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Abstract

Many real-world systems such as e-commerce web-
sites and content-serving platforms employ two-
stage recommendation — in the first stage, mul-
tiple nominators (experts) provide ranked lists of
items (one nominator per category, e.g., sports and
political news articles), and in the second stage,
an aggregator filters across the lists and outputs
a single (short) list of K items to the users. The
aggregation stage can be posed as a combinatorial
multi-armed bandit problem, with the additional
structure that the arms are grouped into categories
(disjoint sets of items) and the ranking of arms
within each category is known. We propose algo-
rithms for selecting top K items in this setting
under two learning objectives, namely minimiz-
ing regret over rounds and identifying the top K
items within a fixed number of rounds. For each of
the objectives, we provide sharp regret/error anal-
ysis using carefully defined notion of “gap” that
exploits our problem structure. The resulting re-
gret/error bounds strictly improve over prior work
in combinatorial bandits literature. We also provide
supporting evidence from simulations on synthetic
and semi-synthetic problems.

1 INTRODUCTION

Multi-Armed Bandits (MAB) is a popular approach to
model sequential decision making problems [Bouneffouf
et al., 2020]; and has been applied to real-world situations
such as recommendation systems [Glowacka, 2019] and
online advertising [Lu et al., 2010, Avadhanula et al., 2021].
In many of these applications, however, the decision maker
(called agent) needs to identify a combination of arms which
when pulled together could yield high rewards. For instance,

*Equal contribution

recommender systems often recommend a subset of rele-
vant items to its users. The decision making problem is
much more challenging in this setting, as the search space
is combinatorially large. This is typically formulated as a
“combinatorial multi-armed bandit problem” [Kveton et al.,
2015] (Comb-MAB), when the goal is to optimize cumula-
tive rewards over rounds, or as a “K-best arm identification
problem” [Bubeck et al., 2013] (K-BAI), when the goal is
to find the best K arms within a fixed number of rounds.

As a motivating example, consider the “whole page opti-
mization” problem arising in recommendation systems for
e-commerce, news articles, etc. Here, the web page has a
real estate for, say, at most K items, which are typically
a combination of products or news articles from different
categories. Selecting the “best” K items can be posed as a
standard combinatorial multi-armed bandits problem, with
the goal of optimizing for click-based rewards. However,
in practice, there is more structure to the problem. In par-
ticular, the recommender systems employed in large-scale
commercial settings typically comprise two stages [Hron
et al., 2021, Ma et al., 2020], wherein there are multiple
nominators in the first stage, each producing a ranked list
of items (e.g., a nominator for ranking news articles from
the sports category, and another for ranking from political
category, and so on), and an aggregator that selects the top
K items from the ranked lists to populate the web page.

In such two-stage settings where nominators provide reliable
rankings, the core online learning problem then is to perform
optimal filtering, i.e., subset selection in the second stage
(across different nominators) in a sample-efficient manner.
In such scenarios, directly applying the known algorithms
for Comb-MAB [Kveton et al., 2015] and K-BAI [Bubeck
et al., 2013] for selecting subset of arms can be sub-optimal.
Designing and analysing algorithms for the second stage
given the structure induced by the first stage is the core
technical problem we address in this paper.

Specifically, we study learning algorithms for the setting
where arms (i.e., items) are grouped into categories (or dis-
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joint clusters) and ranking of arms within each category
is known to the learning algorithm. Note that only rank-
ings of arms within each category is assumed to be known
and not the actual reward distributions. For instance, in the
above web page population scenario, the second-stage rec-
ommender system would have access to the correct ranking
of all the news articles in sports (first category), politics
(second category), and so on.

1.1 OUR CONTRIBUTIONS

We design new algorithms for the Comb-MAB and K-BAI
problems under the above mentioned structural assumption,
i.e., the arms are grouped into different disjoint categories
and the true ordering of arms (with respect to their rewards)
within each category is known. We summarize our main
contributions below.

Regret Minimization: For Comb-MAB, our objective is to
minimize the expected cumulative regret, over T rounds,
of selecting K candidate arms to play at each round. We
propose Ordered Combinatorial UCB, based on the widely-
used upper confidence bound (UCB) algorithm (Section 3).
We adapt the strategy of Kveton et al. [2015] to incorporate
the knowledge of the expert rankings in two key respects: (a)
designing a computationally efficient and provably correct
sub-routine for selecting K items at each round; (b) provid-
ing a regret analysis for our algorithm that strictly improves
over Kveton et al. [2015], via defining an appropriate notion
of sub-optimality gap for our setting (Theorem 3.2).

K-Best Arm Identification: For K-BAI, we seek to dis-
cover the K best arms at the end of T rounds with high prob-
ability. We propose Ordered SAR that adapts the Successive-
Accept-Reject (SAR) strategy of Bubeck et al. [2013] (Sec-
tion 4) to our setting with the “prefix structure”, i.e., the
optimal ranking of items across different experts must nec-
essarily incorporate prefixes of ranked lists from experts. We
give a sharper analysis of the error bound for our algorithm
that strictly improves over the bound of Bubeck et al. [2013],
via a novel definition of “instance-specific complexity”, for
our structured setting (Theorem 4.1).

We show findings from simulations, that support our theo-
retical results, in Section 5. Our work leads to interesting
follow-up research questions in two-stage recommender sys-
tems that we highlight in Section 6. Before we proceed with
formally setting up the problem and metrics in Section 2,
we review closely related work next.

1.2 RELATED WORK

Combinatorial bandits is a generalization of the well-studied
multi-armed bandit problem [Auer et al., 2002, Bubeck et al.,
2012]. While the problem has been studied in the adversarial
setting Cesa-Bianchi and Lugosi [2012], Kale et al. [2010],

in this work we focus on stochastic combinatorial bandits.

The cumulative regret minimization problem in stochastic
combinatorial bandits under additive rewards was first stud-
ied by Gai et al. [2012]. The theoretical guarantee of the
proposed algorithm in the above work was subsequently
analyzed by Kveton et al. [2015]. Wang and Chen [2017]
further generalize these results to the combinatorial bandit
setting with general reward structure. In our work, departing
from the above line of research, we consider a structured
arm set, i.e., where the arms are grouped into different dis-
joint categories.

The K-Best arm identification problem was first studied un-
der the fixed budget setting by Bubeck et al. [2013], and
under the fixed confidence setting by Kalyanakrishnan and
Stone [2010], Kalyanakrishnan et al. [2012]. Follow-up
works either a) generalized the results of the above papers
to the general combinatorial bandit setting [Chen et al.,
2014, Gabillon et al., 2012]; or b) considered specific com-
binatorial structures like matroids [Chen et al., 2017]; or
c) improved the algorithms [Chen et al., 2016, Jiang et al.,
2017]. Chaudhuri and Tewari [2017] considers the learning-
to-rank problem with feedback from K-best arms. The goal
is to rank the K-best arms in an online fashion, whereas we
focus on identifying the K-best arms.

A well-studied special case of K-Best-Arm is the Best-
Arm identification problem [Even-Dar et al., 2006, Audibert
et al., 2010], in which we are required to identify the sin-
gle arm with the largest mean reward. Nearly tight sample
complexity bounds as well as error probabilities for Best
Arm identification problem were obtained by Jamieson et al.
[2014], Kaufmann and Kalyanakrishnan [2013]. However,
completely understanding the exact complexity of Best-Arm
identification continues to attract significant attention. The
same is the case for K-Best arm identification problem,
which is the focus of this work.

2 PROBLEM SETUP

We are given N ranked lists of items corresponding to differ-
ent categories, from N experts, as introduced in Section 1.
We refer to items as actions or arms interchangeably, as
in the bandits literature. Each list i consists of M items
ai,1, . . . , ai,M . In typical scenarios discussed in Section 1,
M " N . We assume that lists are disjoint, i.e., each list has a
unique set of items.* Each item ai,j , i P rN s, j P rM s is as-
sociated with a reward distribution (with a well-defined den-
sity) νi,j , supported on r0, 1s, with mean µ˚

i,j :“ Er„νi,j
rrs.

We adopt the setting of combinatorial multi-armed bandits,
but with the following structure. We assume that each list

*When an item appears in multiple lists, we can keep any one
copy of it and throw away the rest. Since our objective is to find
the top K (distinct) items in the union of all lists, the best arm (i.e.,
top K items) does not change by doing so.



is sorted with respect to µ˚, i.e, µ˚
i,1 ě µ˚

i,2 ě . . . ě µ˚
i,M

for all i P rN s. The N -by-M matrix of mean rewards
µ˚ :“

“

µ˚
i,j

‰

i,j
is unknown to the learning agent, but she

has the side information that each list is sorted.

The learning agent has a budget of T rounds (or pulls), and
at each round, the agent has to return a set of K items from
the N sorted lists of M items each. In practice, K ! M
(see Remark 2.1).

We assume semi-bandit feedback model, i.e., the agent can
observe rewards for each selected item, consistent with the
literature [Kveton et al., 2015, Chen et al., 2014]. To guide
the agent make the combinatorial selection at each round,
we consider two widely-used learning objectives:

Regret minimization. The first objective we consider is
the optimization goal, where the agent aims to maximize
her expected cumulative reward over time by repeatedly
interacting with the unknown environment. The learning
protocol is as follows: at each time t, (i) the agent chooses a
set of K items from the N sorted lists of M items each based
on the rewards received before time t; equivalently, with the
knowledge of the lists being sorted w.r.t. µ˚, she chooses top
zt,i items from each list i such that

řN
i“1 zt,i “K, where

each zt,i can take values in t0, 1, . . . ,Ku, and (ii) observes
rewards of all the K chosen items rtpai,jq, iďN, jďzt,i.

Let Z denote the set of all possible “list prefixes” or “allo-
cations” the agent can make at any given round, i.e.,

Z “

#

pz1, . . . , zN q : zi Pt0, 1, . . . ,Ku,
N
ÿ

i“1

zi “K

+

. (1)

Let fµ˚pzq denote the total expected reward or utility of an
allocation z P Z . If the agent knew µ˚ a priori, she could
choose the optimal allocation z˚ P argmaxzPZ fµ˚

pzq at
each round t. In this setting, we evaluate the performance
of the agent’s strategy using expected cumulative regret due
to not knowing µ˚, that is

RT “

T
ÿ

t“1

”

fµ˚

pz˚q ´ fµ˚

pztq
ı

. (2)

For simplicity of presentation, we assume that utility func-
tion is additive, i.e., fµpzq “

řN
i“1

řzi
j“1 µi,j for any set

of parameters rµsi,j . However, our results would hold for
any monotone utility function, i.e., for any f satisfying
fµpzqďfµ1

pzq if µi,j ďµ1
i,j for all iďN, jďM .

K-Best arm identification. We also study a related ob-
jective of the search goal, i.e., the agent has a budget of T
rounds (or pulls), and is tasked to find top-K items from
the N sorted lists of M items each, where 1 ă K ď M .
Equivalently, with the knowledge of the lists being sorted
w.r.t. µ˚, she needs to find the optimal allocation z˚ P Z ,
that corresponds to the set of K items with the highest mean
rewards across all lists.

The sequential evaluation protocol proceeds as follows: at
each round t“1, . . . , T , the agent chooses an item ai,j and
observes a reward rtpai,jq, drawn from νi,j independent of
the past given ai,j . At the end of T rounds, she returns an
allocation zout P Z . We evaluate the performance of the
agent’s strategy by the probability of error (or misidentifica-
tion), that is

δT “ P
“

zout ‰ z˚
‰

. (3)

Remark 2.1. Note that, without loss of generality, we can
trim each of the lists from size M down to size K, given (a)
our problem structure, i.e., we want the K items returned
to be a prefix of the lists, and (b) the monotonicity of the
utility function. This reduces the search space, and so, in
effect, M “ K.

3 COMB-MAB: REGRET MINIMIZATION

In this section, we present the learning algorithm for the
first objective set up in Section 2, i.e., optimization goal, its
regret bounds, and show how our guarantees improve over
the state-of-the-art results in the literature by exploiting the
problem structure.

3.1 ALGORITHM

Motivated by the simplicity of the widely-used Upper Confi-
dence Bound (UCB) strategy, Kveton et al. [2015] designed
and analyzed an algorithm for stochastic combinatorial semi-
bandits for regret minimization. We adapt this algorithm to
our setting, where the agent knows the true ordering of items
in each list. We call this algorithm Ordered Combinatorial
UCB.

Informally, our algorithm consists of three steps at each time
t. First, we compute the UCBs on the expected reward µ˚

e

of each item e P tai,juiďN,jďM as

Utpeq “ pµTt´1peqpeq ` βt´1,Tt´1peq,

where Ttpeq denotes the number of times item e is observed
in t rounds, pµspeq denotes the empirical mean of s sam-
ples from νe and βt,s denotes the radius of a confidence

interval around pµspeq. Choosing βt,s “

b

3 log t
2s , it holds

that µ˚
e lies in the said confidence interval with high prob-

ability. Next, we choose an allocation zt P Z by solving a
combinatorial optimization problem using UCB estimates:

zt P argmax
zPZ

fUtpzq “ argmax
zPZ

N
ÿ

i“1

zi
ÿ

j“1

Utpai,jq. (4)

Now, we play the set of K items ai,j , i ď N, j ď zt,i, given
by the allocation zt and observe rewards of all the items.
Finally, we update the estimates Ttpai,jq and pµTtpai,jqpai,jq

of these items. See Algorithm 1 for complete pseudocode.



DP-based optimization solution. Now, we provide a sub-
routine to find the allocation zt as given in (4). Our pro-
posed solution is based on dynamic programming (DP),
and is computationally efficient. Given a set of parame-
ters θi,j , i ď N, j ď M , the objective is to compute
argmaxzPZ

řN
i“1

řzi
j“1 θi,j . In other words, we need to

find optimal selection of K items w.r.t. the parameter θ
using prefixes from lists 1, . . . , N .

To this end, let V θ
i,j denote the value of the selection of j

items using prefixes from lists 1, . . . , i. Also, for each list i,
let sθi,j “

řj
k“1 θi,k denote the sum of θ’s of first j items.

By definition, V θ
1,j “sθ1,j for all j and V θ

i,0 “sθi,0 “0 for all
i. Now, for each 2ď iďN and 1ďjďK, we compute the
value V θ

i,j using the following recurrence:

V θ
i,j “max

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

V θ
i´1,j`sθi,0 (no item from list iq

V θ
i´1,j´1`sθi,1 (first item from list iq

V θ
i´1,j´2`sθi,2 (first 2 items from list iq

...
V θ
i´1,0`sθi,j (all j items from list iq

(5)

We return as zt the selection of K items from lists 1, . . . , N
that attain the value V Ut

N,K , where Utpai,jq denotes UCB esti-
mates at round t. The following lemma shows the optimality
of this solution. It can be proved using simple induction
argument.

Lemma 3.1 (Optimality of DP). Let Z be given by (1).
Then, for any set of parameters θi,j ą0, iPrN s, j PrM s, we
have V θ

N,K “maxzPZ
řN

i“1

řzi
j“1 θi,j .

The time complexity of finding the allocation zt is OpNK2q

implying our algorithm is also computationally efficient,
especially since, in general, K is small.

3.2 CUMULATIVE REGRET

We introduce the following notion of gap based on the utility
function f and optimal allocation z˚, which is essential to
characterize the performance of our regret minimization
algorithm. First, we define the gap of an allocation z P Z
as ∆z “ fµ˚

pz˚q ´ fµ˚

pzq. Now, we define the minimum
gap of any sub-optimal allocation z “ pz1, . . . , zN q that
selects top j items, jďM , from i-th list, iďN , as

∆i,j :“ min
z‰z‹:zi“j

∆z “fµ˚

pz˚q´ max
z‰z‹:zi“j

fµ˚

pzq. (6)

With this definition of gap, we bound the cumulative regret
of Algorithm 1 as follows.

Theorem 3.2 (Cumulative regret). After T rounds, the Or-
dered UCB algorithm enjoys the regret bound

RT ď
ÿ

pi,jq:z˚
i `1ďjďM

CK log T

∆i,j
`

ˆ

π2

3
`1

˙

KMN,

Algorithm 1: Ordered Combinatorial UCB
Input: N lists of items pai,1, . . . , ai,M q, i ď N , and K

(#items to retrieve).
1 Initialize: Play each arm ai,j , i ď N, j ď M once and

observe reward rpai,jq „ νi,j .
2 Set TMN pai,jq “ 1, pµMN peq “ rpai,jq.
3 for round t “ MN ` 1, 2, . . . do
4 For each i ď N, j ď M , compute UCBs:

Utpai,jq “ pµTt´1pai,jqpai,jq `

b

3 logpt´1q

2Tt´1pai,jq
.

5 Choose allocation zt P Z using (4) and (5).
6 For each i ď N and each j ď zt,i, play arm ai,j

and observe its reward rtpai,jq.
7 Update number of plays for ai,j’s played in the

above step: Ttpai,jq “ Tt´1pai,jq ` 1.
8 Update their mean estimates: pµTtpai,jqpai,jq “

pµTt´1pai,jqpai,jqTt´1pai,jq`rtpai,jq

Ttpai,jq
.

where ∆i,j is given by (6) and Cą0 is a universal constant.

It is worth noting that the summation in the above expression
is over the sub-optimal items, i.e., the items not appearing
in the optimal allocation z˚. At the same time, the sum is
over the items that can appear in a sub-optimal allocation,
i.e., those within K positions from the top of each list. This
is because any item below the K-th position of any would
never be played even by a sub-optimal allocation due to the
ordering structure. Also, note that M “ K for the Ordered
UCB algorithm due to Remark 2.1.

Comparison with prior work. One can directly employ
the CombUCB1 algorithm of Kveton et al. [2015] to solve
the above regret minimization problem. To do so, one needs
to instantiate the feasible set Θ, which CombUCB1 takes
as an input, with the allocation set Z as given in (1). This
is due to the fact that any allocation z P Z induces a subset
Θ P 2MN of size K, where zi ě j implies ai,j P Θ. This
simple tweak of CombUCB1 would achieve a regret similar
to Theorem 3.2 with the gaps ∆i,j being replaced by

r∆i,j “ min
z‰z˚:ziěj

∆z .

Note that ∆i,j ě r∆i,j , since the minimum in (6) is over a
smaller set of allocations in Z . Hence, Algorithm 1 enjoys
a smaller regret bound as compared to CombUCB1. This
is because our regret analysis is carefully fine-tuned to the
prefix structure present in the problem, whereas Kveton et al.
[2015] present a general analysis for combinatorial action
sets oblivious to the ordering in each list.



3.2.1 Proof Sketch

In this section, we provide the main ideas to prove The-
orem 3.2, and contrast it to the analysis of Kveton et al.
[2015] when needed. First, we define the event

Et “

$

&

%

∆zt ď
ÿ

pi,jq:z˚
i ăjďzt,i

2

d

1.5 log T

Tt´1pai,jq
,∆zt ą 0

,

.

-

,

where ∆z denotes the gap of an allocation z. Now, defining
pRT “

řT
t“MN`1 ∆zt1tEtu, we see from Kveton et al.

[2015, Lemma 1] that

RT ď E
”

pRT

ı

` p1 ` π2{3qKMN .

Now, let us consider two sequences of constants pαlqlě1

and pβlqlě0 as in Kveton et al. [2015] and define ml,t “
αlK

2 log T
∆2

zt

. Furthermore, let Ãt denote the subset of items

included in the allocation zt but not in z˚. Then, we define a
series of mutually exclusive events pGl,tqlě1, where Gl,t de-
notes the event that at least βlK items in Ãt were observed
at most ml,t times and for all j ă i, less than β1K items in
Ãt were observed at most ml´1,t times. Then, under Ft, it
holds that the event

Ť

lě1 Gl,t happens, and hence

pRT “

8
ÿ

l“1

T
ÿ

t“MN`1

∆zt1tGl,t,∆zt ą 0u.

Now, let Gai,j ,l,t “ Gl,t

Ş

Fai,j ,l,t be the event that item
ai,j is not observed sufficiently often under Gi,t, where
Fai,j ,l,t “ tz˚

i ă j ď zt,i, Tt´1pai,jq ď ml,tu. Then Kve-
ton et al. [2015] bound pRT as

pRT ď
ÿ

l

ÿ

t

ÿ

pi,jq:z˚
i ăj

1tj ď zt,i, Tt´1pai,jq ď ml,tu
∆zt

βlK
.

Our main analytical novelty is to identify some “double
counting” present in the above regret expression under the
ordered structure. To do so, we define for k ě 0, the events

F k
ai,j ,l,t “ tz˚

i ă j ` k “ zt,i, Tt´1pai,j`kq ď ml,tu .

Note that, because of the ordered structure, if ai,j has
only been observed a certain number of times, then ai,jk
would be observed less than or equal number of times i.e.,
Tt´1pai,j`kq ď Tt´1pai,jq, which implies that the event

tz˚
i ă j ` k “ zt,i, Tt´1pai,jq ď ml,tu Ď F k

ai,j ,l,t .

This yields Fai,j ,l,t Ď
ŤM´j

k“0 F k
ai,j ,l,t

“: Hai,j ,l,t, which

gives
ŤM

j“1tGl,t

Ş

Fai,j ,l,tu Ď
ŤM

j“1tGl,t

Ş

Hai,j ,l,tu.
Now observe that Hai,1,l,t Ě Hai,2,l,t Ě . . . Hai,M ,l,t, im-
plying that the RHS of the above is a union over decreasing

sets and hence
ŤM

j“1tGl,t

Ş

Fai,j ,l,tu Ď tGl,t

Ş

Hai,i,l,tu.
This further implies that

M
ď

j“1

Gai,j ,l,t Ď

M
ď

j“1

!

Gl,t

č

tz˚
i ăj“zt,i, Tt´1pai,jqďml,tu

)

.

Therefore, we can bound pRT as

pRT ď
ÿ

l

ÿ

t

ÿ

pi,jq:z˚
i ăj

1tj “ zt,i, Tt´1pai,jq ď ml,tu
∆zt

βlK
,

which corrects for the “double counting” mentioned above.
To bound the regret, we now need to look at sub-optimal
allocations that end at item ai,j for list i, which can be
accounted with our definition of minimum gap ∆i,j (see (6)).
The rest of the proof follows similar arguments as in Kveton
et al. [2015]. See Appendix A.1 for details.

4 K-BAI: MINIMIZE ERROR
PROBABILITY

In this section, we present the learning algorithm for the
second objective set up in Section 2, i.e., the search goal. We
prove a bound on the probability of error of our algorithm
and show that our guarantee improves the state-of-the-art
results in the literature by exploiting the problem structure.

4.1 ALGORITHM

We propose an algorithm for finding top-K items from N
lists obeying the ordered structure. We adapt the Succes-
sive Accepts and Rejects (SAR) strategy of Bubeck et al.
[2013] to our setting, originally designed for top-K identifi-
cation in stochastic combinatorial semi-bandits. We call this
algorithm Ordered SAR.

Informally, our algorithm proceeds as follows. We divide the
total budget of T rounds into MN ´1 phases. At the end of
each phase, we either accept an item from the top of a list or
reject an item from the bottom of a list. In any case, that item
is “deactivated”. The items that are still active are sampled
for an equal number of rounds in the next phase. Now, we
describe the procedure for choosing an item to accept or
reject. Let Φk denote the set of active items at the start of
phase k. We pull each item e P Φk for Tk´Tk´1 rounds and
update their empirical means with observed rewards, where

Tk “

R

1

logpMNq

T ´MN

MN`1´k

V

, logpnq“
1

2
`

n
ÿ

i“2

1

i
, (7)

with T0 :“ 0. Similar to Bubeck et al. [2013], the key to
decide whether to accept or reject an item is to consider
estimates of the gaps ∆e. To this end, let mk ą 0 denote
the number of items left to find at the start of phase k. First,



Algorithm 2: Ordered Successive-Accept-Reject
Input: N lists of items pai,1, . . . , ai,M q, i ď N , phase

lengths pTkq0ďkăMN , and K (#items to
retrieve).

1 Initialize: Φ1 “tai,juiďN,jďM , m1 “K, zout
i “0,

topi “1, boti “M @iďN
2 for each phase k “ 1, 2, . . . ,MN ´ 1 do
3 Pull each arm e P Φk for Tk ´ Tk´1 rounds and

update its empirical mean pµk,e.
4 Compute empirical gap p∆k,e for each arm e P Φk

using (8).
5 Let ek P argmaxePΦk

p∆k,e (ties broken arbitrarily)
and ik be such that ek “aik,j for some j.

6 if pµk,ek ą pµk,rmks then
7 Set jk “ topik , topik

“ topik `1,
8 mk`1 “ mk ´ 1, zout

ik
“ zout

ik
` 1.

9 else
10 Set jk “botik , botik “botik ´1.

11 Set Φk`1 “Φkztaik,jku.

12 Output: Allocation zout of accepted arms.

we compute the “empirical gap” of each item e P Φk :

p∆k,e “

#

pµk,e ´ pµk,rmk`1s, if pµk,e ě pµk,rmks

pµk,rmks ´ pµk,e, if pµk,e ď pµk,rmk`1s

, (8)

where pµk,rls denotes the l-th largest empirical mean among
all items in Φk. Then, we find the item ek which has the
largest empirical gap among all active items Φk. Now, let
ek be an item from list ik. If ek is the current empirical best
item, we accept the current topmost active item from list
ik. Else, we reject the current bottom most active item from
it. In any case, we deactivate the accepted or rejected item,
and update the top or bottom of the list accordingly. See
Algorithm 2 for pseudo-code.

4.2 PROBABILITY OF ERROR

We introduce the following complexity measure to charac-
terize the performance of our top-K identification algorithm.
Recall that pz˚

1 , . . . , z
˚
N q P Z is the optimal allocation cor-

responding to the set of K arms with highest mean rewards.
Define the set of “boundary” arms

Φ “

N
ď

i“1

!

ai,z˚
i
, ai,z˚

i `1

)

, (9)

where ai,0 :“ H for all i P rN s. That is, Φ contains only
zi-th and zi `1-st arms from the top of each list i. Note
that the cardinality of this boundary set is at most twice the
number of lists , i.e., |Φ|ď2N .

Let µ˚
rls, 1ď lďMN, denote the l-th largest mean reward

among all arms, i.e., µ˚
r1s

ě . . . ě µ˚
rMNs

. Now, similar
to Bubeck et al. [2013], we define the gap of each arm
e P tai,juiďN,jďM :

∆e “

#

µ˚
e ´ µ˚

rK`1s
, if µ˚

e ě µ˚
rKs

µ˚
rKs

´ µ˚
e , if µ˚

e ď µ˚
rK`1s

. (10)

Let ∆rls be the l-th smallest such gap, i.e., ∆r1s ď . . . ď

∆rMNs. Let k1 ď . . . ď k|Φ| be the phases in which Algo-
rithm 2 accepts or rejects an arm from the boundary set Φ.
We define the complexity measure

HΦ “ max
1ďjď|Φ|

pMN ` 1 ´ kjq

∆2
rMN`1´kjs

. (11)

With these definitions in place, we bound the probability of
error of Algorithm 2 as follows.

Theorem 4.1 (Probability of error). Given a time budget
T ąMN , running the ordered SAR algorithm with choice
of Tk’s given in (7), achieves the probability of error

δT ď 2MN |Φ| exp

ˆ

´
T ´ MN

8logpMNqHΦ

˙

,

where HΦ is given by (11).

It is worth noting that gaps of only |Φ| many arms influence
the final error in the selected arms, which is a consequence
of our algorithm exploiting the prefix structure. Furthermore,
if reward gaps are large for these |Φ| many arms, then HΦ

is small and hence, the probability of error is also small, i.e.,
it is easy to distinguish the top-K arms from the rest.

Furthermore, in our setting, the dependence on M in the
bound above is extraneous as stated in the remark below.

Remark 4.2. Given our problem structure and assumption
on the utility function, the top-K items must necessarily
incorporate prefixes of the lists. So, when M ą K, the lists
can be trimmed to size K, before presenting to the algorithm,
as mentioned in Remark 2.1. Thus, we can replace M with
K in the bound of Theorem 4.1.

Comparison with prior work. Observe that one can di-
rectly apply the SAR algorithm of Bubeck et al. [2013]
to find the optimal allocation z˚. This algorithm gives a
guarantee that the probability of error is

ď 2M2N2 exp

ˆ

´
T ´ MN

8logpMNqH

˙

where the complexity measure H is defined as:

H “ max
1ďlďMN

l ∆´2
rls .



Note that HΦ ď H since the maximum in (11) is over a
much smaller set of arms Φ of size ď 2N compared to
the maximum over all the MN arms in H . Hence, Algo-
rithm 2 achieves a smaller probability of error compared to
the above work. This is because we adapt our strategy to
the ordering of the lists, whereas the SAR algorithm does
not. Comparing the terms outside the negative exponential*

in both these error guarantees, we can see that our guaran-
tee depends linearly on M , whereas the guarantee for the
SAR algorithm in Bubeck et al. [2013] has a quadratic de-
pendence. Our experiments on K-best arm identification in
Section 5 provide good support to these theoretical findings.

4.2.1 Proof Sketch

In this section we provide a high level sketch of our proof
for Theorem 4.1. Complete details are provided in Appendix
A.2. At a high level, our proof uses ideas from the proof
of Theorem 1 in Bubeck et al. [2013]. However, there are
some crucial differences that take advantage of the known
ordered structure between items and therefore leads to better
guarantees. Let k1 ă . . . ă k|Φ| be the phases where an item
from Φ (i.e. the boundary set) was accepted or rejected by
Algorithm 2. Since we always accept an item that is the top
item of some list and reject an item that is the bottom item
of some list, the first error can only occur at a boundary item
i.e. there can be no errors before phase k1. During phase
k1, there will be MN ` 1 ´ k1 active items, let’s call them
a1, . . . , aMN`1´k1

such that µa1
ě . . . ě µaMN`1´k1

.

Now let’s say an error occurs at phase k1 and an item
al P Φ was accepted when it should have actually been
rejected. We follow the proof idea in Bubeck et al. [2013]
and prove that this cannot hold by showing that it leads
to a contradiction. In particular we show ∆rMN`1´k1s ą

maxtµa1
´ µK , µK ´ µaMN`1´k1

u, where µK is the Kth

largest mean rewards. It’s a contradiction because at stage k1
only k1 ´ 1 items would have been accepted or rejected, im-
plying ∆rMN`1´k1s ď maxtµa1 ´µK , µK ´µaMN`1´k1

u.
We create a high probability event where this can be shown:

η1 “

#

@ items a :

ˇ

ˇ

ˇ

ˇ

ˇ

1

nk1

nk1
ÿ

s“1

Xa,s´µa

ˇ

ˇ

ˇ

ˇ

ˇ

ă
1

4
∆rMN`1´k1s

+

,

where Xa,s is the reward received on the sth pull of item
a. Proof of why this holds under η1 is technical and is pre-
sented with all details in Appendix A.2. The general idea is
similar to the one presented in Bubeck et al. [2013]. How-
ever, the proof needs to be crucially modified at many places
to make it work. Proof in Bubeck et al. [2013] directly uses
the item al that was accepted (by mistake) in its technical
calculations to show the above inequality. In their SAR al-
gorithm, they accept al when it has the largest empirical
gap and the largest mean empirical reward among all active

*these arise due to application of union bounds

items. This fact is crucial in showing the inequality men-
tioned above. However, our algorithm accepts al without
actually considering its own empirical mean reward and
therefore we cannot directly use the proof in Bubeck et al.
[2013]. To get around this problem, we note that al is ac-
cepted by Algorithm 2, only when there is some item ap in
the same list as al with true mean reward µap ď µal

, largest
empirical gap and largest empirical mean reward compared
to all other active items. Since al should have been rejected
it is not in top K items and therefore ap is also not in the
top K items. For the rest of the proof we follow the steps
in Bubeck et al. [2013] but work with ap instead of al and
all steps go through. The technical calculations only require
that within all the active items, ap has the largest empirical
gap and the largest empirical mean reward and that it is not
a part of top K items.

Now we can extend this argument to phase k2 since if there
was no error at phase k1, the next error has to happen at the
next item from the boundary set i.e. at phase k2. To prevent
this we assume the event:

η2 “

#

@ items a :

ˇ

ˇ

ˇ

ˇ

ˇ

1

nk2

nk2
ÿ

s“1

Xa,s´µa

ˇ

ˇ

ˇ

ˇ

ˇ

ă
1

4
∆rMN`1´k2s

+

.

Continuing in this fashion, we define the intersection of all
these events and our proof holds when this event is assumed.
Since we only had to repeat this argument for |Φ| many
phases compared to the SAR algorithm which repeats it for
all MN ´ 1 phases, we are able to guarantee a better bound.

5 SIMULATIONS

The objective of this section is to verify if the theoretical
guarantees on improvements over existing methods in terms
of upper bounds hold empirically. We show results on syn-
thetic and semi-synthetic problem instances.

5.1 REGRET MINIMIZATION

In this section, we empirically evaluate the regret perfor-
mance of Algorithm 1 on bandit instances generated from
synthetic and real-world data. We compare against the com-
binatorial bandit algorithm of Kveton et al. [2015] which
is oblivious to the ordering of the lists. Specifically, we
instantiate the algorithm of Kveton et al. [2015] with the
feasible set Θ “ 2MN to serve as a baseline (referred to
as CombUCB). We plot cumulative regret as a function of
number of rounds, and we average results over 20 trial runs
with different seeds.

Synthetic bandit instances. First, we generate combinato-
rial bandit instances with N “ 5 ordered lists, with each
list consisting of M “ 10 items (arms). The arm means are
sampled uniformly in r0.25, 0.75s. We consider real-valued



rewards sampled from Gaussian (Figure 1), Bernoulli (Fig-
ure 2) distributions with aforementioned means, projected to
r0, 1s. We show the results for K “ 5 in Figures 1 and 2; the
growth of cumulative regret for the two algorithms aligns
with our theoretical findings in Section 3.

Semi-synthetic bandit instance. Next, we generate bandit
instances from Microsoft Learning to Rank dataset MSLR-
WEB10K [Qin and Liu, 2013]. The dataset consists of
1,200,192 rows and 138 columns, where each row corre-
sponds to a query-url pair. The first column is relevance
label t0, 1, 2, 3, 4u of the pair, which we take as rewards.
The second column denotes the query id, and the rest 136
columns denote contexts of a query-url pair. We cluster the
data by running K-means algorithm with 50 clusters. We
treat each cluster as a bandit arm with mean reward as the
empirical mean of the individual ratings in the cluster. This
way, we obtain a bandit instance with 50 total arms. We then
divide them into N “ 5 lists of M “ 10 arms in each. The
results are shown in Figure 3 for K “ 5.

In all the simulations above, we observe that the cumulative
regret of our algorithm (Ordered CombUCB) is much lower
than the baseline (Vanilla CombUCB), consistent with our
theoretical result.
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Figure 1: Comparison of cumulative regret for CombUCB and
Ordered CombUCB on synthetic Gaussian bandit instance.
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Figure 2: Comparison of cumulative regret for CombUCB and
Ordered CombUCB on synthetic Bernoulli bandit instance.
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Figure 3: Comparison of cumulative regret for CombUCB and
Ordered CombUCB on semi-synthetic bandit instance.

5.2 K-BEST ARM IDENTIFICATION

In this section, we first aim to find top K “ 5 arms of the
(first) synthetic bandit instance used in the above experi-
ments, i.e., when means of each of the 50 arms are sampled
uniformly in r0.25, 0.75s. We use the algorithm of Bubeck
et al. [2013] as baseline (referred to as SAR) against our
proposed Algorithm 2. We observe that (plot not shown),
within 5000 rounds, both the algorithms are able to find top
5 arms. This, we believe, is due to the fact that the problem
instance is easy (i.e., top-5 arms are easy to find when the
mean rewards are fairly spread out).

To demonstrate the advantage of our algorithm, we gen-
erate a hard instance by sampling arm means uniformly
in r0.45, 0.55s. The rewards are sampled from Gaussian
(Figure 4) and Bernoulli (Figure 5) distributions with afore-
mentioned means and projected to r0, 1s. We run both the
algorithms for rounds T P r1000, . . . , 10000s for 100 inde-
pendent trials and compute the fraction of trials for which
they fail to output the optimal allocation. In Figures 4 and 5,
we compare the probability of error of Ordered SAR (Al-
gorithm 2) with the SAR algorithm of Bubeck et al. [2013]
as a function of the budget, i.e., number of rounds. We find
that the failure probability of Ordered SAR is consistently
lower than that of SAR, which validates our theory.
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Figure 4: Comparison of probability of error for SAR and Ordered
SAR on synthetic Gaussian bandit instance.
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Figure 5: Comparison of probability of error for SAR and Ordered
SAR on synthetic Bernoulli bandit instance.

6 CONCLUSIONS AND FUTURE WORK

We identify and formulate an important problem arising in
two-stage recommendation systems that employ different ex-
perts for different categories of items. We propose solutions,
adapting existing algorithms for combinatorial multi-arm
bandits, and provide regret/error bounds that strictly im-
prove over state-of-the-art for our setting. Our work opens
up interesting follow-up research questions: i) can we in-
corporate user context while selecting top K items, when
available? ii) can we design an algorithm to find the opti-
mal allocation with a fixed confidence, say δ, and find the
sample complexity of this strategy as a function of δ? We
conjecture that a variant of the Combinatorial Lower Up-
per Confidence Bound algorithm of Kalyanakrishnan et al.
[2012] adapted to the ordering of lists would work in this
setting. Another interesting direction is to lift these results to
the setting distributed bandits[Korda et al., 2016, Mahadik
et al., 2020].
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