.2.1

We restate and prove the following corollary of Lemma 4.4.
Corollary 4.5. Let p : R→ R be a polynomial of the form p(x) = (x− µ1)(x− µ2) · · · (x− µk′) where µ1, . . . , µk′ ∈ R
are arbitrary parameters. Define I = [0.9

√
2t, 1.1

√
2t]. For all t ≥ 1 we have exp

(
1
|I|
∫
x∈I

ln |p(x)|dx
)
≥ ∥p∥2

2O(k′) .

Proof. We can multiply both sides of the conclusion of Lemma 4.4 (Equation (5)) with the Gaussian density e−y2/2/
√
2π

and then integrate both sides. This yields∫ √
t

−
√
t

1√
2π

e−y2/2 exp

(
1

|I|

∫
x∈I

ln |p(x)|dx
)
dy ≥

∫ √
t

−
√
t

|p(y)|
2O(k′)

1√
2π

e−y2/2dy .

The left hand side is Θ
(
exp

(
(1/|I|)

∫
x∈I

ln |p(x)|dx
))

. The right hand side is

1√
2π

∫ √
t

−
√
t

e−y2/2 |p(y)|
2O(k′)

dy =

(
E

y∼N (0,1)
[|p(y)|]− E

y∼N (0,1)
[|p(y)|1(|y| >

√
t)]

)
2−O(k′)

≥

(
E

y∼N (0,1)
[|p(y)|]− ∥p∥2

√
Pr

y∼N (0,1)
[|y| > t]

)
2−O(k′) (using the Cauchy–Schwarz inequality)

≥
(

E
y∼N (0,1)

[|p(y)|]− ∥p∥2e−t2/2

)
2−O(k′)

≥
(
∥p∥2 − ∥p∥2e−t2/2

)
2−O(k′) (using Fact 2.4)

= ∥p∥2/2O(k′) . (using t ≥ 1)

We now restate Lemma 4.4 and provide the complete proof which includes the details that were missing from Section 4.2.1.
Corollary 4.5. Let p : R→ R be a polynomial of the form p(x) = (x− µ1)(x− µ2) · · · (x− µk′) where µ1, . . . , µk′ ∈ R
are arbitrary parameters. Define I = [0.9

√
2t, 1.1

√
2t]. For all t ≥ 1 we have exp

(
1
|I|
∫
x∈I

ln |p(x)|dx
)
≥ ∥p∥2

2O(k′) .

Proof. Fix an arbitrary y ∈ R with |y| ≤
√
t. First, note that by the property of logarithms and sums, we can write the left

hand side as

exp

 k′∑
i=1

1

|I|

∫
x∈I

ln |x− µi|dx

 .
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In order to show Equation (5), it suffices to work with each term and show the following for each i ∈ [k′]:

1

|I|

∫
x∈I

ln |x− µi| ≥ ln |y − µi| −O(1) .

Equivalently, it suffices to show that Equation (5) holds for every linear polynomial of the form p(x) = x− a. Therefore,
the goal for the rest of this proof is to show that

exp

(
1

|I|

∫
x∈I

ln |x− a|dx
)
≥ |y − a|/O(1) , (20)

holds for every a ∈ R and y ∈ R with |y| ≤
√
t. We will examine two cases.

Case 1 The first case is when the root a of the polynomial is outside the interval I . In this case, we can show that
|x− a|/|y − a| = Θ(1), which implies ln |x− a| ≥ ln |y − a| −O(1), and the desired conclusion (Equation (20)) follows
by integrating both sides and applying the exp(·) function.

To show the earlier claim that |x− a|/|y − a| = Θ(1), we can consider the following sub-cases:

1. Case a ≥ 1.1
√
2t (i.e., a is to the right of I): Suppose a = 1.1

√
2t + u for some non-negative u. Then, a − x =

(1.1
√
2t− x) + u = Θ(

√
t) + u and a− y = (1.1

√
2t− y) + u = Θ(

√
t) + u. Therefore, for any u ≥ 0, the ratio

|x− a|/|y − a| = (Θ(
√
t) + u)/(Θ(

√
t) + u) = Θ(1).

2. The cases a < −
√
t and a ∈ [

√
t, 0.9

√
2t] can be shown in a similar manner.

Case 2 The complementary case is when the root a of the polynomial p belongs in the interval I . In that case,

1

|I|

∫
x∈I

ln |x−a|dx =
1

|I|

∫ 1.1
√
2t

a

ln(x−a)dx+
1

|I|

∫ a

0.9
√
2t

ln(a−x)dx .

Define A := 1
0.2

√
2t

∫ 1.1
√
2t

a
ln(x− a)dx and B := 1

0.2
√
2t

∫ a

0.9
√
2t
ln(a− x)dx. We will work with each integral separately.

For A, we have the following (after a change of variable in the integral):

A =
1

0.2
√
2t

∫ 1.1
√
2t−a

0

ln z dz =
1

0.2
√
2t

[−z + z ln z]
z=1.1

√
2t−a

z=0

= −
(
5.5− a

0.2
√
2t

)
+

(
5.5− a

0.2
√
2t

)
ln
(
1.1
√
2t−a

)
.

Recalling that we have assumed a ∈ [0.9
√
2t, 1.1

√
2t], we can rewrite the above as A = −C1 +C1 ln(1.1

√
2t− a), where

C1 = 5.5− a
0.2

√
2t
∈ [0, 1].

We now work with the integral defined as A previously in a similar way:

B =
1

0.2
√
2t

∫ a−0.9
√
2t

0

ln z dz =
1

0.2
√
2t

[−z + z ln z]
z=a−0.9

√
2t

z=0

= −
(

a

0.2
√
2t
−4.5

)
+

(
a

0.2
√
2t
−4.5

)
ln(a−0.9

√
2t) .

Taking into consideration that a ∈ [0.9
√
2t, 1.1

√
2t] the above can be written as B = −C2 + C2 ln(a− 0.9

√
2t), where

C2 = a
0.2

√
2t
− 4.5 ∈ [0, 1].

Combining the bounds for A and B together with the definitions C1 = 5.5 − a
0.2

√
2t

and C2 = a
0.2

√
2t
− 4.5, we obtain

exp(A+B) = exp(f(a)− 1), where f(a) is the function

f(a) :=

(
5.5− a

0.2
√
2t

)
ln(1.1

√
2t− a) +

(
a

0.2
√
2t
− 4.5

)
ln(a− 0.9

√
2t) ,
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We can verify through derivative analysis that the minimum is achieved at the midpoint of I , i.e., for a =
√
2t:

f ′(a) =
5√
2t

(
ln(10a− 9

√
2t)− ln(11

√
2t− 10a)

)
.

It is easy to see that f ′(
√
2t) = 0. Furthermore, the second derivative is f ′′(a) = 1/(t/50 − (a −

√
2t)2), which is

non-negative for all a ∈ I . Thus, the only minimizer in I is a =
√
2t. For that point, exp(A+B) becomes:

exp(A+B) ≥ exp

(
ln(t/50)

2
− 1

)
≥
√
t

20
≥ |y − a|

52
,

where we used |y − a| ≤ |y|+ |a| ≤
√
t+ 1.1

√
2t < 2.6

√
t.
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